a ONE PHASE DUAL CONVERTEH FOR TWO QUADRANT POWER CONTROL

 of superconducting magnets*| M. Ehsanı | R. L. Kustom | R. W. Boom |
| :--- | :--- | :--- |
| Senior member, IELE | Member IEEE | Senior member, IEEE |
| Electrical Engineering | Physics Division | Applied Superconductivity Center |
| Texas A\&M University | Argonne National Laboratory | University of Wisconsin |
| College Station. Texas 77843 | Argonne, Illinois $\mathbf{6 0 4 3 9}$ | Madison, Wisconsin 53706 |

The One-Phase Induclor-Converter Bridge

Abstract

This paper presents the results of theoretical and experimental development of a new de-ac-de converter for superconducting masnet power supplies. The basic operating principles of the circuit are described followed by a theoretical treatment of the dynamics and control of the astern. The success fol results of the first experimental operation and control of such a circuit are presented and discussed.

introduction

Superconductive magnet coils are being increasingly used for energy storage and generation of high magnetic fields in research and industry. Exaraples of superconductive energy storage magnets under study or in operation are Wisconsin Superconductive Energy Storage coil ${ }^{1}$ and the Loo Alamos National Laboratory experimental power system stabilizer coil ${ }^{2}$. Examples for magnetic Geld generation are the equilibrium field (EF) coils of Argonne National Laboratory proposed Tokemok Experimental Power ike actor ${ }^{3}$ and the Tevatron magnets of Fermi National Laboratory accelerator. ${ }^{4}$

From the electrical terminals, the superconductive coil is a virtually resiotance-free large inductor, capable of storing large amounts of energy. To supply this energy efficiently, the power supply should also have low losses and be capable of reversible power control. This is particularly important in repetitively energized magnet. Solid state switching power supplies have been utilized for this purpose in recent years (Fugurel (a)). Low conduction and switching losses at high frequencies and the increasing power ratings of solid state switches make solid state switching supplies favorable for superconductive magnet applications onto the future.

Where repetitive bidirectional (two-quadrant) power control is required, power supply circuits using another superconductive energy storage coil as buffer have been suggested 5,0.7.s. The main advantage these circuit arrangements (Figurel(b)) is that high power oscillations, required by the load, are supplied by the energy storage coil. Thus, a relatively small power generator or utility link can be used for the initial charging of the storage coil and also for system loss compensation in a steady state. Two examples of power supplies with energy storage buffer are the flying capacitor ${ }^{6}$ arrangement and the inductor-converter bridge ${ }^{6}$ (ICE). A study of eeveral of these circuits has been presented in reference 7.

This paper presents the results of theoretical and experimental work on a new one-phase dual converter for magnet supply which is in the class of ICB circuits.

[^0]Manuscript received September 10, 1984.

In this section we wit, describe the operation of the one-phase ICB and analyze is dynamic behavior. A more complete preaenLation of this subject appears in reference 9.

(e)

Figure 1 Two power supply arrangements \dot{k}_{1} for pulsed inductive loads.

Circuit Operation

Figure 2 shown a schematic diagram of the circuit. The land manget, L_{L}, and the storage magnet, L_{g}, are each connected to a full wave one-phase converter. The ac lined of the two converten are connected in parallel with the capacitor, C. The switching sequence on the storage converter is $S_{11} S_{14,} S_{12} S_{13}, S_{11} S_{14}$, enc. Similar switching sequence and frequency is used on the load convertex. However, a leading switching timing of the load converter, relative to the storage converter, will cause a net energy transfer from storage to load coil, and vice versa. the capacitor, C, ternporarily stores the energy which is transferred from one coil to the other in each converter cycle. The switching frequency of the converters is mo bight that only an infinitesimal fraction of the system energy is stored in the capacitor at any ore time. Therefore, the capacitive energy storage requirement of the system is very low.

Figure 2 Circuit diagram of the one-phase ICB.

The capacitor also supplies the commutation voltages to the converters. Commutation between $S_{1} S_{4}$ and $S_{4} S_{3}$ conduction palterns on each converter produces an instantaneous double short circuit across each soil. The impedance of the commutation loops; es., $C-S_{11}-S_{12}$, is kept wo low that even a small capacitor voltage of the correct polarity will drive sufficient commutation current in the loop. Two such commutation instants occur on each converier, per cycle. Note that a commutation failure in inherently safe because the double short circuits of the failed converter serve as asfety crowbars across the corresponding coil.

The circuit usually begins operation with the storage inductor fully charged and the load inductor uncharged. The capecitor may be precharged, for example to a negative voluge for $S_{3} S_{4}$ initial switching in each converter. Thereafter, proper operation will ina're the availability of the correct comm:tation voltage polarities.

Circuit Dynamic Analysis

Figure 3 shows an idealied; model of the one-phese ICB in which the SCR's are replaced by ideal awitchea. Because of high frequency, the coil curreats do not change aignificantly in a converter cycle of interest and may be represented by constant current sources, I_{s} and I_{L}. The switching action of the converters produces square wave ac current it and it from the coil currents I_{S} and I_{L}. Each constant current source and its converter may be replaced by its equivalent ac current source function, i_{1} and i_{2}, resulting in the circuit of Figure 4. The capecitor is left unchanged. An example of i_{1} and i_{2} current waveforms is shown in Figure 7.

Figure 3 Idealized circuit model of the one-phase ICB.

Figare 4 Equivalent circuit model of the one-phase ICB.

The average power from one source to the other, in Figure 4, miay be calculated over one cycle. However, since i_{1} and i_{2} are square waves the calculation may be done on their Fourier components. This calculation is shown in reference 9 and the resulting expression is

$$
\begin{equation*}
\langle\rho s\rangle=\sum_{n=1}^{\infty} \frac{4 I_{s} I_{L}}{n^{3} \pi^{2} \omega C}\left|1-(-1)^{n}\right| \sin n \phi \tag{1}
\end{equation*}
$$

where $\left\langle p_{s}\right\rangle$ is average storage coil output power over one cycle, l, and l_{L} are the average coil currents over the same cycle, w is the angular frequency of the converiera, ard ϕ is the load converter advance angle. A closed form for $<p_{s}>$ may be derived if $i_{i, 17}$ and 's are expressed in terms of a new set of orthogonal switching funchons'. The result is

$$
\begin{equation*}
\left\langle p_{S}=\frac{I_{S} I_{L}}{\omega C}\left(\phi-\phi^{2} / \pi\right)\right. \tag{2}
\end{equation*}
$$

a plut of $\langle\boldsymbol{r} \boldsymbol{s}\rangle$ vs. the control angle, ϕ, is shown in Figure 5. "...e that the instantancous potver can be controlled from zero to its maximum value as σ is varied from zern to g

THIS REPORT IS ILLEGIBLE TO A DEGREE THAT PRECLUDES SATISFACTORY REPRODUGTION

Figure 5 Average power va. control angle in one-phase ICB.

Since the ideal ICB is lossless, the instantaneous coil currents, averaged over a cycle, is $\triangleq_{\Lambda_{S}}$ and $i_{L} \hat{S}_{L}$, can be derived from differential equations based on conservation of power:

$$
\begin{align*}
& \text { storage output power }=\left\langle p_{S}\right\rangle=-\frac{d}{d!}\left(\frac{1}{2} L_{S} i_{S}^{2}\right), \tag{3}\\
& \text { load input power } \left.\quad=<p_{S}\right\rangle=\frac{d}{d t}\left(\frac{1}{2} L_{L} i_{L}^{2}\right), \tag{4}\\
& i_{s}(0)=I_{0}=\text { initial storage current, } \tag{5}\\
& L_{L} \frac{d i_{L}}{d t} h_{1}=0=0=\text { initial load voltage } \tag{6}
\end{align*}
$$

substituting for $<p_{S}>$ from eq. (2), and solving the differential equations, the coil curreat expressions as a function of time are

$$
\begin{align*}
& i_{S}(t)=i_{0} \cos \frac{k}{\sqrt{L_{S} L_{L}}} t, \tag{7}\\
& i_{L}(t)=I_{0} \sin \frac{k}{\sqrt{L_{S} L_{L}}} t, \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
k \triangleq\left(\phi-\phi^{2} / \pi\right) / \omega C . \tag{9}
\end{equation*}
$$

The instantaneous coil power, averaged over a cycle ($p_{s} \stackrel{\Delta}{\approx} p_{s}>$). is found by substituting equations (7) and (8) in eq. (2):

$$
\begin{equation*}
P_{s}(t)=\frac{1}{2} k I_{0}^{2} \sqrt{L_{s} /} \frac{L_{L}}{\sin } \frac{2 k}{\sqrt{L_{5} L_{L}}} t \tag{10}
\end{equation*}
$$

The instantancous coil voitages, averaged over a cycle, v_{S} and u_{L}. are found from $v=L d_{1} / d t$. The results are

$$
\begin{align*}
& v_{s}(t)=k i_{0} \sqrt{L_{s} / L_{L}} \quad \sin \frac{k}{\sqrt{L_{s} L_{L}}} t \tag{11}\\
& v_{L}(t)=k I_{0} \sqrt{L_{s} / L_{L}} \cos \frac{k}{\sqrt{L_{s} L_{L}} t} \tag{12}
\end{align*}
$$

Fquations (7). (8), (10), (11) and (12) indicate the effect of the control angir. 0 . on the dynamic behavior of the circuit.
L.and Current Comion

The one-phase fens an only internded for charging and dis. charging of a load magnet but alw, for iral time control of the load mangetic field baned on an atherary relremere signal for load mangetic ficld control a bang bang or maxisnum effort control strategy has been devised which prowido a time optimal response tu step reference changen Thus mir rocomputer based algorithm acquires the present valor of lowd currem, $i_{t}\left(I_{A}\right)$, referruce current $i_{i}\left(t_{k}\right)$ and control angir $o\left(t_{4}\right)$ If $i_{i}\left(f_{4}\right) \cdot i_{H}\left(t_{4}\right)$, a next value of rontrol angel, $\phi\left(t_{k, 1}\right)$ for mavimum power to the load is issued. Conversely, is $i_{2}\left(f_{k}\right)=\boldsymbol{i s f}_{\boldsymbol{\mu}}\left(f_{4}\right)$ a mex valur of control angle for maximum power from the load is issued The control angle is unchanged if $i_{L}\left(l_{k}\right)=i_{H}\left(l_{A}\right)$. The control angle for maxamum poaitive and negative power can be obtained by differemtiating eq. (2). These values which are also rvident from Figure 6, are o 90° for positive power to the load ando - 90° for negative power. Equation (2) shows that converter frequency, w, can also controt the load power. However, w is usually based on other design constraints and will not be considered for control in this paper.

The above control strategy operate the load converter at either 90° lead or lag, relative to the storage converter, at all times.

Methods of Phase Shiling

Bang-Bang control strategy requires frequent 180° phase shifting between 90° and -90^{n}. Phase shifts are implemented by shortening or lengthening the switching time intervals on one or both converters of the ICII. Such switching interval perturbations can introduce bias vollages on the capacitor which can result in commutation or over voltage failures A systematic method of phase shifting without producing any voltage bias is deacribed below.

To cause a load converter lead, relative to the storage converter of the ICB, its switching intervals are temporarily shortened. This temporary alteration of the switching is called a transient swisching sequence and is then follower by the rqual interval switching sequence. The shortest plase shifting transient switching sequence which will not introduce a capartor vollage bias is a three-step sequence. If the steady state switching interval on each converter is Δt, the three transient intervats. $\Delta t_{1}, \Delta t_{2}$ and Δt_{3} are derived from

$$
\begin{align*}
& \Delta t_{1} \quad \Delta t \quad \frac{\Delta t_{\theta}}{2}, \tag{13}\\
& \Delta t_{2}=\Delta t-\frac{\Delta t_{*}}{2}, \tag{14}\\
& \Delta t_{3} \quad \Delta t, \tag{15}
\end{align*}
$$

where Δt_{0} is the time shift corresponding to o degrees of converter phase shift. Figure G show's typical waveforms of a three-step switching sequence which delays thr luad ronverter by 90r. The 180° phase shifts, required by the bang-bang control algorithm, can also be implemented in threr iramsient morrvals Howrver, in our experiments the 180° shifts were done in two cunserutive threr. step sequences. This provided additional margin of commulation voltages on the cxpacitor. Figure 7 shows the graphical derivation of capacitor waveform during a typical 180° shift when is < i_{L}.

Figure 6 Transient switching sk quence lor phase

igure 7 A 180° phase shift in two $90^{\circ} \operatorname{seg} m e n t s\left(-90^{\circ} \rightarrow 0 \cdot 90^{\circ}\right)$.

Proper commutation vollage polarity on the capacitar also depends on the control angle, ϕ. The one-phase ICB will fail to commulate if operated beyond the safe control angle thresholds shown in Figure 8. This figure shows that the saif thresholds are $\phi= \pm 90^{\circ}$ at the beginning of the transfer, $1 L / 1 s-0$ and increases to $\pm 180^{\circ}$ at $i_{L} / i_{s}=1$, then decreases back to 90° as the entire energy is transferred to the load is/iL $=0$ Therefore, bang. bang control strategy, whicli operates within $90^{\circ} \leq 0<90^{\circ}$. will always commutate successfully.

Figure 8 Plot of saife control phase threshold's.

Vixpromental Kanil-

$$
\begin{array}{ll}
i, & l . g \quad 4 l l \\
i . & 11 m A \\
i & 2.5-10 \\
H & 6.33 \mathrm{rad} / \mathrm{S}
\end{array}
$$

$$
\begin{aligned}
& \text { rated cail energy } 125 \mathrm{KJ} \\
& \text { rated convorter power } \quad 2.5 \mathrm{KW}
\end{aligned}
$$

Teveral circuit tests at ronstant conirol angles mablinherd the Pratirality of the one-phase ICH concept and also the soundifen il the experimental circuit design. Figure 9 showe the load conl "wremi- through one complete energy trativfer fromil. ta L_{i}. Votr that ths falling is and the rising it follow rqualions (i) and (8), respectively. Only the first quarter cycle of these equationsare

 -hitehing terhaigues. The system lehaved in accordance with the pedielwh. An example of the capacitor voltage durngha phane जhift of $0 \quad 90$ to 90 is shown in f to be compared with v_{c} in Figure 7 which was drawn for the same 1, '1, Nate.

Figure 9 Coil current waveforms through a full energy transfer at ϕ.- 60°.

(intrlu-1afi-

 ber of - bulitme, gate driver, and similar switehng and peuterto.

 alsol simptif the control software and electronics.

Another charactrisisic of the one-pham ICll is its commerter switch utilization fartor of 50 権 per cycle. This factor for the therephase ic: H is 33 学. This can translate into a reduction in the total mumber of selt's nerded by the one-phase $1(: / 1$ in high curremi apulicalum-

Finally. the experments on the one-phase ICIS proved the: circuit to tre remarkably resilient to capacitor voltage errors and commmation failures This circuit, augnented by the robsust bang
 therly pul-ed large maziael power supplios.

Heferencrs

I k W Howm, Il A Petersan, el al., Wisconsin Supermodur lisel.merk Slarage l'rojert Report. Vol I. Jul lema
 Suphtondurting Magnet Efiergy Storage System willisn the,

3. Tinknitak Einpermmental lower Reactor Cunceptual Design, Ar

1. A D. Mrimurlf. et. al., "lligh Fiedd Accelerator Magnet De
 Trans. un Nurl. Siri. Vol Nisus. Ne. 1. Auf 1983.

 and Switching. Asti- Termo. Ialy. Non. Igat
2. F.. I'. Dirk and II. Dusiman, "Indurlive Fiturgs Tranisfer us. ing a Capacilere. l'rac of lut. Conf. wh finerg: Storage. Compresmon, ald Siwitehing. Asti-Torino, haly. Nov 10at

- R. .. Kustom, Thyristor Nrtworks for the Tralisfer ef fin
 frose. 1900

[^0]: - Work supported by the U.S. Department of Energy and Applied Superconductivity Laboratory of University of Wisconsin.

