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Abstract. We present an efficient method for computing A-optimal experimental designs
for infinite-dimensional Bayesian linear inverse problems governed by partial differential equations
(PDEs). Specifically, we address the problem of optimizing the location of sensors (at which ob-
servational data are collected) to minimize the uncertainty in the parameters estimated by solving
the inverse problem, where the uncertainty is expressed by the trace of the posterior covariance.
Computing optimal experimental designs (OEDs) is particularly challenging for inverse problems
governed by computationally expensive PDE models with infinite-dimensional (or, after discretiza-
tion, high-dimensional) parameters. To alleviate the computational cost, we exploit the problem
structure and build a low-rank approximation of the parameter-to-observable map, preconditioned
with the square root of the prior covariance operator. The availability of this low-rank surrogate,
relieves our method from expensive PDE solves when evaluating the optimal experimental design ob-
jective function, i.e., the trace of the posterior covariance, and its derivatives. Moreover, we employ
a randomized trace estimator for efficient evaluation of the OED objective function. We control the
sparsity of the sensor configuration by employing a sequence of penalty functions that successively
approximate the ℓ0-“norm”; this results in binary designs that characterize optimal sensor locations.
We present numerical results for inference of the initial condition from spatio-temporal observations
in a time-dependent advection-diffusion problem in two and three space dimensions. We find that an
optimal design can be computed at a cost, measured in number of forward PDE solves, that is inde-
pendent of the parameter and sensor dimensions. Moreover, the numerical optimization problem for
finding the optimal design can be solved in a number of interior-point quasi-Newton iterations that is
insensitive to the parameter and sensor dimensions. We demonstrate numerically that ℓ0-sparsified
experimental designs obtained via a continuation method outperform ℓ1-sparsified designs.
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ment, ill-posed inverse problems, low-rank approximation, randomized trace estimator, randomized
SVD.
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1. Introduction. Recent advances in theory [32] and numerical algorithms (e.g.,
[8]) are enabling efficient solution of infinite-dimensional Bayesian inverse problems.
This opens the door to consideration of the upstream question: how do we place sen-
sors to optimally infer model parameters for large-scale problems? Here we present
an efficient method for such optimal experimental design (OED) problems. Specifi-
cally, we consider Bayesian linear inverse problems governed by PDEs whose solution
is the posterior probability law for a parameter field. The numerical solution of
such inverse problems is challenging due to the infinite (or, when discretized, large)
dimension of the parameters, ill-posedness of the inverse problem, and expensive-to-
compute PDE models. The Bayesian inverse problem is by itself very challenging, but
it is merely a subproblem within the OED problem, and must be solved repeatedly
when using conventional OED methods. Hence, it is essential to make maximum use
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of the problem structure to realize efficient algorithms that are scalable, i.e., their
performance—measured in number of governing (forward) PDE solves—is indepen-
dent of the discretized parameter and sensor dimensions, and the discretization of the
governing PDE.

When formulating an OED problem, a basic question is the precise meaning of
what constitutes the design. The present work concerns computation of optimal sensor
locations where observational data will be collected. A subsequent question concerns
the definition of an optimal design, which leads to the choice of the design criterion.
For Bayesian inverse problems, a natural choice is to seek a design that minimizes
the average posterior variance of the inversion parameters, leading to the Bayesian
A-optimal design criterion.

Standard references for optimal experimental design include [2,6,28,30,33]. While
most of the classical texts concern problems with small or moderate parameter dimen-
sion and focus mainly on well-posed inverse problems, there has been recent interest
in optimal design for large-scale ill-posed linear [16, 18] and nonlinear [17, 20] inverse
problems. The numerical methods in the present paper are closest to those in [16,18],
where the authors consider finite-dimensional linear inverse problems, and develop a
framework to control the mean square error of the regularized Tikhonov estimates.
This leads to a design criterion that seeks to minimize the sum of the estimation
bias and the variability of the estimator around its mean, which can be related to
A-optimal designs. These contributions use ℓ1-penalties to control the sparsity of the
design and, in [18], a low-rank singular value decomposition (SVD) of the parameter-
to-observable map is used; the present paper builds on and extends both of these
ideas. Further recent work that employs a Bayesian formulation includes [21, 22],
where the authors use a decision theoretic design criterion, generalized polynomial
chaos surrogates, and stochastic optimization to tackle nonlinear inverse problems,
albeit in low to moderate parameter dimension.

In this paper, we devise scalable numerical methods for computing A-optimal
designs for infinite-dimensional Bayesian linear inverse problems governed by (time-
dependent) PDEs. As suggested in [18], having a low-rank SVD surrogate of the
parameter-to-observable map relieves the OED method of repeated PDE solves. In the
Bayesian context, we can improve on this idea and further exploit problem structure;
namely, we construct a low-rank SVD representation of the parameter-to-observable
map preconditioned by the square root of the prior covariance operator [8, 14]. This
preconditioning amounts to filtering through the prior the information gained from
the data about the model parameters. In the case of smoothing priors usually used
in infinite-dimensional problems, this preconditioning results in faster spectral decay
and thus allows for a more efficient low-rank approximation. The remaining steps in
the solution of the OED problem use this low-rank surrogate and thus do not require
additional PDE solves. As a result of a consistent discretization of the problem, i.e.,
one that respects the infinite-dimensional Hilbert-space structure, the numerical rank
of the prior-preconditioned parameter-to-observable map is bounded with respect to
the discretized parameter dimension.

We consider a finite number of candidate locations for the placement of sensors;
the optimal configuration is a sparse subset of these locations. To each candidate
sensor location we assign a non-negative number that weights the observation from
that sensor. Finding an optimal design then amounts to choosing an optimal weight
vector; a weight of 0 indicates absence of a sensor and a weight of 1 corresponds to
a sensor being placed at that location. For computational convenience, we allow the
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weights to take on any value in [0, 1], and use a sparsifying penalty to control the
number of nonzero weights, and thus, the number of allocated sensors. One option
for such a penalty is the ℓ1-norm; see, e.g., [16, 18, 20]. This approach, however, does
not lead to a binary (i.e., 0–1) design. Motivated by continuation methods used in
topology optimization [4, 5], we propose to solve a sequence of OED problems with
penalty functions that successively approximate the ℓ0-“norm”. This, in contrast to
an ℓ1-penalty approach, does result in a binary design. As a test problem for our OED
method, we consider a forward problem in the form of a time-dependent advection
diffusion model, in which we infer the probability law of the initial condition. For this
problem, we demonstrate the success of our continuation method, and show that the
weights found by this continuation approach improve over optimal designs obtained
via an ℓ1-penalty approach.

For typical infinite-dimensional Bayesian inverse problems, the performance of
our OED method is insensitive to the number of candidate sensor locations. This is
due to the fact that although the dimension of the observations increases with the
number of candidate locations, the amount of independent information that can be
gained from nearby sensors is typically limited. Thus, increasing the number of sensors
beyond a certain point does not significantly increase the numerical rank of the prior-
preconditioned parameter-to-observable map. As a consequence, the number of PDE
solves required to compute a low-rank SVD surrogate for the (prior-preconditioned)
parameter-to-observable map is bounded as the number of candidate sensor loca-
tions increases. Moreover, in our computational results we find that the numerical
optimization problem to compute the optimal design can be solved in a number of
(quasi-Newton) iterations that is independent of the number of candidate locations.

The large-scale nature of the Bayesian inverse problems we target necessitates
the use of randomized methods in linear algebra. In particular, we utilize randomized
trace estimators [3,23] to estimate the trace of the posterior covariance operator, and
randomized SVD [19] to compute a low-rank surrogate of the prior-preconditioned
parameter-to-observable map. Moreover, for computing the application of matrix
square roots, as needed in our method, we employ matrix-free iterative methods [11].

The structure of this paper is as follows. After presenting the requisite back-
ground material in Section 2, we formulate the optimal design problem in infinite
dimensions in Section 3. Then, we detail the components of our OED method in
Section 4. Section 5 provides a description of our model problem, namely the infer-
ence of the initial condition in a time-dependent advection-diffusion equation. We
present a comprehensive numerical study in Section 6. Finally, in Section 7, we draw
conclusions, and discuss limitations and possible extensions of our method.

2. Background. In this section, we provide the background material required
for the formulation and numerical solution of optimal experimental design problems
in the context of infinite-dimensional Bayesian inverse problems. In Section 2.1, we
present the Bayesian inverse problem in an infinite-dimensional Hilbert space setting,
adopting the framework in [32]. In Section 2.2, we describe a discretization that is
consistent with the infinite-dimensional inference problem formulation; this presenta-
tion follows [8]. Finally, in Section 2.3, we briefly comment on the randomized SVD
and randomized trace estimators, which are used in our numerical method.

2.1. Bayesian inversion in Hilbert spaces. We begin our discussion by first
considering a deterministic inverse problem. Given finite-dimensional observations
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d ∈ R
q, we seek the model parameter m that solves

min
m∈H

J (m) :=
1

2
‖F (m)− d‖2

Γ
+R(m). (2.1)

The function F : H → R
q is the parameter-to-observable map and R denotes a

regularization term. In the applications targeted in this paper H = L2(D), where
D ⊂ R

d is a bounded domain (with d = 2, 3) and an evaluation of F involves the
solution of a PDE, followed by the application of an observation operator. Note that
the solution of a deterministic inverse problem can be thought of as a point estimate

of m. To obtain a full probabilistic description of the parameter m, we are led to a
Bayesian formulation of the problem, whose solution is a posterior probability law for
m.

In this paper, we consider a parameter m which is modeled as a random-field
(random function). To be precise, letting (Ω,Σ,P) be an appropriate probability
space, m : D×Ω → R is a function such that for each x ∈ D, m(x, ·), is a real-valued
random variable; thus, we can view m as an indexed collection of random variables,
{m(x)}x∈D, where, following the common practice, we suppress the dependence on
ω. On the other hand, for each ω ∈ Ω, m(·, ω) : D → R is a real-valued function. We
consider the case where m(·, ω) ∈ H , and thus, we can also view m as a random-
variable, m : (Ω,Σ,P) →

(

H ,B(H )
)

, where B(H ) denotes the Borel σ-algebra on

H . Recall that the law of m is a probability measure µ on
(

H ,B(H )
)

given by
µ(E) = P(m ∈ E) for E ∈ B(H ).

The infinite-dimensional Bayesian inverse problem can then be formulated as
using observations to update our knowledge of the law of m, as a probability measure
on (H ,B(H )). Since, in contrast to the finite-dimensional case, there is no Lebesgue
measure on H , the infinite-dimensional Bayes formula is given by

dµpost

dµ0
∝ πlike(d|m). (2.2)

Here,
dµpost

dµ0
denotes the Radon-Nikodym derivative [34] of the posterior measure µpost

with respect to µ0, and πlike(d|m) denotes the data likelihood. Conditions under which
the posterior measure is well defined and (2.2) holds are given in detail in [32]. Note
that we consider a finite-dimensional observation vector, motivated by the fact that
in practice data are available only at a finite number of sensor locations and a finite
number of points in time.

In the present work, we consider the Gaussian-linear case, i.e., the parameter-
to-observable map F is linear. Moreover, we assume an additive noise model, d =
Fm+ η, where η ∼ N (0,Γnoise) is a centered Gaussian on R

q; the latter implies

πlike(d|m) ∝ exp
{

−
1

2
(Fm− d)TΓ−1

noise(Fm− d)
}

. (2.3)

We use a Gaussian prior, µ0 = N (m0, C0), where m0 ∈ H is sufficiently regular,
and C0 is an appropriate covariance operator, i.e., C0 must be symmetric, positive,
and of trace-class. We define the covariance operator as the inverse of an elliptic
differential operator. A common alternative choice for statistical inverse problems
is to specify a covariance function between any two spatial points, which results in
a dense covariance matrix. For large-scale problems, however, the construction and
“inversion” of such a dense covariance matrix can be infeasible. On the contrary,

4



specifying the covariance as the inverse of an elliptic differential operator allows to
build on existing fast solvers for elliptic equations. As detailed in [8, 32], the PDE
solution operator used as covariance operator C0 must be sufficiently smoothing and
have bounded Green’s functions. For example, the biharmonic operator has bounded
Green’s functions in two and three space dimensions. Therefore, we choose C0 = A−2,
with A a Laplacian-like operator in the sense of Assumption 2.9 in [32]. This choice

also allows efficient applications of the square root operator C
1/2
0 = A−1, as required

below. The elliptic PDE corresponding to A written in weak form is as follows: For
s ∈ H = L2(D), the solution m = A−1s satisfies

∫

D

α∇m · ∇p+ βmpdx =

∫

D

sp dx, for all p ∈ H1(D), (2.4)

with α, β > 0 controlling the variation and the correlation length. Due to the present
choice of the prior and the noise model, and the linearity of F , the posterior measure
is a Gaussian, N (mpost, Cpost) with [32, Section 6.4],

Cpost = (F∗Γ−1
noiseF + C−1

0 )−1, mpost = Cpost(F
∗Γ−1

noised+ C−1
0 m0), (2.5)

where F∗ : Rq → H is the adjoint of F .

2.2. Discretization of the infinite-dimensional Bayesian inverse prob-

lem. In this section, we describe the discretization of the Bayesian inverse prob-
lem (2.2) in the Gaussian linear case. We consider a finite-dimensional subspace
Vh ⊂ L2(D) given by Vh = span{φ1, . . . , φn}, where {φj}

n
j=1 are continuous Lagrange

nodal basis functions. Given mh ∈ Vh, we denote by m, the vector of its coordinates
in Vh; i.e., for mh =

∑n
j=1 mjφj , we have m = (m1, . . . ,mn)

T
. After this discretiza-

tion, we replace the task of inferring the parameter m ∈ L2(D) with that of inferring
the coefficients for the finite-element approximation mh of m.

Following [8], we state the finite-dimensional Bayesian inverse problem such that
it is consistent with the corresponding inference problem in L2(D). Consequently,
we work in R

n, with the weighted inner product, 〈· , ·〉
M
given by 〈x,y〉

M
= 〈Mx,y〉,

where 〈·, ·〉 denotes the Euclidean inner product, and M is the (symmetric positive
definite) finite-element mass matrix. It is convenient to introduce the notation R

n
M

for
R

n when endowed with the 〈· , ·〉
M
inner product. Note that the mapping mh 7→ m is a

Hilbert-space isomorphism between Vh (with L2-inner product) and R
n
M
. For a linear

operator A : Rn
M

→ R
n
M
, the adjoint operator is given by A∗ = M−1ATM. A linear

operatorA on R
n
M

is self-adjoint ifA = A∗; for convenience, we refer to such operators
as M-symmetric. In the sequel, we will encounter linear mappings A1 : Rn

M
→ R

q

and A2 : Rr → R
n
M
, where Rq and R

r are endowed with the Euclidean inner product;
the corresponding adjoints are given by [8], A∗

1 = M−1AT
1 and A∗

2 = AT
2 M.

For the discretized problem, the density for the prior (as a measure over the space
R

n
M
) is characterized by

πprior(m) ∝ exp

{

−
1

2
‖A(m−m0)‖

2
M

}

, (2.6)

with A = M−1L, where L = αK+ βM and K is the finite-element stiffness matrix.
Note that A is M-symmetric; moreover, it follows from the above definition that
Γprior = A−2. Subsequently, the posterior is a Gaussian N (mpost,Γpost) with

mpost = Γpost

(

F∗Γ−1
noised+ Γ−1

priorm0

)

, Γpost =
(

F∗Γ−1
noiseF+ Γ−1

prior

)−1

,
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where F : Rn
M

→ R
q is the discretization of the parameter-to-observable map F .

Next, we summarize how to draw samples from and to compute the variance of
the discretized posterior measure; here we follow [8], where details of these operations
are provided. For a posterior measure N (mpost,Γpost) generating samples requires
a decomposition of Γpost in the form, Γpost = QQ∗. Then, to generate a sample ν

from N (mpost,Γpost), we draw a realization z from N (0, I) and compute ν as

ν = mpost +QM−1/2z. (2.7)

The discretized covariance is given by Cov {mi,mj} = eTi ΓpostM
−1ej , for i, j =

1, . . . , n. In particular,

Var {mi} = eTi ΓpostM
−1ei, i = 1, . . . , n, (2.8)

where Var {mi} denotes the variance of mi.

2.3. Randomized linear algebra algorithms. One of the major components
of our method is a low-rank SVD surrogate for the prior-preconditioned parameter-to-
observable map. To compute such low-rank surrogates, we use a randomized SVD [19].
This choice is motivated by the flexibility and the robustness of the method, and by
the fact that, as opposed to Krylov subspace methods, it only requires independent
matrix-vector products. This aspect is particularly useful for the large-scale problems
we target, in which the matrix-vector applications involve expensive PDE solves;
see also [7]. Randomized SVD methods can be made very accurate with negligible
probability of failure [19].

Computing A-optimal designs requires minimizing the trace of large dense co-
variance matrices, which, in our target problems, usually have a rapidly decaying
spectrum and the eigenvalues are clustered around 0. For such matrices, which are
defined implicitly through their applications to vectors, randomized trace estimators
provide a reasonably accurate approximation of the trace with a small number of
random vectors (see e.g., [31]). These estimators involve only matrix-vector products,
which makes them suitable for large scale problems. In particular, randomized trace
estimators approximate the trace of a matrix A ∈ R

n×n, via Monte-Carlo estimates
of the form tr(A) ≈ 1

Ntr

∑Ntr

i=1[z
(i)]TAz(i), where the trial vectors z(i) are random n-

vectors. A well-known example is the Hutchinson estimator [23], which uses random
vectors z(i) with ±1 entries, each with a probability of 1/2. Another possibility, used
in this paper, is the Gaussian trace estimator, which uses Gaussian random vectors
with independent and identically distributed (i.i.d.) standard normal entries. For a
description and analysis of different trace estimators, we refer to [3].

3. A-optimal design of experiments for infinite-dimensional Bayesian

linear inverse problems. In this section, we formulate the A-optimal design prob-
lem for infinite-dimensional Bayesian linear inverse problems. The extension of the A-
optimal design criterion to the infinite-dimensional setting is described in Section 3.1.
In Section 3.2, we specify the mathematical definition of a design, and describe how
the design is introduced in the Bayesian inverse problem. Finally, in Section 3.3, we
formulate the resulting OED optimization problem.

3.1. A-optimal design in Hilbert spaces. In a finite-dimensional inference
problem, an A-optimal design minimizes the average posterior variance of the inference
parameters [33]. In the linear case, this is accomplished by minimizing the trace of the
posterior covariance matrix. Since the present work concerns inference problems with
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a random field as the inference parameter, we first extend the notion of an A-optimal
design to the infinite-dimensional Hilbert space setting.

The average posterior variance of m over the physical domain D is given by

1

|D|

∫

D

cpost(x,x) dx,

where |D| denotes the Lebesgue measure of the domain D, and cpost is the covariance
function of m:

cpost(x,y) = E
{(

m(x)−mpost(x)
)(

m(y)−mpost(y)
)}

, x,y ∈ D,

where E {·} denotes the expectation operator. Note that cpost is related to the covari-
ance operator Cpost, i.e.,

[Cpostu](x) =

∫

D

cpost(x,y)u(y) dy, u ∈ L2(D).

The covariance operator Cpost is positive, symmetric, and of trace-class, and thus has
real eigenvalues, {λi}

∞
i=1, and a complete orthonormal set of eigenvectors, {ei}

∞
i=1.

Mercer’s Theorem [24, 26] then provides a decomposition of the covariance function
cpost from the spectral decomposition of Cpost through cpost(x,y) =

∑

j λjej(x)ej(y),
where the convergence of the infinite sum is uniform and absolute in D × D. From
this representation, one obtains,

∫

D

cpost(x,x) dx =
∑

j

λj = tr(Cpost).

Thus, we formulate the A-optimal design problem as that of minimizing the trace
of the covariance operator, tr(Cpost). This shows that the definition of an A-optimal
design in finite dimensions, namely the minimization of the average variance of the
estimates, extends naturally to infinite-dimensional Bayesian inverse problems involv-
ing a random-field as the inversion parameter. We emphasize that the trace of the
posterior covariance operator in the A-optimal design criterion is well defined due to
the proper choice of the prior measure for infinite-dimensional inference problems.

3.2. Introducing the design in the Bayesian inverse problem. Let us first
specify the notion of a design in the context of our target applications, namely optimal
sensor placement. We use a finite-dimensional design space, that is, we fix a set of
points xi, i = 1, . . . , Ns as the set of candidate sensor locations, and associate to
each xi a non-negative weight wi ∈ R; see also [16,18,33]. The OED problem is then
formulated as an optimization problem over the weight vector, w = (w1, . . . , wNs

)T .
The points xi, i = 1, . . . , Ns can be thought of as a discretization of the sensor

domain, which is a subset of D.
The design weights can have different interpretations. For example, in classical

formulations such as in [33], wi define a probability mass function, i.e., wi ≥ 0 and
∑

wi = 1; one may then interpret large weights as ones indicating promising locations
for placing sensors. If the inversion is based on a repeatable experiment, weights
can also be used to specify the number of experiments performed at each sensor
location to control the observation noise; see, e.g., [16]. In many inverse problems,
however, experiments cannot be repeated or the mathematical model is not an exact
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representation of the physical phenomenon underlying the observations, such that the
observation error cannot be controlled. Thus, we prefer weight vectors containing
zeros and ones only, indicating absence or presence of sensors over the candidate
sensor grid. Unfortunately, solving optimization problems for vectors with binary
components is a difficult combinatorial problem. Hence, we employ a relaxation of
the problem and consider weights wi ∈ [0, 1]. In Section 4.5, we devise a method
of recovering the desired 0–1 structure using sparsifying penalties combined with a
continuation procedure.

Next, we describe the process of introducing the design vectorw into the Bayesian
inverse problem. Since the design guides the collection of data, the weight vector w
enters the inference problem (2.2) through the data likelihood (2.3). The w-weighted
data-likelihood is given by,

πlike(d|m;w) ∝ exp
{

−
1

2
(Fm− d)TW1/2Γ−1

noiseW
1/2(Fm− d)

}

, (3.1)

where W ∈ R
q×q is a diagonal matrix with weights on its diagonal. For time-

dependent problems, with observations collected at sensor locations at discrete points
in time, we have F : H → R

q with q = NsNτ , where Ns and Nτ are the number of
candidate sensors and observation times, respectively. Here, W is a block-diagonal
matrix having Nτ blocks, where each block is an Ns ×Ns diagonal matrix with w on
its diagonal. The posterior covariance operator is thus given by

Cpost(w) = (F∗W1/2Γ−1
noiseW

1/2F + C−1
0 )−1. (3.2)

From this point on, we work with the discretization of the infinite-dimensional prob-
lem, where we follow the discretization strategy described in Section 2.2. In particular,
we have the following discretized posterior covariance,

Γpost(w) = (F∗W1/2Γ−1
noiseW

1/2F+ Γ−1
prior)

−1. (3.3)

The mean mpost of the discretized posterior measure coincides with the maximum
a posteriori probability (MAP) estimate, given as the solution of the minimization
problem,

min
m∈Rn

1

2

〈

Γ−1
noiseW

1/2
(

d− Fm
)

,W1/2(d− Fm)
〉

+
1

2

〈

Γ−1
prior

(

m−m0

)

,m−m0

〉

M

.

The inverse of the Hessian H(w) of the above functional coincides with Γpost(w)
defined in (3.3). In the following, we call the Hessian of the misfit term,

Hmisfit(w) = F∗W1/2Γ−1
noiseW

1/2F,

the misfit Hessian; thus, H(w) = Hmisfit(w) + Γ−1
prior. In this paper, we consider

the case of independent observations, and hence Γnoise is a diagonal matrix. This
assumption turnsW1/2Γ−1

noiseW
1/2 into a diagonal matrix with diagonal entries wi/σ

2
i .

For simplicity of the presentation, we further assume that Γnoise is a constant multiple
of identity, i.e., Γnoise = σI, and set σ = 1. Thus, the misfit Hessian takes the
form Hmisfit = F∗WF. The algorithms presented below can be easily modified to
accommodate a general diagonal noise covariance matrices Γnoise.
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3.3. The OED problem. Finally, we can formulate the Bayesian A-optimal
experimental design problem as optimization problem for the weight vector w. Fol-
lowing the discussions in the previous sections, the OED objective function is the
trace of the posterior covariance operator (3.2), which, after discretization is given by
(3.3). Additionally, we use a penalization to control the sparsity of the design. Hence,
the optimal design vector is the solution to the following optimization problem:

min
w∈RNs

tr
[

Γpost(w)
]

+ γΦ(w),

subject to 0 ≤ wi ≤ 1, i = 1, . . . , Ns,
(3.4)

where Φ : RNs

+ → [0,∞) is a penalty function and γ ≥ 0 controls the sparsity of the
design. We note that the function w 7→ tr

[

Γpost(w)
]

= tr
[

H(w)−1
]

is strictly convex
due to strict convexity of X 7→ tr(X−1) on the cone of symmetric positive definite
matrices (see [28, p. 82]) and the fact that w enters linearly in H(w). Therefore, if
the penalty function Φ is convex, (3.4) has a unique solution. An example of a convex
penalty is given by Φ(w) = 1Tw, i.e., an ℓ1-penalty, whose sparsening property has
been used extensively in compressive sensing [9, 13] and has also been adapted to
OED for inverse problems [16,18]. In this paper, we will use a continuation approach
involving a family {Φε}ε>0 of penalty functions, which approximate the ℓ0-“norm”.
This allows us to find binary optimal design vectors.

We remark that there exists an alternative interpretation of the A-optimal design
criterion in the Gaussian linear case considered here. Namely, minimizing the trace
of the posterior covariance is equivalent to minimizing the average mean square error
(MSE) of the posterior mean, where the average is with respect to the prior measure.
This average MSE is also referred to as the Bayes risk of the posterior mean. MSE
is a concept in frequentist inference, in which the posterior mean is interpreted as an
estimator for the unknown parameter. This frequentist point of view of A-optimal
design is used in [16,18]. For completeness of our presentation, we detail this relation
between average MSE and the trace of posterior covariance in Appendix B.

4. Numerical solution of the OED problem (3.4). We begin this section
with deriving a decomposition of the misfit Hessian in terms of contributions from
different sensors. Then, in Section 4.2, we present an approximation of tr(Γpost)
using a randomized trace estimator, and derive expressions for the gradient of the
resulting OED objective function. Subsequently, in Sections 4.3 and 4.4, we present
algorithmic components that allow efficient realization of these computations. Finally,
in Section 4.5, we discuss methods to control the sparsity of the design, i.e., the number
of allocated sensors.

4.1. Decomposition of the misfit Hessian. The misfit Hessian plays an im-
portant role in the derivative computation of the OED objective function with respect
to the sensor location weights. Therefore, we first derive a decomposition of Hmisfit

as a weighted sum of terms corresponding to individual sensor locations.
We consider a linear parameter-to-observable map F, which involves a time-

dependent PDE. Parameter-to-observable maps with stationary equations are in-
cluded as special case in the discussion below by considering a single time step. We
consider observations at the candidate sensor locations x1, . . . ,xNs

in D. For each
sensor location, the time evolution of the observation is discretized using Lagrange
elements in time (we use piecewise linear elements in this paper) for the nodal time
instances τ1, . . . , τNτ

(τi ∈ [0, T ] for i = 1, . . . , Nτ ). These observation times are
independent of the time steps used in the integration of the PDE.

9



The parameter-to-observable map F takes a parameter vector m ∈ R
n and maps

it to the space-time observation vector d̄ ∈ R
NsNτ :

F : m
S

7−→ ū
B
7−→ d̄. (4.1)

Here, S is the discretized PDE solution operator, ū ∈ R
n(Nt+1) is the space-time

solution vector, and B is the space-time observation operator. We target designs
where the sensor locations coincide for all time observations. Thus, the sensor weight
matrix W can be written as W =

∑Ns

j=1 wjEj , where Ej is an NsNτ ×NsNτ block-

diagonal matrix, with Nτ blocks, with each block equal to ej ⊗ ej = eje
T
j ; here ej

denotes the jth coordinate vector in R
Ns . Thus, the misfit Hessian for a weight vector

w can be decomposed as Hmisfit(w) = F∗WF =
∑Ns

j=1 wjF
∗EjF, where the matrices

F∗EjF, j = 1, . . . , Ns are the atoms corresponding to the different sensor locations.
This decomposition, which is also used in [33], reveals the identity

∂Hmisfit(w)

∂wj
= F∗EjF. (4.2)

Next, we approximate the OED objective function using trace estimators.

4.2. The OED objective function and its derivative. We consider the prob-
lem (3.4) and recall that Γpost(w) = H(w)−1, where the Hessian is an M-symmetric
linear mapping on R

n
M . For the numerical solution of the OED problem, we approxi-

mate the trace of H(w)−1 using a randomized trace estimator (see Section 2.3). The
trace estimator-based OED objective functional is

Θ(w) :=
1

Ntr

Ntr
∑

i=1

〈

z(i),H(w)−1z(i)
〉

M

, (4.3)

where z(i) = M−1/2y(i), i = 1, . . . , Ntr, with y(i) appropriately chosen random vec-
tors1. Therefore, we consider the following OED optimization problem in our numer-
ical computations,

min
w∈RNs

Θ(w) + γΦ(w),

subject to 0 ≤ wi ≤ 1, i = 1, . . . , Ns.
(4.4)

Since we will use gradient-based optimization methods to solve (4.4), we need to
compute the gradient of Θ(w) with respect to w. For j ∈ {1, . . . , Ns}, we obtain

∂Θ(w)

∂wj
=

1

Ntr

Ntr
∑

i=1

〈

z(i),
∂H(w)−1

∂wj
z(i)

〉

M

= −
1

Ntr

Ntr
∑

i=1

〈

z(i),H(w)−1 ∂H(w)

∂wj
H(w)−1z(i)

〉

M

.

The M-symmetry of H(w)−1, the fact that the prior does not depend on w, and
denoting q(i) = H−1z(i) yields

∂Θ(w)

∂wj
= −

1

Ntr

Ntr
∑

i=1

〈

q(i),
∂Hmisfit(w)

∂wj
q(i)

〉

M

, j = 1, . . . , Ns. (4.5)

1In the present work, we rely on Gaussian trace estimators. See Appendix A for a justification
of trace estimation in the context of weighted inner products.
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Using (4.2) and denoting d̄
(i)

= (d(i),1, . . . ,d(i),Nτ )T := Fq(i), with d(i) ∈ R
Ns the

spatial observations corresponding to time τi, each of the summands in (4.5) can be
computed as

〈

q(i),
∂Hmisfit(w)

∂wj
q(i)

〉

M

=
〈

Fq(i),EjFq
(i)
〉

=

Nτ
∑

ℓ=1

[d(i),ℓ]T (ej ⊗ ej)[d
(i),ℓ] =

Nτ
∑

ℓ=1

[

d
(i),ℓ
j

]2
.

(4.6)

To summarize, the evaluation of Θ(w) requires Ntr multiplications of vectors with
H(w)−1. The computation of the derivative of Θ(w) with respect to w additionally
requires Ntr evaluations of the parameter-to-observable map F. In the Sections 4.3
and 4.4 below, we discuss the efficient realization of these computations.

4.3. Low-rank approximation of the prior-preconditioned parameter-

to-observable map. As shown above, the repeated application of H(w)−1 is neces-
sary to compute Θ(w) and the gradient of Θ(w) with respect to w. In a numerical
optimization algorithm to solve (4.4), these computations are required in each iter-
ation. Despite the use of a trace estimator, this is computationally demanding and
can render OED for large-scale Bayesian inverse problems infeasible.

As a remedy, we construct a surrogate model for the parameter-to-observable map
that can be used to efficiently compute the application of H(w)−1 to vectors. The
surrogate construction exploits the fact that for a large class of infinite-dimensional
inverse problems, F can be well approximated by a low-rank operator due to properties
of the underlying PDE and the limited number of observations; see for instance [8,14].
Thus, we can compute a low-rank SVD surrogate for F upfront, and use this surrogate
in all subsequent computations involving F to find an optimal experimental design.

Since only parameters consistent with the data and the prior have a significant
posterior probability, only those parameters can influence the OED. Thus, it suffices
to compute a surrogate of the prior-preconditioned parameter-to-observable map,

F̃ := FΓ
1/2
prior. The smoothing property of the priors usually employed in infinite-

dimensional Bayesian inversion2 results in F̃ having faster decaying singular values
than F. Thus, the number of forward and adjoint PDE solves required to construct
an accurate low-rank SVD surrogate for F̃ is usually smaller than that for F. For the
model problem in Section 6.1.1, this results in a significant speedup for the construc-
tion of the low-rank surrogate.

We employ randomized SVD (see Section 2.3) to compute the low-rank surrogate
of F̃. This algorithm only requires the applications of F̃ and F̃∗ to a set of independent
random vectors, which is convenient and can often be implemented efficiently in large-
scale computations. In the next section, we show how the low-rank surrogate of F̃
can be used to compute Θ(w) and its gradient with respect to w.

4.4. Efficient computation of Θ(w) and its derivatives. First, we discuss
the efficient computation of H(w)−1z for z ∈ R

n, as required to evaluate Θ(w) and
its derivative. Note that the inverse of the Hessian H(w) can be written as [8, 25],

H(w)−1 = Γ
1/2
prior

(

H̃misfit(w) + I)−1Γ
1/2
prior, (4.7)

2Note that a smoothing property is necessary to render the infinite-dimensional Bayesian inverse
problem well-posed, [32].
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where, for a weight vector w ∈ R
Ns , H̃misfit(w) = F̃∗WF̃ is the prior-preconditioned

misfit Hessian. Assuming a rank-r surrogate F̃r for F̃ is available, H̃misfit,r(w) =

F̃∗
rWF̃r is the resulting approximation of H̃misfit(w) used below. Note that for every

weight vector w, the rank of H̃misfit,r(w) is less than or equal to r. One approach

to apply (H̃misfit,r + I)−1 to a vector is to first compute the spectral decomposi-

tion H̃misfit,r(w) = VrΛrV
∗
r , where Vr is the matrix containing the eigenvectors of

H̃misfit,r(w) as its columns, and Λr is the diagonal matrix with r largest eigenvalues
on the diagonal.3 Then, by the Sherman-Morrison-Woodbury formula [15], we have
(VrΛrV

∗
r + I)−1 = I − VrDrV

∗
r , where Dr is a diagonal matrix with λi/(1 + λi),

i = 1, . . . , r, on its diagonal.4 Defining

q̂ =
(

I−VrDrV
∗
r

)

Γ
1/2
priorz (4.8)

allows us to compute

q = H(w)−1z ≈ Γ
1/2
priorq̂, (4.9)

where the approximation is only due to the use of F̃r instead of F̃. To compute Fq,
as needed in (4.6), we use

Fq = FΓ
1/2
prior(H̃misfit(w) + I)−1Γ

1/2
priorz ≈ F̃rq̂, (4.10)

where the approximation is again due to the use of the low-rank surrogate for F̃. We
now summarize the procedure for computing Θ(w) and its gradient. Note that once
F̃r is available, our method does not require further forward or adjoint PDE solves.

We close this subsection with two remarks concerning the computations involved
in Algorithm 1. First, note that while the low-rank SVD surrogate for F̃ relieves the
OED method of repeated PDE solves, we still require the repeated applications of

Γ
1/2
prior. Due to our choice of the prior as the inverse of a squared elliptic operator, this

amounts to an elliptic solve, for which optimal complexity solvers (e.g., multigrid) are
available.

Next, note that we require the application of M−1/2 to random vectors for the
trace estimator in the OED method; see (4.3). The same operation, which trans-
forms vectors from the Euclidean space R

n to R
n
M

(see Section 2.2) via a mapping
that preserves the inner products, is also needed to draw samples from the posterior
distribution (see (2.7)). Since the explicit computation of the matrix square root is
expensive in high dimensions, we utilize an iterative algorithm to compute the ap-
plication of the inverse matrix square root to vectors [11]. The method relies on the
approximation of the square root via orthogonal polynomials on an interval contain-
ing the spectrum of the matrix; since the convergence of this method is fastest for
matrices with clustered eigenvalues, we apply it to the mass matrix M, symmetrically
preconditioned with the lumped mass matrix, Ml. The eigenvalues of the resulting

matrix, M̃ = M
−1/2
l MM

−1/2
l , are clustered around 1, resulting in fast convergence

when applying M̃−1/2 to vectors as discussed in [11]. Then, instead of M−1/2 we

3Note that thanks to the low-rank surrogate of the prior-preconditioned parameter-to-observable
map F̃r, this computation does not require the solution of PDEs.

4Note that there exist alternatives to computing a spectral decomposition of H̃misfit,r(w) and
then using the Sherman-Morrison-Woodbury formula. For instance, one can use a Krylov method
to compute H(w)−1

z.
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Algorithm 1 Algorithm for computing Θ(w) and its gradient g = ∇Θ(w) with
random vectors z(i), i = 1, . . . , Ntr for the trace estimator.

Compute H̃misfit,r(w) = VrΛrV
∗
r {low-rank approx to H̃misfit(w) = F̃∗WF̃}

Set Dr = diag
(

λ1

1+λ1
, . . . , λr

1+λr

)

for i = 1 to Ntr do

Compute q̂(i) =
(

I−VrDrV
∗
r

)

Γ
1/2
priorz

(i) {as in (4.8)}

Compute q(i) = Γ
1/2
priorq̂

(i) {compute q(i) = H−1z(i) as in (4.9)}
end for

Compute Θ(w) =
1

Ntr

Ntr
∑

i=1

〈

z(i), q(i)
〉

M

{evaluation of Θ(w)}

g = 0 {initialize the gradient vector}
for i = 1 to Ntr do

d̄ = F̃rq̂
(i) {compute d̄ = Fq(i) as in (4.10)}

for j = 1 to Ns do

gi,j =

Nτ
∑

ℓ=1

(

dℓj
)2

{gi,j =

〈

q(i),
∂Hmisfit

∂wj
q(i)

〉

M

as in (4.6)}

end for

g = g − 1
Ntr

gi

end for

use the matrix L = M
−1/2
l M̃−1/2 as the isomorphism between R

n and R
n
M
. Note, in

particular, that for all x and y in R
n

〈Lx,Ly〉
M
= xTM̃− 1

2M
− 1

2

l MM
− 1

2

l M̃− 1
2y = xTM̃− 1

2 M̃M̃− 1
2y = 〈x,y〉 ,

which shows that L is a Hilbert space isomorphism between R
n and R

n
M
.

4.5. Sparsity-enforcing penalty functions. Here, we discuss the penalty
term γΦ(·) in (3.4). If Φ(·) favors sparse solutions, the degree of sparsity depends on
the choice of γ. However, γ only provides an indirect control of the sparsity of the
design and in practice adjusting γ and resolving (3.4) might be necessary to obtain a
design with a specified (or close to a specified) number of sensors.

Next, we discuss two possible choices for the penalty function Φ(·). An ℓ1-penalty
function Φ(w) = 1Tw (see also [16–18]), is known to result in sparse solution vectors
w. While this choice is convenient due to the convexity of Φ, it results in a weight
vector w whose components can take on any value in [0, 1]. Unfortunately, the direct
interpretation of weights wi 6∈ {0, 1} for the placement of sensors is unclear. A
practical approach to use such a solution vector is to place sensors in locations where
the corresponding weight does not vanish. An alternative to ℓ1-sparsification is to use
non-convex functions for Φ that directly lead to binary weight vectors. This approach
is discussed next.

To obtain binary weight vectors, we select penalties that successively approximate
the ℓ0-“norm”,5 which, for x ∈ R

n, ‖x‖0 is defined as the number of non-zero elements
in x. One choice for such a family of penalizations is Φq(w) = ‖w‖qq, for q < 1. Since

5Note that ‖x‖
0
is in fact not a norm.
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these penalization functions are not Lipschitz continuous at the origin, we use an
alternative family of regularizations, namely, for ε > 0,

Φε(w) :=

Ns
∑

i=1

fε(wi), where fε(w) =















w

ε
, 0 ≤ w ≤ 1

2ε,

pε(w),
1
2ε < w ≤ 2ε,

1, 2ε < w ≤ 1.

(4.11)

Here, pε(·) is the uniquely defined third order polynomial that makes fε(x) : [0, 1] →
[0, 1] continuously differentiable. In Figure 4.1, we show these penalty functions for
different values of ε; note how fε(·) approximates the ℓ0-“norm” as ε → 0.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

f ε
(x
)

ε = 1/2

ε = 1/4

ε = 1/8

ε = 1/16

Fig. 4.1. Graphs of fε(·) as defined in (4.11) for ε = 1/2i, i = 1, . . . , 4.

To cope with potential multiple local minima due to the non-convexity of the
penalties Φε, we use a continuation procedure with respect to ε. We fix the regular-
ization parameter γ in (3.4) and solve the OED problem with ℓ1-penalty, resulting in
a weight vector w0. We then choose a decreasing sequence of positive real numbers
{εi}i≥1, and compute a new weight vector wi by solving (3.4) with penalty function
Φεi(w) using wi−1 as initialization. In practice, once εi is sufficiently small, the
solution wi is a 0–1 vector that remains unchanged as ε is further decreased.

A similar continuation strategy is used in topology optimization [4,5], where the
target is to design an “optimal structure” by deciding on an optimal distribution of
material in a physical domain D. In this application, one seeks a density function
ρ : D → {0, 1} that characterizes the absence or presence of material in D. One
of the main approaches to solving topology optimization problems is to relax the
requirement of ρ ∈ {0, 1} to 0 ≤ ρ ≤ 1 and to solve a sequence of optimization
problems with successively steeper penalty functions to approach a 0–1 solution ρ—
similar our Φε-continuation approach outlined above.

In the rest of this paper, we refer to the designs obtained via the above contin-
uation method as Φε-sparsified designs. Optimal designs obtained by solving (3.4)
with ℓ1-penalty (followed by thresholding to obtain a 0–1 weight vector) are referred
to as ℓ1-sparsified designs. In the numerical experiments presented in Section 6, we
compare ℓ1- and Φε-sparsified designs.

5. Model problem setup. Here, we present the model problem used to
study the methods for OED presented in this paper. We consider a time-dependent
advection-diffusion equation in which we seek to infer an unknown initial condition
from point measurements; see also [1, 14, 29].
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Fig. 5.1. (a) The computational domain D for the two-dimensional model problem is [0, 1]2 with
two rectangular regions (representing buildings) removed. (b) The velocity field v (red arrows) and
the candidate sensor locations (black dots) for the two-dimensional problem. (c) The computational
domain D for the three-dimensional model problem is [0, 1]2× [0, 0.5] with the buildings (gray blocks)
removed; shown are also the velocity field (red arrows) and the candidate sensor locations (black
dots).

5.1. The parameter-to-observable map. The PDE in the parameter-to-
observable map models diffusive transport in a domain D ⊂ R

d, which is depicted
in Figure 5.1(a) for d = 2 and 5.1(c) for d = 3. The domain boundaries ∂D include
the outer edges/faces as well as the internal boundaries of the rectangles/hexahedra,
which model buildings. The parameter-to-observable map maps an initial condition
m ∈ L2(D) to spatial and temporal point observations through the solution of the
advection-diffusion equation u(x, t) given by

ut − κ∆u+ v · ∇u = 0 in D × (0, T ),

u(·, 0) = m in D,

κ∇u · n = 0 on ∂D × (0, T ).

(5.1)

Here, κ > 0 is the diffusion coefficient and T > 0 is the final time. In our numerical
experiments, we use κ = 0.001 for the two-dimensional problem and κ = 0.003 for
the three-dimensional problem. The velocity field v, shown in Figures 5.1(b), (c) for
the two- and the three-dimensional problems, respectively, is computed by solving the
following steady-state Navier-Stokes equation with the side walls driving the flow:

−
1

Re
∆v +∇q + v · ∇v = 0 in D,

∇ · v = 0 in D,

v = g on ∂D.

(5.2)

Here, q is pressure, Re is the Reynolds number, set to Re = 50 in the present examples.
The Dirichlet boundary data g ∈ R

d is given by g = e2 on the left wall of the domain,
g = −e2 on the right wall, and g = 0 everywhere else (see, e.g., Figure 5.1(a) for
d = 2). To illustrate the physics of the forward problem for a given initial condition, we
show snapshots of the time evolution of the state variable u in Figure 5.2; for snapshots
of the time evolution for the two-dimensional model problem we refer to [29].

The observation operator B then extracts the values of u on a set of sensor loca-
tions {x1, . . . ,xNs

} ⊂ D at times {τ1, . . . , τNτ
} ⊂ [0, T ]. To summarize, the infinite-

dimensional linear parameter-to-observable map F maps the initial condition m to
q = NsNτ observations as follows: First, we solve the time-dependent advection-
diffusion equation (5.1), resulting in the space-time solution u = u(m). Then, the
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Fig. 5.2. Volume renderings of the time evolution of u for the three-dimensional model problem.
The initial condition m is shown in the left, and the middle and right images correspond to snapshots
at times t = 1 and t = 2.

observation operator extracts point values from u at the measurement locations and
times, i.e., evaluates Bu. The corresponding discrete parameter-to-observable map F

is obtained by discretizing m and u using, for instance, finite elements.

5.2. The Bayesian inverse problem. Following the Bayesian setup in Sec-
tion 2.1, we utilize a Gaussian prior measure µ0 = N (m0, C0), with C0 = A−2 where
A is an elliptic differential operator as described in Section 2.1, and use an additive
Gaussian noise model. Therefore, the solution of the Bayesian inverse problem is the
posterior measure, µpost = N (mpost, Cpost) with mpost and Cpost as given in (2.5).
The posterior mean mpost is characterized as the minimizer of

J (m) :=
1

2
‖Bu(m)− d‖2Γ−1

noise
+

1

2
‖A(m−m0) ‖

2
L2(D),

which can also be interpreted as the regularized functional to be minimized in deter-
ministic inversion. Next, we specify the action of the adjoint F∗ of the parameter-
to-observable map. Given an observation vector d̄ ∈ R

q as defined in (4.1), F∗d̄

is computed by solving the adjoint equation (see [1, 14, 29]) for the adjoint variable
p = p(x, t),

−pt −∇ · (pv)− κ∆p = −B∗d̄ in D × (0, T ),

p(·, T ) = 0 in D,

(vp+ κ∇p) · n = 0 on ∂D × (0, T ),

(5.3)

and setting F∗d̄ = p(·, 0). Note that (5.3) is a final value problem, which has to be
solved backwards in time.

5.3. Discretization and solvers. The discretization of the forward and adjoint
problems uses linear triangular/tetrahedral continuous Galerkin finite elements for
two/three space dimensions, and the implicit Euler method in time. The discrete
adjoint equation is obtained as the adjoint of the discretized forward equation, i.e.,
we follow a discretize-then-optimize approach. Due to the large diffusion parameter κ
used, no stabilization of the advection-diffusion equation is needed. A factorization of
the matrix in each implicit Euler time step is computed upfront, such that every time
step (of the forward as well as the adjoint equation) only requires triangular solves.

The OED optimization problems are solved using Matlab’s built-in interior-
point solver fmincon, to which we supply the OED objective function evaluation and
its derivative, which we compute using the methods presented above. The optimiza-
tion algorithm approximates second derivatives using the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) [27] method.
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6. Numerical results. In this section, we summarize our numerical experi-
ments. In Section 6.1, we provide a detailed numerical study of our method and
compare different sparsifications for the two-dimensional model problem. Then, in
Section 6.2, we use the three-dimensional model problem to test the scalability and
performance of our OED method.

6.1. The two-dimensional model problem. This section contains numerical
experiments for the two-dimensional model problem. We use Ns = 122 candidate
locations for placing sensors as shown in Figure 5.1(b), and use 1864 triangles to
discretize the domain. Linear finite elements are used for the parameter m and the
state variable u resulting in n = 1012 spatial degrees of freedom (and thus inversion
parameters). The final time is T = 4 and the time interval is discretized using Nt +1
implicit Euler time steps; unless otherwise specified, Nt = 64. Observations at the
sensor locations are taken at Nτ = 19 equally spaced points in the time interval [1, 4].
The prior covariance is specified as described in Section 2.1 with α = 8 × 10−3 and
β = 10−2; these values result in a Gaussian prior that is not overly restrictive or
smoothing. Next, we study the low-rank approximations of the forward operator and
the misfit Hessian.

6.1.1. Low-rank approximation of F, F̃ and Hmisfit. We use a randomized
SVD to compute a low-rank surrogate for the parameter-to-observable map F : Rn →
R

q and its prior-preconditioned counterpart F̃, where q = Ns×Nτ . This directly leads
to a low-rank approximation of the prior-preconditioned misfit Hessian, H̃misfit(w) =
F̃∗WF̃, where the diagonal weight matrix W depends on the design. Since the
diagonal entries of W may vanish, the numerical rank of H̃misfit(w) is less than or
equal than that of F̃∗F̃, which corresponds to assigning unit weights to all sensors;
thus, it suffices to examine the accuracy of the approximation of H̃misfit = F̃∗F̃ only.

First, we study the low-rank approximation of the (prior-preconditioned)
parameter-to-observable map. In Figure 6.1 (left), we show the normalized singular
values of F̃ and of F. The eigenvalues decay rapidly and thus both mappings can be
accurately approximated by low-rank matrices. Note the faster decay of the singular
values of F̃ compared to those of F, which shows that due to the preconditioning

with Γ
1/2
prior, F̃ can be approximated more efficiently with a low-rank operator than F.

Next, we investigate the influence of spatial and temporal discretization on the
prior-preconditioned misfit Hessian; the right plot in Figure 6.1 shows the eigenvalues
of H̃misfit for different spatial and temporal discretizations. Note that the spectra
lie almost on top of each other. This indicates that the discretizations H̃misfit con-
verge to their infinite-dimensional counterpart, H̃misfit : L

2(D) → L2(D) and that all
discretizations studied in Figure 6.1 resolve the dominant physics of the problem.

Finally, we study how the number of candidate sensor locations affects the spectral
decay of F̃. Increasing the number of sensors has the potential to increases the
information in the data and thus the numerical rank of F̃. In Figure 6.2, we plot the
singular values of F̃ for different sensor grids. We observe convergence of the singular
value curves as the sensor grids are refined. This is a consequence of the correlation
of the information that can be gained from neighboring sensors, which is due to the
diffusion term in (5.1).

6.1.2. A-optimal designs with ℓ1-sparsification. We now apply our method
to compute ℓ1-sparsified A-optimal designs. The weights w found with γ = 6 × 101

are shown in Figure 6.3 (left). As discussed in Section 4.5, sensors are then placed

17



100 101 102
10−8

10−5

10−2

101

k

σ
k
/
σ
1

spectrum of F

spectrum of F̃

0 50 100 150 200
10−4

100

104

108

k

λ
k

n = 507, Nt = 64

n = 1012, Nt = 64

n = 1012, Nt = 128

n = 2036, Nt = 64

Fig. 6.1. Shown on the left are the normalized singular values of F̃ and F. The right plot depicts
the spectrum of the prior-preconditioned misfit Hessian with unit sensor weights H̃misfit = F̃∗F̃

for discretizations with different numbers n of spatial and Nt of temporal unknowns. To compute
these spectra, we used a rank r = 500 approximation F̃r to diminish the influence of the low-rank
approximation for F̃.
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Fig. 6.2. Singular values of F̃ for different values of Ns. The results correspond to a discretiza-
tion of the problem with parameter dimension n = 1012 and Nt = 26 time steps.

at locations corresponding to non-vanishing weights. To account for numerical errors
introduced by the interior point method used to solve (3.4), non-vanishing weights
are defined as weights wi that satisfy wi/

∑

j wj > 4 × 10−3; the resulting sensor
locations are shown in Figure 6.3 (right). Next, we study the behavior of our method
for computing ℓ1-sparsified designs.

Since we rely on a low-rank surrogate F̃r for the prior-preconditioned parameter-
to-observable map F̃ to avoid repeated PDE solves in the OED method, we first
examine the influence of this truncation on the optimal design. For that purpose,
we fix γ = 5× 101 and solve the A-optimal design problem using approximations F̃r

with r = 10, 15, 20, 30, 40, 60, 80. In Figure 6.4, we plot the optimal objective value
Θ(wopt) computed using low-rank surrogates F̃r with different r. The convergence of

the objective value shows that very similar results are found for low-rank surrogates F̃r

with r ≥ 40. This shows that even a significant compression of the (preconditioned)
parameter-to-observable map has little influence on the optimal design.

Next, we study the effect of increasing the parameter dimension (through mesh
refinements) on the number of interior-point iterations required to solve the OED
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Fig. 6.3. Shown on the left are the weights found by solving the optimization problem (3.4)
with ℓ1-sparsification. The right image shows the optimal sensor locations (black dots) obtained by
placing sensors at locations with non-vanishing weights. Also shown is the advective flow field v

(red arrows).
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Fig. 6.4. Left: Value of Θ(wopt) for an ℓ1-sparsified A-optimal design obtained with rank-r ap-

proximations F̃r. Right: Number of interior-point quasi Newton iterations and function evaluations
for different discretizations (and thus different parameter dimensions).

optimization problem (4.4). As observed in Section 6.1.1, increasing the parameter
dimension does not increase the numerical rank of F̃ once the mesh is sufficiently fine.
This, and the use of a Newton-type optimization method results in a nearly constant
number of interior-point iterations required to solve (4.4), as shown in the table in
Figure 6.4.

Finally, we study how the performance of the numerical optimization encountered
in our OED method is affected by increasing the number Ns of candidate sensor
locations; note that Ns is also the dimension of the weight vector w, the unknown
in the OED optimization problem (4.4). The results shown in Table 6.1 show that
the number of interior-point quasi-Newton iterations and the number of evaluations of
Θ(·) do not increase significantly as the number of sensor candidate locations increases.
We again attribute this to the use of a Newton-type method, since Newton’s method
satisfies—under certain assumptions—a mesh independence property [12].

Regarding the complexity of our method with respect to the number Ns of candi-
date sensor locations, we draw the following conclusions from Figure 6.2 and Table 6.1:
First, the number of PDE solves required to compute the low-rank surrogate F̃r is
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Table 6.1

Number of interior-point BFGS iterations and evaluations of Θ(·) required for the solution of
(4.4) with ℓ1-sparsification, for different numbers Ns of sensor candidate locations. The optimization
iteration was terminated when the norm of the gradient was decreased by a factor of 104.

Ns 33 58 85 122 172 216 264 340
Iterations 58 68 68 81 58 68 75 72
Func. eval. 149 165 141 158 136 137 122 160

bounded with respect to Ns, and second, the number of optimization iterations to
solve (4.4) is insensitive to the number of candidate sensor locations, and thus the
dimension of the weight vector w.

6.1.3. A-optimal designs with Φε-sparsification. Next, we present Φε-
sparsified designs obtained by a continuation procedure with respect to ε. Optimal
designs for γ = 0.05 and γ = 0.06 are shown on the left in Figure 6.5. Note that
the optimal sensor locations obtained with γ = 0.06 is not a subset of the locations
obtained with γ = 0.05, i.e., the designs are not nested.

For the continuation procedure, we use the values εi = (2/3)i, i = 1, . . . , 10. To
elucidate the convergence of the weights to the desired binary structure, the weights
corresponding to several values of εi are shown on the right in Figure 6.5. Note that
the behavior of the weights is not monotone as ε is decreased. A possible explanation
for this behavior is that, as ε decreases, weights at neighboring locations can get
merged into a single weight at a new location.

50 100
0

0.5

1

j

w
s
(j
)

ε1
ε2
ε4
ε10

Fig. 6.5. Left: Sensor locations using Φε-sparsified A-optimal design for γ = 0.05 (black dots)
and for γ = 0.06 (yellow squares). Right: Convergence of the weights to a 0–1 structure as ε → 0.
The weights are ordered based on the values obtained with ε1, and shown is the evolution of the
weights as ε decreases. Here, s(j) denotes the descending ordering obtained with ε1.

To illustrate the decreased variance for A-optimal designs, in Figure 6.6 we com-
pare the pointwise posterior standard deviation obtained with γ = 0.05 with a uni-
form and two randomly generated designs employing the same number of sensors.
This comparison shows that the A-optimal design provides a notable reduction in the
standard deviation (and thus the variance) fields. Next, we compare the performance
of sensor placements obtained with ℓ1- and Φε-sparsification.

6.1.4. Comparing ℓ1- and Φε-sparsifications. We observe that ℓ1- and Φε-
sparsifications lead to different designs for the same number of sensors. Thus, a
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(a) (b) (c) (d)

Fig. 6.6. Shown is the pointwise standard deviation of the posterior for a Φε-sparsified A-
optimal design with 20 sensors (a), for a manually chosen uniform design (b), and two randomly
generated designs with the same number of sensors (c), (d). The white dots indicate the sensor
locations. Red and blue correspond to regions with large and small standard deviation, respectively.
We find that compared to the optimal design, the uniform design and the two random designs result
in 7%, 36% and 26% increase in the average variance, respectively.

naturally arising question is (1) which sparsification results in the better placement of

sensors? Moreover, (2) how much do optimal designs improve over randomly chosen
designs? To answer these questions, we compute optimal designs based on different
sparsification strategies and compare with randomly generated designs. We use trace
estimators with 100 Gaussian random vectors chosen differently in each OED problem,
but report the exact value of tr(Γpost(w)) = tr(H(w)−1).

Our results are summarized in Figure 6.8. We compute ℓ1-sparsified designs
for various values of γ and report the value of tr(H(w)−1). Similarly, we report
tr(H(w)−1) for 0–1 optimal designs computed via Φε-sparsification. Additionally, we
compute tr(H(w)−1) for a collection of random sensor configurations. We find that
Φε-sparsified designs consistently outperform ℓ1-sparsified designs and that both im-
prove significantly over randomly chosen designs. Another observation from Figure 6.8
is the diminishing returns as the number of sensors is increased; using more than 20
sensors only results in negligible decrease of the OED objective function value.

6.1.5. Influence of trace estimation. To assess the accuracy of randomized
trace estimation for a typical posterior covariance matrix, we compare the exact trace
with results from randomized trace estimation with different numbers of random vec-
tors. We find that trace estimators based on 1, 5, 10, 20, 100 vectors estimate the
exact trace with an average error of about 15%, 7%, 5%, 2% and 1.5%, respectively.
This is consistent with the experiments reported in [3] showing that randomized trace
estimation is reasonably accurate with a small number of random vectors, but that
many random vectors may be needed to obtain very accurate approximations.

A more relevant question in the context of OED is how the use of trace estimators
to compute optimal sensor locations influences the resulting designs. To study this
issue, we compute optimal designs with fixed γ, but different trace estimators. The
results are shown in Figure 6.7. Note that trace estimation in the OED objective
function does have an influence on the designs. More accurate trace estimation de-
creases the variation in both the number of sensors of the designs and the value of the
trace of the posterior covariance. However, as can be seen from Figure 6.8 optimal
designs computed using trace estimation (based on 100 random vectors) consistently
improve over random designs with respect to reducing the exact trace of the poste-
rior covariance. We thus conclude that the use of trace estimation does not have a
significant impact on the quality of the optimal designs.
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Fig. 6.7. Sensitivity of Φε-sparsified designs with respect to the trace estimator with fixed
γ = 0.05. The left and the middle image visualize the frequency of a candidate location being part
of the optimal design with a trace estimator based on a single random vector (left) and 100 random
vectors (middle). The results are based on 30 different realizations of the respective trace estimators.
The darker the candidate location, the more often the corresponding sensor was part of the optimal
design. Note the decreased variation in the designs in the middle plot, which is due to the increased
accuracy of the trace estimator. The right plot depicts the number of sensors and the value of
the trace of the posterior covariance for 30 different trace estimators with a single random vector
(empty dots) and with 100 random vectors (filled dots). Note that the number of sensors varies for
the different realizations and that the more accurate trace estimator results in less scattering with
respect to the number of sensors and the value of the trace.
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Fig. 6.8. Comparison of performance for different designs. Shown is the value of tr(H−1)
versus the number of sensors for random designs (red dots), ℓ1-sparsified designs (cyan dots) and
Φε-sparsified designs (black dots).

6.2. The three-dimensional model problem. The main target of this three
dimensional model problem is to study the applicability of our OED method to large-
scale inverse problems. The computational domain used is depicted in Figure 5.1(c),
where 101 candidate sensor locations are shown as black dots. Note that we allow
sensors on the ground and on the sides of the buildings. Observations are collected at
Nτ = 12 equally spaced points in the time interval [1, T ], where T = 4. The parameter
and the state variable u in the advection-diffusion equation are discretized using linear
finite elements on a tetrahedral mesh with 10,652 spatial degrees of freedom, and 64
implicit Euler time steps are used for the time integration. Thus, the dimension of
the inversion parameter is n = 10,652.
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Fig. 6.9. Top row: Sensor locations (black dots) obtained with A-optimal design with Φε-
sparsification (left) and with random design (right). Bottom row: Standard deviation fields of the
posterior for an A-optimal design with Φε-sparsification (left) and random design (right). Here, red
indicates regions with large standard deviation, and blue corresponds to regions with small standard
deviation.

In our computations, we found a rank-100 SVD surrogate for the prior-
preconditioned parameter-to-observable map adequate since the 100th singular
value of F̃ is about four orders of magnitude smaller than the largest singular value.
This translates to eight orders of magnitude difference between the first and the
100th eigenvalue of H̃misfit. Due to the large parameter space dimension we do
not compute M−1/2 explicitly, but use the algorithm for the iterative application of
M−1/2 to vectors from [11]; see also Section 4.4. We observe that the algorithm is well
converged after 10 applications of M̃—the relative difference between the iterative
application of M̃−1/2 based on 10 applications of M̃ compared with that based on
500 applications of M̃ is approximately 8 × 10−6. For the solution of the OED
optimization problem with γ = 1.2 × 10−1 and Φε-sparsification, the continuation
procedure presented in Section 6.1.2 is used. To compute the initial ℓ1-sparsified
weight vector w0, 18 interior-point iterations were necessary. This initialization was
followed by 10 continuation steps using the penalties Φεi , with εi = (2/3)i; each step
required the solution of an auxiliary OED problem, which amounted to a total of 554
interior-point quasi-Newton iterations to arrive at a 0–1 design vector. The iteration
for each of these auxiliary OED problems was terminated when the relative residual
dropped below 10−4 or a maximum of 150 iterations was reached. The number of
quasi-Newton iterations in the continuation procedure can likely be decreased by
incorporating the continuation procedure into the interior-point algorithm rather
than solving an independent interior point problem for each εi.

The resulting optimal design is shown in top left image of Figure 6.9; note that
several sensors are placed on the top of buildings; these sensors help reduce the vari-
ance in the upper parts of the domain. To illustrate the effectiveness of the optimal
design to reduce the variance, in Figure 6.9 we show a volume rendering of the point-
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wise posterior standard deviation obtained with the optimal design, and compare
it with a rendering obtained with a randomly generated design that has the same
number of sensors.

7. Concluding remarks. We have developed a structure-exploiting efficient nu-
merical method for computing A-optimal experimental designs in infinite-dimensional
Bayesian linear inverse problems governed by PDEs. Numerical experiments for the
inversion of the initial condition in an advection-diffusion equation indicate that an
optimal design can be computed at a cost, measured in forward PDE solves, that is
independent of the parameter and candidate sensor dimensions. Moreover, we find
that experimental designs obtained with regularized ℓ0-sparsification are consistently
superior to designs obtained with ℓ1-sparsification, and significantly improve over
uniform and random designs.

One limitation of the OED method we have presented is that it relies on linearity
of the parameter-to-observable map and assumes Gaussian prior and noise distribu-
tions. However, the methods presented here are also applicable in situations where a
nonlinear parameter-to-observable map can be well approximated by a linearization
over the set of parameters that have significant posterior probability. Moreover, using
Gaussian noise and prior distributions is common, particularly in infinite-dimensional
inference problems. The computational efficiency of our methods depends on low-
rank approximations of the preconditioned parameter-to-observable map, which rely
on properties of the associated forward and observation operators. As a consequence
of ill-posedness, many parameter-to-observable operators admit such low-rank ap-
proximations. Finally, our relaxation of the design problem using a continuous weight
vector in combination with sparsification provides just indirect control of the number
of sensors through the value of γ. However, this approach makes the combinatorial
OED problem of optimal sensor placement computationally tractable.

Possible extensions of the present work include consideration of (1) alterna-
tive optimal experimental design criteria that are meaningful in infinite dimensions
and (2) nonlinear parameter-to-observable maps. OED with nonlinear parameter-
to-observable maps is particularly challenging as, in general, the posterior is non-
Gaussian, the (linearization of the) parameter-to-observable map in general depends
on the state, parameter, and data variables and thus its low-rank approximation can-
not be computed a priori, optimal designs might not be unique even if the sparsifying
penalty is convex, and the misfit Hessian depends on (usually unavailable) observa-
tions.

Acknowledgments. We would like to thank James Martin for providing us with
an implementation of the algorithm in [11], which was used to compute the application
of the inverse square root of the mass matrix.

Appendix A. The mass-weighted trace estimator. The following basic
result justifies the form of the randomized trace estimator for an M-symmetric matrix
as defined in section 2.2. The proof given below adapts the arguments given in [3]
regarding Gaussian trace estimators for symmetric linear mappings on the standard
Euclidean inner product space.

Proposition A.1. Let A be an M-symmetric linear mapping on R
n
M
, n ≥ 1.

Suppose y is a random n-vector with i.i.d. N (0, 1)-entries, and let z = M−1/2y.

Then, T (A) := 〈z,Az〉
M

is an unbiased estimator for tr(A); that is, E {T (A)} =
tr(A).
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Proof. Since A is M-symmetric, it admits a spectral decomposition, A = VΛV∗,
with V a matrix with M-orthogonal eigenvectors of A as its columns (i.e., VTMV =
I) and Λ a diagonal matrix with real eigenvalues {λi}

n
i=1 of A on its diagonal. Then,

E {T (A)} = E
{

zTMVΛV∗z
}

= E
{

yTM1/2VΛVTM1/2y
}

= E
{

qTΛq
}

,

with q = VTM1/2y; note that above we also used V∗ = VTM. It is straightforward
to show that q ∼ N (0, I). Therefore,

E {T (A)} = E
{

qTΛq
}

=

n
∑

i=1

λiE
{

q2i
}

=

n
∑

i=1

λi = tr(A),

where the penultimate equality follows from the fact that E
{

q2i
}

= 1, which is the
case because q2i is the square of standard normal random variable and is thus χ2

distributed with one degree of freedom.

Appendix B. Relation between the trace of posterior covariance and

the expected MSE of the posterior mean. Here, we show that

∫

Rn

∫

Rq

∥

∥md

post −m
∥

∥

2

M
dµd|m(d) dµ0(m) = tr(Γpost), (B.1)

where, according to our choice of the noise model, µd|m = N (Fm,Γnoise) and µ0

is the (discretized) prior measure over R
n
M
, µ0 = N (m0,Γprior). While (B.1) is

known [10] in the context of inference problems in n-dimensional Euclidean space,
below we include a proof of this result adjusted to our choice of mass-weighted in-
ner product, which results from a consistent discretization of the infinite-dimensional
Bayesian inverse problem. We use the notation mpost = md

post to make the depen-
dence of the posterior mean to data explicit. For brevity, we write (B.1) as

Eµ0

{

Ed|m

{

∥

∥md

post −m
∥

∥

2

M

}}

= tr(Γpost). (B.2)

Suppose µ is a Gaussian measure with mean z0 and covariance Q defined on a Hilbert
space V . In the proof of the following result we use the fact that

∫

V
‖ξ‖2 dµ(ξ) =

tr(Q)+ ‖z0‖
2
. Moreover if z is Gaussian random variable with probability law µ and

A : V → W is a linear transformation with W a Hilbert space, then Az + b is also
Gaussian with law N (Az0 + b,AQA∗), where A∗ is the adjoint of A.

Proposition B.1. Consider a Bayesian linear inverse problem with a Gaussian

prior µ0 = N (m0,Γprior) on R
n
M

with additive Gaussian noise model as described

above. Then, (B.2) holds.
Proof. An elementary calculation shows that,

Ed|m

{

∥

∥md

post −m
∥

∥

2

M

}

=

Ed|m

{

∥

∥md

post − Ed|m

{

md

post

}∥

∥

2

M

}

+
∥

∥Ed|m

{

md

post

}

−m
∥

∥

2

M
, (B.3)

Let us consider the first term on the right-hand-side of (B.3); denote Sd = md
post −

Ed|m

{

md
post

}

. Recalling that d|m ∼ N (Fm,Γnoise), we note that for any fixed m,

we have Sd = ΓpostF
∗Γ−1

noise(d − Fm). Therefore, the law of the random variable
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S : (Rq, µd|m) → R
n
M

is µS = N (0,ΓpostHmisfitΓpost), where Hmisfit = F∗Γ−1
noiseF.

Therefore,

Ed|m

{

∥

∥md

post − Ed|m

{

md

post

}∥

∥

2

M

}

=

∫

Rn

‖ξ‖2
M

dµS(ξ) = tr(Γ2
postHmisfit), (B.4)

where we used that tr(ΓpostHmisfitΓpost) = tr(Γ2
postHmisfit). Next, we consider the

expectation over µ0 of the second term in (B.3). We let T : (Rn
M
, µ0) → R

n
M

be
defined by Tm = m− Ed|m

{

md
post

}

. Then,

Tm = Γpost(Γ
−1
post − Hmisfit)m − ΓpostΓ

−1
priorm0 = ΓpostΓ

−1
prior(m − m0). (B.5)

Hence, the law of T is given by µT = N (0,C) withC = (ΓpostΓ
−1
prior)Γprior(ΓpostΓ

−1
prior)

∗ =

ΓpostΓ
−1
priorΓpost. Therefore,

Eµ0

{

∥

∥Ed|m

{

md

post

}

−m
∥

∥

2

M

}

=

∫

Rn

‖ξ‖2
M

dµT (ξ) = tr(Γ2
postΓ

−1
prior). (B.6)

Hence, using (B.3), (B.4), and (B.6), we have

Ed|m

{

∥

∥md

post −m
∥

∥

2

M

}

= tr(Γ2
postHmisfit) + tr(Γ2

postΓ
−1
prior)

= tr
(

Γ2
post(Hmisfit + Γ−1

prior)
)

= tr(Γpost),

where, for the last equality we used Hmisfit + Γ−1
prior = Γ−1

post.
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[1] Volkan Akçelik, George Biros, Andrei Draganescu, Omar Ghattas, Judith Hill, and

Bart van Bloeman Waanders, Dynamic data-driven inversion for terascale simulations:
Real-time identification of airborne contaminants, in Proceedings of SC2005, Seattle, 2005.

[2] Anthony C. Atkinson and Alexander N. Donev, Optimum Experimental Designs, Oxford,
1992.

[3] Haim Avron and Sivan Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix, Journal of the ACM (JACM), 58 (2011), p. 17.

[4] Martin P. Bendsøe, Optimization of structural topology, shape and material, Springer Verlag,
Berlin, Heidelberg, New York, 1995.

[5] Martin P. Bendsøe and Ole Sigmund, Topology Optimization. Theory, methods and Appli-
catons, Springer Verlag, Berlin, Heidelberg, New York, 2003.

[6] Hans Georg Bock, Stefan Körkel, and Johannes P. Schlöder, Parameter estimation
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