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Abstract

In this thesis we introduce and study an A-optimal minimax design criterion for

two-level fractional factorial designs, which can be used to estimate a linear model

with main effects and some interactions. The resulting designs are called A-optimal

minimax designs, and they are robust against the misspecification of the terms in the

linear model. They are also efficient, and often they are the same as A-optimal and

D-optimal designs. Various theoretical results about A-optimal minimax designs are

derived. A couple of search algorithms including a simulated annealing algorithm are

discussed to search for optimal designs, and many interesting examples are presented

in the thesis.
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Chapter 1

Introduction

Experimental designs are important and useful to study the performance of processes

and systems. There are applications in many research areas such as quality control

in industry, maximizing crop yield in agriculture, marketing research in business, and

developing new drugs in medicine. Various designs have been investigated in the

literature, including factorial designs (Montgomery, 2006; Mukerjee and Wu, 2006),

optimal regression designs (Pukelsheim, 1993), robust minimax regression designs

(Huber, 1981; Wiens, 1992), and robust parameter designs (Montgomery, 2006). In

this thesis, we introduce a minimax design criterion for two-level fractional factorial

designs and study its properties.

Chapter 1 is organized as follows. Section 1.1 gives an overview of experimental

designs while Section 1.2 briefly introduces factorial and fractional factorial designs.

Section 1.3 contains the research problem of this thesis. Section 1.4 highlights the

main contributions in this thesis.

1.1 Experimental design

Experimental design and analysis have been studied for a long time as a result of

many benefits from optimal designs. A good design can help improve process yields

as well as reduce variability, development time and overall costs (Montgomery, 2006).

Three basic principles for a good design are randomization, replication and blocking

(Montgomery, 2006). Randomization refers to that both the order of runs and the
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allocation of experimental materials are to be performed randomly, which provide an

access to get independent errors. Replication is to run independent repeat of each

factor combination and it is used to reduce the variance of estimators. Blocking is a

design technique to reduce variability from nuisance factors and improve the precision.

Considering the two major aspects of experimental design, the design of the ex-

periment and the statistical analysis of the data (Montgomery, 2006), an investigator

can construct different types of designs to match the requirements and draw mean-

ingful conclusions. A design of experiment with only one factor to be investigated can

be studied by one-way analysis of variance (ANOVA). In industry, if an engineer is

willing to test how one factor with different levels (treatments) affects the response,

one-way ANOVA can be used with hypothesis of no difference in levels. Randomized

complete block design (RCBD) and Latin squares design are applied when an engi-

neer studies one influential factor with possible nuisance factors. Randomization is

used to reduce the effect of nuisance factors which are uncontrollable while blocking is

used for controllable nuisance factors. A RCBD is used to block one nuisance factor

and a Latin squares design is used to block two nuisance factors. For example, a

RCBD with 4 levels in 4 blocks is given in Figure 1.1, where each column stands for

one block, and A, B, C and D denote the 4 treatments.. Within each block, there

is a complete replicate of the 4 treatments and the run order is randomized. In the

situation of two nuisance factors, a Latin squares design can be applied and Figure

1.2 shows one Latin squares design with 4 treatments.

1.2 Factorial and fractional factorial designs

Factorial designs are useful to study two or more factors in an experiment. In this

thesis, we will focus on two-level factorial designs, where all the factors take two levels.

The total number of runs is N = 2×2×· · ·×2 = 2k if there are k factors. Statistical
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analysis can be performed by building specific models to estimate the effects. Both

the effect model and linear regression model can be used to study factorial designs.

Usually a full model with all the main effects and interaction terms is used for a

full factorial design. In practice, restricted by the expensive spending, an engineer

may need to construct fractional factorial designs with some specific combinations

among all the runs. If some effects are known to be significant, a reduced model with

only significant terms can be used to estimate the effects generated from fractional

factorial designs.

Chapter 2 will review more details of factorial designs, and some examples and

analysis based on reduced linear regression models are presented.

1.3 Research problems

Two-level fractional factorial designs are widely applied in many fields. How

to construct a two-level fractional factorial design becomes an important issue for

engineers. Wilmut and Zhou (2011) introduced one new method called D-optimal

minimax design criterion for constructing the designs. This criterion is to minimize

the largest determinant of the mean squared error of the least squares estimator.

Motivated by the idea of D-optimal minimax design criterion, we consider a similar

criterion, A-optimal minimax design criterion, for choosing the optimal designs. In

addition, optimal designs from various optimal criteria are computed and compared.

The organization of the thesis is as follows. In Chapter 2, we review the factorial

and fractional factorial designs with some examples. In Chapter 3, some existing

design criteria are reviewed, and the A-optimal minimax design criterion is proposed.

Several theoretical results are derived for A-optimal minimax designs. In Chapter 4,

we discuss two algorithms to search for optimal designs. Many examples of A-optimal

minimax designs are given and the designs are compared with A-optimal, D-optimal
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and D-optimal minimax designs. Conclusion is given in Chapter 5.

1.4 Main contributions

The thesis contains the following main contributions:

(1) An A-optimal minimax design criterion is proposed and explored for fractional

factorial designs.

(2) Various theoretical properties for A-optimal minimax designs are derived and

illustrated by examples.

(3) An annealing algorithm is discussed and is effective to search for optimal

designs.

(4) Many numerical results are presented for A-optimal minimax designs. New

optimal designs are obtained for some linear models.



Chapter 2

Factorial design

In this chapter, we briefly review the design and analysis of factorial designs. In a

factorial design with k factors, we use F1, F2, ..., Fk to denote the factors and use y

for a response variable. Suppose there are ai levels for factor Fi, and a full factorial

design has N = a1a2 · · · ak runs. Using a full factorial design, we can estimate all the

main effects, F1, F2, ..., Fk, and all the interactions among the factors. An s-factor

(2 ≤ s ≤ k) interaction is denoted by Fi1Fi2 · · ·Fis , where {i1, · · · , is} is a subset of

{1, 2, · · · , k}. In Section 2.1, two examples are presented to illustrate the notation

of main effects and interactions, linear models, and regression analysis. In Section

2.2, we discuss some properties of the full and reduced linear models and introduce a

requirement set for factorial designs.

2.1 Examples

Example 2.1. Suppose an engineer wants to design a battery for a device which will

be used in various conditions in temperature (Montgomery, 2006). What he knows

is that both the temperature and type of materials will affect the life of battery, but

he doesn’t know exactly how the temperature and material type influence the life. A

test for battery with three different types of materials and three different conditions

in temperature is run by the engineer to answer the following questions. What effect

does temperature have on the life? Which type of materials is the best for three

conditions in temperature compared with the other two types? A full factorial design
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with 4 replicates is used for the test, and the results for the test are from Montgomery

(2006) and are presented in Table 2.1.

Table 2.1: Life (in hours) data for the battery design example

Material Temperature ( ◦F)

Type 15 70 125

1 130 155 34 40 20 70

74 180 80 75 82 58

2 150 188 136 122 25 70

159 126 106 115 58 45

3 138 110 174 120 96 104

168 160 150 139 82 60

Here, the two factors are material type (F1) and temperature (F2). The interaction

between F1 and F2 is denoted by F1F2. Figure 2.1 shows four plots, which help us

analyze the data: (a) 9 combinations for the two factors, (b) box-plot of the life

data versus material type, (c) box-plot of the life data versus temperature, (d) an

interaction plot between material type and temperature. Material type 3 seems to

be the best one among all the three types of materials since the expected life is the

longest. Low temperature seems to be excellent condition for long life. For all the

three types, as the temperature goes up, the life of battery decreases. This implies

that the longer life can be reached at the lower temperature. When the temperature

changes from 15 ◦F to 70 ◦F, battery life for both material types 1 and 2 decreases.

Especially, the life time of type 1 goes down dramatically while the life time of type 3

seems unchanged. When the temperature changes from 70 ◦F to 125 ◦F, the battery

life seems unchanged for type 1, whereas for types 2 and 3 it decreased. Material
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type 3 seems to be the best choice.

Table 2.2: Regression variables

Factor levels Regression variables

F1 F2 x1 x2 x3 x4 x1x3 x2x3 x1x4 x2x4

1 15 −1 1 −1 1 1 −1 −1 1

1 70 −1 1 0 −2 0 0 2 −2

1 125 −1 1 1 1 −1 1 −1 1

2 15 0 −2 −1 1 0 2 0 −2

2 70 0 −2 0 −2 0 0 0 4

2 125 0 −2 1 1 0 −2 0 −2

3 15 1 1 −1 1 −1 −1 1 1

3 70 1 1 0 −2 0 0 −2 −2

3 125 1 1 1 1 1 1 1 1

Since both factors have 3 levels, there are 2 degrees of freedom for the main effect

of each factor and 4 degrees of freedom for the 2-factor interaction. To analyze the

data, we use a linear regression model as follows,

yi = θ0+xi1θ1+xi2θ2+xi3θ3+xi4θ4+xi1xi3θ5+xi2xi3θ6+xi1xi4θ7+xi2xi4θ8+εi, (2.1)

where variables x1, x2, x3 and x4 are defined in Table 2.2, and yi is the observed

response at the ith run. Variables x1 and x2 are for the linear and quadratic effects

of factor F1, variables x3 and x4 are for the linear and quadratic effects of factor F2,

and x1x3, x2x3, x1x4 and x2x4 represent the interaction between F1 and F2.

For the full factorial design, the regressors coded in Table 2.2 are orthogonal.
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Using the least squares estimation method, we obtain the fitted model as

ŷ = 105.528(4.331) + 20.958(5.304)x1 − 1.403(3.062)x2 − 40.333(5.304)x3 − 1.028(3.062)x4

+4.687(6.496)x1x3 + 6.396(3.751)x2x3 − 11.646(3.751)x1x4 + 2.340(2.165)x2x4, (2.2)

where the numbers in the brackets are the standard errors.

The residuals are shown in Figure 2.2: (a) residual versus fitted value, (b) residual

versus material type, (c) residual versus temperature, (d) normal Q-Q plot of residu-

als. From these plots, the error variance seems to be constant and there is no problem

of the normality assumption of the errors. From the results in model (2.2), it is clear

that x1, x3 and x1x4 are significant in the linear model. Thus both the main effects

and interaction effect have significant influence on the response.

From model (2.2), the expected life for the three types of materials is given in

Table 2.3, and type 3 maximize the total life at the three levels of temperature. ✷

Table 2.3: Estimated expected life in Example 2.1

F1 (material type) 1 1 1 2 2 2 3 3 3

F2 (temperature) 15 70 125 15 70 125 15 70 125

Estimated expected life 134.7 57.3 57.5 155.8 119.8 49.5 144.0 145.8 85.5

(hours)

Example 2.2. A laboratory assistant wants to get uniform fill heights in the soft

drink bottles, since there are deviations generated in practice compared to the correct

target height (Montgomery, 2006). In this case, the assistant needs to examine what

the effects the following three factors have on the deviation from the target fill height

for soft drink bottles, percent carbonation, line speed and operating pressure in the
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estimated standard deviation of the errors.
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filler which can be all controlled in practice. In this example, each factor takes two

levels, and the total number of combinations is N = 2 × 2 × 2 = 8. The assistant

chooses 10 percent and 12 percent as the two levels for percent carbonation, 200bpm

(bottles per minute) and 250bpm as the two levels for line speed, and 25psi (pound

per square inch) and 30psi as the two levels for operating pressure. A full factorial

design with 2 replicates is used in this experiment and the results are shown in Table

2.4, where the response in this case is the difference between the actual value and the

target value. Positive deviations are the heights above the target, while the negative

deviations are the heights below the target.

Various plots of the data are constructed in Figure 2.3: (a) box-plot of deviation

versus percent carbonation, (b) box-plot of deviation versus operating pressure, (c)

box-plot of deviation versus line speed, (d) an interaction plot between percent and

pressure, (e) an interaction plot between pressure and speed, and (f) an interaction

plot between speed and percent. We notice that all three factors have positive effects

for increasing the deviation from the target height. From the interaction plots (d),

(e) and (f), all the interactions are probably small.

The three factors F1, F2 and F3 denote percent carbonation, line speed and op-

erating pressure, respectively. We use standard codes +1 and −1 to denote the two

levels of a factor, and the interactions among the factors can be formed easily, which

are presented in Table 2.5. Notice that all the effects are orthogonal for a full fac-

torial design. Each main effect of a factor has 1 degree of freedom, and so is each

interaction.

A full model including all the main effects and interactions for the three factors

is fitted in software R, and the fitted model is,

ŷ = 1.00(0.1976) + 1.50(0.1976)x1 + 0.875(0.1976)x2 + 1.125(0.1976)x3 + 0.125(0.1976)x1x2

+0.375(0.1976)x1x3 + 0.25(0.1976)x2x3 + 0.25(0.1976)x1x2x3. (2.3)
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Table 2.4: Deviations from the target fill height in soft drink bottles

deviation percent carbonation line speed operating pressure

(y) (F1) (F2) (F3)

-3 10 200 25

-1 10 200 25

0 12 200 25

1 12 200 25

-1 10 250 25

0 10 250 25

2 12 250 25

1 12 250 25

-1 10 200 30

0 10 200 30

2 12 200 30
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6 12 250 30

5 12 250 30
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Figure 2.3: Boxplots and interaction plots for Example 2.2: (a) box-plot of deviation

versus percent carbonation, (b) box-plot of deviation versus operating pressure, (c)

box-plot of deviation versus line speed, (d) an interaction plot between percent and

pressure, (e) an interaction plot between pressure and speed, and (f) an interaction

plot between speed and percent .
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Table 2.5: The effects of three factors with two levels

run F1 F2 F3 F1F2 F1F3 F2F3 F1F2F3

(x1) (x2) (x3) (x1x2) (x1x3) (x2x3) (x1x2x3)

1 +1 +1 +1 +1 +1 +1 +1

2 −1 +1 +1 −1 −1 +1 −1

3 +1 −1 +1 −1 +1 −1 −1

4 −1 −1 +1 +1 −1 −1 +1

5 +1 +1 −1 +1 −1 −1 −1

6 −1 +1 −1 −1 +1 −1 +1

7 +1 −1 −1 −1 −1 +1 +1

8 −1 −1 −1 +1 +1 +1 −1

Since three interactions x1x2, x2x3, and x1x2x3 are not significant in the full model,

a reduced model including the three main effects and the interaction between F1 and

F3 is fitted and the result is

ŷ = 1.00(0.203) + 1.50(0.203)x1 + 0.875(0.203)x2 + 1.125(0.203)x3 + 0.375(0.203)x1x3. (2.4)

Figure 2.4 shows two plots, the residual versus fitted value, and the normal Q-Q

plot. These plots show that it is reasonable to assume equal variance and normal

distribution of the errors. From model (2.4), we can conclude that F1, F2, F3 and

F1F3 have significant effects on the fill height. If we perform the partial F test for the

full model (2.3) versus reduced model (2.4), the p-value is 0.37 which shows that we

can not reject the null hypothesis that all the coefficients for the effects that are not

in the reduced model are zero. Thus all the effects that are not in the reduced model

are not significant, which implies that the two factor interactions F1F2 and F2F3 and

the three factor interaction F1F2F3 are not significant. Which combination of the
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Figure 2.4: Residual analysis in the reduced model for Example 2.2: (a) the residual

versus fitted value, and (b) the normal Q-Q plot. The dotted horizontal lines are

±2σ̂, where σ̂ is the estimated standard deviation of the errors.
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three factors is the best for both customers and sellers? In other words, we need to

find a combination to give zero or nearly zero deviation. Based on the reduced model,

there are two choices. One combination is to set 10% for percent carbonation, 250

bpm for line speed and 25 psi for operating pressure, and the other is at 12% for

percent carbonation, 200 bpm for line speed and 25 psi for operating pressure. ✷

2.2 Linear models and requirement set

In Example 2.1, the number of replicates is r = 4, and r = 2 in Example 2.2. Both

examples allow us to fit a full model to analyze all the main effects and interactions.

In general, a full model for a factorial design with r ≥ 1 can be written, in a matrix

form, as

y = Xθ + ǫ,

where y is the vector of observed responses, X is the model matrix, θ contains the

parameters for all the main effects and interactions, and ǫ is the vector of the random

errors which are assumed to have the distribution N(0, σ2In) with n = r N . Here In

is the n× n identity matrix.

For example, the model matrix for r = 1 in Example 2.1 is easy to get from Table
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2.2,

X =















































1 -1 1 -1 1 1 -1 -1 1

1 -1 1 0 -2 0 0 2 -2

1 -1 1 1 1 -1 1 -1 1

1 0 -2 -1 1 0 2 0 -2

1 0 -2 0 -2 0 0 0 4

1 0 -2 1 1 0 -2 0 -2

1 1 1 -1 1 -1 -1 1 1

1 1 1 0 -2 0 0 -2 -2

1 1 1 1 1 1 1 1 1















































,

and θ = (θ0, θ1, · · · , θ8)
T . It is easy to verify that XTX is a diagonal matrix, and

XTX =















































9

6

18 0
6

18

4

0 12

12

36















































This implies that all the columns of X are orthogonal.
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In Example 2.2, from Table 2.5, the model matrix for r = 1 is

X =









































1 +1 +1 +1 +1 +1 +1 +1

1 -1 +1 +1 -1 -1 +1 -1

1 +1 -1 +1 -1 +1 -1 -1

1 -1 -1 +1 +1 -1 -1 +1

1 +1 +1 -1 +1 -1 -1 -1

1 -1 +1 -1 -1 +1 -1 +1

1 +1 -1 -1 -1 -1 +1 +1

1 -1 -1 -1 +1 +1 +1 -1









































,

and θ = (θ0, θ1, · · · , θ7)
T . It is also easy to verify that XTX is a diagonal matrix, and

in fact XTX = 8 I8. Therefore all the columns of X are orthogonal. In general, for

a full factorial design, we can always use orthogonal effects in the full model so that

XTX is a diagonal matrix.

From Example 2.2, some of the effects are not significant in the full model, so a

reduced model can be fitted. We can write the reduced model in a matrix form as

y = X1θ1 + ǫ, (2.5)

where y is the vector of observed responses, X1 is the model matrix, and θ1 contains

the parameters in the reduced model. For model (2.4), θ1 = (θ0, θ1, θ2, θ3, θ5)
T , and

X1 =









































1 +1 +1 +1 +1

1 -1 +1 +1 -1

1 +1 -1 +1 +1

1 -1 -1 +1 -1

1 +1 +1 -1 -1

1 -1 +1 -1 +1

1 +1 -1 -1 -1

1 -1 -1 -1 +1









































.
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This reduced model is used to study the three main effects and one interaction. A

requirement set can be defined to include those effects, say R = {F1, F2, F3, F1F3}.

In the literature, the requirement set is defined as a subset of effects studied in an

experiment (Greenfield, 1976). For a given requirement set, the linear model can be

written as a reduced model, such as model (2.5). For a full factorial design, it is clear

that the columns of X1 are also orthogonal.

When there is not enough resource to run a full factorial design in an experiment, a

fractional factorial design is often used to screen the factors and identify the influential

ones. For a given run size n which is less than N , which n combinations do we select

to do the experiment? There are
(

N
n

)

choices. Which one is the “optimal” one? We

will investigate this in the next chapter.



Chapter 3

Optimal design criteria

In this chapter we focus on 2-level fractional factorial designs. For k factors, a full

factorial design has N = 2k runs. When the run size n is less than N , how do we

choose the n combinations out of the 2k combinations? In Section 3.1, various design

criteria to choose optimal designs are reviewed and discussed. In Section 3.2, we

introduce a new criterion, A-optimal minimax criterion, which is motivated by the D-

optimal minimax criterion in Wilmut and Zhou (2011). Several interesting properties

of the A-optimal minimax criterion are derived in Section 3.3.

3.1 Optimal design criteria for fractional factorial

designs

Various optimal design criteria are proposed and studied in the literature. Many

criteria are based on the effect hierarchy principle (Mukerjee and Wu, 2006, p34):

“(i) lower order effects are more likely to be important than higher order ones, (ii)

factorial effects of the same-order are equally likely to be important.” Those criteria

include the maximum resolution criterion in Box and Hunter (1961a, b), the minimum

aberration criterion in Fries and Hunter (1980), the clear effects criterion in Wu and

Chen (1992), and the maximum estimation capacity criterion in Sun (1993). There

are other developments in Mukerjee and Wu (2006), Zhang et al. (2008), and Xu,

Phoa and Wong (2009). The following examples give some optimal designs using the

maximum resolution criterion, the minimum aberration criterion and the clear effects



22

criterion.

Example 3.1. Consider 27−2 designs with 7 factors and n = 32 runs. The maximum

resolution is 4 from Mukerjee and Wu (2006, p54). There are many designs having

resolution 4, such as the two designs below

(d1) the 27−2 design with the defining relation

I = F1F2F3F4 = F4F5F6F7 = F1F2F3F5F6F7,

(d2) the 27−2 design with the defining relation

I = F1F2F3F4 = F3F4F5F6F7 = F1F2F5F6F7.

The resolution of the above designs can be computed as the length of the shortest

word in the defining relation. There are three words in the defining relation in (d1)

and (d2). It is obvious that the resolution of (d1) and (d2) is 4, thus both designs

(d1) and (d2) are maximum resolution designs. ✷

Example 3.2. Consider the 27−2 designs in Example 3.1. The word length pattern

for a design (d) with k factors is defined as W (d) = (A1(d), A2(d), · · · , Ak(d)), where

Ai(d) is the number of words with length i. For design (d1), it is clear that the

word length pattern is W (d1) = (0, 0, 0, 2, 0, 1, 0), while for design (d2), W (d2) =

(0, 0, 0, 1, 2, 0, 0). Let l be the smallest integer that Al(d1) 6= Al(d2) in the word

length patterns. If Al(d2) < Al(d1), then (d2) has less aberration than (d1). A

design is called a minimum aberration design if there exists no other design having

less aberration than it. To compare (d1) with (d2), we get l = 4 and A4(d2) = 1 <

A4(d1) = 2, thus design (d2) has less aberration than (d1). In fact, design (d2) is a

minimum aberration design according to the result in Mukerjee and Wu (2006, p54).

✷

A fractional factorial design is said to be regular if any two effects are either

orthogonal or fully aliased; otherwise it is called non-regular. A regular fractional
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factorial design exists when the run size is a power of 2, such as n = 4, 8, 16, 32, · · · .

The designs (d1) and (d2) in Example 3.1 are regular fractional factorial designs with

n = 32. A fractional factorial design is said to be orthogonal if all the main effects are

orthogonal. When the run size is a multiple of 4, orthogonal designs can be selected

from Hadamard matrices. A Hadamard matrix is a square matrix and its entries are

either +1 or −1 and its rows are mutually orthogonal. Thus a n× n matrix H with

all its entries +1 and −1 is a Hadamard matrix if HHT = HTH = nI. The following

website contains information about Hadamard matrix and lists Hadamard matrices

for various values of n: http://neilsloane.com/hadamard/index.html.

Example 3.3. Consider an example from Wu and Chen (1992) for a 26−2 design

with defining relation as I = F1F2F5 = F2F3F4F6 = F1F3F4F5F6. A two-factor

interactions (2fi) is eligible if it is not aliased with any main effects. Thus F1F2,

F1F5 and F2F5 are ineligible since they are aliased with main effects F5, F2 and F1,

respectively. And clear 2fi’s are those eligible ones which are not aliased with other

2fi’s. Assuming that interactions involving three and more factors are negligible, the

clear 2fi’s can be estimated. For this design, the clear 2fi’s are F1F3, F1F4, F1F6,

F3F5, F4F5 and F5F6.

“A design with less aberration may have a smaller number of eligible 2fi’s or of

clear 2fi’s.” (Wu and Chen, 1992). There are various 26−2 designs with different

resolution, such as the two designs below:

(d3) the 26−2 design with the defining relation

I = F1F2F3F5 = F2F3F4F6 = F1F4F5F6,

(d4) the 26−2 design with the defining relation

I = F1F2F5 = F1F2F4F6 = F4F5F6.

Design (d3) is the minimum aberration 26−2 design with fifteen eligible 2fi’s and

zero clear 2fi’s, and design (d4) has nine eligible 2fi’s and five clear 2fi’s. ✷
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Another class of design criteria are model based. Suppose an experimenter wants

to fit a pre-specified linear model according to a requirement set, say model (2.5).

The least squares estimator (LSE) θ̂1 of θ1 is given by

θ̂1 =
(

XT
1X1

)−1
XT

1 y,

which has the covariance matrix

Cov
(

θ̂1

)

= σ2
(

XT
1X1

)−1
. (3.1)

The A-optimal, D-optimal, and E-optimal designs minimize the trace, determi-

nant and the largest eigenvalue of Cov
(

θ̂1

)

respectively. Recently Wilmut and Zhou

(2011) proposed a D-optimal minimax criterion to consider both the covariance matrix

and the bias of θ̂1 if the pre-specified linear model is not correct. So the D-optimal

minimax criterion is robust against the misspecification of the linear model or the

misspecification of the requirement set. Motivated by the D-optimal minimax crite-

rion, we explore an A-optimal minimax criterion and construct A-optimal minimax

designs (AOMD) for various cases in this thesis. A-optimal minimax designs will

be compared with A-optimal designs (AOD), D-optimal designs (DOD), E-optimal

designs (EOD), and D-optimal minimax designs (DOMD).

3.2 A-optimal minimax criterion

Suppose the linear model for a given requirement set R0 with k factors is,

y = X1θ1 + ǫ, (3.2)

where θ1 includes the grand mean and all the parameters for the effects in R0. Let

p be the number of effects in R0, so θ1 ∈ Rq with q = p+ 1.

We use DN×(k+1) to denote design matrix for full factorial design with k factors,

and the first column is 1N for the grand mean term and the jth (j = 2, ..., k + 1)
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column changes its sign every 2j−2 times. For example, a full factorial design with 3

factors can be expressed as follows:

D =









































1 +1 +1 +1

1 -1 +1 +1

1 +1 -1 +1

1 -1 -1 +1

1 +1 +1 -1

1 -1 +1 -1

1 +1 -1 -1

1 -1 -1 -1









































.

Let S = {u1, · · · ,uN} be the design space which includes all the N combinations

in the full factorial design, where ui represents one combination, or one row of full

factorial design matrix D. We use ξn = {x1,x2, · · · ,xn} to denote a design with n

design points selected from S without replacement in this thesis. If the number of

points in ξn is clear, we can just write ξ for ξn. Based on n runs, we fit the following

model

yi = zTR0
(xi)θ1 + ǫi, i = 1, · · · , n, (3.3)

where yi is the observed response at the ith run, xi is a selected combination from

the full factorial design, and zTR0
(xi) ∈ Rq is the ith row of matrix X1. For example,

for a requirement set R0 = {F1, F2, F3, F1F2} with k = 3 and p = 4,

zR0
(xi) = (1, xi1, xi2, xi3, xi1xi2)

T ,

and q = 5.

If the requirement set R0 missed some significant effects, then model (3.3) is

misspecified. We follow the discussion in Wilmut and Zhou (2011) to propose the
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possible full model as

yi = zTR0
(xi)θ1 + h(xi) + ǫi, i = 1, · · · , n, (3.4)

where function h(xi) is a linear function of all the other effects that are not in R0,

i.e.,

h(xi) = vT (xi)θ2, (3.5)

with θ2 ∈ RN−q being an unknown constant vector and v(xi) being the vector of all

the effects not in R0. For R0 = {F1, F2, F3, F1F2}, we have N − q = 23 − 5 = 3 and

vT (xi) = (xi1xi3, xi2xi3, xi1xi2xi3).

From Wilmut and Zhou (2011), h(x) is orthogonal to all the terms in zTR0
(x)θ1

on the design space S, and h(x) contains all possible departure functions from model

(3.3). In order to discuss the bias of the LSE of θ1, we work on small departure

functions, so there is a constraint on θ2. The constraint is ||θ2|| =
√

θ
T
2 θ2 ≤ α,

where α ≥ 0 controls the size of departure functions. More detailed discussion is

given in Wilmut and Zhou (2011). If α = 0, then model (3.3) is correct.

Model (3.4) can be expressed in matrix form as

y = X1θ1 +X2θ2 + ǫ, (3.6)

where

X2 =











vT (x1)
...

vT (xn)











.

The LSE for θ1 is given by

θ̂1 =
(

XT
1X1

)−1
XT

1 y,
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which is estimated from model (3.2). Since the true model is (3.6), the LSE is biased.

Its bias and variance are, respectively,

bias(θ̂1) = E(θ̂1)− θ1 =
(

XT
1X1

)−1
XT

1X2θ2,

V ar(θ̂1) = σ2
(

XT
1X1

)−1
.

The mean squared error (MSE) is

MSE(θ̂1,X1,θ2) = V ar(θ̂1) + bias(θ̂1)bias
T (θ̂1)

= σ2
(

XT
1X1

)−1
+
(

XT
1X1

)−1
XT

1X2θ2θ
T
2X

T
2X1

(

XT
1X1

)−1
. (3.7)

A-optimal, D-optimal and E-optimal designs criteria minimize the variance of the

LSE only, so the bias is not considered in these design criteria. In practice, model

(3.2) is never true, thus the bias should be considered when constructing optimal

designs. Wilmut and Zhou (2011) proposed a D-optimal minimax criterion based on

the MSE of the LSE, and a D-optimal minimax design minimizes the following loss

function

LD(ξn) = max
||θ2||≤α

det
(

MSE(θ̂1,X1,θ2)
)

, (3.8)

over possible choices of designs ξn, which is determined by matrix X1. This crite-

rion has been extended to fractional factorial designs with mixed levels in Lin and

Zhou (2013). D-optimal minimax designs have many nice properties, such as scale

invariance and level permutation invariance.

Here we propose an A-optimal minimax criterion and investigate its properties.

An A-optimal minimax design minimizes the following loss function

LA(ξn) = max
||θ2||≤α

trace
(

MSE(θ̂1,X1,θ2)
)

, (3.9)

over possible choices of designs ξn. Various properties of A-optimal minimax designs

are obtained in the next section.
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3.3 Properties of A-optimal minimax criterion

We deal with minimax problems in both A-optimal and D-optimal minimax cri-

teria. In general, minimax problems are hard to solve analytically and numerically.

However, we are able to find analytical solutions for the maximum step in both crite-

ria, which allows us to study many properties of A-optimal and D-optimal minimax

designs. First we derive the result for the loss function in (3.9) for the A-optimal min-

imax criterion, and then we study various properties of A-optimal minimax designs

in this section.

Theorem 1. For the loss function in (3.9), we have

LA(ξn) = σ2trace(XT
1X1)

−1 + α2

(

N

λmin(XT
1X1)

− 1

)

, (3.10)

where λmin(·) denotes the smallest eigenvalue of a matrix.

Proof: Define the following matrices to prove the result. Matrix W1 is the model

matrix for the full factorial design for the requirement set, and matrix W2 is the

model matrix for the complement set of the requirement set, i.e.,

W1 =











zTR0
(u1)
...

zTR0
(uN)











, W2 =











vT (u1)
...

vT (uN)











.

Define an N ×N diagonal matrix M = diag(n1, ..., nN), where ni = 1 if the ith run

is in ξn, and 0 otherwise. For two-level factorial designs, it is clear that

(W1,W2)
T (W1,W2) = NIN ,

(W1,W2)(W1,W2)
T = NIN ,
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since all the effects are orthogonal. Also it is easy to verify that

XT
1X1 = WT

1 MW1,

XT
1X2 = WT

1 MW2.

From (3.7) and the above results, we get

LA(ξn) = max
||θ2||≤α

trace
(

MSE(θ̂1,X1,θ2)
)

= max
||θ2||≤α

(trace(σ2(XT
1X1)

−1) + trace((XT
1X1)

−1XT
1X2θ2θ

T
2X

T
2X1(X

T
1X1)

−1))

= max
||θ2||≤α

(σ2trace(XT
1X1)

−1 + trace(θT
2X

T
2X1(X

T
1X1)

−2XT
1X2θ2))

= max
||θ2||≤α

(σ2trace(XT
1X1)

−1 + θ
T
2X

T
2X1(X

T
1X1)

−2XT
1X2θ2)

= σ2trace(XT
1X1)

−1 + α2λmax(X
T
2X1(X

T
1X1)

−2XT
1X2)

= σ2trace(XT
1X1)

−1 + α2λmax((X
T
1X1)

−2XT
1X2X

T
2X1)

= σ2trace(XT
1X1)

−1 + α2λmax((W
T
1 MW1)

−2WT
1 MW2W

T
2 MW1)

= σ2trace(XT
1X1)

−1 + α2λmax((W
T
1 MW1)

−2WT
1 M(NI−W1W

T
1 )MW1)

= σ2trace(XT
1X1)

−1 + α2λmax((W
T
1 MW1)

−2(NWT
1 MW1 −WT

1 MW1W
T
1 MW1))

= σ2trace(XT
1X1)

−1 + α2λmax(N(WT
1 MW1)

−1 − I)

= σ2trace(XT
1X1)

−1 + α2

(

N

λmin(XT
1X1)

− 1

)

,

where λmax(·) denotes the largest eigenvalue of a matrix. This completes the proof.

✷

A similar result is derived for the D-optimal minimax criterion in Wilmut and

Zhou (2011), and the result is

LD(ξn) = σ2q 1 +
α2

σ2 (N − λmin(X
T
1X1))

det(XT
1X1)

. (3.11)
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From these results in (3.10) and (3.11), various properties of A-optimal minimax

designs can be studied, and A-optimal minimax designs can be compared with A-

optimal, D-optimal and E-optimal designs and D-optimal minimax designs. Define

A(ξn) = trace
(

XT
1X1

)−1
, (3.12)

D(ξn) = det
(

XT
1X1

)−1
, (3.13)

E(ξn) = λmax

(

(

XT
1X1

)−1
)

. (3.14)

A-optimal, D-optimal and E-optimal designs minimize A(ξn), D(ξn) and E(ξn) re-

spectively. Suppose λ1 ≥ · · · ≥ λq are the q ordered eigenvalues of XT
1X1, then the q

eigenvalues of
(

XT
1X1

)−1
are: 1/λ1, · · · , 1/λq. From (3.10) – (3.14), we have

LA(ξn) = σ2

(

1

λ1

+ · · ·+
1

λq

)

+ α2

(

N

λq

− 1

)

,

LD(ξn) = σ2q 1 +
α2

σ2 (N − λq)

λ1 · · ·λq

,

A(ξn) =
1

λ1

+ · · ·+
1

λq

,

D(ξn) =
1

λ1 · · ·λq

,

E(ξn) =
1

λq

.

It is clear that all the loss functions are functions of the eigenvalues of XT
1X1.

Lemma 1. All the eigenvalues of XT
1X1 stay the same if the two levels of one factor

or several factors are switched in X1.

Proof: If we switch the two levels of one factor, say F1, that is changing +1 to −1

and −1 to +1 in the corresponding columns in X1, and all the other factors stay the

same. The new design matrix is denoted as X̂1, in which the sign for F1 and all the

interactions related to F1 are changed. It is clear that

X̂1 = X1Q1
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where Q1 = diag{1, q1, q2, · · · , qp} is a diagonal matrix, and qi−1 = −1 if the ith

column is changed, and qi−1 = 1 otherwise. It is obvious that

QT
1 = Q1, Q2

1 = Iq.

Therefore X̂T
1 X̂1 = Q1X

T
1X1Q1 and all the eigenvalues of Q1X

T
1X1Q1 are the same

as those of XT
1X1. Similarly if we change the sign of several factors, we just need to

change the sign of corresponding columns of Q1 and still get the same result. ✷

This property implies that all the optimal designs are invariant under level per-

mutation, so the classification of the two levels is not important. In practice this

situation happens. For example, it doesn’t matter how to define high and low levels

for two different material types.

Lemma 2. All the loss functions, A(ξn), D(ξn), E(ξn),LA(ξn) and LD(ξn) are mini-

mized when XT
1X1 = nIq.

Proof: We only prove the result for LA(ξn) here. The other results are known or can

be proved similarly. From Theorem 1, we have

LA(ξn) = σ2

(

1

λ1

+ · · ·+
1

λq

)

+ α2

(

N

λq

− 1

)

.

For any X1, we have trace
(

XT
1X1

)

= nq =
∑q

i=1 λi. Since the geometric mean

of a set of numbers is less than the set’s arithmetic mean unless all the members are

equal, we have

q

√

√

√

√

q
∏

i=1

λi ≤
1

q

q
∑

i=1

λi = n, (3.15)

and

q

√

√

√

√

q
∏

i=1

1

λi

≤
1

q

q
∑

i=1

1

λi

. (3.16)
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From (3.15), we get

1
q
√

∏q
i=1 λi

≥
1

n
. (3.17)

Combining (3.16) with (3.17) gives

1

n
≤ q

√

√

√

√

q
∏

i=1

1

λi

≤
1

q

q
∑

i=1

1

λi

. (3.18)

The equality holds only in the case of all 1
λi

are equal.

Also, since λq is the smallest eigenvalue of XT
1X1, from

∑q
i=1 λi = nq we have

λq ≤ n,
1

λq

≥
1

n
.

Therefore

LA(ξn) = σ2

q
∑

i=1

1

λi

+
Nα2

λq

− α2 ≥
σ2q

n
+

Nα2

n
− α2. (3.19)

When XT
1X1 = nIq, λi = n and 1

λi
= 1

n
, for all i = 1, · · · , q. Thus

∑q
i=1

1
λi

and

1
λq

reach their lower bounds at the same time, and LA(ξn) = σ2 q
n
+ α2(N

n
− 1), which

gives the lower bound of the loss function for AOMD. ✷

Lemma 2 implies that if a design with design matrix X1 satisfying XT
1X1 = nIq,

the design is AOD, DOD, EOD, AOMD and DOMD. For a requirement set R, if

XT
1X1 = nIq, then the design is called an orthogonal design for R. For some n

and requirement sets, there may exist orthogonal designs for R. However, in many

situations, such a X1 does not exist, and the following Lemma 3 and Theorem 2

provide a couple of cases.

Lemma 3. For any design with n = N − 1, XT
1X1 has eigenvalues λ1 = N , · · · ,

λq−1 = N , λq = N − q.
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Proof: For n = N − 1, assuming the uj is omitted from the design, we have

XT
1X1 =

N
∑

i=1

z (ui) z
T (ui)− z (uj) z

T (uj) = NIq − z (uj) z
T (uj) .

For the matrix like this type, the q eigenvalues are N , · · · , N , and N−zT (uj) z (uj) =

N − q. ✷

As we discussed before, all the loss functions are based on the eigenvalues of

XT
1X1. From Lemma 3, if we just remove one combination from the full factorial

design, all the designs are equivalent since the eigenvalues of XT
1X1 for all the designs

are the same. In this case, It is obvious that XT
1X1 6= nIq. Furthermore, we have the

following result.

Theorem 2. For N−q < n ≤ N−1, there doesn’t exist any design with XT
1X1 = nIq.

Proof: From Lemma 3 we know that, for n = N − 1,

λmin(X
T
1X1) = N − q.

Since the smallest eigenvalue decreases as n decreases (Wilmut and Zhou, 2011), for

N − q < n ≤ N − 1,

λmin(X
T
1X1) ≤ N − q. (3.20)

If there exists a design satisfying XT
1X1 = nIq, which means all the eigenvalues

are equal to n, then λmin(X
T
1X1) = n > N − q, which is a contradiction to (3.20).

Therefore, for N − q < n ≤ N − 1, there doesn’t exist any design with XT
1X1 = nIq.

✷

Theorem 3. For q ≤ n ≤ N , we have,

σ2 q

n
+ α2

(

N

n
− 1

)

≤ min
ξn

LA(ξn) ≤ min
ξn−1

LA(ξn−1).



34

Proof: Similar to the proof of Lemma 2 in Wilmut and Zhou (2011), we can define an

add-one new design ξn,1 including all the combinations in design ξ∗n−1 and one more

combination, where design ξ∗n−1 minimizes the LA(ξn−1). The minimum eigenvalue of

the matrix for design ξ∗n−1 is not larger than the one for design ξn,1. And the trace of

(XT
1X1)

−1 for design ξ∗n−1 is not smaller than the one for design ξn,1. Thus we have

LA(ξn,1) ≤ LA(ξ
∗
n−1), which leads to

min
ξn

LA(ξn) ≤ LA(ξn,1) ≤ LA(ξ
∗
n−1) = min

ξn−1

LA(ξn−1).

The lower bound for minξn LA(ξn) can be seen from (3.19) in the proof of Lemma

2.

✷

There are various criteria to choose the “optimal” designs. We are curious to

study if there is any difference among all the criteria. Are AOD, DOD, EOD, AOMD

and DOMD the same? Several examples will be given to find optimal designs for

various criteria in the next chapter, and these optimal designs are compared.



Chapter 4

Optimal fractional factorial designs

In this chapter, we construct optimal designs for various criteria and various require-

ment sets and compare those optimal designs. Section 4.1 provides a list of numbers

for the N runs of a full factorial design with k factors, and the numbers will be used

to present optimal designs. Section 4.2 gives two search algorithms to compute op-

timal designs, a complete search algorithm and an annealing algorithm. Section 4.3

contains various optimal designs from the complete search algorithm and guidelines

to find optimal designs. Section 4.4 presents some optimal designs from the annealing

algorithm and compares those optimal designs.

4.1 A standard list of a full factorial design

There are N = 2k runs in a full factorial design with k factors, F1, F2, · · · , Fk.

We use numbers 1, 2, · · · , N to represent the N runs. The numbers are generated as

follows and will be used to present optimal fractional factorial designs. Starting at

the first run, all the factors are at the low level, and factor Fj alternates between the

low (−) and high (+) levels for every 2j−1 runs, j = 1, · · · , k. For example, Table 4.1

gives the numbers and factor levels for 4 factors with 16 runs.

4.2 Numerical algorithms

For some requirement sets and run size n, optimal designs can be constructed

using the properties discussed in Chapter 3. However, optimal designs often need



36

Table 4.1: The 16 runs of the 24 full factorial design.

Run F1 F2 F3 F4

1 − − − −

2 + − − −

3 − + − −

4 + + − −

5 − − + −

6 + − + −

7 − + + −

8 + + + −

9 − − − +

10 + − − +

11 − + − +

12 + + − +

13 − − + +

14 + − + +

15 − + + +

16 + + + +



37

to be computed numerically. There are
(

N
n

)

possible fractional factorial designs.

If N and n are small, a complete search algorithm is feasible which finds optimal

designs by computing the loss function for all possible fractional factorial designs.

An optimal design has the smallest value of a loss function. For moderate and large

N and n,
(

N
n

)

can be huge, and a complete search algorithm may not be feasible. An

annealing algorithm is shown to be effective to search for optimal and robust designs,

for example, see Fang & Wiens (2000), Zhou (2001, 2008), and Wilmut & Zhou

(2011). More details about a simulated annealing algorithm can be found in Givens

& Hoeting (2005). There are many other algorithms to compute optimal designs, for

example, see Lu & Pong (2013) and Yu (2010, 2011).

Annealing algorithm is a random search technique for optimal solution, which is

an analogy of natural phenomenon. We simulate the annealing process of a metal

cooling and freezing into a crystalline structure and apply it into searching for optimal

result in general problems. The description of an annealing algorithm for computing

optimal fractional factorial designs is given by Wilmut & Zhou (2011). The algorithm

is denoted as ALA(m0, T0, iterT0, iter), where m0 is the maximum number of runs

that are allowed to be changed in one search, T0 is the initial temperature, iterT0 is

the total number of changes in temperature, and iter is the total number of designs

searched at each temperature. The main idea is to get an initial design ξ
(0)
n , make

a small change to ξ
(0)
n and get a new design ξ

(1)
n if it is accepted, and continue this

process to produce a sequence of designs, ξ
(1)
n , ξ

(2)
n , ξ

(3)
n , · · · . The limiting design is

considered as an optimal design. The parameters m0, T0, iterT0, iter in the algorithm

control the small change, the acceptance criterion and stopping criterion, and they

need to be adjusted for each optimization problem.

Suppose we minimize a loss function L(ξ) to find an optimal design of n runs.

The detailed steps of the annealing algorithm are given as follows:
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(1) Randomly choose an initial design ξ(0) and calculate the loss function for this

design L(ξ(0)). Set an iteration number jj = 1.

(2) For each T0, select a number from {1, 2, ...,m0} randomly, denoted by a0. A

new design ξnew is obtained by selecting a0 runs from the N −n runs which are

not in design ξ(0) to replace a0 randomly selected runs in ξ(0).

(3) Compute the loss function for ξnew. If L(ξnew) ≤ L(ξ(0)), then let ξ(0) = ξnew.

If L(ξnew) ≥ L(ξ(0)), ξ(0) = ξnew with probability pp = exp(−(L(ξnew) −

L(ξ(0)))/T0). Otherwise ξ(0) stays the same. Repeat steps (2) and (3) for iter

times.

(4) Reduce the temperature using T0 = 0.9T0 and set jj = jj + 1. If jj ≤ iterT0,

go to step (2). Otherwise go to step (5).

(5) The design ξ(0) at the end is viewed as the limiting design and considered to be

an optimal design.

We need to select parameters m0, T0, iterT0 and iter carefully. A large T0 gives

high probabilities to accept a new design at the beginning and it may take many

iterations for the designs to converge. A small T0 may yield a local optimal solution.

A large iterT0 is needed to make sure that the loss function converges. Parameter iter

should be large enough to make sure that we do many searches at each temperature.

The total number of designs searched is iterT0× iter. We set m0 = 5 in the examples

in this chapter and it works well. In practice, we often run the algorithm several

times to see if it yields limiting designs with the same loss function value. Notice that

optimal designs are usually not unique, so the limiting designs may not be the same

but their loss function value should be the same.
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4.3 Optimal designs from the complete search al-

gorithm

All the results in this section are obtained from the complete search algorithm.

We define a ratio parameter as ν = α2

σ2 . We assume ν = 1 for loss functions of AOMD

and DOMD. Actually, the choice of the ratio parameter doesn’t matter if AOMD

(DOMD) are also AOD (DOD) and EOD. In the following examples, we use ξA, ξLA,

ξE, ξD and ξLD to denote AOD, AOMD, EOD, DOD and DOMD.

Example 4.1. Consider the requirement set R = {F1, F2, F3, F4, F1F2} with k = 4.

The AOMD and DOMD designs are computed for run size n = 8, 9, ..., 16. There

are many optimal designs for each n, and AOMD and DOMD are equivalent. One

optimal design for each run size is presented in Table 4.2, and the results show that

the loss functions for AOMD and DOMD are decreasing as n increases, which is

consistent with the result in Theorem 3 and from Wilmut and Zhou (2011).

There are two plots in Figure 4.1. (a) minξnLA(ξn) versus n, (b) minξnLD(ξn)
1/q

versus n. We can see that the loss functions for both AOMD and DOMD are decreas-

ing as run size n increases. For n = 8, the optimal design is orthogonal for R, while

for 9 ≤ n ≤ 15, the optimal designs are not orthogonal. ✷

Example 4.2. Consider the requirement set R = {F1, F2, F3, F4} with k = 4. The

AOD, AOMD, EOD, DOD and DOMD designs are computed for run size n = 8 and

n = 12. We get the following results from the computation: (a) All the AOD, AOMD,

EOD, DOD and DOMD are the same; (b) There are 10 optimal designs for run size

n = 8 and 120 for n = 12; (c) Table 4.3 gives one optimal design for n = 8 and one

for n = 12. For n = 8, the design is orthogonal, i.e, XT
1X1 = nIq. (d) For n = 12,

there doesn’t exist a design with XT
1X1 = nIq, since n = 12 > N − q = 11. This is

consistant with the result in Theorem 2.
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Table 4.2: AOMD and DOMD in Example 4.1: The numbers in optimal designs are

the row numbers from Table 4.1.

run size n optimal designs LA(ξn) LD(ξn)
1/q

8 1,2,7,8,11,12,13,14 1.7500 0.1803

9 1,2,3,5,8,9,12,14,15 1.6964 0.1642

10 1,2,3,5,6,8,9,12,14,15 1.6429 0.1496

11 1,2,3,4,5,6,7,9,10,15,16 1.5923 0.1367

12 1,2,3,4,5,6,7,8,9,10,15,16 1.5417 0.1250

13 1,2,3,4,5,6,7,8,9,10,11,13,16 1.4958 0.1148

14 1,2,3,4,5,6,7,8,9,10,11,13,14,16 1.0500 0.1011

15 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 1.0125 0.0935

16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.3750 0.0625

Table 4.3: AOD, AOMD, EOD, DOD and DOMD for R = {F1, F2, F3, F4}

run size n optimal designs A(ξn) LA(ξn) E(ξn) D(ξn)
1/q LD(ξn)

1/q

8 1,2,7,8,11,12,13,14 0.6250 1.7500 0.1250 0.1250 0.1940

(orthogonal design)

12 1,2,3,4,5,6,7,8,9,12,14,15 0.4375 1.4375 0.1250 0.0853 0.1324

(not orthogonal design)
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Figure 4.1: Plots of loss functions: (a) minξnLA(ξn) versus n, (b) minξnLD(ξn)
1/q

versus n.
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For n = 8, the design matrix X1 and XT
1X1 are, respectively,

X1 =









































1 -1 -1 -1 -1

1 +1 -1 -1 -1

1 -1 +1 +1 -1

1 +1 +1 +1 -1

1 -1 +1 -1 +1

1 +1 +1 -1 +1

1 -1 -1 +1 +1

1 +1 -1 +1 +1









































,

XT
1X1 =























8 0 0 0 0

0 8 0 0 0

0 0 8 0 0

0 0 0 8 0

0 0 0 0 8























= 8I5,
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For n = 12, the design matrix X1 and XT
1X1 are, respectively,

X1 =

































































1 -1 -1 -1 -1

1 +1 -1 -1 -1

1 -1 +1 -1 -1

1 +1 +1 -1 -1

1 -1 -1 +1 -1

1 +1 -1 +1 -1

1 -1 +1 +1 -1

1 +1 +1 +1 -1

1 -1 -1 -1 +1

1 +1 +1 -1 +1

1 +1 -1 +1 +1

1 -1 +1 +1 +1

































































,

XT
1X1 =























12 0 0 0 -4

0 12 0 0 0

0 0 12 0 0

0 0 0 12 0

-4 0 0 0 12























6= 12I5,

If we change the requirement set to R = {F1, F2, F3, F4, F1F2, F2F3}, the results

are shown in Table 4.4.
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Table 4.4: AOD, AOMD, EOD, DOD and DOMD forR = {F1, F2, F3, F4, F1F2, F2F3}

run size n optimal designs A(ξn) LA(ξn) E(ξn) D(ξn)
1/q LD(ξn)

1/q

8 1,3,6,8,10,12,13,15 0.8750 1.8750 0.1250 0.1250 0.1711

(orthogonal design)

12 1,2,3,4,5,6,7,8,9,11,14,16 0.6458 1.6458 0.1250 0.0876 0.1200

(non-orthogonal design)

For n = 8, the design matrix X1 and XT
1X1 are, respectively,

X1 =









































1 -1 -1 -1 -1 +1 +1

1 -1 +1 -1 -1 -1 -1

1 +1 -1 +1 -1 -1 -1

1 +1 +1 +1 -1 +1 +1

1 +1 -1 -1 +1 -1 +1

1 +1 +1 -1 +1 +1 -1

1 -1 -1 +1 +1 +1 -1

1 -1 +1 +1 +1 -1 +1









































,

XT
1X1 =



































8 0 0 0 0 0 0

0 8 0 0 0 0 0

0 0 8 0 0 0 0

0 0 0 8 0 0 0

0 0 0 0 8 0 0

0 0 0 0 0 8 0

0 0 0 0 0 0 8



































= 8I7,
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For n = 12, the design matrix X1 and XT
1X1 are, respectively,

X1 =

































































1 -1 -1 -1 -1 +1 +1

1 +1 -1 -1 -1 -1 +1

1 -1 +1 -1 -1 -1 -1

1 +1 +1 -1 -1 +1 -1

1 -1 -1 +1 -1 +1 -1

1 +1 -1 +1 -1 -1 -1

1 -1 +1 +1 -1 -1 +1

1 +1 +1 +1 -1 +1 +1

1 -1 -1 -1 +1 +1 +1

1 -1 +1 -1 +1 -1 -1

1 +1 -1 +1 +1 -1 -1

1 +1 +1 +1 +1 +1 +1

































































,

XT
1X1 =



































12 0 0 0 -4 0 0

0 12 0 4 0 0 0

0 0 12 0 0 0 0

0 4 0 12 0 0 0

-4 0 0 0 12 0 0

0 0 0 0 0 12 4

0 0 0 0 0 4 12



































6= 12I7,

As we can see from the Tables 4.3 and 4.4, orthogonal designs may exist for some

specific run size n and requirements. From Deng and Tang (1999), we know that if n

is a multiple of 4, orthogonal designs may exist for some R with q > 2, and orthogonal

designs do not exist for any R if n is not a multiple of 4. However, as we discussed in

Lemma 3 that for run size n = N − 1, the smallest eigenvalue is λq = N − q. When
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n = 12, the smallest eigenvalue would not be larger than N − q = 16− 5 = 11 since

q ≥ 5 with k = 4. Therefore, in this case of k = 4, we can not find any orthogonal

design for n = 12 for any requirement set. ✷

Example 4.3. Consider the requirement set R = {F1, F2, F3, F4, F1F2, F3F4} with

k = 4. The AOD, AOMD, DOD and DOMD designs are computed for run size

n = 8, 9, ..., 16. We get the following results: (1) The AOD, AOMD, DOD and

DOMD designs are not unique; (2) the AOD, AOMD, DOD and DOMD designs are

equivalent when n = 8, 9, 10, 12, 13, 14, 15, 16; there are 72 optimal designs for n=8,

96 for n=9, 576 for n=10, 24 for n=12, 96 for n=13, 72 for n=14, and 16 for n=15;

(3) the AOD, AOMD, DOD and DOMD designs are not equivalent in the case of

n = 11. When n = 11, there are 288 optimal designs for AOD, DOD and DOMD

designs, and 576 AOMD designs. There are no overlap between AOMD designs and

the others. Table 4.5 presents one optimal design for each run size. ✷

Example 4.4. Consider the requirement set R = {F1, F2, F3, F4, F1F2, F1F3} with

k = 4. The AOD, AOMD, DOD and DOMD designs are computed for run size

n = 8, 9, ..., 16. We get the following results: (1) The AOD, AOMD, DOD and

DOMD designs are not unique. There are 4 optimal designs for n=8; 32 for n=9; 112

for n=10; 224 for n=11; 276 for n=12; 208 for n=13; 87 for n=14 and 16 for n=15;

(2) all the AOD, AOMD, DOD and DOMD designs are equivalent in this case. (c)

if we switch the sign of low and high level for F1, we can get the same results, which

agrees with the result in the Lemma 1 in Chapter 3. Table 4.6 presents one optimal

design for each run size. ✷

Example 4.5. Consider Example 2.2 in Chapter 2, and the requirement set is R =

{F1, F2, F3, F1F3}. Instead of running a full factorial design, we use a fractional

factorial design with run size 6. There are
(

8
6

)

=28 choices, and 24 of them are AOD,
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Table 4.5: AOD, AOMD, DOD and DOMD for Example 4.3

run size n optimal designs A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q

8 ξA=ξLA=ξD=ξLD

=1,2,5,8,10,11,15,16 1.3750 7.2034 0.1524 0.2236

9 ξA=ξLA=ξD=ξLD

=1,2,3,5,8,10,12,15,16 1.0417 4.0417 0.1281 0.1848

10 ξA=ξLA=ξD=ξLD

=1,2,4,5,6,9,11,14,15,16 0.9072 3.9072 0.1127 0.1626

11 ξA=ξD=ξLD

=1,2,3,5,6,8,9,11,12,14,15 0.7750 3.5530 0.0993 0.1429

ξLA=1,2,3,5,6,8,9,11,12,13,16 0.7974 3.4237 0.1007 0.1446

12 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,15,16 0.6458 1.6458 0.0876 0.1200

13 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,9,11,12,13,14,16 0.5909 1.5909 0.0804 0.1100

14 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,14,15,16 0.5375 1.5375 0.0738 0.1010

15 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 0.4861 1.2639 0.0679 0.0913

16 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.4375 0.4375 0.0625 0.0625
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Table 4.6: AOD, AOMD, DOD and DOMD for Example 4.4

run size n optimal designs A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q λmin(X
T
1
X1)

8 ξA=ξLA=ξD=ξLD

=1,2,7,8,11,12,13,14 0.8750 1.8750 0.1250 0.1711 8.0000

9 ξA=ξLA=ξD=ξLD

=1,2,3,5,8,9,12,14,15 0.8167 1.8167 0.1143 0.15646 8.0000

10 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,9,10,15,16 0.7589 1.7589 0.1045 0.1431 8.0000

11 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,8,9,10,12,14,15 0.7019 1.7019 0.0957 0.1309 8.0000

12 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,15,16 0.6458 1.6458 0.0876 0.1200 8.0000

13 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,15,16 0.5909 1.5909 0.0804 0.1100 8.0000

14 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,14,15,16 0.5375 1.5375 0.0738 0.1010 8.0000

15 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 0.4861 1.2639 0.0679 0.0913 9.0000

16 ξA=ξLA=ξD=ξLD

=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 0.4375 0.4375 0.0625 0.0625 16.0000
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AOMD, DOD and DOMD, and they are all equivalent. Then we build the reduced

model only with the data of 6 runs from the second replicate. Recall the fitted model

with 16 runs (2 replicates) is:

ŷ = 1.000(0.203) + 1.500(0.203)x1 + 0.875(0.203)x2 + 1.125(0.203)x3 + 0.375(0.203)x1x3.(4.1)

Table 4.7 presents one optimal design and the response variable from the second

replicate. The fitted model based on the 6 runs in Table 4.7 is

ŷ = 1.000 + 1.125x1 + 0.250x2 + 0.750x3 + 0.375x1x3, (4.2)

which is similar to the fitted model in (4.1).

Table 4.7: Optimal design and response variable for Example 4.5

optimal design F1 F2 F3 y ŷ

1,2,3,4,5,6 10 200 25 −1 −0.75

12 200 25 1 0.75

10 250 25 0 −0.25

12 250 25 1 1.25

10 200 30 0 0.00

12 200 30 3 3.00

10 250 30 1 0.50

12 250 30 5 3.50

For each of the 24 optimal designs, we fit the reduced model and the results are

shown in Figure 4.2: (a) coefficients of intercept, (b) coefficients of F1, (c) coefficients

of F2, (d) coefficients of F3, (e) coefficients of F1F3. We can conclude that they are

all consistent with the coefficients of the reduced model using 16 data points. ✷
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Figure 4.2: Estimated coefficients for the reduced model in Example 4.5: (a) coef-

ficient of intercept, (b) coefficient of F1, (c) coefficient of F2, (d) coefficient of F3,

(e) coefficient of F1F3, where the horizontal lines are the estimates from the 16 data

points.
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4.4 Optimal designs from the annealing algorithm

All the results in this section are obtained from the annealing algorithm.

Example 4.6. Let us consider Example 4.3 again where optimal designs are com-

puted using the complete search algorithm. Now we use the annealing algorithm to

see if we can get the same optimal designs. We run the annealing algorithm with

m0 = 5, T0 = 1, iterT0 = 100 and iter = 2000, and some results are presented in

Table 4.8. Comparing the results in Table 4.5, we notice that the optimal designs

are different from Example 4.3, but their corresponding loss functions are the same.

Thus the annealing algorithm is effective to find optimal designs in this example. A

typical plot of the loss function for AOMD with run size n = 11 versus the number

of iteration is given in Figure 4.3. It is clear that the loss function converges. ✷

Table 4.8: AOD, AOMD, DOD and DOMD for Example 4.6

run size n designs A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q

8 ξA=1,2,7,8,9,11,14,16 1.3750 7.2034 0.1524 0.2236

ξLA=2,3,7,8,9,12,13,14 1.3750 7.2034 0.1524 0.2236

ξD=1,2,5,8,10,11,15,16 1.3750 7.2034 0.1524 0.2236

ξLD=1,3,5,6,11,12,14,16 1.3750 7.2034 0.1524 0.2236

9 ξA=1,2,6,7,8,9,11,13,16 1.0417 4.0417 0.1281 0.1848

ξLA=1,2,4,7,8,10,11,13,15 1.0417 4.0417 0.1281 0.1848

ξD=1,2,6,7,9,11,12,14,16 1.0417 4.0417 0.1281 0.1848

ξLD=1,2,3,5,8,10,12,15,16 1.0417 4.0417 0.1281 0.1848

10 ξA=2,4,5,6,8,11,12,13,14,15 0.9072 3.9072 0.1127 0.1626

ξLA=2,3,4,5,7,9,10,12,14,15 0.9072 3.9072 0.1127 0.1626

ξD=1,2,5,6,8,9,11,12,14,15 0.9072 3.9072 0.1127 0.1626

ξLD=1,2,5,7,8,9,10,12,14,15 0.9072 3.9072 0.1127 0.1626

11 ξA=1,2,3,6,7,8,9,11,12,13,14 0.7750 3.5530 0.0993 0.1429

ξLA=1,2,4,6,7,9,10,11,14,15,16 0.7974 3.4237 0.1007 0.1446

ξD=1,2,3,5,6,8,10,11,12,13,16 0.7750 3.5530 0.0993 0.1429

ξLD=1,2,4,5,6,10,11,12,13,15,16 0.7750 3.5530 0.0993 0.1429

Example 4.7. Consider the requirement set R = {F1, F2, F3, F4, F5, F1F2, F1F3}
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Figure 4.3: Loss function of AOMD versus number of iteration for Example 4.6.
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with k = 5. The AOD, AOMD, DOD and DOMD designs are computed for run size

n = 8, 9, ..., 16. Here is the summary of the optimal designs.

(1) For n = 8, 12, 16, 20, the AOD, AOMD, DOD and DOMD designs are the

same. For n = 8 and n = 16, the AOD, AOMD, DOD and DOMD designs are

orthogonal for R.

(2) For n = 15, the AOD and DOD designs are equivalent. But DOMD and AOMD

are different.

(3) For n = 19, the AOD and DOD designs are equivalent, and the AOMD and

DOMD designs are equivalent.

Table 4.9 shows some optimal designs. As we discussed before,the initial temper-

ature T0 controls the convergence rate of the solution. Figure 4.4 shows two plots of

the loss function versus the iteration number for two values of the initial temperature:

(a) T0 = 0.1, (b) T0 = 1. Both plots are set as iterT0 = 200 and iter = 3000 for run

size n = 16 of AOMD. It is obvious that the larger T0 = 1 gives higher probability to

accept new designs and the loss function converges slower than the one with T0 = 0.1.

In Figure 4.4, in both plots, the loss functions converge to the same limit. However,

a very small T0 may yield a local optimal solution. ✷

Example 4.8. Consider the requirement setR = {F1, F2, F3, F4, F5, F1F2, F1F3, F2F3,

F1F2F3} with k = 5. The AOD, AOMD, DOD and DOMD designs are computed for

run size n = 10, 11, 12, 15, 16, 19, 20. We get the following results in Table 4.10.

(1) For n = 10, 12, 16, 19, 20, the AOD, AOMD, DOD and DOMD designs are the

same.

(2) For n = 11, the DOD, AOMD and DOMD designs are equivalent.



54

Table 4.9: AOD,AOMD,DOD and DOMD for Example 4.7
n optimal designs A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q λmin(X

T
1
X1)

8 ξA=1,7,12,14,18,24,27,29 1.0000 4.0000 0.1250 0.1869 8.0000

ξLA=3,5,10,16,20,22,25,31 1.0000 4.0000 0.1250 0.1869 8.0000

ξD=4,6,11,13,17,23,26,32 1.0000 4.0000 0.1250 0.1869 8.0000

ξLD=4,6,11,13,17,23,26,32 1.0000 4.0000 0.1250 0.1869 8.0000

12 ξA=2,4,6,11,13,16,17,23,24,26,28,30 0.7292 3.7292 0.0871 0.1302 8.0000

ξLA=1,7,8,12,14,17,18,23,24,27,28,29 0.7292 3.7292 0.0871 0.1302 8.0000

ξD=1,2,7,12,14,16,20,22,24,26,27,29 0.7292 3.7292 0.0871 0.1302 8.0000

ξLD=1,2,7,12,14,16,20,22,24,26,27,29 0.7292 3.7292 0.0871 0.1302 8.0000

15 ξA=2,3,5,8,9,12,14,15,17,20,22,23, 0.5625 3.5625 0.0682 0.1019 8.0000

26,27,32

ξLA=3,5,6,10,12,13,15,16,18,20,24, 0.5728 2.9314 0.0690 0.1024 9.5278

25,27,30,31

ξD=4,5,6,8,9,10,11,15,17,18,23,28, 0.5625 3.5625 0.0682 0.1019 8.0000

29,30,32

ξLD=1,2,3,4,7,13,14,16,21,22,24,26, 0.5625 3.2371 0.0683 0.1018 8.7085

27,28,31

ξE=1,3,7,8,12,13,14,18,20,21,24,25, 0.5728 2.9314 0.0690 0.1024 9.5278

26,27,31

16 ξA=3,4,5,8,9,10,14,15,18,19,21,22, 0.5000 1.5000 0.0625 0.0891 16.0000

25,28,31,32

ξLA=2,3,5,6,9,12,15,16,19,20,21,24, 0.5000 1.5000 0.0625 0.0891 16.0000

25,26,30,31

ξD=2,3,5,8,9,12,14,15,17,20,22,23, 0.5000 1.5000 0.0625 0.0891 16.0000

26,27,29,32

ξLD=2,3,5,8,9,12,14,15,17,20,22,23, 0.5000 1.5000 0.0625 0.0891 16.0000

26,27,29,32

19 ξA=3,4,5,6,9,10,13,15,16,17,18,21,23, 0.4363 1.6377 0.0536 0.0771 14.5359

24,25,27,28,30,31

ξLA=1,3,4,5,9,10,14,15,16,18,21,22, 0.4375 1.4375 0.0537 0.0765 16.0000

23,24,25,26,27,28,29

ξD=1,3,5,6,9,10,12,15,16,18,19,20,21, 0.4363 1.6377 0.0536 0.0771 14.5359

24,25,27,29,30,31

ξLD=2,3,5,7,8,9,12,14,15,16,18,19, 0.4375 1.4375 0.0537 0.0765 16.0000

20,21,24,25,28,30,31

20 ξA=1,3,5,6,7,10,11,12,13,16,17,18,20, 0.4125 1.4125 0.0508 0.0723 16.0000

23,24,25,27,29,30,31

ξLA=1,4,6,7,8,9,11,12,13,14,15,17,18, 0.4125 1.4125 0.0508 0.0723 16.0000

23,24,26,27,28,29,32

ξD=1,2,3,5,7,9,12,14,15,16,19,20,21,22, 0.4125 1.4125 0.0508 0.0723 16.0000

24,25,26,27,29,31

ξLD=1,2,3,5,7,9,12,14,15,16,19,20,21, 0.4125 1.4125 0.0508 0.0723 16.0000

22,24,25,26,27,29,31



55

0 20 40 60 80 100

2
3

4
5

6

(a)

iteration

lo
s
s
 f

u
n

c
ti
o

n

0 2000 4000 6000 8000 10000

2
4

6
8

1
0

(b)

iteration

lo
s
s
 f

u
n

c
ti
o

n

Figure 4.4: Loss function LA(ξn) versus iteration number in Example 4.7: (a) T0 =

0.1, (b) T0 = 1.
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(3) For n = 15, the AOD, DOD and DOMD designs are equivalent.

(4) For n = 16, the AOD, AOMD, DOD and DOMD designs are orthogonal for R.

✷

Example 4.9. Tang and Deng (1999) provides another criterion for nonregular

fractional factorial designs. We will just use the results they gave in the paper to

compare the Minimum G2-aberration criterion with AOD, AOMD, DOD and DOMD

criteria. The requirement set in this example is just the main effect, R = {F1, · · · , Fk}

with k = 5, 6, 7. The results are shown in Table 4.11, and all the optimal designs

are equivalent. in fact, they are all orthogonal for R. In this example, we use ξG to

denote the Minimum G2-aberration design. ✷



57

Table 4.10: AOD,AOMD,DOD and DOMD for Example 4.8

n optimal designs A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q λmin(X
T
1
X1)

10 ξA=1,4,6,7,10,13,16,18,19,31 1.7500 16.7500 0.1250 0.1762 2.0000

ξLA=6,8,12,13,17,19,21,26,30,31 1.7500 16.7500 0.1250 0.1762 2.0000

ξD=1,3,8,10,13,20,21,22,27,31 1.7500 16.7500 0.1250 0.1762 2.0000

ξLD=3,10,14,15,16,24,25,27,28,29 1.7500 16.7500 0.1250 0.1762 2.0000

11 ξA=1,3,4,5,7,8,10,18,27,28,30 1.3438 11.9672 0.1088 0.1530 2.7530

ξLA=4,5,6,7,8,10,11,18,25,28,29 1.3750 11.4981 0.1088 0.1530 2.8769

ξD=3,6,10,12,13,16,17,18,21,23,27 1.3750 11.4981 0.1088 0.1530 2.8769

ξLD=1,5,10,11,15,16,20,22,23,24,29 1.3750 11.4981 0.1088 0.1530 2.8769

12 ξA=3,5,6,10,16,17,18,23,24,27,28,30 1.1250 8.1250 0.0947 0.1327 4.0000

ξLA=1,2,6,7,11,12,16,19,20,21,26,30 1.1250 8.1250 0.0947 0.1327 4.0000

ξD=2,5,8,11,14,15,17,22,23,28,29,32 1.1250 8.1250 0.0947 0.1327 4.0000

ξLD=1,4,10,11,14,18,19,23,25,28,29,32 1.1250 8.1250 0.0947 0.1327 4.0000

15 ξA=1,3,4,6,10,13,15,18,21,23,25,27,28,30,32 0.7240 4.5747 0.0689 0.0956 6.5969

ξLA=3,6,9,12,13,15,16,17,18,20,21,23,24,27,30 0.7500 4.3625 0.0702 0.0973 6.9377

ξD=1,2,5,7,11,14,16,19,22,24,25,26,28,29,31 0.7240 4.5747 0.0689 0.0956 6.5969

ξLD=1,7,8,11,12,13,14,18,19,20,21,22,25,31,32 0.7240 4.5747 0.0689 0.0956 6.5969

16 ξA=1,3,7,8,10,12,13,14,18,20,21,22,25,27,31,32 0.6250 1.6250 0.0625 0.0830 16.0000

ξLA=1,4,5,7,10,11,14,16,18,19,22,24,25,28,29,31 0.6250 1.6250 0.0625 0.0830 16.0000

ξD=2,3,4,7,9,13,14,16,17,21,22,24,26,27,28,31 0.6250 1.6250 0.0625 0.0830 16.0000

ξLD=1,2,3,5,12,14,15,16,20,22,23,24,25,26,27,29 0.6250 1.6250 0.0625 0.0830 16.0000

19 ξA=1,2,3,8,11,12,13,14,15,16,20,21,22,23,25, 0.5533 1.5533 0.0541 0.0718 16.0000

26,27,29,32

ξLA=2,3,4,6,8,9,11,12,13,14,15,17,19,21,23, 0.5533 1.5533 0.0541 0.0718 16.0000

26,28,30,32

ξD=1,4,6,8,10,11,13,15,17,18,19,21,23,24,25, 0.5533 1.5533 0.0541 0.0718 16.0000

26,28,30,32

ξLD=1,2,3,5,6,8,10,12,13,15,18,20,21,22,23, 0.5533 1.5533 0.0541 0.0718 16.0000

25,27,30,32

20 ξA=2,3,4,5,7,9,12,14,15,16,17,19,22,23,24,25, 0.5298 1.5298 0.0515 0.0684 16.0000

26,27,28,29

ξLA=1,5,7,8,10,11,12,14,15,16,18,19,20,22,25, 0.5298 1.5298 0.0515 0.0684 16.0000

26,29,30,31,32

ξD=4,5,7,8,9,10,11,14,16,17,18,19,22,23,25,28, 0.5298 1.5298 0.0515 0.0684 16.0000

29,30,31,32

ξLD=2,3,4,6,9,10,13,15,16,17,19,21,23,24,26, 0.5298 1.5298 0.0515 0.0684 16.0000

27,28,30,31,32



58

Table 4.11: AOD,AOMD,DOD,DOMD and Minimum G2-aberration for Example 4.9

k optimal designs for n = 16 A(ξn) LA(ξn) D(ξn)1/q LD(ξn)1/q λmin(X
T
1
X1)

5 ξA=2,3,4,6,11,13,14,15,17,21, 0.3750 1.3750 0.0625 0.1002 16.0000

23,24,25,26,28,32

ξLA=1,3,6,8,10,12,13,15,17, 0.3750 1.3750 0.0625 0.1002 16.0000

20,21,24,26,27,30,31

ξD=1,3,6,8,10,11,13,16,18,20, 0.3750 1.3750 0.0625 0.1002 16.0000

21,23,25,28,30,31

ξLD=1,3,6,8,11,12,13,14,18, 0.3750 1.3750 0.0625 0.1002 16.0000

20,21,23,25,26,31,32

ξG=2,3,5,8,9,12,14,15,17,20, 0.3750 1.3750 0.0625 0.1002 16.0000

22,23,26,27,29,32

6 ξA=1,7,10,16,18,24,25,31,36, 0.4375 3.4375 0.0625 0.1090 16.0000

37,43,46,51,54,60,61

ξLA=2,3,5,15,24,26,28,29, 0.4375 3.4375 0.0625 0.1090 16.0000

38,42,43,48,49,51,56,61

ξD=1,10,11,15,20,21,22,32, 0.4375 3.4375 0.0625 0.1090 16.0000

34,39,40,46,51,57,60,61

ξLD=4,6,11,13,19,21,26,32, 0.4375 3.4375 0.0625 0.1090 16.0000

34,40,41,47,49,55,60,62

ξG=1,4,13,16,22,23,26,27,38, 0.4375 3.4375 0.0625 0.1090 16.0000

39,42,43,49,52,61,64

7 ξA=8,13,17,30,43,44,50,55,66, 0.5000 7.5000 0.0625 0.1129 16.0000

71,91,92,97,110,120,125

ξLA=4,14,19,29,38,39,58,59, 0.5000 7.5000 0.0625 0.1129 16.0000

65,76,85,96,105,111,114,120

ξD=3,14,20,29,39,42,54,59,66, 0.5000 7.5000 0.0625 0.1129 16.0000

79,88,89,101,108,113,128

ξLD=6,15,24,29,35,42,49,60, 0.5000 7.5000 0.0625 0.1129 16.0000

65,74,84,91,104,111,117,126

ξG=1,16,23,26,38,43,52,61,68, 0.5000 7.5000 0.0625 0.1129 16.0000

77,86,91,103,106,113,128
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Chapter 5

Conclusion

We have proposed and studied the A-optimal minimax design criterion for two-level

fractional factorial designs. A-optimal minimax designs are robust against the mis-

specification of the requirement set, and are highly efficient comparing to A-optimal

designs.

Several theoretical results are derived for A-optimal minimax designs: (1) the A-

optimal minimax designs are level-permutation invariant, (2) if a design is orthogonal

with respect to a requirement set, then it is A-optimal, D-optimal, E-optimal, A-

optimal minimax, and D-optimal minimax design, (3) for N − q < n ≤ N − 1,

orthogonal designs for R don’t exist, (4) lower bound of A-optimal minimax designs

is derived, (5) A-optimal minimax designs are not scale invariant. Two numerical

algorithms are discussed: a complete search and a simulated annealing algorithms.

For small k and n, the complete search algorithm can be applied to search for optimal

designs. For moderate k and n, the annealing algorithm is effective.

This thesis only focuses on the two-level fractional factorial designs, however the

A-optimal minimax design criterion can be easily extended to mixed-level designs.

The mixed-level designs include the following cases: (i) all the factors have 3 levels;

(ii) some factors have 2 levels and some factors have 3 levels; (iii) all the factors or

some factors have more than 3 levels.

Also, this thesis uses orthogonal regressors for the full factorial designs. If the

regressors are not coded orthogonal, it is a future research topic to study A-optimal

minimax and D-optimal minimax designs. Designs may be different for orthogonal
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regressors and non-orthogonal regressors. The results for orthogonal regressors may

not be hold for non-orthogonal regressors.

Additionally, we have used an annealing algorithm to search for optimal designs

when k is moderate, and it is still expensive if k is large. In the future work, other

efficient algorithms can be studied to search for optimal designs.
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