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Abstract 

In this paper we present a microprocessor-based approach 
suitable for embedded flash memory testing in a System-on-a-
chip (SOC) environment. The main novelty of the approach is 
the high flexibility, which guarantees easy exploitation of the 
same architecture to different memory cores. The proposed 
approach is compatible with the P1500 standard. A case study 
has been developed and demonstrates the advantages of the 
proposed core test strategy in terms of area overhead and test 
application time. 

1 Introduction 

Continuous technological improvements allow 
designing a complex system into a single chip (System-
On-Chip or SOC). A SOC is composed of different 
reusable functional blocks, called embedded cores. 
Typical embedded cores include processors (such as 
CPU, DSP, and microcontrollers), memories (such as 
ROM, DRAM, SRAM, and flash), I/O devices, etc. 
System designers can purchase cores from core vendors 
and integrate them with their own User-Defined Logic 
(UDL) to implements SOCs. Core-based SOCs present 
important advantages: the size and the cost of the end-
product is decreased, and thanks to the design re-use, the 
time-to-market is greatly reduced. 

Conversely, testing a core-based SOC is a major 
challenge [1]. The main problem is that accessibility to 
cores and UDL is greatly reduced. Traditional 
approaches [1-2] for testing core-based SOCs completely 
rely on additional Design for Testability (DfT) structures 
such as test busses for test transfers from/to the core 
under test. The access mechanism requires additional 
logic (such as a wrapper around the core) and wiring 
such as a test access mechanism (TAM) to connect cores 
to the test source and sink. A critical point to be solved 
in SOC testing is the extra cost introduced by the DfT 
logic, i.e., the area, delay and test application time 
overheads. Some approaches have been proposed to 
solve this problem. A class of test approaches [3-4] 

adopts the reuse of existing functionalities for test 
access. These methods assume that every core has a 
transparent mode in which data can be propagated. 
However, these methods are not general enough to 
handle all the possible kinds of cores and all the possible 
test schemes, such as scan or BIST. Some researchers [5-
10] proposed to exploit an embedded processor to test 
the other components of the SOC: first the processor 
core is tested (e.g., by means of functional patterns or 
full-scan test), and then a test program, executed by the 
embedded processor, is used to test the on-chip 
memories and other cores.  The use of embedded 
processors to test cores presents many advantages: the 
size of the test controller is normally negligible, the test 
program (being in software) guarantees a high flexibility, 
and the testing process can often be done at-speed. 
Moreover, the test process is done inside the chip and the 
tester can work at a lower speed, thus reducing the costs 
for the test equipment. The main disadvantage is related 
to the need for an on-chip processor and to the 
dependence on the one possibly present in the SOC. In 
case of different processors, the test program has to be 
adapted to each of them causing an increased cost in the 
test development. Moreover, this approach cannot be 
applied to embedded cores not suitably connected to the 
processor. 

In this paper we propose a core test strategy based on 
a custom processor wrapped to the embedded core under 
test. From the test point of view, the core complies to the 
P1500 standard, thus easing the connection of the core to 
other test resources on the chip (e.g., a 1149.1 TAP 
controller for accessing the SOC from outside). The 
advantages of this solution are mainly the low area 
overhead introduced, the negligible costs in terms of 
wirings, and (most importantly) the high flexibility that 
it guarantees. Although the approach is general, in this 
paper we focus on the test of flash memories, which are 
becoming widely used in many applications, especially 
thanks to their ability to be electrically programmed and 
erased, combining the advantages of non-volatile and 
volatile memories. A characteristic of flash memories is 
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the significant difference among flash memories models 
in terms of size, programming, and timing 
characteristics. The proposed method is particularly 
oriented to minimize the design effort to customize the 
test solution to the flash memory model under test and to 
the specific test constraints. A case study has been 
developed to demonstrate the advantages of the proposed 
core test strategy in terms of area overhead and test 
application time. 

Section 2 summarizes the possible architectural 
solutions for core-based SOC testing and introduces the 
one adopted in our work. Section 3 presents the 
background about flash memory architectures, the 
considered fault model and test algorithms; Section 4 
describes the proposed test architecture in terms of 
internal organization, instruction set, and external layers. 
Section 5 describes a case study. Finally, Section 6 
draws some conclusions. 

2 Memory core test architectures 

Testing core-based SOCs is a complex problem that 
can be divided in two parts: core-level and chip-level 
testing. Core-level testing involves making each core 
testable, i.e., inserting the necessary test structures and 
generating test sequences. Chip-level testing involves 
defining a test access mechanism architecture in order to 
apply the test sequences to the input peripheries of the 
cores, and to propagate the test responses from the core 
outputs to the chip outputs. 

In this paper we mainly focus on the core-level 
testing problem, resorting to a custom TAM for 
connecting the core to a standard 1149.1 TAP controller, 
thus providing an easy interface between SOC and an 
external ATE.  

Different approaches can be adopted for testing 
memory cores; they are normally based on BIST 
solutions, and grouped in the following classes: 
• Hardwired BIST 
• Soft BIST 
• Programmable BIST. 

The hardwired BIST approach is the most widely 
used for testing embedded memories. It consists in 
adding a custom circuitry to each core, implementing a 
suitable BIST algorithm. This approach deeply exploits 
the many research efforts spent in developing memory 
BIST architectures [8-9]. The main advantage of this 
approach is that the test application time is short and the 
area overhead is relatively small: as an example, by 
adopting the approach proposed in [9], with a 16 Mbit 
DRAM embedded memory the area overhead is less than 
0.3%. BIST is also a good way to protect the intellectual 
property contained in the core: the memory core 
provider needs only to deliver the BIST activation and 
response commands for testing the core without 

disclosing its internal design. At the same time, this 
approach provides a very low flexibility: any 
modification of the test algorithm requires a re-design of 
the BIST circuitry. Moreover, since each memory core 
has its own BIST circuitry, in the case of multiple cores 
on the same SOC the overall area overhead corresponds 
to the sum of all the areas occupied by the BIST circuits. 

The soft BIST approach [10] exploits a processor 
already available in the SOC (if any) to execute the test 
of all the other cores and the UDL. A test program, 
executed by the processor, applies a test pattern 
sequence to the cores under test and possibly checks for 
the results. The entire test is stored in a memory 
containing the test program and possibly the test 
patterns. This approach uses the system bus for applying 
test patterns and reading test responses, and for this 
reason it guarantees a very low area overhead, limited to 
the chip-level test infrastructure. The disadvantage of 
this approach is mainly related to the strict dependence 
on the available (if any) processor. The test program has 
to be adapted to the available processor: the core vendor 
needs to develop for the same core different test 
programs, one per each processor family, thus increasing 
the test development costs. Moreover, the intellectual 
property is not well protected, as the core vendor 
supplies to the user the test program for the core under 
test. The test application time may also depend on the 
test processor: if its clock frequency is not fast enough, 
at-speed test cannot be performed, and the overall test 
application time is also increased. Finally, this approach 
can be applied only to cores directly connected to the 
system bus: the approach cannot be applied if the core is 
connected to different system buses, or if the processor 
accesses the cores via other logic (e.g., when a memory 
controller exists) and the core is not completely 
controllable and observable.  

An alternative approach, which is a mix of the 
previous two, is the one usually denoted as 
programmable BIST. The core vendor develops a DfT 
logic, which wraps the core under test and includes a 
very simple custom microprocessor, which is exclusively 
devoted to test the core. The advantages of this 
architecture are manifold: the intellectual property can 
be protected (such as in the hardwired case), only one 
test program has to be developed, and the design cost for 
the test is very reduced; the technique is significantly 
flexible and any modification of the algorithm simply 
requires a change in the test program; the test application 
time can be reduced thanks to the efficiency of the 
custom test processor, and the test can consequently be 
executed at-speed. The main potential disadvantage is 
the area overhead introduced by replicating the custom 
processor in each core under test. However, due to the 
very limited size of the processor, this problem can be 
considered marginal, as shown in this paper.  



The approach we proposed improves the one 
described in [11], since the test processor is in charge of 
the test execution, without the need of any additional 
logic for test. Despite being based on a microprocessor, 
the method is compatible with the IEEE P1500 [12] 
standard. As a first step, we applied the method to the 
test of a flash memory core, although its extension to 
embedded RAM cores is already under way. Our 
architecture is particularly efficient in minimizing the 
temporal overhead introduced by the program execution. 
Moreover, the processor (described in Section 4), has 
been designed in such a way that can be modified and 
adapted to the test different flash memory models. 
Finally, the proposed architecture is accessible through 
the test standard interfaces (IEEE 1149.1 and P1500) in 
order to make the test completely accessible from the 
outside: the test of the core can thus be executed by 
means of 1149.1 instructions and the core test details are 
completely transparent to core designers.  

3 Flash memory background 

A generic Flash Memory is organized as a NOR or 
NAND array (like conventional RAMs) with a grid of 
row and column lines connected by Floating Gate 
transistors. A detailed description of different cells and 
their own structures is presented in [13].  

In addition to the classical fault models considered in 
the RAM memory test, such as Stuck-At Faults (SAFs), 
Coupling Fault (CFs), and Data Retention Faults 
(DRFs), flash memories can suffer disturbances that do 
not conform to any of these fault models. During 
programming, typical faults or disturbances in flash 
memories occur to cells that share a row or a column 
with another cell that is being programmed. Possible 
disturb mechanisms for NOR-type flash memories [14-
16] include:  
• Gate Program Disturbance (GPD) and Gate Erasure 

Disturbance (GED): a cell program operation causes 
the erroneous programming or erasing, respectively, 
of a second cell in the same word line; 

• Drain Program Disturbance (DPD) and Drain Erasure 
Disturbance (DED): a cell program operation causes 
the erroneous programming or erasing, respectively, 
of a second cell in the same bit line; 

• Read Disturbance (RD): a cell read operation causes 
the erroneous programming of the read cell; 

• Over Erase (OE): a cell program operation has no 
effect on the interested cell. 
Disturbance faults occur only into the same row or 

column of the programmed/erased cell. In [15] a 
simplified coupling fault model is presented, where flash 
disturbances are modeled as One-Way Coupling faults, 
since they can be sensitized using a � transition.  

Considering this fault model allows the adoption of 
test algorithms for coupling faults able to detect all types 
of flash disturbances. A March Test for Flash Memory 
(March FT) for NOR-type stacked-gate flash memories 
[16] can be summarized as follows:  

{(f);�(r1,w0,r0);�(r0);(f);�(r1,w0,r0);�(r0)} 
In order to cover intra-word coupling faults and intra-

word Gate Program/Erase Disturbances different data 
values, called databackground, must be considered.  

An evaluation of the different flash memory test 
algorithms has been provided in [16]. The March FT 
algorithm covers all the SAF, OE, DPD, DED, RD and 
almost all the GPD and GED faults. The complexity is 
equivalent to 2F + 2N*P + 6N*R, where R, P and F 
represent the number of read, program and flash 
operations, respectively, and N is the number of words. 
Usually, the read operation is the fastest one, while the 
flash operation is the slowest one. Conversely, the word-
oriented March FT Test covers all the possible faults 
with the considered fault models and its test length is 
equivalent to (2F + 2N*P + 6N*R) + (2F + 2N*P + 
2N*R) * (DBG - 1), where DBG corresponds to the 
databackground set length. 

4 The microprocessor-based approach 

The approach proposed in this paper is based on a 
custom microprocessor in charge of executing a pseudo-
March algorithm oriented to flash memory test. The 
proposed microprocessor has been designed to allow 
high flexibility in order to achieve two goals: on the one 
hand we want to simplify the introduction of any 
modification in the test program; on the other hand we 
aim at adopting the same architecture to a large set of 
flash memory models. The proposed architecture 
exploits the current test standard interface in order to 
simplify the design effort. The processor is not directly 
visible from the outside, since the core is P1500 
compliant, and includes a P1500 wrapper. 

4.1 The microprocessor 

The microprocessor internal architecture is divided 
into the following functional blocks:  
• a Control Unit to manage the test algorithm; 
• a Memory Adapter to manage the main test registers; 
• a Flash Manager to manage the memory access 

timing.  
This organization allows reducing the re-design 

operations and supports the reuse of the internal 
structures: only the Flash Manager module has to be 
adapted to a different flash memory model while letting 
the rest of the processor unchanged. 

The Control Unit manages the test program 



execution; it gets the start command and generates the 
signals for the Flash Manager and the memory 
containing the test program. This module manages the 
Instruction Register (IR) and the Program Counter (PC). 
By means of control signals, the Control Unit allows the 
correct update of the Memory Adapter test registers. 
This choice allows its easy reuse without any re-design 
in different applications like the execution of a different 
test program or the test of a memory with a different size 
or the test of different Flash memory models.    

The Memory Adapter includes all the test registers 
used to customize and correctly execute the March 
algorithm:   
• the Control Address registers: 

• Current_address: it contains the current memory 
address value; 

• Add_Max and Add_Min: constant values storing 
the first and the last addresses of the memory 
under test. 

• The Control Flash registers: 
• Current_data: it contains the data to be written 

into the memory during a program operation; 
• Received_data: it contains the data read from the 

memory; 
• DataBackGround: a register file containing the 

databackground set in use during the test cycle; 
• Dbg_max: a constant value containing the 

reference to the databackground value in use; 
• Dbg_index: it contains the index used to access to 

databackground register file. 
• The Result register: a Status_register contains 2 flags 

signaling that at least an error has been detected and 
the end of the test program, respectively. 
The size of the Control Address and Control Flash 

registers and the constant values (such as Add_Max, 
Add_Min and DataBackGround) are set according to the 
characteristics of the memory under test.  

The Flash Manager needs to be customized to the 
flash memory under test, due to its strict dependence on 
the memory model used. It manages the specific control 
and access timing signals of the memory, while its 
behavior is controlled by the Memory Adapter. This 
protocol is suitable for using two distinct clock signals: 
the external clock connected to the Control Unit and 
Memory Adapter and an internal clock connected to the 
Flash Manager. While the external clock is provided by 
the SOC and can present higher frequency in order to 
speed up the program execution, the internal clock is 
used during memory access operations and must be 
chosen to properly satisfy the timing requirements of the 
memory under test. This approach increases the design 
flexibility enabling the execution of the test operation at 
a frequency not dependent on the memory model.  

4.2 The instruction set    

The instruction set has been designed to support all 
pseudo-March algorithms and to guarantee high 
flexibility and adaptability to the microprocessor.  

The set of 11 instructions can be grouped in the 
following classes: 
• Instructions working on the Current_address register: 

• SET_ADD: it loads into Current_address the 
constant value Add_Max; 

• RST_ADD: it loads into Current_address the 
constant value Add_Min; 

• Instructions working on the Current_data register:  
• STORE_BG_DATA: it loads into Current_data 

the value contained into the DataBackGround 
register file and pointed by Dbg_index. After that, 
the Dbg_index value is incremented; 

•  INV_BG_DATA: it inverts the current value of 
Current_data; 

• Instructions executing flash memory I/O operations: 
• READ_FLASH: it executes a read operation at 

the word addressed by Current_address; the 
extracted data is stored in the Received_data 
register and compared with the expected value: if 
these two values are different, the Status_register 
is updated;     

• PROG_FLASH: it executes a program operation 
writing the Current_data value at the word 
addressed by Current_address; 

• ERASE_FLASH: it executes a flash operation on 
memory; 

• Instructions executing the program control flow: 
• BNE_ADD: it executes a jump if 

Current_address has not reached the address limit 
(stored in Add_Max or Add_Min, according to the 
direction of the current March Element). A 4-bit 
operand stores the jump offset. If the condition is 
not verified, Current_address is increased (or 
decreased) according to the current March 
Element direction and the Program Counter is 
modified according to the operand value, 
otherwise the Program Counter is increased in 
order to execute the following instruction 

• LOOP_DBG: it increments Dbg_index value and 
executes a jump if the Dbg_index value hasn’t 
reached the Dbg_max value. 2 4-bit operands 
store the jump offset. If the condition is not 
verified the Dbg_index value is incremented and 
the Program Counter is modified according to the 
operand value; otherwise the Program Counter is 
increased in order to execute the following 
instruction 

• END_CODE: it concludes the test program, 
changing the processor state to idle. 



4.3 Wrapper module 

The wrapper, shown in Fig. 1, contains the circuitry 
necessary to interface the test processor with the outside 
in a P1500 compliant fashion, supporting the commands 
for running the BIST operation and accessing to its 
results. The wrapper is compliant with the suggestions of 
the P1500 standardization group [12]. 
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Fig. 1: The proposed Wrapper Architecture. 

In addition to the mandatory components we propose 
the introduction of the following Wrapper Data registers: 
• Wrapper Control Data Register (WCDR): through 

this register the TAP controller sends the commands 
to the microprocessor (e.g., the microprocessor reset, 
the test program start, the Status register read, etc.).  

• Wrapper Data Register (WDR): it is an output 
register. The TAP Controller can read the test 
information from the microprocessor stored into the 
status register.  

5 The case study 

In order to evaluate the feasibility of the proposed 
architecture, the M50FW040 device produced by 
STMicroelectronics has been considered as a case study: 
the size of this flash memory model is 4 Mbit and it is 
divided into 8 blocks with a 8 bit word parallelism. The 
M50FW040 device presents some particularities that 
imply a specific Flash Manager design:  
• specific codes are needed to access the memory; 
• the addressing phase is divided into two distinct steps 

due to the presence of only 10 address bits: the 
address is provided by sending first the 10 less 
significant bits, then the 9 remaining bits. 

The test algorithm chosen to test the M50FW040 device 
is the word-oriented March-FT one, introduced in 
Section 3.  

In the proposed example, the test program resides in a 
EPROM memory: this kind of approach permits an on-
the-fly test algorithm modification.  

As far as the processor architecture design is 
considered, we have that the Control Unit is independent 

from the memory model. The size of its registers has 
been chosen according to the general microprocessor 
architecture: 
• IR on 4 bits, according to the instruction format; 
• PC on 8 bits, according to the test program length. 

The Memory Adapter has been tuned according to the 
M50FW040 device characteristics as following: 
• data registers (Current_data, Received_data) on 8 

bits according to the memory under test data 
parallelism; 

• address registers (Current_address, Add_Max e 
Add_Min) on 19 bits according to the memory under 
test size;  

• DataBackGround is a vector of 4 (Dbg_max) bytes 
with Dbg_index on 2 bits 

• the clock frequencies of the external and internal 
clocks have been set to 20 MHz. 
In order to test the additional DfT logic a full scan 

approach has been adopted. 
The total area occupied by the DfT additional logic is 

reported in Tab. 1, considering 2 different test 
algorithms: a word-oriented March FT and a March FT. 
We modeled the core implementing the proposed test 
processor architecture in VHDL for an amount of about 
3,000 lines of code. We then synthesized it with 
Synopsys Design Compiler using a simple in-house 
developed technological library.  

The TAM logic (which includes the Wrapper module) 
represents a fixed cost necessary to manage the chip-
level test. Its area overhead can be quantified as the 30% 
of the global cost of the additional core-level test logic. 

The analysis of the microprocessor units underlines 
the difference among them: the Memory Adapter 
introduces a larger overhead due to the included test 
registers, while the Flash Adapter is the smallest 
component. The simplicity of the Flash Adapter helps 
the modification and the adaptation of the proposed 
architecture to new specific designs.  

The size of the ROM storing the program is 
dependent on the selected test algorithm: the size of the 
test program for the word-oriented March-FT algorithm 
is 53 4-bit words, and for the basic March-FT the test 
program length is 33 4-bit words.  

Considering the word-oriented March FT algorithm, 
with respect to M50FW040 model, the overall area 
overhead stemming from the additional DfT logic is 
about 0.2% of the full memory area.   

Tab. 1 shows also that the application of the basic 
March FT algorithm causes a marginal reduction of the 
introduced area overhead, due to the decrease of the test 
program length and to the use of a single 
databackground value. This result underlines the high 
flexibility of the proposed test architecture: a new test 
algorithm can be introduced by changing only the 



databackground description in the Memory Adapter unit 
and modifying the test program stored in ROM. 

Component 
Word-oriented 

March FT 
[# of gates] 

March FT 
[# of gates] 

TAP  786 786 
TAP controller 14 14 
Wrapper 992 992 
Control Unit 624 624 
Memory Adapter 1,258 1,242 
Flash Manager 307 307 
ROM 265 190 
TOTAL 4,246 4,155 

Table 1: Area overhead evaluation. 
In order to evaluate the test application time overhead 

with respect to an alternative hardwired approach, we 
executed the test program and then we simulated the 
application of the same March algorithm directly to the 
pins of a hypothetical stand-alone chip.  

The complete test program execution time requires 
6.97 seconds for each block. This time is heavily 
conditioned by the specific access timing of the 
M50FW040 model, especially by the erase operation 
time, which requires about 0.75 sec per block.  

The simulation of the application time to test a stand-
alone chip equivalent to the same memory flash model 
requires 6.59 seconds. Comparing the times we can state 
that the time overhead is limited to about 6% of the 
complete test time.  

In a second set of experiments, considering the March 
FT algorithm, the internal time overhead grows to about 
12% of the complete test time, as a consequence of the 
reduced number of erase operations executed during the 
test. We thus experimentally proved that the time 
overhead does not limit the efficiency of the test, and we 
can state that an at-speed execution can be supported by 
our proposed architecture. 

6 Conclusions 

In this paper we presented a novel technique for 
efficient testing of embedded memory cores. The 
proposed approach is based on a custom microprocessor 
that is only in charge of executing a test algorithm. The 
proposed microprocessor has been designed to allow 
high flexibility in order to easily adopt the same 
processor to a large set of different memory models and 
easily allow any modification in the test program. The 
proposed architecture exploits the current test standards 
interface (IEEE 1149.1 and P1500 standards) in order to 
simplify the design effort. The test architecture is 
transparent to the core user, thus guaranteeing the 
protection of the intellectual property. A case study has 

been presented, for which we developed a test for an 
embedded flash memory core environment. The 
synthesized core adopting the proposed architecture 
presents a negligible overhead in terms of additional area 
with respect to the memory size. The test application 
time is also marginally increased with respect to the 
stand-alone chip, guaranteeing an at-speed memory test. 
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