
A P1500-compatible programmable BIST approach for the test of
Embedded Flash Memories

P. Bernardi, M. Rebaudengo, M. Sonza Reorda, M. Violante

Politecnico di Torino
Dipartimento di Automatica e Informatica

Torino, Italy
http://www.cad.polito.it/

Abstract

In this paper we present a microprocessor-based approach
suitable for embedded flash memory testing in a System-on-a-
chip (SOC) environment. The main novelty of the approach is
the high flexibility, which guarantees easy exploitation of the
same architecture to different memory cores. The proposed
approach is compatible with the P1500 standard. A case study
has been developed and demonstrates the advantages of the
proposed core test strategy in terms of area overhead and test
application time.

1 Introduction

Continuous technological improvements allow
designing a complex system into a single chip (System-
On-Chip or SOC). A SOC is composed of different
reusable functional blocks, called embedded cores.
Typical embedded cores include processors (such as
CPU, DSP, and microcontrollers), memories (such as
ROM, DRAM, SRAM, and flash), I/O devices, etc.
System designers can purchase cores from core vendors
and integrate them with their own User-Defined Logic
(UDL) to implements SOCs. Core-based SOCs present
important advantages: the size and the cost of the end-
product is decreased, and thanks to the design re-use, the
time-to-market is greatly reduced.

Conversely, testing a core-based SOC is a major
challenge [1]. The main problem is that accessibility to
cores and UDL is greatly reduced. Traditional
approaches [1-2] for testing core-based SOCs completely
rely on additional Design for Testability (DfT) structures
such as test busses for test transfers from/to the core
under test. The access mechanism requires additional
logic (such as a wrapper around the core) and wiring
such as a test access mechanism (TAM) to connect cores
to the test source and sink. A critical point to be solved
in SOC testing is the extra cost introduced by the DfT
logic, i.e., the area, delay and test application time
overheads. Some approaches have been proposed to
solve this problem. A class of test approaches [3-4]

adopts the reuse of existing functionalities for test
access. These methods assume that every core has a
transparent mode in which data can be propagated.
However, these methods are not general enough to
handle all the possible kinds of cores and all the possible
test schemes, such as scan or BIST. Some researchers [5-
10] proposed to exploit an embedded processor to test
the other components of the SOC: first the processor
core is tested (e.g., by means of functional patterns or
full-scan test), and then a test program, executed by the
embedded processor, is used to test the on-chip
memories and other cores. The use of embedded
processors to test cores presents many advantages: the
size of the test controller is normally negligible, the test
program (being in software) guarantees a high flexibility,
and the testing process can often be done at-speed.
Moreover, the test process is done inside the chip and the
tester can work at a lower speed, thus reducing the costs
for the test equipment. The main disadvantage is related
to the need for an on-chip processor and to the
dependence on the one possibly present in the SOC. In
case of different processors, the test program has to be
adapted to each of them causing an increased cost in the
test development. Moreover, this approach cannot be
applied to embedded cores not suitably connected to the
processor.

In this paper we propose a core test strategy based on
a custom processor wrapped to the embedded core under
test. From the test point of view, the core complies to the
P1500 standard, thus easing the connection of the core to
other test resources on the chip (e.g., a 1149.1 TAP
controller for accessing the SOC from outside). The
advantages of this solution are mainly the low area
overhead introduced, the negligible costs in terms of
wirings, and (most importantly) the high flexibility that
it guarantees. Although the approach is general, in this
paper we focus on the test of flash memories, which are
becoming widely used in many applications, especially
thanks to their ability to be electrically programmed and
erased, combining the advantages of non-volatile and
volatile memories. A characteristic of flash memories is

1530-1591/03 $17.00  2003 IEEE

the significant difference among flash memories models
in terms of size, programming, and timing
characteristics. The proposed method is particularly
oriented to minimize the design effort to customize the
test solution to the flash memory model under test and to
the specific test constraints. A case study has been
developed to demonstrate the advantages of the proposed
core test strategy in terms of area overhead and test
application time.

Section 2 summarizes the possible architectural
solutions for core-based SOC testing and introduces the
one adopted in our work. Section 3 presents the
background about flash memory architectures, the
considered fault model and test algorithms; Section 4
describes the proposed test architecture in terms of
internal organization, instruction set, and external layers.
Section 5 describes a case study. Finally, Section 6
draws some conclusions.

2 Memory core test architectures

Testing core-based SOCs is a complex problem that
can be divided in two parts: core-level and chip-level
testing. Core-level testing involves making each core
testable, i.e., inserting the necessary test structures and
generating test sequences. Chip-level testing involves
defining a test access mechanism architecture in order to
apply the test sequences to the input peripheries of the
cores, and to propagate the test responses from the core
outputs to the chip outputs.

In this paper we mainly focus on the core-level
testing problem, resorting to a custom TAM for
connecting the core to a standard 1149.1 TAP controller,
thus providing an easy interface between SOC and an
external ATE.

Different approaches can be adopted for testing
memory cores; they are normally based on BIST
solutions, and grouped in the following classes:
• Hardwired BIST
• Soft BIST
• Programmable BIST.

The hardwired BIST approach is the most widely
used for testing embedded memories. It consists in
adding a custom circuitry to each core, implementing a
suitable BIST algorithm. This approach deeply exploits
the many research efforts spent in developing memory
BIST architectures [8-9]. The main advantage of this
approach is that the test application time is short and the
area overhead is relatively small: as an example, by
adopting the approach proposed in [9], with a 16 Mbit
DRAM embedded memory the area overhead is less than
0.3%. BIST is also a good way to protect the intellectual
property contained in the core: the memory core
provider needs only to deliver the BIST activation and
response commands for testing the core without

disclosing its internal design. At the same time, this
approach provides a very low flexibility: any
modification of the test algorithm requires a re-design of
the BIST circuitry. Moreover, since each memory core
has its own BIST circuitry, in the case of multiple cores
on the same SOC the overall area overhead corresponds
to the sum of all the areas occupied by the BIST circuits.

The soft BIST approach [10] exploits a processor
already available in the SOC (if any) to execute the test
of all the other cores and the UDL. A test program,
executed by the processor, applies a test pattern
sequence to the cores under test and possibly checks for
the results. The entire test is stored in a memory
containing the test program and possibly the test
patterns. This approach uses the system bus for applying
test patterns and reading test responses, and for this
reason it guarantees a very low area overhead, limited to
the chip-level test infrastructure. The disadvantage of
this approach is mainly related to the strict dependence
on the available (if any) processor. The test program has
to be adapted to the available processor: the core vendor
needs to develop for the same core different test
programs, one per each processor family, thus increasing
the test development costs. Moreover, the intellectual
property is not well protected, as the core vendor
supplies to the user the test program for the core under
test. The test application time may also depend on the
test processor: if its clock frequency is not fast enough,
at-speed test cannot be performed, and the overall test
application time is also increased. Finally, this approach
can be applied only to cores directly connected to the
system bus: the approach cannot be applied if the core is
connected to different system buses, or if the processor
accesses the cores via other logic (e.g., when a memory
controller exists) and the core is not completely
controllable and observable.

An alternative approach, which is a mix of the
previous two, is the one usually denoted as
programmable BIST. The core vendor develops a DfT
logic, which wraps the core under test and includes a
very simple custom microprocessor, which is exclusively
devoted to test the core. The advantages of this
architecture are manifold: the intellectual property can
be protected (such as in the hardwired case), only one
test program has to be developed, and the design cost for
the test is very reduced; the technique is significantly
flexible and any modification of the algorithm simply
requires a change in the test program; the test application
time can be reduced thanks to the efficiency of the
custom test processor, and the test can consequently be
executed at-speed. The main potential disadvantage is
the area overhead introduced by replicating the custom
processor in each core under test. However, due to the
very limited size of the processor, this problem can be
considered marginal, as shown in this paper.

The approach we proposed improves the one
described in [11], since the test processor is in charge of
the test execution, without the need of any additional
logic for test. Despite being based on a microprocessor,
the method is compatible with the IEEE P1500 [12]
standard. As a first step, we applied the method to the
test of a flash memory core, although its extension to
embedded RAM cores is already under way. Our
architecture is particularly efficient in minimizing the
temporal overhead introduced by the program execution.
Moreover, the processor (described in Section 4), has
been designed in such a way that can be modified and
adapted to the test different flash memory models.
Finally, the proposed architecture is accessible through
the test standard interfaces (IEEE 1149.1 and P1500) in
order to make the test completely accessible from the
outside: the test of the core can thus be executed by
means of 1149.1 instructions and the core test details are
completely transparent to core designers.

3 Flash memory background

A generic Flash Memory is organized as a NOR or
NAND array (like conventional RAMs) with a grid of
row and column lines connected by Floating Gate
transistors. A detailed description of different cells and
their own structures is presented in [13].

In addition to the classical fault models considered in
the RAM memory test, such as Stuck-At Faults (SAFs),
Coupling Fault (CFs), and Data Retention Faults
(DRFs), flash memories can suffer disturbances that do
not conform to any of these fault models. During
programming, typical faults or disturbances in flash
memories occur to cells that share a row or a column
with another cell that is being programmed. Possible
disturb mechanisms for NOR-type flash memories [14-
16] include:
• Gate Program Disturbance (GPD) and Gate Erasure

Disturbance (GED): a cell program operation causes
the erroneous programming or erasing, respectively,
of a second cell in the same word line;

• Drain Program Disturbance (DPD) and Drain Erasure
Disturbance (DED): a cell program operation causes
the erroneous programming or erasing, respectively,
of a second cell in the same bit line;

• Read Disturbance (RD): a cell read operation causes
the erroneous programming of the read cell;

• Over Erase (OE): a cell program operation has no
effect on the interested cell.
Disturbance faults occur only into the same row or

column of the programmed/erased cell. In [15] a
simplified coupling fault model is presented, where flash
disturbances are modeled as One-Way Coupling faults,
since they can be sensitized using a � transition.

Considering this fault model allows the adoption of
test algorithms for coupling faults able to detect all types
of flash disturbances. A March Test for Flash Memory
(March FT) for NOR-type stacked-gate flash memories
[16] can be summarized as follows:

{(f);�(r1,w0,r0);�(r0);(f);�(r1,w0,r0);�(r0)}
In order to cover intra-word coupling faults and intra-

word Gate Program/Erase Disturbances different data
values, called databackground, must be considered.

An evaluation of the different flash memory test
algorithms has been provided in [16]. The March FT
algorithm covers all the SAF, OE, DPD, DED, RD and
almost all the GPD and GED faults. The complexity is
equivalent to 2F + 2N*P + 6N*R, where R, P and F
represent the number of read, program and flash
operations, respectively, and N is the number of words.
Usually, the read operation is the fastest one, while the
flash operation is the slowest one. Conversely, the word-
oriented March FT Test covers all the possible faults
with the considered fault models and its test length is
equivalent to (2F + 2N*P + 6N*R) + (2F + 2N*P +
2N*R) * (DBG - 1), where DBG corresponds to the
databackground set length.

4 The microprocessor-based approach

The approach proposed in this paper is based on a
custom microprocessor in charge of executing a pseudo-
March algorithm oriented to flash memory test. The
proposed microprocessor has been designed to allow
high flexibility in order to achieve two goals: on the one
hand we want to simplify the introduction of any
modification in the test program; on the other hand we
aim at adopting the same architecture to a large set of
flash memory models. The proposed architecture
exploits the current test standard interface in order to
simplify the design effort. The processor is not directly
visible from the outside, since the core is P1500
compliant, and includes a P1500 wrapper.

4.1 The microprocessor

The microprocessor internal architecture is divided
into the following functional blocks:
• a Control Unit to manage the test algorithm;
• a Memory Adapter to manage the main test registers;
• a Flash Manager to manage the memory access

timing.
This organization allows reducing the re-design

operations and supports the reuse of the internal
structures: only the Flash Manager module has to be
adapted to a different flash memory model while letting
the rest of the processor unchanged.

The Control Unit manages the test program

execution; it gets the start command and generates the
signals for the Flash Manager and the memory
containing the test program. This module manages the
Instruction Register (IR) and the Program Counter (PC).
By means of control signals, the Control Unit allows the
correct update of the Memory Adapter test registers.
This choice allows its easy reuse without any re-design
in different applications like the execution of a different
test program or the test of a memory with a different size
or the test of different Flash memory models.

The Memory Adapter includes all the test registers
used to customize and correctly execute the March
algorithm:
• the Control Address registers:

• Current_address: it contains the current memory
address value;

• Add_Max and Add_Min: constant values storing
the first and the last addresses of the memory
under test.

• The Control Flash registers:
• Current_data: it contains the data to be written

into the memory during a program operation;
• Received_data: it contains the data read from the

memory;
• DataBackGround: a register file containing the

databackground set in use during the test cycle;
• Dbg_max: a constant value containing the

reference to the databackground value in use;
• Dbg_index: it contains the index used to access to

databackground register file.
• The Result register: a Status_register contains 2 flags

signaling that at least an error has been detected and
the end of the test program, respectively.
The size of the Control Address and Control Flash

registers and the constant values (such as Add_Max,
Add_Min and DataBackGround) are set according to the
characteristics of the memory under test.

The Flash Manager needs to be customized to the
flash memory under test, due to its strict dependence on
the memory model used. It manages the specific control
and access timing signals of the memory, while its
behavior is controlled by the Memory Adapter. This
protocol is suitable for using two distinct clock signals:
the external clock connected to the Control Unit and
Memory Adapter and an internal clock connected to the
Flash Manager. While the external clock is provided by
the SOC and can present higher frequency in order to
speed up the program execution, the internal clock is
used during memory access operations and must be
chosen to properly satisfy the timing requirements of the
memory under test. This approach increases the design
flexibility enabling the execution of the test operation at
a frequency not dependent on the memory model.

4.2 The instruction set

The instruction set has been designed to support all
pseudo-March algorithms and to guarantee high
flexibility and adaptability to the microprocessor.

The set of 11 instructions can be grouped in the
following classes:
• Instructions working on the Current_address register:

• SET_ADD: it loads into Current_address the
constant value Add_Max;

• RST_ADD: it loads into Current_address the
constant value Add_Min;

• Instructions working on the Current_data register:
• STORE_BG_DATA: it loads into Current_data

the value contained into the DataBackGround
register file and pointed by Dbg_index. After that,
the Dbg_index value is incremented;

• INV_BG_DATA: it inverts the current value of
Current_data;

• Instructions executing flash memory I/O operations:
• READ_FLASH: it executes a read operation at

the word addressed by Current_address; the
extracted data is stored in the Received_data
register and compared with the expected value: if
these two values are different, the Status_register
is updated;

• PROG_FLASH: it executes a program operation
writing the Current_data value at the word
addressed by Current_address;

• ERASE_FLASH: it executes a flash operation on
memory;

• Instructions executing the program control flow:
• BNE_ADD: it executes a jump if

Current_address has not reached the address limit
(stored in Add_Max or Add_Min, according to the
direction of the current March Element). A 4-bit
operand stores the jump offset. If the condition is
not verified, Current_address is increased (or
decreased) according to the current March
Element direction and the Program Counter is
modified according to the operand value,
otherwise the Program Counter is increased in
order to execute the following instruction

• LOOP_DBG: it increments Dbg_index value and
executes a jump if the Dbg_index value hasn’t
reached the Dbg_max value. 2 4-bit operands
store the jump offset. If the condition is not
verified the Dbg_index value is incremented and
the Program Counter is modified according to the
operand value; otherwise the Program Counter is
increased in order to execute the following
instruction

• END_CODE: it concludes the test program,
changing the processor state to idle.

4.3 Wrapper module

The wrapper, shown in Fig. 1, contains the circuitry
necessary to interface the test processor with the outside
in a P1500 compliant fashion, supporting the commands
for running the BIST operation and accessing to its
results. The wrapper is compliant with the suggestions of
the P1500 standardization group [12].

TA
P

 C
on

tr
ol

le
r

WRAPPER

WSI

UpdateWR W
I
R

W
C
D
R

W
B
Y

W
D
R

W
B
R

WRCK

WRSTN

CaptureWR

ShiftWR

WSO

SelectWIR

M
EM

O
R

y

µπ

Test
program

CORE

Fig. 1: The proposed Wrapper Architecture.

In addition to the mandatory components we propose
the introduction of the following Wrapper Data registers:
• Wrapper Control Data Register (WCDR): through

this register the TAP controller sends the commands
to the microprocessor (e.g., the microprocessor reset,
the test program start, the Status register read, etc.).

• Wrapper Data Register (WDR): it is an output
register. The TAP Controller can read the test
information from the microprocessor stored into the
status register.

5 The case study

In order to evaluate the feasibility of the proposed
architecture, the M50FW040 device produced by
STMicroelectronics has been considered as a case study:
the size of this flash memory model is 4 Mbit and it is
divided into 8 blocks with a 8 bit word parallelism. The
M50FW040 device presents some particularities that
imply a specific Flash Manager design:
• specific codes are needed to access the memory;
• the addressing phase is divided into two distinct steps

due to the presence of only 10 address bits: the
address is provided by sending first the 10 less
significant bits, then the 9 remaining bits.

The test algorithm chosen to test the M50FW040 device
is the word-oriented March-FT one, introduced in
Section 3.

In the proposed example, the test program resides in a
EPROM memory: this kind of approach permits an on-
the-fly test algorithm modification.

As far as the processor architecture design is
considered, we have that the Control Unit is independent

from the memory model. The size of its registers has
been chosen according to the general microprocessor
architecture:
• IR on 4 bits, according to the instruction format;
• PC on 8 bits, according to the test program length.

The Memory Adapter has been tuned according to the
M50FW040 device characteristics as following:
• data registers (Current_data, Received_data) on 8

bits according to the memory under test data
parallelism;

• address registers (Current_address, Add_Max e
Add_Min) on 19 bits according to the memory under
test size;

• DataBackGround is a vector of 4 (Dbg_max) bytes
with Dbg_index on 2 bits

• the clock frequencies of the external and internal
clocks have been set to 20 MHz.
In order to test the additional DfT logic a full scan

approach has been adopted.
The total area occupied by the DfT additional logic is

reported in Tab. 1, considering 2 different test
algorithms: a word-oriented March FT and a March FT.
We modeled the core implementing the proposed test
processor architecture in VHDL for an amount of about
3,000 lines of code. We then synthesized it with
Synopsys Design Compiler using a simple in-house
developed technological library.

The TAM logic (which includes the Wrapper module)
represents a fixed cost necessary to manage the chip-
level test. Its area overhead can be quantified as the 30%
of the global cost of the additional core-level test logic.

The analysis of the microprocessor units underlines
the difference among them: the Memory Adapter
introduces a larger overhead due to the included test
registers, while the Flash Adapter is the smallest
component. The simplicity of the Flash Adapter helps
the modification and the adaptation of the proposed
architecture to new specific designs.

The size of the ROM storing the program is
dependent on the selected test algorithm: the size of the
test program for the word-oriented March-FT algorithm
is 53 4-bit words, and for the basic March-FT the test
program length is 33 4-bit words.

Considering the word-oriented March FT algorithm,
with respect to M50FW040 model, the overall area
overhead stemming from the additional DfT logic is
about 0.2% of the full memory area.

Tab. 1 shows also that the application of the basic
March FT algorithm causes a marginal reduction of the
introduced area overhead, due to the decrease of the test
program length and to the use of a single
databackground value. This result underlines the high
flexibility of the proposed test architecture: a new test
algorithm can be introduced by changing only the

databackground description in the Memory Adapter unit
and modifying the test program stored in ROM.

Component
Word-oriented

March FT
[# of gates]

March FT
[# of gates]

TAP 786 786
TAP controller 14 14
Wrapper 992 992
Control Unit 624 624
Memory Adapter 1,258 1,242
Flash Manager 307 307
ROM 265 190
TOTAL 4,246 4,155

Table 1: Area overhead evaluation.
In order to evaluate the test application time overhead

with respect to an alternative hardwired approach, we
executed the test program and then we simulated the
application of the same March algorithm directly to the
pins of a hypothetical stand-alone chip.

The complete test program execution time requires
6.97 seconds for each block. This time is heavily
conditioned by the specific access timing of the
M50FW040 model, especially by the erase operation
time, which requires about 0.75 sec per block.

The simulation of the application time to test a stand-
alone chip equivalent to the same memory flash model
requires 6.59 seconds. Comparing the times we can state
that the time overhead is limited to about 6% of the
complete test time.

In a second set of experiments, considering the March
FT algorithm, the internal time overhead grows to about
12% of the complete test time, as a consequence of the
reduced number of erase operations executed during the
test. We thus experimentally proved that the time
overhead does not limit the efficiency of the test, and we
can state that an at-speed execution can be supported by
our proposed architecture.

6 Conclusions

In this paper we presented a novel technique for
efficient testing of embedded memory cores. The
proposed approach is based on a custom microprocessor
that is only in charge of executing a test algorithm. The
proposed microprocessor has been designed to allow
high flexibility in order to easily adopt the same
processor to a large set of different memory models and
easily allow any modification in the test program. The
proposed architecture exploits the current test standards
interface (IEEE 1149.1 and P1500 standards) in order to
simplify the design effort. The test architecture is
transparent to the core user, thus guaranteeing the
protection of the intellectual property. A case study has

been presented, for which we developed a test for an
embedded flash memory core environment. The
synthesized core adopting the proposed architecture
presents a negligible overhead in terms of additional area
with respect to the memory size. The test application
time is also marginally increased with respect to the
stand-alone chip, guaranteeing an at-speed memory test.

7 References

[1] Y. Zorian, E. J. Marinissen, and S. Dey, Testing embedded-core
based system chips, in Proc. International Test Conference, Oct.
1998, pp. 130-143

[2] N. Touba, and B. Pouya, Using Partial Isolation Rings to test
Core-Based Designs, IEEE Design and Test of Computers, vol.
14, Oct.-Dec. 1997, pp. 52-59

[3] F. Bouwman, S. Oostdijk, R. Stans, B. Bennetts, and F. Beenker,
Macro Testability: the results of production device applications,
IEEE International Test Conference, 1992, pp. 232-241

[4] I. Ghosh, N. Jha, and S. Dey, A Fast and Low-Cost Testing
Technique for Core-Base System-Chips, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol.
19, No. 8, Aug. 2000, pp. 863-877

[5] C.A. Papachristou, F. Martin, and M. Nourani, Microprocessor
based testing for core-based system on chip, in Proc. Design
Automation Conference, 1999, pp. 586-591

[6] R. Rajsuman, Testing a System-On-a-Chip with Embedded
Microprocessor, in Proc. International Test Conference, Oct.
1999, pp. 499-508

[7] C.-H. Tsai, C.-W. Wu, Processor-Programmable Memory BIST
for Bus-Connected Embedded Memories, in Proc. of the ASP-
DAC 2001, Asia and South Pacific Design Automation
Conference, 2001, pp. 325-330

[8] R. Treuer, and V.K. Agarwal, Built-In Self Diagnosis for
Repairable Embedded RAMs, IEEE Design and Test of
Computers, Vol. 10, No. 2, June 1993, pp. 24-33

[9] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, T.-Y. Chang, A
Programmable BIST Core for Embedded DRAM, IEEE Design
and Test of Computers, Vol. 16, No. 1, Jan.-March 1999, pp. 59-
70

[10] C.-H. Tsai, C.-W. Wu, Processor-Programmable Memory BIST
for Bus-Connected Embedded Memories, in Proc. Design
Automation Conference, 2001, pp. 325-330

[11] J. Dreibelbis, J. Barth, H. Kalter, R. Kho, Processor-based Built-
In Self-Test for Embedded DRAM, IEEE Journal of Solid-State
Circuits, Vol. 33, No. 11, Nov. 1998, pp. 1731-1740

[12] E.J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, L. Whetsel,
Towards a Standard for Embedded Core Test: An Example, IEEE
International Test Conference, 1999, pp. 616-627

[13] B. Pavan, R. Bez, P. Olivo, and E. Zanoni, Flash Memory cell-An
overview, Proc. IEEE, vol. 85, no. 8, Aug. 1997, pp. 1248-1271

[14] M.G. Mohammed, K.K. Saluja, and A. Yap, Testing Flash
Memories, in Proc. Int. Conference on VLSI Design, 2000, pp.
406-411

[15] M.G. Mohammed, and K.K. Saluja, Flash Memory disturbances:
modelling and test, in Proc. Int. Symposium on VLSI Test, VTS
2001, pp. 218-224

[16] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, C.-
W. Wu, Flash memory built-in self-test using March-like
algorithms, IEEE Int. Workshop on Electronic Design, Test and
Applications, 2002, pp. 137-141

