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The paper formulates and estimates a single-factor multi- 
variate time series model. The model is a dynamic gen- 
eralization of the multiple indicator (or factor analysis) 
model. It is shown to be a special case of the general 
state space model and can be estimated by maximum 
likelihood methods using the Kalman filter algorithm. The 
model is used to obtain estimates of the unobserved met- 
ropolitan wage rate for Los Angeles, based on observa- 
tions of sectoral wages within the Standard Metropolitan 
Statistical Area. Hypothesis tests, model diagnostics, and 
out-of-sample forecasts are used to evaluate the model. 
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1. INTRODUCTION 
Much of the growth and decline of regional economies 

can be attributed to changes in comparative advantage, 
and the single most important component of this com- 
parative advantage is probably wage rates. Therefore, 
considerable interest centers on the measurement of local 
wage rates and on the determinants of their movements. 
Because a region within a national economy can be 
thought of as a very open economy, there are strong 
economic pressures for wages to equalize between re- 
gions, both through commodity trade which tends to 
equate factor prices and through regional migration of 
labor and capital. For further discussion of these issues, 
see Engle (1974). 

The measurement of a regional wage rate and its de- 
terminants is complicated by the differing wage in dif- 
ferent industries and by differing skill mixes in different 
industries. In this article a statistical technique will be 
employed to separate movements in a metropolitan wage 
rate into a national industrial component, a metropolitan 
area-wide component, and a local industry specific com- 
ponent. For example, the wage rate in contract construc- 
tion in Los Angeles will be decomposed into one com- 
ponent determined by the wage rate in contract 
construction in the United States, a second determined 

* Robert Engle is Professor, Department of Economics, University 
of California at San Diego, La Jolla, CA 92093. Mark Watson is Assistant 
Professor, Department of Economics, Harvard University, Cambridge, 
MA 02138. This research was supported by NSF grant SOC 77-07166. 
The authors are indebted to Clive W. J. Granger, David Lilien, Adrian 
Pagan, and Andrew Harvey for useful comments, suggestions, and en- 
couragement at various stages of the research. The authors alone take 
credit for any remaining errors. 

by the overall wage rate in Los Angeles, and a third 
resulting from factors particular to Los Angeles contract 
construction. 

There are good economic reasons for expecting each 
of these components to be important. The national com- 
ponent measures not only changes in the U.S. economy 
as a whole through inflation and business cycles, but also 
measures changes in technology, changes in preferences, 
changes in the supply or demand for the output of the 
industry nationally, and collective bargaining outcomes 
that may affect industrial wages for a broad geographical 
region. The metropolitan component reflects the demand 
and supply of labor in the metropolitan labor market. 
Presumably, no industry can avoid the effect of the local 
labor market entirely, but some may be more strongly 
influenced than others. This component would reflect 
migration patterns of capital and labor, the cost of living 
in the region, and the tightness of the local labor market. 
The specific effect is the remainder which measures sit- 
uations peculiar to this industry and region. By definition, 
the three effects are independent. 

To illustrate the problem, consider the least squares 
regression of the log of the wage rate in industry i in Los 
Angeles, wi, on the log of the national wage rate in this 
industry, ni, using annual data. The residuals from this 
regression are composed of metropolitan effects and local 
industry specific effects. The metropolitan effects are 
common to each industry and therefore produce corre- 
lation across industries while the specific effects are by 
definition independent of other industries. In Table 1, 
these regressions and residual correlations are presented; 
the large cross-sectional correlations suggest the impor- 
tance of the metropolitan effect. A factor analysis of these 
residual correlations indicates that one factor could ex- 
plain 70 percent of the variance. 

Because the data are a time series of cross-sections, 
the dynamic effects must also be considered and standard 
factor analysis is not appropriate. The first-order lagged 
correlation matrix, also presented in Table 1, shows the 
importance of the dynamics in the data set. Cross-cor- 
relations between sectors must result from serial corre- 
lation in the metropolitan component, while autocorre- 
lations could arise from serial correlation in the specific 
effect. The frequency domain version of factor analysis 
of Geweke (1977) and Geweke and Singleton (1981) can 
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Table 1. Ordinary Least Squares Results: 
wt = aO + a2nt + et 

Sector aO a2 DW R2 

Contract constructions .1371 1.0685 .24 .99 
(.026) (.01 9) 

Durable manufactures .1396 .9282 .20 .99 
(.018) (.017) 

Nondurable manufactures .2497 .8826 .17 .99 
(.013) (.014) 

Wholesale trade .1315 1.0231 .73 .99 
(.011) (.010) 

Retail trade .3493 .9640 .38 .99 
(.01 1) (.016) 

Residual Correlation: 

Sector CC DM NM WT RT 

Contract constructions 1.000 
Durable manufactures .728a 1.000 
Nondurable manufactures .717a .936a 1.000 
Wholesale trade .713a .304 .350 1.000 
Retail trade .872a .711 a .778a .515a 1.000 

Correlation of Residuals with Lagged Residuals: 

Sector CC-1 DM-1 NM-1 WT-1 RT-1 

Contract construction .878a .641 a .645a .621 a .768a 
Durable manufactures .796a .891 a .893a .542a .703a 
Nondurable manufactures .799a .901a .901a .567a .732a 
Wholesale trade .700a .173 .297 .614a 544a 
Retail trade .844a .71 Oa .725a .524a .81 Oa 

a Significant at the 95% level. 

be applied to this problem. Their test of a one-factor 
model against an unrestricted vector stationary process 
accepts the one-factor model with a statistic of 11.97, 
which is distributed as chi-squared with 11 degrees of 
freedom under the null hypothesis. Thus, it appears ap- 
propriate to seek a dynamic one-factor model of these 
data where estimated values of the factor would be in- 
terpreted as the movements in the metropolitan compo- 
nent of the wage rate. 

One would presumably like to estimate the coefficients 
on the national wage rates jointly with the factor and 
bring as much economics to bear on the separation of the 
components as possible. Consequently, several models 
are proposed for the metropolitan component that include 
varying amounts of economic information. 

In the second section we introduce the general state 
space model, and the third section discusses the esti- 
mation and diagnostic problems of the general model. 
Section 4 describes the economics of the formulation, 
while Section 5 presents the estimation results and tests 
the forecasting ability of the model. 

2. GENERAL FORMULATION OF THE MODEL 
The models considered in this paper are special cases 

of the "state space" model used in engineering to rep- 
resent a variety of physical processes. In fact, a wide 
range of models used in econometrics can be viewed as 

special cases of state space models, as will be shown. An 
introduction and comparison between econometric and 
engineering applications is given in Mehra (1974). The 
advantage of viewing the models in this way is that gen- 
eral maximum likelihood estimates are available based 
upon the Kalman filter recursive algorithm. 

The state space model consists of two sets of equations: 
transition or process equations and measurement equa- 
tions. The transition equations describe the evolution of 
a J x 1 vector x, of characteristics of a physical process 
in response to a K x 1 vector Zt of exogenous or lagged 
dependent variables and a J x 1 vector v, of disturbances. 
The state vector x, is unobservable and hence corre- 
sponds to the unobserved components which are to be 
isolated in this paper. The measurement equations de- 
scribe the relation between the unobserved state x, and 
a P x 1 vector of measurements y,. The predetermined 
variables z, and another vector of disturbances e, may 
also enter the measurement equation. 

The model can be specified as 

xt = fXt,I + y Zt + Vt (2.1) 
Jx1I JxJ-Jx1I JxK Kx1 Jx1I 

yt - axt + a zt + et (2.2) 
Px I PxJ-Jx I PxK KxI PxI 

and 
't - N.I.D (Q ?) (2.3) 

Regression models, time series models, and regression 
models with ARIMA disturbances are special cases of 
the state space model when P = 1. In some cases such 
as in Harvey and Phillips (1979) and Hannan (1976) this 
formulation has computational or theoretical advantages. 
More interestingly, unobserved components models such 
as Nerlove (1971), Pagan (1975), and Engle (1979a) can 
be formulated and estimated in this framework. If x, is 
interpreted as a vector of regression coefficients and a 
is given a time subscript, (2.1) and (2.2) become a time 
varying or random coefficients model, as discussed by 
Cooley and Prescott (1973) (1976), Harvey and Collier 
(1977), Garbade (1977), Brown, Durbin and Evans (1975), 
Pagan (1980), and Rosenberg (1973). 

In contrast to this wide range of applications of the 
state space model with one measurement equation, there 
appear to be no time series applications that fully utilize 
the model when P > 1. When + = 0 a rich collection of 
cross-sectional models immediately appear as special 
cases. Of particular interest is the standard factor analysis 
model for which P = y = 0 and R and Q are diagonal 
and for which (x gives the factor loadings. The model is 
called the multiple indicator model (MI) by Goldberger 
(1972) because the observable variables, y, are the effects 
or indicators of the latent variable x,. Closely related is 
the multiple-indicator, multiple-cause model (MIMIC) 
originally formulated by Zellner (1l970) and then extended 
by Goldberger (1972, 1977), and Joreskog and Goldberger 
(1975). Here Zy * 0, so the z variables cause the latent 
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variable while the y's indicate the effect. A slight gen- 
eralization also allows I8 i 0. If we further relax the 
model to allow R nondiagonal, the factor structure of the 
disturbances is no longer present and the model becomes 
a seemingly unrelated regression set-up where there may 
be coefficient restrictions across equations. 

When + i 0, the state space model provides dynamic 
generalizations of these cross-sectional models. For ex- 
ample, a multivariate stationary time series can be written 
in state space form with I8 and y = 0. Thus, such a model 
could be considered a dynamic factor analysis or dynamic 
multiple indicator (DYMI) model; the interest in such 
models occurs when there are a small number of inde- 
pendent factors which make up the full multivariate time 
series. In this case, forecasting would be done by fore- 
casting the small number of factors and then combining 
these forecasts according to the factor loadings. This for- 
mulation could be thought of as a parsimonious version 
of a vector ARIMA model. 

Similarly, when 3 is nonzero, the model is a general- 
ization of vector transfer function models or reduced form 
systems with vector ARIMA disturbances. If in addition 
y is nonzero, then we have a dynamic MIMIC, or DY- 
MIMIC model that can again be considered as a parsi- 
monious version of a vector transfer function model. 

Although several frequency domain procedures have 
been proposed for identifying unobserved components in 
multivariate time series by Geweke (1977), Brillinger 
(1975), and Sargent and Sims (1977), only one time do- 
main approach is known to the authors. Sargent and Sims 
(1977), Sims (1980), and Neftci (1979) introduce an "ob- 
servable index" model that defines the unobserved com- 
ponent to be a nonstochastic linear combination of lagged 
dependent variables. Thus the z vector includes lagged 
y's and the associated disturbances have zero variances 
so that Q = 0. 

In this article we use economic theory to specify and 
estimate a time domain dynamic factor analysis model 
that restricts y = 0 but allows the factors to be serially 
correlated. 

3. ESTIMATION AND DIAGNOSIS IN THE STATE 
SPACE MODEL 

Maximum likelihood estimation of the model (2.1), 
(2.2), (2.3) can be undertaken using brute force by suc- 
cessively substituting (2.1) in (2.2) to eliminate the unob- 
served variable x. This yields a "reduced form" set of 
equations in y and z with many lags and a disturbance 
covariance matrix that includes a variety of the same 
parameters found in the lag structures. Although such a 
problem can be solved by a generalized least squares 
approach (GLS), each case will be different. The Kalman 
filter algorithm provides a general solution to this problem 
and also calculates estimates of the x,. The algorithm 
does not require inverting a T x T matrix, where T is the 
length of the time series, as would a brute force, GLS 
approach. 

The state space model has two sets of unknowns. There 

are unknown parameters ao, P., y, , Q, R, and there are 
unobserved states, x. The estimation of these two classes 
of unknowns is done in two related steps. Conditional on 
these parameter values, best linear unbiased estimates 
of the states x, based on all information through time t, 
are obtained with the Kalman filter. As a by-product of 
the state estimation, the value of the likelihood function 
is obtained. Then, using a grid search or some form of 
nonlinear routine, the likelihood can be maximized with 
respect to the unknown parameters. A final pass through 
the Kalman filter produces the estimates of the state vec- 
tor based upon the maximum likelihood parameters. At 
this point it is also possible to get "smoothed" estimates 
of the states. These estimates are the best linear unbiased 
estimates based on all the information, not just that up 
through t, conditional on the parameter estimates. 

The Kalman filtering algorithm is becoming well known 
in economics through work by Chow (1975), Taylor 
(1970), Pagan (1975), Engle (1979a), Garbade (1977), and 
others, and will not be discussed in detail here. Basically, 
it constructs an estimate x, of x, based on combining 
information newly available in time t, (yt, z,), with xt_ 1i 
If the x, process is stationary, the recursion is initialized 
by setting the mean and variance of xo equal to their 
steady state values. Otherwise the method discussed in 
Rosenberg (1973) can be used. We define the innovations 
-q, as the difference between y, and the best estimate of 
y, based on information up to t - 1 plus any exogenous 
variables in time t. 

It = - Y (3.1) 

=y - 0x4,- I - (oy + 1)z, 

The innovations for a correctly specified model must be 
white noise and must also have no lagged cross corre- 
lations. If either of these features is not present, then the 
forecast of y, would not have used all the information 
through t - 1. The contemporaneous variance covari- 
ance matrix of the innovations, H,, is a function only of 
the parameters of the model and is therefore known. 
Schweppe (1965) has shown that the log-likelihood of the 
sample can be written very simply in terms of the inno- 
vations as 

L = zL, = - -(log I H,t + t'Ht-lq,). (3.2) 
t , 2 

Therefore it is in principle a simple task to maximize the 
likelihood function with respect to the unknown 
parameters. 

Unfortunately, this maximization is computationally 
demanding as there are generally large numbers of pa- 
rameters and each evaluation of the likelihood function 
requires an appreciable number of calculations. Although 
several nonlinear optimization procedures have been 
used in this project, the most successful procedure was 
the generalization of Pagan's (1980) approach to the 
method of scoring and only this will be discussed. 

Let all the parameters be gathered into a vector 0. The 
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iterative procedure involves finding k, the information 
matrix evaluated at ok; and Xk, a scalar step length, to 
obtain new estimates 0k+ ? based upon estimates from the 
kth iteration. 

ok+I = ok + Xk 5kj' (aLh9O) j 0 k (3.3) 

Pagan (1980) has derived an expression for the infor- 
mation matrix in the case P = 1. Here we derive the 
equivalent expression for P greater than one and correct 
an error in Gupta and Mehra (1974). We use the well- 
known expressions for derivatives of a symmetric matrix 
B 

= I =B Itr (B`1B)- (3.4) ax ax 

___-B-B -B-'. (3.5) 
Differentiating L, in (3.2) with respect to one parameter 
Oi using (3.4) and (3.5) gives 

aLt/a0i = - A tr(Ht 1 aThtIO0) 

- (aq,tIa0)'Ht' , (3.6) 

+ 1X,'Ht -a Hl,tlOiHt - 1'9t, 
which can be rewritten by taking the trace of the last term 
as 

aL,IO,i = - 2 tr(Ht 'aHt/la0)(I - Ht -fl,t- 't) 

- (artla0j)'Ht -lt (3.7) 
= L1, + L2,. 

To find the second derivative matrix of the log-likelihood, 
write 

aL tdOj = - A tr [a(Ht 'aHt1aO0)/aOj] 
x [I- Ht-Jqtq'] 

- A tr [(Ht - laHt/a0i)Hf - 'aHtlaOjH, "-'ltT 't] 

+ A tr {H,t- (aHtIa0i)Ht-' 

x [(ad,Ia01) -q't + t(a&qtI/Oj)']}. (3.8) 
The only random variables in this expression are the pt, 
hence taking the expected value of (3.8) the first term 
vanishes and the last two matrices in the second cancel. 
From (3.1) it can be seen that a-,Ia0i depends only on 
past innovations (through x.t- 1) and current exogenous 
variables. Since current and past innovations are inde- 
pendent by the normality assumption, the third term in 
(3.8) vanishes in expected value as well. Thus we have 

E(aL 1l81j) = - A tr [Ht- aHtlaOiHt 'aH,tlaOj]. (3.9) 

Now differentiate L2, with respect to Oj to obtain 

aL2,/ad0 = -d2ndI1jHt -' H t 

- (dat/d,Ia)' dH, Ia01jq, (3 .10) 

- (a'q1/aO1yHt '& dla81. 

Taking expected values, the first two terms vanish. The 
third depends only on past innovations and thus is equal 
to its expected value conditional on the past. This gives 

E(aL2r1aOj) = -(a,t1a0j)' Htj -'1&,/aO. (3.11) 

The ijth element of the information matrix is the negative 
of the sum of (3.9) and (3.11) summed over all time pe- 
riods. Thus 

ij= tr [H, - 1 aH,IEHiHt - atH,1a0j] 
t (3.12) 
+ E-l 1aO.. t 

The advantage of the scoring algorithm is now appar- 
ent. The expression (3.12) requires only first derivatives, 
which can be calculated numerically by K passes of the 
Kalman filter where K is the dimension of 0. Starting 
from consistent estimates asymptotic efficiency will be 
reached in one step. Computational gains are expected 
from using the derivatives of H, the steady state matrix 
to which H, converges, rather than H, itself in (3.12). 

Three general classes of model diagnostics are avail- 
able for evaluating the performance of the model. First, 
from the information matrix, a set of standard errors are 
available for all the parameters of the model. These may 
be used to test the significance of parameters in an 
overfitted model. Second, the innovations are available 
and can be tested for whiteness and lack of cross-correla- 
tion. Finally, Lagrange Multiplier or Score tests can be de- 
rived for testing the adequacy of the model. 

Significant serial correlation of any of the innovations, 
or lagged cross-correlations between innovations for dif- 
ferent observation vectors each indicate faults with the 
model specification. Test statistics designed for this pro- 
cedure have not yet been proposed, hence in this article 
standard serial correlation coefficient tests have been 
applied. The Brown, Durbin, and Evans (1975) approach 
to recursive residuals might suggest using the cusum or 
cusum squared tests on each innovation series. 

If significant serial correlation is observed, then the 
model should be augmented in some fashion. If the serial 
correlation is in only one innovation, then presumably 
there should be an autocorrelated error in this measure- 
ment equation. If there are lagged cross-correlations, 
then the common factor is not sufficiently well specified. 
Either it must be redefined, allowed to enter the equations 
differently, or perhaps a second factor is necessary. 

Lagrange Multiplier or Score tests are asymptotically 
equivalent to Wald and Likelihood Ratio tests for local 
alternatives and require that the model be estimated only 
under the null. This is an attractive feature for the models 
considered in this article, since numerous calculations 
are required to overfit the model. A discussion of La- 
grange Multiplier tests can be found in Engle (1979c). In 
Engle and Watson (1980) a numerical method for calcu- 
lating the test statistic is presented, and an example of 
the testing procedure is given in Section 5. 
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4. ECONOMIC FORMULATION FOR THE 
UNOBSERVED COMPONENT 

The economic model of wage determination can be 
simply formulated for each sector i as 

Wit= -Oim, + IBini, + 3oi + eit, (4.1) 

where w and n are the logs of the Los Angeles and national 
wage rates in industry i and year t, and Eei,ep = 0, Eei,m, 
= 0, for all t and i * j. The unobserved component m 
is common to all sectors and defined to have mean zero. 
The parameters (xi and Pi indicate the sensitivity of wage 
determination in industry i to metropolitan and national 
wage rates. The assumption that ni, is exogenous to Los 
Angeles is universally incorporated in regional models 
and is plausible because Los Angeles provides no more 
than 6 percent of the employment in any of the industries. 

The data are analyzed for five sectors: Contract Con- 
struction (CC), Durable Manufacturing (DM), Non-Du- 
rable Manufacturing (NDM), Wholesale Trade (WT), and 
Retail Trade (RT). Simple regional economic theory (see, 
for example, Engle 1979b) suggests that export industries 
facing elastic demands would be particularly sensitive to 
national wage rates because excessive local wage pres- 
sure would lead to decreased local production in favor 
of alternative sites, thereby keeping the observed local 
industry wage in line with the national. On the other 
extreme, local serving industries would be more sensitive 
to the wage rate in the metropolitan economy because 
there is no possibility of relocating the production. Hence 
we anticipate large values of ox for contract construction 
and retail trade, and smaller but still positive values for 
manufacturing. If wholesale trade in Los Angeles pri- 
marily provides services as a transshipment point, then 
this sector would behave like an export industry. 

To complete the specification of the model, it is nec- 
essary to formulate an equation for the unobserved met- 
ropolitan component. An initially appealing equation 
made the wage a function of the tightness of the local 
labor market, as measured by the local unemployment 
rate or by the difference between the local and the na- 
tional unemployment rates. This can be generally spec- 
ified as 

mt = m,t1 + Yu, + Vt. (4.2) 

With this equation, the model becomes a dynamic mul- 
tiple-indicator, multiple-cause (DYMIMIC) model. 

Estimates of variants of (4.1) with (4.2) produced plau- 
sible values of ai and fPi, but invariably had the wrong 
sign for y. In retrospect, this is to be expected and has 
been found in the literature in other contexts, by Metcalf 
(1971) and Hall (1975) for example. For a regional econ- 
omy, unemployment is determined jointly with wages; 
high wages lead to high unemployment through migration 
both of capital and of labor. Thus the simultaneous equa- 
tions bias is presumably responsible for the unexpected 
sign of Py. For further details see Engle and Watson (1978). 

To improve the specification requires formulation of 

the system of equations for the endogenous local varia- 
bles. Equation (4.2) could then be replaced by its reduced 
form. For a regional economy, there are few local exo- 
genous variables, hence this reduced form would consist 
primarily of lagged dependent variables. Following Wal- 
lis (1977), and Zellner and Palm (1974), the exogenous 
variables could be represented by a multivariate time 
series and the full system solved so that m satisfies an 
ARIMA model. 

A rather extravagant approach to the estimation of such 
a model is to allow each data point to be given by an 
unknown fixed constant. Letting D, be one in period t 
and zero otherwise, we can define a fixed effects model 
as 

m= D,y,. (4.3) 

This model imposes no structure on the -yt but uses a large 
number of parameters to estimate a sequence of very 
highly correlated points. It is also useless for forecasting. 
When this model was estimated, it appeared that the y, 
followed a smooth time pattern that could most likely be 
explained by a low order ARMA model. Again, for further 
details, see Engle and Watson (1978). 

These preliminary results suggest the desirability of 
simple dynamic factor-analysis models, which turn out 
to be most successful for this data set. In the simplest 
case, each ei is assumed to be serially uncorrelated and 
m is assumed to be a first-order autoregression 

mt = tm,_, + Vt. (4.4) 

Together, (4.4) and (4.1) describe a state space system 
which can be estimated and tested using the techniques 
of Section 3. This model is called Model A. 

As will be shown, Model A fails a variety of specifi- 
cation tests and hence a generalization called Model B 
was formulated. This model allows m to follow a second- 
order autoregression while each ei is a first-order auto- 
regression with its own coefficient. Letting e, be the 5 
x 1 column vector of disturbances, this can be written 
and estimated in state space form as 

/n1 / 1\ 

O1 0 

0 
0 P5 

( 0 ) , 
w, =t| I | m,_, | + |nt=. (45 

(J2m ? 
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5. DYNAMIC FACTOR ANALYSIS-ESTIMATION 

Model A was estimated using a variant of the technique 
described in Section 3. The results were not particularly 
encouraging. There appeared to be substantial serial cor- 
relation in the residuals of several sectors and lagged 
cross-correlations between sectors were sometimes se- 
vere. For first- and second-order lags these are shown in 
Table 2. The finite sample properties of the serial cor- 
relation coefficients are not known, but the asymptotic 
5 percent tests of correlation coefficients of white noise 
random variables are rejected for 10 of the 50 coefficients. 
Presumably these tests are very conservative for the same 
reasons given by Durbin (1970), and Davies and Newbold 
(1979). 

Further evidence of misspecification comes from over- 
fitting Model A. The estimates of Model B are given 
in Table 3. For the second-order coefficient in the m 
autoregression, k, the t statistic is -4.3 and for the 
individual serial correlation coefficients, the pi's, they 
range from 1.2 to 8.4. These all lead to a rejection of the 
specification in A; they also suggest that in CC and RT, 
the metropolitan component may account for all the 
dynamics. 

The results for Model B are rather encouraging. The 
largest factor loadings are on contract construction and 

Table 2. Auto- and Cross-Correlations of 
Innovations from Dynamic Factor Analysis Models 

Model A 

Sector CC_ 1 DM_ 1 NM- 1 WT_1 RT_ 

Contract construction .70a - .03 .11 .53a .38 
Durable manufactures .31 .28 .21 .27 .28 
Nondurable manufactures .28 .35 .25 .24 .33 
Wholesale trade 49a .00 .12 .50a .15 
Retail trade .60a - .01 .12 53a .46a 

Sector CC-2 DM-2 NM-2 WT-2 RT_ 

Contract construction .43a .18 .20 .33 .18 
Durable manufactures .26 .03 .10 - .05 .31 
Nondurable manufactures .22 - .05 - .03 .11 .31 
Wholesale trade .39 .15 .16 .20 .09 
Retail trade .47a .04 .23 .48a .15 

Model B 

Sector CC_1 DM_1 NM_1 WT_1 RT_ 

Contract construction .05 - .01 -.10 .02 -.09 
Durable manufactures .07 .09 .21 .11 .06 
Nondurable manufactures -.36 -.10 -.25 -.40 -.23 
Wholesale trade - .13 - .06 - .09 - .10 - .23 
Retail trade .29 -.02 .15 .27 .23 

Sector CC2 DM-2 NM-2 WT-2 RT-2 

Contract construction .19 .11 .05 .07 .18 
Durable manufactures - .28 - .16 - .20 - .40 .03 
Nondurable manufactures - .19 - .29 -.11 -.18 -.10 
Wholesale trade .24 .11 .11 .13 - .02 
Retail trade - .07 - .16 - .25 - .08 - .15 

aSignificant at 95% level. Asymptotic critical value as .43. 

Table 3. Dynamic Factor Analysis (Model B)a 

Where mt = )1 mt- 1 + 4)2mt-2 + VIt 

Wit = ?timt + init + eit For sectors i = 1,..., 5 

eit = pie,t 1 + v+ it 

Sector a 1 p P u2 x SE 
104 

Contract construction 1. .874 .628 .598 .008 
(.078) (.389) (.329) 

Durable manufactures .549 .786 .742 .835 .009 
(.090) (.053) (.155) (.266) 

Nondurable manufactures .380 .786 .898 .466 .007 
(.091) (.040) (.107) (.149) 

Wholesale trade .302 .959 .519 1.191 .011 
(.075) (.032) (.227) (.352) 

Retail trade .663 .810 .340 .941 .010 
(.070) (.059) (.289) (.343) 

4)1 142 a.2 x oVl 
104 

Metropolitan component 1.606 -.619 1.229 .011 
(.125) (.145) (.585) 

a Standard errors are in parentheses. 

retail trade, with durable manufacturing next. All the fac- 
tor loadings are positive and, judging by the standard 
errors of the loadings, all are highly significantly different 
from zero. The standard errors are generally 1 percent 
or less. It appears that there may be a unit root in the 
process for the metropolitan component, which merely 
implies that over this sample period there does not appear 
to be an equilibrating process operating to bring Los An- 
geles wage rates into a par with other locations. If a unit 
root is found in this model, there is no change in the 
estimation procedure or the inference required except 
that the initial conditions must be estimated as nuisance 
parameters, and asymptotic approximations used for in- 
ference may be poor (see Evans and Savin 1981). Models 
formulated in terms of first differences and an intercept 
might be more attractive in some cases. 

It should also be noted that a large number of param- 
eters have been estimated using a sample of moderate 
size. Maximum likelihood estimates may therefore not 
be very good, as only asymptotic optimality is guaranteed. 

Diagnostic checks based on the innovations were also 
carried out for Model B. Auto- and cross-correlations 
presented in Table 2 show that in the first- and second- 
order auto- and cross-correlation matrix no coefficients 
are significant. A further test of the adequacy of Model 
B was carried out using the Lagrange Multiplier test de- 
scribed in Engle and Watson (1980). Under the null, 
Model B is the correct specification, while under the 
alternative each ei is allowed to follow an AR(2) process 
and m, is allowed to be AR(3). The resulting test statistic, 
which is asymptotically distributed as a x62 random var- 
iable under He,, had a value of 9.1. This can be compared 
with the 5 percent critical value of 12.6. 

The estimated model also produces estimates of the 
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Table 4. Estimates of the Metropolitan Wage Index 

Year Dynamic Factor Analysis 

1952 .90 
53 .91 
54 .91 
55 .93 
56 .93 
57 .94 
58 .97 
59 .99 

1960 1.01 
61 1.03 
62 1.05 
63 1.07 
64 1.08 
65 1.09 
66 1.10 
67 1.10 
'68 1.09 
69 1.08 

1970 1.08 
71 1.10 
72 1.11 
73 1.12 
74 1.13 
75 1.17 

metropolitan component of wage rates. These estimates, 
when converted to index form, measure the extent to 
which the metropolitan wage rate varies from its normal 
relation with the national average after adjusting for in- 
dustrial mix. The index is simply the exponential of the 
smoothed estimate of the unobserved component, that 
is, the best linear unbiased estimate based on all the data, 
assuming all the parameters are correct. The series are 
given in Table 4. Examination of the series shows that 
wage rates were 10 percent below normal in the early 
1950's and rose steadily to 17 percent above normal in 
1975. There is a slowdown in the late 60's and early 70's, 
which would correspond to the slowdown in aerospace 
and military contracts. 

6. FORECASTING PERFORMANCE 

The forecasting performance of the factor analysis 
model was compared with a simple regression model for 
the two post-sample years 1976 and 1977. For the second 
year, a two-period ahead forecast was used. The regres- 
sion model included the national wage rate and a lagged 
value of the Los Angeles industry wage rate, and allowed 
a first order autoregressive error process. The model was, 
therefore, slightly more parsimonious than the dynamic 
factor model. The criterion for performance was the sum 
of squared errors for the four forecastable sectors (no 
new data has been reported for contract construction). 

The sum of squared errors ( x 104) for the factor anal- 
ysis and the regression models in 1976 were 10.68 and 
13.62, respectively. In 1977, the corresponding figures 
were 28.33 and 29.37. For a few sectors the regression 
model forecast better, while for others the factor analysis 
model forecast better. However, the sum of squared er- 
rors favored the factor model in both years, and the larg- 

est error was always in the regression forecast. This is 
consistent with our anticipation that a joint forecast can 
be more accurate when a joint estimation procedure is 
employed. It is also encouraging evidence for the use- 
fulness of these procedures not only for economic anal- 
ysis but also for forecasting. 

APPENDIX: SOURCES OF DATA 

Average hourly earnings for the five industries in Los 
Angeles for 1952-1975 were from U.S. Department of 
Labor, Bureau of Labor Statistics, Employment and 
Earnings, States and Areas 1939-1975, Washington, 
D.C.: Government Printing Office, 1977. 

Average hourly earnings for the four industries in Los 
Angeles for 1976 were from California Statistical Ab- 
stract 1977. 

Average hourly earnings for the five industries in the 
U.S. for 1952-1975 were from U.S. Department of Labor, 
Bureau of Labor Statistics, Employment and Earnings, 
United States, 1909-1975, Washington, D.C.: Govern- 
ment Printing Office, 1977. 

Average hourly earnings for the four industries in the 
U.S. for 1976 were from U.S. Department of Labor, Bu- 
reau of Labor Statistics, Employment and Earnings, 
Washington, D.C.: Government Printing Office, March 
1977. 

National unemployment figures were from U.S. De- 
partment of Labor, Bureau of Labor Statistics, Handbook 
of Labor Statistics (various dates), Washington, D.C.: 
Government Printing Office. 

Los Angeles unemployment figures for 1970-1976 were 
from the California Statistical Abstract, 1976, for 
1952-1970 from the California Employment Development 
Department, Los Angeles. Due to the definitional change, 
these data were not comparable with the 1970-1976 data. 
The overlapping year (1970) was used to adjust the old 
figures to the new definition. 

[Received September 1978. Revised June 1981.] 
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