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Abstract. This is meant to be a self-contained presentation of adaptive clas-

sification seen from the PAC-Bayesian point of view. Although most of the
results are original, some review materials about the VC dimension and sup-

port vector machines are also included. This study falls in the field of statis-

tical learning theory, where complex data have to be analyzed from a limited
amount of informations, drawn from a finite sample. It relies on non as-

ymptotic deviation inequalities, where the complexity of models is captured

through the use of prior measures. The main improvements brought here are
more localized bounds and the use of exchangeable prior distributions. Interest-

ing consequences are drawn for the generalization properties of support vector

machines and the design of new classification algorithms.
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2. INTRODUCTION 5

CHAPTER 1

A PAC-Bayesian approach to adaptive inference

1. Foreword

In this paper, we will prove what could be called localized PAC-Bayesian learn-
ing theorems and illustrate their use to solve classification problems. The setting
will be the one of statistical learning theory : complex data have to be analyzed
(e.g. images, speech, natural language, DNA, . . . ), about which very little is known
beforehand and some crudely approximate classification model has to be picked-
up among a possibly huge number of candidates through some kind of robust and
automated model selection mechanism.

Our aim is to give a self contained description of statistical classification from
the PAC-Bayesian point of view. Although the bulk of the presented results are new,
we have also included some expository materials whose proofs we wanted to adapt
to our purpose and taste. We hope this additions will be convenient for the reader.
We thus give a presentation of the VC dimension and of support vector machines,
which come as natural applications of the PAC-Bayesian approach. As for support
vector machines, we made two choices which may be considered a matter of taste:
we deliberately avoided using the Kuhn-Tucker and Mercer theorems. We prefered
to replace the Kuhn-Tucker theorem by a more geometrical approach, exploiting
simple properties of the orthogonal projection on a convex set, with the hope of
giving a more intuitive idea of what is going on in the computation of the canonical
hyperplane. We did not mention Mercer’s theorem, because the fact that it is not
really needed brings some more generality.

2. Introduction

The idea of PAC-Bayesian learning theorems, as introduced by D. McAllester,
[24, 25] is to measure the complexity of models, and thereby their ability to gen-
eralize from observed examples to unknown situations, with the help of some prior
probability measure defined on the parameter space. Here, we use for simplicity
the term parameter space in a rather loose and unusual way, to talk about the
union of all the parameters of all the models we envision (maybe the term model
space would be more accurate : these parameters may be of finite or infinite dimen-
sion and we do not restrict the number of models, therefore we are definitely not
describing a parametric statistical framework, but rather a non-parametric one!).
The status of the prior measure has not to be misunderstood either : it does not
represent the frequency according to which we expect to observe data produced by
different probability distributions, nor does it stand for the belief we put in the ac-
curacy of different possible distributions or different possible models. It is somehow
equivalent to the choice of some representation of the parameter space (since it is
possible to derive some coding scheme from a probability distribution, according
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6 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

to coding theory), and therefore is related to the Minimum Description Length ap-
proach of Rissanen and to the structural risk minimization approach of Vapnik. On
a more technical level, it is meant to produce non asymptotic worst case bounds,
(as opposed to a Bayesian study of the mean risk under the prior). It shares some
common features with the use of mixture codes in lossless data compression theory
[36].

3. Mathematical framework

Let us now sketch the mathematical framework of our study. We consider a
product space X × Y, where (X,B) is a measurable space and where Y is a finite
set. In a classification application, the set X has to be thought of as the pattern
space and Y as the label space. Patterns in X may be described by a combination of
continuous and discrete parameters, however, except when it comes down to giving
examples, we will capture the structure of X only through the use of a family of
classification functions defined on X, we will come back to this later.

The observation is made of an i.i.d. sample (Xi, Yi)N
i=1, drawn according to

some product distribution P⊗N , where P is a probability measure on (X×Y,B×B′),
B′ being the algebra {0, 1}Y of all the subsets of Y. (In some chapters, we will relax
this hypothesis, replacing P⊗N with an exchangeable distribution and considering
a test set (Xi, Yi)2N

i=N+1 of the same size as the training set (Xi, Yi)N
i=1.)

The relations between X and Y will be analyzed with the help of some pre-
scribed set of classification rules

R =
{
fθ : X → Y; θ ∈ Θ

}
,

where (Θ,T) is some measurable parameter set and

(θ, x) 7→ fθ(x) :
(
Θ× X,T ⊗B

)
→
(
Y,B′)

is assumed to be measurable. As we have already explained, the set R will in
general not be a single parametric model, but rather the union of a large number
of parametric models. From the technical point of view, our aim will be to produce
non asymptotic bounds for the risk of properly designed estimators of Y given X,
leading to a non asymptotic level of confidence for this risk. The risk of fθ : X → Y

will be measured as its error rate

R(θ) = P
[
Y 6= fθ(X)

]
.

Let us mention here that throughout these lectures the short notation P (W )
will be used for the expectation of the random variable W under the distribution
P .

The PAC Bayesian approach could roughly be explained as follows: instead of
bounding the minimum of the empirical risk

r(θ) =
1
N

N∑
k=1

1
[
Yk 6= fθ(Xk)

]
,

with respect to the parameter θ ∈ Θ, we study the deviations of the quantiles of
r(θ) with respect to some prior probability measure π ∈ M1

+

(
Θ,T

)
defined on the

parameter space.
More precisely, we cannot minimize R(θ) with respect to θ as we would like

to do, because R(θ) is not observable: it depends on the unknown distribution P .
The next sensible attempt is to minimize r(θ) instead. Unfortunately, although
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3. MATHEMATICAL FRAMEWORK 7

P
[
r(θ)

]
= R(θ), the fluctuations of the random process r(θ) : θ ∈ Θ may be strong

enough to make the solutions of the two minimization problems quite different, and
even in many cases completely unrelated. An intensively studied way to get some
control on this situation is to add a penalty term γN (θ) and study the relations
between infθ R(θ) + γN (θ) and infθ r(θ) + γN (θ). The penalty γN (θ) has a regu-
larizing effect: it shrinks the size of the set of values of θ where infθ r(θ) + γN (θ)
is likely to be achieved and therefore provides a way to control the gap between
P
[
infθ

[
r(θ)+γN (θ)

]]
and infθ R(θ)+γN (θ). The difficulty of this approach comes

from the choice of γN (θ), which has to depend on the “size” of the parameter space
Θ, measured in a suitable way.

In the PAC-Bayesian approach, we circumvent this difficulty by measuring
weights under some prior distribution π ∈ M1

+

(
Θ,T

)
on the parameter space. This

is an indirect way to make the size of Θ come into play. Although we will not
explicitely manipulate quantiles in the technical part of our study, we will introduce
here the role of the prior π with the help of this familiar concept which gives us an
opportunity to make a link with the maximum likelihood approach. Let us define
the α quantile of the empirical risk r(θ) as

qα(r) = inf
{

µ : π
[
r(θ) ≤ µ

]
> α

}
.

It can be viewed as a probabilistic generalization of the essential infimum of r(θ)
under π, since

ess inf
π(dθ)

r(θ) = q0(r).

This generalization is of practical interest to us, because, whereas ess infπ(dθ) r(θ)
has fluctuations depending on the “size” (or more accurately the complexity) of
the parameter space Θ, the fluctuations of the quantile qα(r) can be evaluated as
a function of α only, as long as α > 0. The reason is that a quantile with positive
parameter α is separating two sets of parameters with positive π-weights, unlike the
essential infimum which may separate a single point of null π-weight from the rest
of the parameter space: to produce a random deviation of the quantile qα(r), the
values of r(θ) for a given proportion (α, namely) of the parameters have to deviate
from their typical values, whereas a lower deviation of the essential infimum may
be the consequence of the behavior of the empirical risk on a set of parameters of
arbitrarily small π-weight (and the situation for the true infimum is of course even
worse, since it is sensitive to a lower deviation of the empirical risk at a single value
of the parameter).

As shown by D. McAllester in his pioneering papers on the subject, the “hard
threshold” vision of quantiles we explained above can be generalized to smoother
objects, and indeed to any “posterior distribution” ρ ∈ M1

+(Θ) on the parameter
space. A posterior distribution here is simply a probability measure ρ ∈ M1

+(Θ,T)
on the parameter space which may depend on the observations (Xi, Yi)N

i=1 (therefore
it is a random measure).

The random measures depending on the empirical risk r(θ) are a special case of
posterior distributions. More precisely, we will make a heavy use of Gibbs posterior
distributions of the form

(3.1) dρ(θ) = dπexp(−βr)(θ) =
exp
(
−βr(θ)

)
π
[
exp
(
−βr(θ)

)]dπ(θ).
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8 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

The introduction of these posterior distributions, viewed as random objects
whose fluctuations are easily manageable, leads us to consider randomized esti-
mators : instead of picking some parameter θ̂ as a deterministic function of the
observations (Xi, Yi)N

i=1, we choose it at random according to the posterior dis-
tribution ρ (which itself depends on the observations). The resulting risk of this
randomized estimation scheme is ρ

[
R(θ)

]
, which plays the same role as R(θ̂) in the

deterministic setting. Although it depends on the unknown and deterministic risk
function R, it is still a random variable, due to the randomness of the posterior
measure ρ, in the same way as R(θ̂) is a random variable due to the dependence of θ̂
on the observations. In some situations, it is natural to use randomized estimators,
in others the support of ρ will be concentrated around some deterministic estimator
θ̂ in some sensible way and the introduction of randomized estimators should more
likely be viewed as a technical steps in the study of more conventional estimators.

In McAllester’s papers, the fluctuations of ρ
[
r(θ)

]
with respect to ρ

[
R(θ)

]
are

controlled by some function of K(ρ, π), the Kullback divergence of the (random)
posterior measure ρ with respect to the (fixed) prior measure π, defined as

K(ρ, π) =

{
ρ
[
log
(

dρ
dπ

)]
, when ρ � π,

+∞, otherwise.

In the present study, we will make an important step towards sharper bounds
by replacing K(ρ, π) with K(ρ, πexp(−βr)), where πexp(−βr) ∈ M1

+(Θ) is the Gibbs
posterior built from π and r we already mentioned a few lines above.

We will start with simple PAC-Bayesian learning theorems, explain how they
can be used, and introduce further improvements only in subsequent sections.

Then we will show how Vapnik’s statistical learning theory can be proved and
strengthened using the PAC-Bayesian approach : the idea is to replace the use of
a deterministic prior with the use of a data dependent one.

Finally, we will deduce results for Vapnik’s support vector machines, one of the
most efficient and still promising classification algorithm. We will also study the
wider class of compression schemes [23], a framework into which many practical
algorithms can be designed and which covers generalization bounds for support
vector machines computed from the number of support vectors.

4. Low noise pattern classification

We will be interested here in the most favorable case of pattern recognition:
the case when an i.i.d. sample (Xi, Yi)N

i=1 of classified patterns is observed, where
the conditional distribution of the label Y given the pattern X is highly peaked
on one label (which will of course be considered as the “true” label for pattern
X). As already explained, (Xi, Yi)N

i=1 will be the canonical process on some space[
(X × Y)N , (B ⊗ B′)⊗N

]
endowed with a product measure P⊗N , where

P ∈ M1
+(X × Y,B ⊗ B′). A set of classification rules R = {fθ : X → Y, θ ∈ Θ} is

at our disposal, where (θ, x) 7→ fθ(x) : (Θ × X, T × B) → (Y,B′) is measurable.
We will not make any “low-noise” assumption, but it will just turn out that the
theoretical bounds derived in this section will be of the sharpest possible order of
magnitude with respect to the sample size N only when the optimal error rate
infθ∈Θ R(θ) is small (meaning that it is of order N−1).(The situation is different for
purely empirical bounds providing a level of confidence for the error rate, indeed
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4. LOW NOISE PATTERN CLASSIFICATION 9

when the error rate is of order one — say 1/5 for example — independently of N ,
due to a noisy training set, all the empirical error rates have fluctuations of order
N−1/2 and it is impossible to derive a confidence level for the true error rate with
a better accuracy, althouhg it is possible to derive an estimator approaching the
optimal one at a higher speed !).

4.1. A reminder of non-asymptotic deviation techniques: Bernstein’s
inequality and the Legendre transform of the Kullback divergence func-
tion. We will need a non-asymptotic deviation inequality for sums of independent
random variables. For this purpose, a detailed formulation of Bernstein’s inequality
is useful. It can be found in [26, p 203-204].

Theorem 4.1. Let (σ1, . . . , σN ) be independent real valued random variables
and P their joint distribution. Let us assume that

σi − P(σi) ≤ b, i = 1, . . . , N.

Let

S =
1
N

N∑
i=1

σi

be their normalized sum,

m = P(S) =
1
N

N∑
i=1

P(σi)

its expectation and

V = NP
[(

S − P(S)
)2] =

1
N

N∑
i=1

P

[(
σi − P(σi)

)2]
its renormalized variance. Let us introduce the increasing function of a real param-
eter

g(x) = x−2
[
exp(x)− 1− x

]
.

The deviations of S are bounded, for any λ ∈ R+, any η ∈ R+, by

P(S −m ≥ η) ≤ P
[
exp
(
−λη + λ(S −m)

)]
(4.1)

≤ exp
(
−ηλ + g

(
bλ

N

)
V

N
λ2

)
,(4.2)

moreover when λ is chosen to be

λ =
N

b
log
(

1 +
bη

V

)
,

the right-hand side of the previous equation is itself bounded by

exp
(
−ηλ + g

(
bλ

N

)
V

N
λ2

)
≤ exp

(
− 3Nη2

6V + 2bη

)
.

Proof. (Given for the sake of completeness.) It can be easily checked that the
function x 7→ g(x) : R → R is increasing. Moreover, it is clearly enough to prove
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10 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

the theorem when P(σi) = 0, for any i = 1, . . . , N . Reminding that log(1 + x) ≤ x,
we see that

E
[
exp(λS)

]
= exp

{
N∑

i=1

log
[
E

[
exp

(
λ

N
σi

)]]
− E

[
λ

N
σi

]}

≤ exp

{
N∑

i=1

E

[
exp

(
λ

N
σi

)
− λ

N
σi − 1

]}

= exp

{
N∑

i=1

E

[
g

(
λ

N
σi

)
σ2

i

λ2

N2

]}

≤ exp

{
g

(
bλ

N

) N∑
i=1

E
[
σ2

i

] λ2

N2

}

= exp
{

g

(
bλ

N

)
V

N
λ2

}
.

This proves (4.2). The last statement of the theorem can be rewritten after a
suitable change of variables as

−ηλ + λ2g(λ) ≤ − 3η2

6 + 2η
when λ = log(1 + η).

This is equivalent to

(1 + η) log(1 + η)− η ≥ 3η2

6 + 2η
,

and therefore to
(6 + 8η + 2η2) log(1 + η)− 5η2 − 6η ≥ 0.

This last inequality, which holds true when η = 0, can be checked to hold true for
any positive value of η by differentiating twice its left-hand side. �

Some background on the Legendre transform of the convex function
ρ 7→ K(ρ, π) is also needed.

Lemma 4.2. Let us recall that for any measurable function h : Θ → R,

(4.3) log
{

π
{

exp
[
h(θ)

]}}
= sup

ρ∈M1
+(Θ)

ρ
[
h(θ)

]
−K(ρ, π),

where the value of ρ
[
h(θ)

]
is defined by convention as

(4.4) ρ
[
h(θ)

] def
= sup

B∈R
ρ
[
min

{
B, h(θ)

}]
,

and where it is also understood that

(4.5) ∞−∞ = sup
B∈R

(B)−∞ = sup
B∈R

(B −∞) = −∞.

(In other words a priority is given to −∞ in ambiguous cases : the expectation
of a function whose negative part is not integrable will be assumed to be −∞, even
when its positive part integrates to +∞.)

Moreover, when h is upper bounded, for any ρ ∈ M1
+(Θ,T),

(4.6) log
{

π
[
exp
[
h(θ)

]]}
+ K(ρ, π)− ρ

[
h(θ)

]
= K(ρ, ν),

Adaptive classification Olivier Catoni – October 9, 2004



4. LOW NOISE PATTERN CLASSIFICATION 11

where dν(θ) =
exp
[
h(θ)

]
π
{

exp
[
h(θ)

]}dπ(θ). (Equality is meant to hold in R∪{∞}, meaning

that K(ρ, ν) < ∞ if and only if K(ρ, π) < ∞ and −ρ
[
h(θ)

]
< ∞ and that in this

case equality holds in R.)

Proof. Let us give for the sake of completeness a short proof of this well
known result. The second part of the lemma is a straightforward computation. Let
us remark first that ρ is absolutely continuous with respect to π if and only if it is
absolutely continuous with respect to ν, because π and ν have the same negligible
measurable sets. Therefore if ρ is singular with respect to π, then both members
of (4.6) are equal to ∞. Let us assume now that ρ is absolutely continuous with
respect to π, and write from the definition of the divergence function

K(ρ, ν) = ρ

{
log
(

dρ

dπ

)
− h(θ)

}
+ log

{
π
[
exp
[
h(θ)

]]}
.

Remark that the negative part of log
(

dρ
dπ

)
is in L1(ρ), because dρ

dπ

[
log
(

dρ
dπ

)]
−

is

bounded and therefore in L1(π). As −h is lower bounded, we can thus write in
R ∪ {∞} that

ρ

{
log
(

dρ

dπ

)
− h(θ)

}
= ρ

{
log
(

dρ

dπ

)}
− ρ
[
h(θ)

]
.

This is precisely (4.6).
In the case when h is upper bounded, the first part of the lemma is a conse-

quence of its second part, which shows moreover that the maximum in ρ is attained
when ρ = ν. In the general case, we can write the following chain of equalities,
where we have used the notation min

{
B, h(θ)

}
= B ∧ h(θ),

log
{

π
{

exp
[
h(θ)

]}}
= sup

B∈R
log
{

π
{

exp
[
B ∧ h(θ)

]}}
= sup

B∈R
sup

ρ∈M1
+(Θ)

{
ρ
[
B ∧ h(θ)

]
−K(ρ, π)

}
= sup

ρ∈M1
+(Θ)

sup
B∈R

{
ρ
[
B ∧ h(θ)

]
−K(ρ, π)

}
= sup

ρ∈M1
+(Θ)

sup
B∈R

{
ρ
[
B ∧ h(θ)

]}
−K(ρ, π)

= sup
ρ∈M1

+(Θ)

ρ
[
h(θ)

]
−K(ρ, π).

�

4.2. A non localized learning theorem for low-noise classification. We
will apply the second inequality (4.2) of Bernstein’s theorem 4.1 successively to

σi
def= −1

(
Yi 6= fθ(Xi)

)
and to

σi
def= 1

(
Yi 6= fθ(Xi)

)
.
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12 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

We will integrate both sides of the resulting inequality with respect to some prior
π ∈ M1

+(Θ,T), to obtain a “learning” lemma which improves on the PAC-Bayesian
bounds in [24, 25], which were derived from the weaker Hoeffding’s inequality.

Lemma 4.3. For any positive real parameter λ ∈ R
∗
+, any lower-bounded

real valued measurable function η : Θ → R, any prior probability distribution
π ∈ M1

+(Θ,T),

P⊗N

{
sup

ρ∈M1
+(Θ)

λρ
[
R(θ)

]
− λρ

[
r(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π) ≥ 0

}
≤ π

{
exp
[
λ2

N
g

(
λR(θ)

N

)
R(θ)

[
1−R(θ)

]
− η(θ)

]}
.

In the same way

(4.7) P⊗N

{
sup

ρ∈M1
+(Θ)

λρ
[
r(θ)

]
− λρ

[
R(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π) ≥ 0

}
≤ π

{
exp
[
λ2

N
g

(
λ

N

)
R(θ)

[
1−R(θ)

]
− η(θ)

]}
.

Proof. According to lemma 4.2,

sup
ρ∈M1

+(Θ)

ρ
[
λR(θ)− λr(θ)− η(θ)

]
−K(ρ, π)

= log

{
π

{
exp
[
λ
[
R(θ)− r(θ)

]
− η(θ)

]}}
.

Thus

P⊗N

{
sup

ρ∈M1
+(Θ)

λρ
[
R(θ)

]
− λρ

[
r(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π) ≥ 0

}
(4.8)

= P⊗N

{
π

{
exp
[
λ
[
R(θ)− r(θ)

]
− η(θ)

]}
≥ 1

}
(4.9)

≤ P⊗N

{
π

{
exp
[
λ
[
R(θ)− r(θ)

]
− η(θ)

]}}
(4.10)

= π

{
P⊗N

{
exp
[
λ
[
R(θ)− r(θ)

]
− η(θ)

]}}
(4.11)

≤ π

{
exp
[
λ2

N
g

(
λR(θ)

N

)
R(θ)

[
1−R(θ)

]
− η(θ)

]}
.(4.12)

Equality (4.11) is obtained by applying the Fubini theorem to the positive func-
tion (θ, X1, Y1, . . . , XN , YN ) 7→ exp

{
λ
[
R(θ) − r(θ)

]
− η(θ)

}
. Inequality (4.12) is

obtained by applying inequality (4.2) of Bernstein’s theorem 4.1 for each value of
the parameter θ.

The proof of the reverse inequality (4.7) is similar and is left to the reader. �

Remark 4.1. The last step of the proof (4.12) can be replaced with an equality
depending on the unknown distribution P , which is of a less practical interest but
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5. A SHORT USERS GUIDE TO EMPIRICAL BOUNDS 13

may bring some further understanding of the situation: indeed, it could be noticed
that

π

{
P⊗N

[
exp
[
λ
[
R(θ)− r(θ)

]
− η(θ)

]]}
= π

{
exp
{

NK
[
P, P

exp(
λ
N σ)

]
− η(θ)

}}
,

where σ(θ, X, Y ) = −1
[
Y 6= fθ(X)

]
and for any positive measurable function

h : X× Y → R
∗
+ we have introduced the notation

dPh(X,Y ) =
{

P
[
h(X, Y )

]}−1

h(X, Y )dP (X, Y ).

This is a simple application of equality (4.6) in another context.

5. A short users guide to empirical bounds

5.1. Building an estimator. In the sequel of this paper, we will state a series
of more sophisticated learning lemmas. Therefore it may be of some help to stop
for a moment and see what use can be made of the above type of result and how it
can be compared with more classical statistical theorems. The easiest way to build
an estimator and estimate its performance using lemma 4.3 is to apply it choosing
η(θ) = log(ε−1) + λ2

N g
(

λ
N

)
R(θ), to get

Corollary 5.1. For any λ ∈ R+ such that 1− g( λ
N ) λ

N > 0, with P⊗N proba-
bility at least 1− ε, for any posterior distribution ρ ∈ M1

+(Θ),

(5.1) ρ
[
R(θ)

]
≤
[
1− g

(
λ

N

)
λ

N

]−1 {
ρ
[
r(θ)

]
+

1
λ

[
K(ρ, π) + log(ε−1)

]}
.

The above inequality is the kind of non-asymptotic empirical bound we will be
after throughout this paper. Let us show here that it provides in a natural way an
estimator with a given level of confidence. Building a randomized estimator from
an empirical bound is straightforward : it is obtained by minimizing the bound
with respect to the posterior distribution ρ. Let ρ̂ be this minimizing posterior.
Although we will not use it in the following discussion, it may be interesting to
notice here that ρ̂ can be explicited: namely it is the Gibbs posterior distribution
ρ̂ = πexp(−λr) (where we have used the notation introduced in (3.1)). Its risk has
an upper confidence bound B(ρ̂, ε) at level ε, where, putting κ = g

(
λ
N

)
' 1

2 for
short,

B(ρ, ε) =
(

1− κ
λ

N

)−1{
ρ
[
r(θ)

]
+

1
λ

K(ρ, π) +
log(ε−1)

λ

}
.

In other words,

P⊗N
{

ρ̂
[
R(θ)

]
≥ B(ρ̂, ε)

}
≤ ε.

This is satisfactory from the practical point of view, since B(ρ̂, ε) is computable
from the observed sample (Xi, Yi)N

i=1 and thus provides a confidence level.

5.2. Deriving a theoretical bound. However, from a theoretical point of
view, the reader may wonder about the performance of the estimator, that is about
the link between B(ρ̂, ε) and infθ∈Θ R(θ). There is a standard way to deal with this
question. Let us explain it here as a motivation for the following. For any fixed
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14 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

distribution ρ ∈ M1
+(Θ,T), the empirical (i.e. random) bound B(ρ, ε) is up to some

constant a sum of i.i.d. random variables, with mean B̄(ρ, ε) given by

B̄(ρ, ε) =
(

1− κ
λ

N

)−1{
ρ
[
R(θ)

]
+

1
λ

K(ρ, π) +
log(ε−1)

λ

}
.

It is straightforward to estimate its deviations. We can for instance deduce from
Bernstein’s theorem 4.1 that

P⊗N

{
ρ
[
r(θ)

]
≥
(

1 + κ
λ

N

)
ρ
[
R(θ)

]
+

log(ε−1)
λ

}
≤ ε,

Moreover, from the construction of ρ̂, B(ρ̂, ε) ≤ B(ρ, ε). Thus for any ρ ∈ M1
+(Θ,T),

with P⊗N probability at least 1− ε,

B(ρ̂, ε) ≤ B(ρ, ε) ≤
(

1− κ
λ

N

)−1{(
1 + κ

λ

N

)
ρ
[
R(θ)

]
+

1
λ

K(ρ, π) +
2 log(ε−1)

λ

}
.

However, the right-hand side of this last inequality is non random, and therefore
can legitimately be optimized in ρ. Weakening a little the result to make it more
readable, (and remembering that ρ̂ = πexp(−βr)), we get

Proposition 5.2. For any λ ∈ R+ such that 1−κ λ
N > 0, with P⊗N probability

at least 1− ε,

πexp(−λr)

[
R(θ)

]
≤

1 + κ λ
N

1− κ λ
N

{
inf

ρ∈M1
+(Θ)

ρ
[
R(θ)

]
+

1
λ

K(ρ, π)︸ ︷︷ ︸
= − 1

λ
log
{

π
[
exp
[
−λR(θ)

]]}
}

+
2 log

(
2
ε

)(
1− κ λ

N

)
λ

.

It is also possible to bound the mean risk P⊗N
{

ρ̂
[
R(θ)

]}
. One standard way

to achieve this is to start from inequality

P⊗N
{
ρ̂
[
R(θ)

]
≥ B(ρ, ε)

}
≤ ε,

where we have kept ρ non random, and to rewrite it as

P⊗N (U ≥ α) ≤ exp(−λα),

where we have introduced the random variable

U = ρ̂
[
R(θ)

]
−
(

1− κ
λ

N

)−1{
ρ
[
r(θ)

]
+

1
λ

K(ρ, π)
}

.

We have

P⊗N (U) ≤
∫ +∞

0

P⊗N (U ≥ α)dα ≤ 1
λ

(
1− κ

λ

N

)−1

.

In other words,

P⊗N
{

ρ̂
[
R(θ)

]}
≤
(

1− κ
λ

N

)−1

inf
ρ∈M1

+(Θ)

{
ρ
[
R(θ)

]
+

1
λ

K(ρ, π) +
1
λ

}
.

A slight improvement is achieved if we come back to (4.10) and (4.12). With a
proper choice of parameters, we get

P⊗N

{
π

[
exp
[
λ
(
1− κ λ

N

)
R(θ)− λr(θ)

]]}
Adaptive classification Olivier Catoni – October 9, 2004
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= P⊗N

{
exp
[

sup
ρ∈M1

+(Θ)

λ
(
1− κ λ

N

)
ρ
[
R(θ)

]
− λρ

[
r(θ)

]
−K(ρ, π)

]}
≤ 1.

Using Jensen’s inequality for the (convex) exponential function, we see that

P⊗N

{
λ
(
1− κ λ

N

)
ρ̂
[
R(θ)

]
− λρ̂

[
r(θ)

]
−K(ρ̂, π)

}
≤ 0.

Therefore

P⊗N
{

ρ̂
[
R(θ)

]}
≤
(

1− κ
λ

N

)−1

P⊗N

{
inf

ρ∈M1
+(Θ)

ρ
[
r(θ)

]
+

1
λ

K(ρ, π)
}

≤
(

1− κ
λ

N

)−1

inf
ρ∈M1

+(Θ)
P⊗N

{
ρ
[
r(θ)

]
+

1
λ

K(ρ, π)
}

=
(

1− κ
λ

N

)−1

inf
ρ∈M1

+(Θ)

{
ρ
[
R(θ)

]
+

1
λ

K(ρ, π)
}

Proposition 5.3. For any λ ∈ R+ such that κ λ
N < 1,

P⊗N
{

πexp(−λr)

[
R(θ)

]}
≤
(

1− κ
λ

N

)−1

inf
ρ∈M1

+(Θ)

{
ρ
[
R(θ)

]
+

1
λ

K(ρ, π)
}

= −
(

1− κ
λ

N

)−1 1
λ

log
{

π
[
exp
[
−λR(θ)

]]}
.

Remark 5.1. The theoretical bounds provided by propositions 5.2 and 5.3 are
helpful to answer the question of the choice of the prior distribution π: it should
be chosen to make − 1

λ log
{

π
[
exp
[
−λR(θ)

]]}
as close to infθ R(θ) as possible. Of

course, if θ 7→ R(θ) were a known function, we would choose for π the Dirac mass at
some parameter θ where infθ R(θ) is reached. As we do not have this information,
and are as a rule faced with the perspective that this infimum may be reached at
any given location, we have to spread π over the whole parameter space Θ. In
which way it should be spread depends on the kind of goal we want to achieve and
on the kind of informations we may have on P and therefore on θ 7→ R(θ). For
instance, if Θ = [0, 1]d and it is known that θ 7→ R(θ) is twice differentiable and

(5.2) Det
[

∂2

∂θ2
R(θ)

]
≤ H(θ)

at each point θ where R(θ) reaches its minimum, then it makes sense to choose for
π the probability distribution whose density with respect to the Lebesgue measure
is proportional to

√
H(θ), because this is the choice that makes

− 1
λ

log
{

π
[
exp
[
−λR(θ)

]]}
− inf

θ
R(θ)

asymptotically constant (i.e. independent of the point where infθ R(θ) is reached)
when λ tends to infinity and the bound (5.2) is reached (notice that the optimal
value of λ is at least of order

√
N). It is clear anyhow that such a bound as (5.2)

implies that some information on P — or at least on the marginal distribution
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16 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

of the pattern X under P — is known. The introduction of exchangeable prior
distributions in chapter 2 (which indeed are not proper prior distributions, since
they are allowed to depend on the patterns) will lead to more obvious ways to
choose the prior, and to some kind of automated adaptation of the prior to the
pattern distribution.

5.3. Optimizing the parameter λ. Another important remark is to notice
that corollary 5.1 can also be optimized in λ. A simple way to do this is to consider
a countable (possibly dense) family Λ ⊂ R and some probability measure ν on Λ.
Defining λ̂ to be the minimizer in λ ∈ Λ of(

1− κ
λ

N

)−1

inf
ρ∈M1

+(Θ)

{
ρ
[
r(θ)

]
+

1
λ

K(ρ, π)−
log
[
εν(λ)

]
λ

}
,

we get some estimator ρ̂λ̂ satisfying with P⊗N probability at least 1− ε

ρ̂λ̂

[
R(θ)

]
≤ inf

λ∈Λ,ρ∈M1
+(Θ)

(
1− κ

λ

N

)−1{
ρ
[
r(θ)

]
+

1
λ

K(ρ, π)− 1
λ

log
[
εν(λ)

]}
.

A more sophisticated way to optimize in λ is to establish a learning lemma
uniform in both λ and ρ. Let ν ∈ M(R+,B) be some prior on the positive real line
equipped with the Borel sigma algebra. Similarly to what has been proved before

Proposition 5.4. With P⊗N probability at least 1 − ε, for any posterior dis-
tributions µ ∈ M1

+(R+) such that µ(κλ2)
µ(λ)N < 1 and any ρ ∈ M1

+(Θ),

ρ
[
R(θ)

]
≤

(
1−

µ
(
κλ2

)
µ(λ)N

)−1{
ρ
[
r(θ)

]
+

1
µ(λ)

[
K(ρ, π) + K(µ, ν) + log(ε−1)

]}
.

(The union bound approach is the special case of this last inequality where ν
has a countable support and µ is a Dirac mass).

Of course, the link previously made between empirical and theoretical bounds
can be carried over to the empirical bounds optimized in λ :

Corollary 5.5. If µ̂ and ρ̂ = πexp(−µ̂(λ)r) are the optimizers of the empirical
bound of proposition 5.4 at level of confidence ε, then with P⊗N probability at least
1− ε

ρ̂
[
R(θ)

]
≤ inf

µ,ρ

{(
1−

µ
(
κλ2

)
µ(λ)N

)−1{(
1 + g

(µ(λ)
N

)µ(λ)
N

)
ρ
[
R(θ)

]
+

1
µ(λ)

[
K(ρ, π) + K(µ, ν) + 2 log( 2

ε )
]}}

,

where the infimum in µ is taken over all the distributions of M1
+(R+) such that

µ(κλ2)
µ(λ)N < 1, and the infimum in ρ is taken over M1

+(Θ).

Anyhow, we mentioned proposition 5.4 and its corollary rather as a curiosity,
using the union bound on a grid (which is by the way a special case of this propo-
sition) being quite sufficient in practice. Let us make this more explicit. Consider

Adaptive classification Olivier Catoni – October 9, 2004



5. A SHORT USERS GUIDE TO EMPIRICAL BOUNDS 17

for some real parameter α > 1 the grid

Λ =
{

2Nα−k : k ∈ N, 0 ≤ k ≤ log(2N)
log(α)

}
.

Let us consider the uniform probability distribution on Λ, in other words, let us
choose

ν =
1
|Λ|

∑
λ′∈Λ

δλ′ .

We get with P⊗N probability at least 1 − ε that for any posterior distribution
ρ ∈ M1

+(Θ),

ρ
[
R(θ)

]
≤ inf

λ′∈Λ

(
1− g(λ′

N )
λ′

N

)−1{
ρ
[
r(θ)

]
+

1
λ′

[
K(ρ, π) + log

[ log(2N)
log(α) + 1

]
+ log(ε−1)

]}
≤ inf

λ∈[1,2N ]

(
1− g(αλ

N )
αλ

N

)−1{
ρ
[
r(θ)

]
+

1
λ

[
K(ρ, π) + log

[
log(2N)
log(α) + 1

]
+ log(ε−1)

]}
,

where the infima in λ′ and λ are restricted to those values for which g(λ′

N )λ′

N < 1
and g(αλ

N )αλ
N < 1 respectively.

The second inequality is obtained by considering that for any λ ∈ [1, 2N ] there
is λ′ ∈ Λ such that λ ≤ λ′ ≤ αλ. Moreover the right-hand side of it is minimized
for any fixed value of λ by the Gibbs distribution πexp(−λr) (see (3.1)), which we
will write for short as ρ̂λ = πexp(−λr).

Corollary 5.6. For any α > 1, with P⊗N probability at least 1 − ε, for any
λ ∈ [1, 2N ] such that g(αλ

N )αλ
N < 1,

ρ̂λ

[
R(θ)

]
≤
(

1− g(αλ
N )

αλ

N

)−1 1
λ

{
− log

{
π
[
exp
[
−λr(θ)

]]}
+ log

[
log(2N)
log(α) + 1

]
+ log(ε−1)

}
.

Let us remark that it can be useful for computing log
{

π
[
exp
[
−λr(θ)

]]}
to use

the identity

− log
{

π
[
exp
[
−λr(θ)

]]}
=
∫ λ

0

ρ̂β

[
r(θ)

]
dβ,

and to notice that for any sequence β0 = 0 < β1 < · · · < βm = λ,
m∑

k=1

(βk − βk−1)ρ̂βk

[
r(θ)

]
≤
∫ λ

0

ρ̂βdβ ≤
m∑

k=1

(βk − βk−1)ρ̂βk−1

[
r(θ)

]
.

(This comes from the fact that β 7→ ρ̂β

[
r(θ)

]
is decreasing, its derivative being the

opposite of the variance of r(θ) under ρ̂β .)
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18 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

5.4. Bounding the deviations under the posterior. Let us note also that
the upper deviations of the risk R(θ) under the Gibbs posterior ρ̂λ can easily be
bounded. This is important, since it proves that the posterior can be used to pick
some parameter θ̂ once for all and then use fθ̂ to classify all forthcoming data.

Indeed with P⊗N probability at least 1− ε, for any λ ∈ [1, 2N ], any β ∈ R+,

log
{

ρ̂λ

{
exp
[
βR(θ)

]}}
= sup

ρ∈M1
+(Θ)

βρ
[
R(θ)

]
−K(ρ, ρ̂λ)

= sup
ρ∈M1

+(Θ)

βρ
[
R(θ)

]
−K(ρ, π)

− λρ
[
r(θ)

]
− log

{
π
[
exp
[
−λr(θ)

]]}
≤ β

(
1− g(αλ

N )
αλ

N

)−1{
ρ
[
r(θ)

]
+

1
λ

{
K(ρ, π) + log(ε−1) + log

[
log(2N)
log(α) + 1

]}}
−K(ρ, π)− λρ

[
r(θ)

]
− log

{
π
[
exp
[
−λr(θ)

]]}
.

Thus choosing β = λ
(
1− g(αλ

N )αλ
N

)
, we get

log
{

ρ̂λ

[
exp
[
βR(θ)

]]}
≤ − log

{
π
[
exp
[
−λr(θ)

]]}
+ log(ε−1) + log

[
log(2N)
log(α) + 1

]
.

This proves

Corollary 5.7. For any real constant α > 1, with P⊗N probability at least
1− ε, for any λ ∈ [1, 2N ] such that g(αλ

N )αλ
N < 1, with ρ̂λ probability at least 1− η,

R(θ) ≤
(

1− g(αλ
N )

αλ

N

)−1 1
λ

{
− log

{
π
[
exp
[
−λr(θ)

]]}

− log(εη) + log
[

log(2N)
log(α) + 1

]}
.

Although we will not mention it any further, the same kind of upper deviation
bounds with respect to the Gibbs posterior can be derived from the results presented
in the sequel of this article.

5.5. Example. Before delving into improvements, let us illustrate the use of
these simple bounds to build aggregated classifiers.

Let {fθ : X → {−1,+1}; θ ∈ Θ} be some family of classification rules in a two
classes pattern recognition problem. Here the label space is equal to Y = {−1,+1}.
For any probability measure ν ∈ M1

+(Θ), we consider the aggregated classifier

fν(x) = sign
(
ν
[
fθ(x)

])
.

If P is as previously the joint distribution of the patterns and labels, then the error
rate of fν is

R(ν) = P
{

Y 6= sign
[
ν
[
fθ(X)

]]}
,
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and the corresponding empirical risk is

r(ν) =
1
N

N∑
i=1

1

{
Yi 6= sign

[
ν
[
fθ(Xi)

]]}
.

In this problem, the space of parameters is Θ′ = M1
+(Θ) and we need to consider

some reference measure on this space to apply our method. One way to do this is
to consider the mapping

Ψ : ΘM → Θ′

θM
1 7→ 1

M

M∑
i=1

δθi
.

Consider some reference probability measure π ∈ M1
+(Θ) and build a prior π′

belonging to M1
+(Θ′) from the formula

π′ = π⊗M ◦Ψ−1.

Lemma 5.8. For any probability measure ρ ∈ M1
+(ΘM ), the posterior distribu-

tion ρ′ = ρ ◦Ψ−1 on M1
+(Θ′) is such that

K(ρ′, π′) ≤ K(ρ, π⊗M ).

Proof. This is a consequence of the decomposition of the Kullback divergence
function :

K(ρ, π⊗M ) = K(ρ′, π′) + ρ

{
K
[
ρ
[
dθM

1 |Ψ(θM
1 )
]
, π⊗M

[
dθM

1 |Ψ(θM
1 )
]]}

.

Note that equality holds when ρ is a product measure. �

From corollary 5.6, a real parameter α > 1 being chosen, with P⊗N probability
at least 1− ε, for any λ ∈ [1, 2N ] such that g(αλ

N )αλ
N < 1, any ρ ∈ M1

+(ΘM ),

ρ
{

R
[
Ψ(θM

1 )
]}

≤
(

1− g(αλ
N )

αλ

N

)−1{
ρ
{

r
[
Ψ(θM

1 )
]}

+
1
λ

[
K(ρ, π⊗M ) + log(ε−1) + log

[
log(2N)
log(α) + 1

]]}
.

Optimizing the right-hand side of this empirical inequality in ρ gives a posterior
ρ̂λ defined by

dρ̂λ(θM
1 ) ∝ exp

{
−λ

1
N

N∑
i=1

1

[
Yi 6= sign

[
1
M

M∑
j=1

fθj (Xi)
]]}

dπ⊗M (θM
1 ).

Theorem 5.9. For any real parameter α > 1, with P⊗N probability at least
1− ε, for any choice of inverse temperature λ ∈ [1, 2N ] such that g(αλ

N )αλ
N < 1,

ρ̂λ

{
R
[
Ψ(θM

1 )
]}

≤
(

1− g(αλ
N )

αλ

N

)−1 1
λ

{
− log

{
π⊗M

[
exp
[
−λr

[
Ψ(θM

1 )
]]]}

+ log(ε−1) + log
[

log(2N)
log(α) + 1

]}
.
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20 CHAPTER 1. A PAC-BAYESIAN APPROACH TO ADAPTIVE INFERENCE

A union bound can furthermore be used to optimize the value of M .
The posterior ρ̂λ can be simulated using a Metropolis algorithm at temperature

λ. A simulated annealing scheme can be useful to compute an approximation of
the right-hand side. Indeed, as we have already mentioned, we can write

− log
{

π⊗M

[
exp
[
−λr

[
Ψ(θM

1 )
]]]}

=
∫ λ

0

ρ̂γ

{
r
[
Ψ(θM

1 )
]}

dγ

≤
m∑

k=1

(βk − βk−1)ρ̂βk−1

{
r
[
Ψ(θM

1 )
]}

for any sequence of inverse temperatures β0 = 0 < β1 < · · · < βm = λ. This leads to
the following computation scheme : estimate ρ̂βk

{
r
[
Ψ(θM

1 )
]}

for increasing values

of βk and compute the bound for ρ̂βk

{
R
[
Ψ(θM

1 )
]}

. Keep the temperature with
the best bound. If we do not trust the constants in the bound, we can keep the
highest temperature for which the bound is not more than a certain level above its
minimum value. This could lead to less regularized estimators while keeping some
warranty against over fitting.

In practice, one of the most successful method for aggregating classification
rules is the boosting algorithm. We refer to [19] for more informations on this
topic, and to [21] which explains how the PAC-Bayesian approach can be used to
study classification rules of the boosting type. Another (presumably more pow-
erful, although it would not be so easy to prove it mathematically) approach for
aggregating classifiers using support vector machines will be described in chapter
5.

5.6. Comments. The results of this section have at least two weaknesses:
• the penalty K(ρ, π) is not as local as it could be;
• noisy samples are not handled properly, at least as far as theoretical

bounds are concerned (the situation for the computation of an empirical
level of confidence for the error rate being different, as already mentioned).

We have also in mind to make some connection between the penalty terms
presented here and Vapnik’s entropy. This is to be the subject of the following
sections and chapters.

6. Localized learning lemmas

The loss of localization in the use we made so far of lemma 4.3 comes from
the choice of η(θ) : the level of confidence, i.e. the right-hand side of the learning
inequality, appears as the expectation under the prior π of contributions coming
from each possible value of the parameter θ. We used to make these contributions
equal to ε for each θ. Another choice stems from the remark that we are only
interested in the relationship between the points where the minimum of R(θ) is
reached and the points where the minimum of r(θ) is reached. This means that
for values of R(θ) away from infθ R(θ), we only want to make sure that r(θ) is
sufficiently above infθ r(θ): therefore we can afford larger confidence intervals for
these values, resulting in higher confidence levels.

As the lower bound of the confidence interval for r(θ) (we are not interested
in the upper bound, which we can take to be infinite) is R(θ) − η(θ), a better
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localization may be expected from choosing a larger value for η(θ). A natural choice
(indexed by some positive parameter β tuning the strength of the localization) is

η(θ) =
λ2

N
g
(

λ
N

)
R(θ) + βR(θ) + log

{
π
[
exp
(
−βR

)]}
+ log(ε−1).

This leads to

(6.1) P⊗N

{
sup

ρ∈M1
+(Θ)

(
λ− β − κ

λ2

N

)
ρ
[
R(θ)

]
− λρ

[
r(θ)

]
−K(ρ, π)− log

{
π
[
exp
[
−βR(θ)

]]}
≥ log(ε−1)

}
≤ ε,

where we have put as usual κ = g( λ
N ) for short and where we assume that we

have chosen parameters such that λ − β − κλ2

N > 0. As we will see, we will need
a non uniform reverse bound. Using theorem 4.1, we can easily see that for any
distribution ρ ∈ M1

+(Θ),

(6.2) P⊗N

{
λρ
[
r(θ)

]
−
(

λ + κ
λ2

N

)
ρ
[
R(θ)

]
≥ log(ε−1)

}
≤ ε.

To exploit these inequalities, we need an empirical upper bound for
log
{

π
[
exp
[
−βR(θ)

]]}
. This is where the reverse inequality (6.2) comes into play:

let us put

dπexp(−λR)(θ) =
exp
[
−λR(θ)

]
π
{

exp
[
−λR(θ)

]}dπ(θ),

with P⊗N probability at least 1− ε,

log
{

π
[
exp
[
−βR(θ)

]]}
= −βπexp(−βR)

[
R(θ)

]
−K(πexp(−βR), π)

≤ sup
ρ∈M1

+(Θ)

β

1 + κ λ
N

{
−ρ
[
r(θ)

]
+

log(ε−1)
λ

}
−K(ρ, π)

= log
{

π
[
exp
[
− β

1 + κ λ
N

r(θ)
]]}

+
β

λ + κλ2

N

log(ε−1).

Putting ξ = β

λ+κ λ2
N

, this can be rewritten as

(6.3) log
{

π
[
exp
[
−βR(θ)

]]}
≤ log

{
π
[
exp
[
−ξλr(θ)

]]}
+ ξ log(ε−1).

Combining this result with (6.1), we get

Lemma 6.1 (localized learning lemma, first form). For any λ ∈ R+ and ξ ∈
[0, 1[ such that (1− ξ)− (1 + ξ)κ λ

N > 0,

P⊗N

{
sup

ρ∈M1
+(Θ)

(
(1− ξ)λ− (1 + ξ)κ

λ2

N

)
ρ
[
R(θ)

]
− λρ

[
r(θ)

]
−K(ρ, π)− log

{
π
[
exp
[
−ξλr(θ)

]]}
≥ (1 + ξ) log( 2

ε )
}
≤ ε
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Another way to write this localized learning lemma is to remark that for any
ρ ∈ M1

+,

K(ρ, π) + log
{

π
[
exp
[
−ξλr(θ)

]]}
= K

(
ρ, π

exp
[
−ξλr(θ)

])− ξλρ
[
r(θ)

]
,

where

dπ
exp
[
−ξλr(θ)

](θ) =
exp
[
−ξλr(θ)

]
π
[
exp
[
−ξλr(θ)

]]dπ(θ).

Lemma 6.2 (localized learning lemma, second form). For any λ ∈ R+ and
ξ ∈ [0, 1[ such that (1− ξ)− (1 + ξ)κ λ

N > 0,

P⊗N

{
sup

ρ∈M1
+(Θ)

(
(1− ξ)λ− (1 + ξ)κ

λ2

N

)
ρ
[
R(θ)

]
− (1− ξ)λρ

[
r(θ)

]
−K

(
ρ, π

exp
[
−ξλr(θ)

]) ≥ (1 + ξ) log( 2
ε )
}
≤ ε

Note that the newly introduced parameter ξ controls the level of localization of
the bound : the value ξ = 0 corresponds to the non localized learning lemma (up
to some minor loss in the confidence level).

Applying the first form of the localized learning lemma, we see that the optimal
posterior ρ̂λ is of the same form as in the non localized case :

dρ̂λ(θ) =
exp
[
−λr(θ)

]
π
{

exp
[
−λr(θ)

]}dπ(θ).

It satisfies

Corollary 6.3. For any λ ∈ R+ and ξ ∈ [0, 1] such that
(1− ξ)− (1 + ξ)κ λ

N > 0, with P⊗N probability at least 1− ε,

ρ̂λ

[
R(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)κ

λ2

N

]−1{
− log

{
π
[
exp
[
−λr(θ)

]]}
+ log

{
π
[
exp
[
−ξλr(θ)

]]}
+ (1 + ξ) log( 2

ε )
}

=
(

1− 1 + ξ

1− ξ
κ

λ

N

)−1{ 1
1− ξ

∫ 1

ξ

ρ̂βλ

[
r(θ)

]
dβ +

(1 + ξ)
(1− ξ)λ

log
(

2
ε

)}
≤
(

1− 1 + ξ

1− ξ
κ

λ

N

)−1{
ρ̂ξλ

[
r(θ)

]
+

(1 + ξ)
(1− ξ)λ

log( 2
ε )
}

Let us remark that this theorem is quite satisfactory from the point of view of
localization. It says that the performance of the Gibbs randomized estimator on
the observed sample used for training can be trusted to be the same as it will be
on forthcoming patterns, up to some penalty factors which do not depend on the
size of the model and some increase of the temperature from 1

λ to 1
ξλ : it can be

said that the complexity of the model is taken into account by the Gibbs estimator
in an automated way.

Another interesting — although suboptimal — choice of the posterior distribu-
tion ρ in lemma 6.2 is to cancel the divergence term by considering ρ = ρ̂ξλ. This
is handy as it provides a way to compare ρ̂λ

[
R(θ)

]
with ρ̂λ

[
r(θ)

]
.
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Corollary 6.4. For any λ > 0, any ξ ∈ [0, 1[, such that g( λ
ξN ) (1+ξ)λ

ξ(1−ξ)N < 1,
with P⊗N probability at least 1− ε,

ρ̂λ

[
R(θ)

]
≤
(

1− g
(

λ
ξN

) (1 + ξ)λ
ξ(1− ξ)N

)−1{
ρ̂λ

[
r(θ)

]
+

ξ(1 + ξ)
(1− ξ)λ

log( 2
ε )
}

.

To get a theoretical localized bound, we can come back to (6.1) to see that for
any fixed probability measure ρ ∈ M1

+(Θ), with P⊗N probability at least 1− ε,

ρ̂λ

[
R(θ)

]
≤
[
λ− β − κ

λ2

N

]−1{
λρ
[
r(θ)

]
+ K(ρ, π)

+ log
{

π
[
exp
[
−βR(θ)

]]}
+ log(ε−1)

}
.

Moreover, from Bernstein’s inequality (4.2), with P⊗N probability at least 1−ε,

λρ
[
r(θ)

]
≤
(

λ + κ
λ2

N

)
ρ
[
R(θ)

]
+ log(ε−1).

Thus, putting β = ξλ, with P⊗N probability at least 1− ε,

ρ̂λ

[
R(θ)

]
≤
[
(1− ξ)λ− κ

λ2

N

]−1{(
λ + κ

λ2

N

)
ρ
[
R(θ)

]
+ K(ρ, π) + log

{
π
[
exp
[
−ξλR(θ)

]]}
+ 2 log

(
2
ε

)}
.

As explained in the case of non localized bounds, the right-hand side being non
random can be optimized in ρ, leading to

Corollary 6.5. For any λ > 0 such that 1 − κ λ
N > 0, with P⊗N probability

at least 1− ε,

ρ̂λ

[
R(θ)

]
≤ inf

ξ∈[0,1−κ λ
N [

(
1− κ

1− ξ

λ

N

)−1{ 1
1− ξ

∫ 1+κ λ
N

ξ

π
exp
[
−βλR(θ)

][R(θ)
]
dβ

+
2

(1− ξ)λ
log
(

2
ε

)}
≤ inf

ξ∈[0,1−κ λ
N [

(
1− κ

1− ξ

λ

N

)−1{(
1 +

κ

1− ξ

λ

N

)
π

exp
[
−ξλR(θ)

][R(θ)
]

+
2

(1− ξ)λ
log
(

2
ε

)}
.

Let us show now how to make corollary 6.3 uniform in λ and ξ, as it is desirable
to optimize these two constants.

Let us first use a union bound on λ for a fixed value of ξ. Let ζ be some
constant in [ξ, 1[, (we can for instance choose ζ = max{ξ, 1

2}) and let

Λ =
{

2Nζk , 0 ≤ k <
log(2N)
log(ζ−1)

}
.

For any λ ∈ [1, 2N ], let λ′ ∈ Λ be such that ζλ′ ≤ λ ≤ λ′. From lemma 6.1 we
deduce that with P⊗N probability at least 1− ε, for any λ ∈ [1, 2N ],
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ρ̂λ

[
R(θ)

]
≤

[
(1− ξ)λ′ − (1 + ξ)g(λ′

N )
λ′

2

N

]−1{
λ′ρ̂λ

[
r(θ)

]
+ K(ρ̂λ, π)

+ log
{

π
[
exp
[
−ξλ′r(θ)

]]}
+ (1 + ξ) log

[
2
ε

(
log(2N)
log(ζ−1) + 1

)]}
We can now use the fact that

K(ρ̂λ, π) = − log
{

π
[
exp
[
−λr(θ)

]]}
− λρ̂λ

[
r(θ)

]
to get

ρ̂λ

[
R(θ)

]
≤
(

1− ξ − (1 + ξ)g(λ′

N )
λ′

N

)−1{
(1− λ

λ′ )ρ̂λ

[
r(θ)

]
+
∫ λ

λ′

ξ

ρ̂βλ′
[
r(θ)

]
dβ +

(1 + ξ)
λ′

log
[

2
ε

(
log(2N)
log(ζ−1) + 1

)]}
.

Let us remark now that∫ λ
λ′

ξ

ρ̂βλ′
[
r(θ)

]
dβ +

(
1− λ

λ′

)
ρ̂λ

[
r(θ)

]
≤
∫ λ/λ′

ξ

ρ̂βλ

[
r(θ)

]
dβ +

∫ 1

λ/λ′
ρ̂λβ

[
r(θ)

]
dβ

=
∫ 1

ξ

ρ̂βλ

[
r(θ)

]
dβ.

We have proved

Theorem 6.6. For any ξ ∈ [0, 1[, any ζ ∈ [ξ, 1[, with P⊗N probability at least
1− ε, for any λ ∈ [1, 2N ] such that 1− ξ − (1 + ξ)g( λ

ζN ) λ
ζN > 0,

ρ̂λ

[
R(θ)

]
≤

1
1− ξ

∫ 1

ξ

ρ̂βλ

[
r(θ)

]
dβ +

(1 + ξ)
(1− ξ)λ

log
[
2
ε

(
log(2N)
log(ζ−1)

+ 1
)]

1− 1 + ξ

1− ξ
g

(
λ

ζN

)
λ

ζN

≤
ρ̂ξλ

[
r(θ)

]
+

(1 + ξ)
(1− ξ)λ

log
[
2
ε

(
log(2N)
log(ζ−1)

+ 1
)]

1− 1 + ξ

1− ξ
g

(
λ

ζN

)
λ

ζN

.

Comparing this results with corollary 6.3 shows that gaining uniformity in λ
is quite harmless to the quality of the bound. We can of course now go further by
using a union bound for different values of ξ. Since the bound explodes when ξ = 1
and the degree of localization is linked with the order of magnitude of ξ, we would
suggest a discretization set for ξ of the form{

αk , 1 ≤ k ≤ log(N)
log(α−1)

}
.

If we want to choose α as a function of N and still avoid introducing log(N)
factors in the bound, we can for instance choose α = 1− 1

log(N) .
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7. Noisy pattern recognition

The mathematical setting is the same as previously, and we assume without
further notice that there exists a regular version of the conditional probability
measure P (Y |X). In this section, we are going to bring further improvements in
the case when infθ∈Θ R(θ) > 0. This can result from various causes:

• The observed sample may be “noisy” in the sense that it is drawn accord-
ing to a joint distribution P for which the best achievable error rate for
pattern x, infy∈Y P (Y 6= y |X = x) is large for many patterns. This noise
may come either from an inherently ambiguous classification task or from
errors made in labeling the training examples.

• Even if the sample is not noisy, the best available classification rule may
be poor.

The theoretical bounds in the previous section were at best of order infθ R(θ)+√
R(θ)
N + c

N , leading to a convergence speed not faster than 1√
N

in the case of a
noisy sample. We will improve this rate in the case when some classification rule feθ
produces the most likely label among all the available rules for a strong majority
of patterns.

To formulate this we will consider some distinguished classification rule feθ.
The most favorable case is when R(θ̃) = infθ∈Θ R(θ), but this condition will not be
strictly imposed here. The case when θ̃ 6∈ Θ makes no difference : it is covered by
adding θ̃ to the parameter set Θ and extending the prior π putting π(θ̃) = 0. Of
course θ̃, whose clever choice is bound to depend on P , is not assumed to be known
by the statistician !

Let us introduce the following relative quantities, where VarP denotes the
variance with respect to P :

R(θ) = P
[
Y 6= fθ(X)

]
− P

[
Y 6= feθ(X)

]
r(θ) =

1
N

N∑
i=1

1
[
Yi 6= fθ(Xi)

]
− 1

[
Yi 6= feθ(Xi)

]
V (θ) = VarP

{
1
[
Y 6= fθ(X)

]
− 1

[
Y 6= feθ(X)

]}
R(θ |X) = P

[
Y 6= fθ(X) |X

]
− P

[
Y 6= feθ(X) |X

]
V (θ |X) = VarP

{
1
[
Y 6= fθ(X)

]
− 1

[
Y 6= feθ(X)

]
|X
}

.

Let us define for any pattern x ∈ X the margin α(x) of success of feθ(x) as

α(x) = min
{

R(θ |x), θ ∈ Θ, fθ(x) 6= feθ(x)
}

.

(In this formula we assume that some realization of the conditional expectations
has been chosen once for all). Note that α(x) may be negative in the case when
feθ(x) is not the most likely label for pattern x.

Thresholding the margin α(x) at level α defines some exceptional set Ωα of
“α-ambiguous” patterns :

Ωα
def=
{
x ∈ X : α(x) < α

}
.
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We introduce this notion of ambiguity to control the variance V (θ) by the mean
R(θ) of the relative error rate. Indeed1

V (θ) = P
[
V (θ |X)

]
+Var

[
R(θ |X)

]
≤ P

[
R(θ |X)

α
1(X 6∈ Ωα) + 1(Ωα)

]
+ P

[
R(θ |X)2

]
≤ 1

α

[
R(θ) + P (Ω0)

]
+ P (Ωα) + R(θ) + 2P (Ω0)

= aR(θ) + b,

where we have put

a =
(

1
α

+ 1
)

,

b =
(

1
α

+ 2
)

P (Ω0) + P (Ωα).

Applying Bernstein’s theorem 4.1 in a way similar to what has already been
done to establish lemma 4.3 in the previous section, we get some non localized
learning lemma

Lemma 7.1. For any λ ∈ R+, any lower-bounded measurable function
η : Θ → R,

P⊗N

{
sup

ρ∈M1
+

λρ
[
R(θ)

]
− λρ

[
r(θ)

]
−K(ρ, π)− η(θ) ≥ 0

}

≤ π

{
exp
[
g

([
1 + R(θ)

]
λ

N

)
(aR(θ) + b)

λ2

N
− η(θ)

]}
.

In the same way

P⊗N

{
sup

ρ∈M1
+

λρ
[
r(θ)

]
− λρ

[
R(θ)

]
−K(ρ, π)− η(θ) ≥ 0

}

≤ π

{
exp
[
g

([
1−R(θ)

]
λ

N

)
(aR(θ) + b)

λ2

N
− η(θ)

]}
.

1My PhD student Jean-Yves Audibert made the remark that the following inequalities could
be improved to:

V (θ) ≤ P
nh
1

ˆ
Y 6= fθ(X)

˜
− 1

ˆ
Y 6= feθ(X)

˜i2o
≤ P

h
1

ˆ
fθ(X) 6= feθ(X)

˜i
≤ P

"
R(θ |X)

α
1(X 6∈ Ωα) + 1(Ωα)

#

≤
1

α
R(θ) +

1

α
P (Ω0) + P (Ωα).

Therefore the constants a and b can be improved to a = 1
α

and b = 1
α

P (Ω0) + P (Ωα). Empirical

bounds without margin assumptions (i.e. where the variance V (θ) is bounded by some empir-
ical quantity, whereas b depends on the unknown sample distribution P ) are to be found in a

forthcoming paper of Jean-Yves Audibert.
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7.1. Non localized results. Putting κ = g
(

2λ
N

)
and taking

η(θ) = κ
[
aR(θ) + b

]λ2

N
+ log(ε−1),

we get

Corollary 7.2. For any λ > 0 such that κa λ
N < 1, with P⊗N probability at

least 1− ε, for any posterior ρ ∈ M1
+(Θ),

(7.1) ρ
[
R(θ)

]
≤ R(θ̃) +

(
1− κa

λ

N

)−1{
ρ
[
r(θ)

]
− r(θ̃)

+
1
λ

[
K(ρ, π) + log(ε−1)

]
+ κb

λ

N

}
.

Note that the right-hand side of inequality (7.1) is not an observable quantity.
Anyhow, it differs from an observable quantity by an additive term independent of
ρ, thus it is still possible to optimize it in ρ from empirical observations. It is also
possible to get an empirical bound for ρ

[
R(θ)

]
−R(θ̃), the defect of optimality of the

randomized estimator built from ρ, using the trivial bound −r(θ̃) ≤ − infθ∈Θ r(θ).
The optimal posterior for this bound is as before the Gibbs posterior ρ̂λ. It satisfies

Corollary 7.3. For any λ > 0 such that κa λ
N < 1, with P⊗N probability at

least 1− ε,

(7.2) ρ̂λ

[
R(θ)

]
≤ R(θ̃)

+
(

1− κa
λ

N

)−1{ 1
λ

∫ λ

0

ρ̂β

[
r(θ)

]
dβ − r(θ̃) +

log(ε−1)
λ

+ κb
λ

N

}
.

Moreover

P⊗N
{

ρ̂λ

[
R(θ)

]}
≤ R(θ̃)

+
(

1− κa
λ

N

)−1{
inf

ρ∈M1
+(Θ)

{
ρ
[
R(θ)

]
+

1
λ

K(ρ, π)
}
−R(θ̃) + κb

λ

N

}
.

Note that in the case when π({θ̃}) > 0 (that is presumably when Θ is count-
able), and moreover when b = 0, we get

P⊗N
{

ρ̂λ

[
R(θ)

]}
≤ R(θ̃) +

log
[
π({θ̃})−1

]
λ
(
1− κa λ

N

) .

Choosing λ = N
2a and noticing that for this value of λ, κ = g

(
2λ
N

)
≤ g(0.5) ≤ 1, we

get

P⊗N
{

ρ̂ N
2a

[
R(θ)

]}
≤ R(θ̃) +

4a log
[
π({θ̃})−1

]
N

.

Therefore, we achieve a rate of convergence of 1/N whatever the order of magnitude
of R(θ̃) may be, as requested.

Moreover getting uniform results in λ can be achieved as explained before.
Using for some α > 1 a grid Λ = {2Nα−k : 0 ≤ k ≤ log(2N)/ log(α)}, a union
bound for this grid, and comparing values of λ ∈ [1, 2N ] with the next value in the
grid, we get
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Corollary 7.4. For any α > 1, with P⊗N at least 1 − ε, for any posterior
distribution ρ ∈ M1

+(Θ),

ρ
[
R(θ)

]
≤ R(θ̃) + inf

λ∈[1,2N ]

(
1− κa

αλ

N

)−1{
ρ
[
r(θ)

]
− r(θ̃)

+
1
λ

[
K(ρ, π) + log

(
log(2N)
log(α) + 1

)
+ log

(
ε−1
)]

+ κb
αλ

N

}
,

where κ = g( 2αλ
N ), and the infimum in λ is restricted to those values for which

κaαλ
N < 1.

Note that to perform the optimization in λ from empirical data, we need first
to apply the empirical bound −r(θ̃) ≤ − infθ∈Θ r(θ).

7.2. Localized results. A localized learning lemma can be established ex-
actly as explained in the previous section. It requires to choose

η(θ) = κ
[
aR(θ) + b

]λ2

N
+ βR(θ) + log

{
π
[
exp
[
−βR(θ)

]]}
+ log(ε−1),

where κ = g( 2λ
N ) and the parameters are such that λ− β − κaλ2

N > 0.

Lemma 7.5. With P⊗N probability at least 1− ε,

ρ
[
R(θ)

]
≤
(

λ− β − κa
λ2

N

)−1{
λρ
[
r(θ)

]
+ K(ρ, π)

+ log
{

π
[
exp
[
−βR(θ)

]]}
+ log(ε−1) + κb

λ2

N

}
.

Moreover, for any ρ ∈ M1
+(Θ), with P⊗N probability at least 1− ε,

−ρ
[
R(θ)

]
≤
(

λ + κa
λ2

N

)−1{
−λρ

[
r(θ)

]
+ log(ε−1) + κb

λ2

N

}
.

Putting ξ = β
λ(1+aκ λ

N )
, we see that with P⊗N probability at least 1− ε,

log
{

π
[
exp
[
− βR(θ)

]]}
= −βπexp(−βR)

[
R(θ)

]
−K(πexp(−βR), π)

≤ −ξλπexp(−βR)

[
r(θ)

]
+ ξ log(ε−1) + ξbκ

λ2

N
−K(πexp(−βR), π)

≤ sup
ρ∈M1

+(Θ)

−ξλρ
[
r(θ)

]
+ ξ log(ε−1) + ξbκ

λ2

N
−K(ρ, π)

= log
{

π
[
exp
[
−ξλr(θ)

]]}
+ ξ log(ε−1) + ξbκ

λ2

N

Coming back to lemma 7.5, we obtain

Corollary 7.6. For any λ > 0 and any ξ ∈ [0, 1[ such that
1 − ξ − (1 + ξ)κa λ

N > 0, with P⊗N probability at least 1 − ε, for any posterior
ρ ∈ M1

+,

ρ
[
R(θ)

]
−R(θ̃) ≤

(
1− 1 + ξ

1− ξ
κa

λ

N

)−1{
ρ
[
r(θ)

]
− r(θ̃)
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+
1

(1− ξ)λ

[
K(ρ, ρ̂ξλ) + (1 + ξ) log( 2

ε )
]

+ κ
1 + ξ

1− ξ
b

λ

N

}
=
(

1− 1 + ξ

1− ξ
κa

λ

N

)−1
{

1
(1− ξ)λ

[
λρ
[
r(θ)

]
+ K(ρ, π) + log

{
π
[
exp
[
−ξλr(θ)

]]}]

− r(θ̃) +
1 + ξ

1− ξ

[
log(2

ε )
λ

+ κb
λ

N

]}
.

The optimal posterior according to this bound is the Gibbs distribution ρ̂λ. It is
such that

ρ̂λ

[
R(θ)

]
−R(θ̃) ≤

(
1− 1 + ξ

1− ξ
κa

λ

N

)−1
{

1
1− ξ

∫ 1

ξ

ρ̂βλ

[
r(θ)

]
dβ︸ ︷︷ ︸

≤ρ̂ξλ[r(θ)]

− r(θ̃) +
1 + ξ

1− ξ

[
log(2

ε )
λ

+ κb
λ

N

]}
.

For a fixed value of ξ, getting a uniform result in λ is achieved as in the case
of theorem 6.6:

Corollary 7.7. For any ξ ∈ [0, 1[, any ζ ∈ [ξ, 1[, with P⊗N probability at
least 1− ε, for any λ ∈ [1, 2N ] such that 1− ξ − (1 + ξ)g( 2λ

κN )κa λ
ζN > 0,

ρ̂λ

[
R(θ)

]
−R(θ̃) ≤

(
1− 1 + ξ

1− ξ
g
(

2λ
ζN

)
a

λ

ζN

)−1
{

1
1− ξ

∫ 1

ξ

ρ̂βλ

[
r(θ)

]
dβ︸ ︷︷ ︸

≤ρ̂ξλ[r(θ)]

−r(θ̃)

+
1 + ξ

1− ξ

[
1
λ

log
[

log(2N)
log(ζ−1) + 1

]
+ log

(
2
ε

)
+ κb

λ

ζN

]}
The same remarks which were made about theorem 6.6 apply here : a union

bound on different values of ξ can furthermore be performed. Let us also notice that
optimizing the bound in λ from observations requires to use the empirical bound
−r(θ̃) ≤ − infθ∈Θ r(θ).
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CHAPTER 2

Learning with an exchangeable prior

1. The Vapnik Cervonenkis dimension of a family of subsets

Let us consider some set X and some set S ⊂ {0, 1}X of subsets of X. Let
h(S) be the VC dimension of S, defined as

h(S) = max{|A| : A finite and A ∩ S = {0, 1}A},

where by definition A ∩ S = {A ∩ B : B ∈ S}. Let us notice that this definition
does not depend on the choice of the reference set X. Indeed X can be chosen to
be
⋃

S, the union of all the sets in S or any bigger set. Let us notice also that for
any set B, h(B ∩ S) ≤ h(S), the reason being that A ∩ (B ∩ S) = B ∩ (A ∩ S).

This notion of VC dimension is useful because it can, as we will see about
support vector machines, be computed in some important special cases. Let us
prove here as an illustration that h(S) = d + 1 when X = R

d and S is made of all
the half spaces :

S = {Aw,b : w ∈ Rd, b ∈ R}, where Aw,b = {x ∈ X : 〈w, x〉 ≥ b}.

Proposition 1.1. With the previous notations, h(S) = d + 1.

Proof. Let (ei)d+1
i=1 be the canonical base of Rd+1, and let X be the affine sub-

space it generates, which can be identified with Rd. For any (εi)d+1
i=1 ∈ {−1,+1}d+1,

let w =
∑d+1

i=1 εiei and b = 0. The half space Aw,b ∩ X is such that {ei ; i =
1, . . . , d + 1} ∩ (Aw,b ∩X) = {ei ; εi = +1}. This proves that h(S) ≥ d + 1.

To prove that h(S) ≤ d + 1, we have to show that for any set A ⊂ R
d of size

|A| = d + 2, there is B ⊂ A such that B 6∈ (A ∩ S). This will obviously be the
case if the convex hulls of B and A \ B have a non empty intersection : indeed
if a hyperplane separates two sets of points, it also separates their convex hulls.
As |A| > d + 1, A is affine dependent : there is (λx)x∈A ∈ Rd+2 \ {0} such that∑

x∈A λxx = 0 and
∑

x∈A λx = 0. The set B = {x ∈ A : λx > 0} is non-empty,
as well as its complement A \ B, because

∑
x∈A λx = 0 and λ 6= 0. Moreover∑

x∈B λx =
∑

x∈A\B −λx > 0. The relation

1∑
x∈B λx

∑
x∈B

λxx =
1∑

x∈B λx

∑
x∈A\B

−λxx

shows that the convex hulls of B and A \B have a non void intersection. �

Let us introduce the function of two integers

Φh
n =

h∑
k=0

(
n

k

)
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Let us notice that Φ can alternatively be defined by the relations :

Φh
n =

{
2n when n ≤ h,

Φh−1
n−1 + Φh

n−1 when n > h.

Theorem 1.2. Whenever
⋃

S is finite,

|S| ≤ Φ
(∣∣∣⋃S

∣∣∣ , h(S)
)

.

Theorem 1.3. For any h ≤ n,

Φh
n ≤ exp

(
nH(h

n )
)
≤ exp

[
h
(
log(n

h ) + 1
)]

,

where H(p) = −p log(p)− (1−p) log(1−p) is the Shannon entropy of the Bernoulli
distribution with parameter p.

Proof of theorem 1.2. Let us prove this theorem by induction on |
⋃

S|. It
is easy to check that it holds true when |

⋃
S| = 1. Let X =

⋃
S, let x ∈ X and

X ′ = X \ {x}. Define (4 denoting the symmetric difference of two sets)

S′ = {A ∈ S : A4 {x} ∈ S},
S′′ = {A ∈ S : A4 {x} 6∈ S}.

Clearly, t denoting the disjoint union, S = S′tS′′ and S∩X ′ = (S′∩X ′)t(S′′∩X ′).
Moreover |S′| = 2|S′ ∩ X ′| and |S′′| = |S′′ ∩ X ′|. Thus |S| = |S′| + |S′′| =
2|S′ ∩ X ′| + |S′′| = |S ∩ X ′| + |S′ ∩ X ′|. Obviously h(S ∩ X ′) ≤ h(S). Moreover
h(S′ ∩ X ′) = h(S′) − 1, because if A ⊂ X ′ is shattered by S′ (or equivalently by
S′ ∩ X ′), then A ∪ {x} is shattered by S′ (we say that A is shattered by S when
S ∩ A = {0, 1}A). Using the induction hypothesis, we then see that |S ∩ X ′| ≤
Φh(S)
|X′| + Φh(S)−1

|X′| . But as |X ′| = |X| − 1, the righthand side of this inequality is

equal to Φh(S)
|X| , according to the recurrence equation satisfyied by Φ. �

Proof of theorem 1.3. This is the well known Chernoff bound for the de-
viation of sums of Bernoulli r.v.: let (σ1, . . . , σn) be i.i.d. Bernoulli r.v. with
parameter 1/2. Let us notice that

Φh
n = 2n

P

(
n∑

i=1

σi ≤ h

)
.

For any positive real number λ ,

P(
n∑

i=1

σi ≤ h) ≤ exp(λh)E

[
exp

(
−λ

n∑
i=1

σi

)]
= exp

{
λh + n log

{
E
[
exp
(
−λσ1

)]}}
.

Differentiating the right-hand side in λ shows that its minimal value is
exp
[
−nK(h

n , 1
2 )
]
, where K(p, q) = p log(p

q ) + (1− p) log( 1−p
1−q ) is the Kullback diver-

gence function between two Bernoulli distributions Bp and Bq of parameters p and

q. Indeed the optimal value λ∗ of λ is such that h = n
E

[
σ1 exp(−λ∗σ1)

]
E

[
exp(−λ∗σ1)

] = nBh/n(σ1).

Therefore (using the fact that two Bernoulli distributions with the same expecta-
tions are equal)

log
{
E
[
exp(−λ∗σ1)

]}
= −λ∗Bh/n(σ1)−K(Bh/n, B1/2) = −λ∗ h

n −K(h
n , 1

2 ).
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The announced result then follows from the identity

H(p) = log(2)−K(p, 1
2 )

= p log(p−1) + (1− p) log(1 +
p

1− p
) ≤ p

[
log(p−1) + 1

]
.

�

2. Non localized bounds

In this chapter we assume that P2N is some exchangeable distribution on
(X×Y)2N , where (X,B) is as previously a measurable space of patterns and Y a fi-
nite set of labels. We let as usual (Xi, Yi)2N

i=1 be the canonical process on (X,Y)2N .
We let also (Zi)2N

i=1 = (Xi, Yi)2N
i=1 and Z = X × Y. When we require that P2N

is exchangeable, we mean that for any permutation σ ∈ S2N , the distribution of
(Xσ(i), Yσ(i))2N

i=1 under P2N is the same as the distribuiton of (Xi, Yi)2N
i=1. We assume

that we observe (X1, . . . , XN ), (Y1, . . . , YN ) and possibly also (XN+1, . . . , X2N ). In
other words half of the patterns are labeled and half of the patterns have to be
labeled : we have at our disposal a training set and a test set of the same size.
Taking into account a test set in the design of the classification rule is what V.
Vapnik [32] calls transductive statistical inference. As mentioned by V. Vapnik and
as it will be seen here, this is a very fruitful framework, allowing a mix of supervised
and unsupervised learning.

Starting with a family {fθ : X → Y; θ ∈ Θ} of classification rules, we would like
to minimize the error rate on the test set

r2(θ) =
1
N

2N∑
k=N+1

1
[
Yk 6= fθ(Xk)

]
.

We can apply our PAC-Bayesian methodology in this situation, using an exchange-
able prior. The interest of exchangeable priors is that they will provide a way to
make a link between PAC-Bayesian theorems and Vapnik’s theory.

Let us first prove a deviation lemma based on the fact that P2N is exchangeable.
Let

r1(θ) =
1
N

N∑
k=1

1
[
Yk 6= fθ(Xk)

]
.

Lemma 2.1. For any λ ∈ R+, any lower-bounded measurable function
η : (X × Y)2N × Θ → R which is exchangeable with respect to its 2 × 2N first
arguments, any θ ∈ Θ,

P2N

{
exp
[
λ
[
r2(θ)− r1(θ)

]
− η(θ)

]}
≤ P2N

{
exp
[ λ2

2N

[
r1(θ) + r2(θ)]− η(θ)

]}
.

More precisely the exchangeability hypothesis on η is that for any permutation
σ ∈ S2N , for any (xi, yi)2N

i=1 ∈ (X× Y)2N , any θ ∈ Θ,

η
(
(xi, yi)2N

i=1, θ
)

= η
(
(xσ(i), yσ(i))2N

i=1, θ
)
.

Proof. Let us remember that log
[
cosh(s)

]
≤ 1

2s2 for any s ∈ R. Let

σk = 1
[
Yk 6= fθ(Xk)

]
Using the fact that P2N is assumed to be exchangeable, we get

Olivier Catoni – October 9, 2004 Adaptive classification



34 CHAPTER 2. LEARNING WITH AN EXCHANGEABLE PRIOR

P2N

{
exp
[
λ
[
r2(θ)− r1(θ)

]
− η(θ)

]}
= P2N

{
exp
[

λ

N

N∑
k=1

[
σk+N (θ)− σk(θ)

]
−η(θ)

]}

= P2N

{
exp
[ N∑

k=1

log
{

cosh
[ λ

N

[
σk+N (θ)− σk(θ)

]]}
− η(θ)

]}

≤ P2N

{
exp
[

λ2

2N2

N∑
k=1

[
σk+N (θ)− σk(θ)

]2 − η(θ)
]}

≤ P2N

{
exp
[

λ2

2N2

N∑
k=1

[
σk+N (θ) + σk(θ)

]
− η(θ)

]}
= P2N

{
exp
[

λ2

2N

[
r1(θ) + r2(θ)

]
− η(θ)

]}
�

Let us now consider some exchangeable random probability measure
π : (X × Y)2N → M1

+(Θ). (We will assume that (Θ,T) is a Polish space and that
π is a regular conditional probability measure. Moreover, in practice, interesting
exchangeable priors will depend only on (X1, . . . , X2N ), although the forthcoming
bounds do not preclude them to depend also on (Y1, . . . , Y2N ).) What we mean
here is that the function Z2N

1 7→ π
(
Z2N

1

)
is exchangeable — i.e. that for any per-

mutation σ ∈ S2N , π
(
Z2N

1

)
= π

[
(Zσi

)2N
i=1

]
in M1

+(Θ). Integrating the previous
deviation lemma with respect to π, we get

Lemma 2.2. For any λ ∈ R+, any lower-bounded measurable function
η : (X × Y)2N × Θ → R which is exchangeable with respect to its 2 × 2N first
arguments,

P2N

{
sup

ρ∈M1
+(Θ)

λρ
[
r2(θ)

]
− λρ

[
r1(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π) ≥ 0

}
≤ P2N

{
π

[
exp
{

λ2

2N

[
r1(θ) + r2(θ)

]
− η(θ)

}]}
.

Proof. For any Z2N
1 ∈ (X×Y)2N , let us consider the exchangeable probability

distribution

P̄Z2N
1

=
1

|S2N |
∑

σ∈S2N

δ(Zσ(i))
2N
i=1

.

The fact that P2N is exchangeable is equivalent to the identity

P2N (h) = P2N

[
P̄Z2N

1
(h)
]
, for any bounded measurable function h : Z2N → R.

Using this identity, which shows that P̄Z2N
1

is the probability distribution P2N

conditioned by
∑2N

k=1 δZk
, we obtain a decomposition of P2N into exchangeable dis-

tributions for which π and η are almost surely constant. Let us detail the beginning
of the proof:

Adaptive classification Olivier Catoni – October 9, 2004



2. NON LOCALIZED BOUNDS 35

P2N

{
sup

ρ∈M1
+(Θ)

λρ
[
r2(θ)

]
− λρ

[
r1(θ)

]
− ρ
[
η(θ)

]
−K(ρ, θ) ≥ 0

}
≤ P2N

{
π
[
exp
[
λr2(θ)− λr1(θ)− η(θ)

]]}
= P2N

{
P̄Z2N

1

[
π
[
exp
[
λr2(θ)− λr1(θ)− η(θ)

]]]}
= P2N

{
π

[
P̄Z2N

1

[
exp
[
λr2(θ)− λr1(θ)− η(θ)

]]]}
.

Now we can apply lemma 2.1 to P̄Z2N
1

and exchange once again the expectations
with respect to this measure and with respect to π — using Fubini’s theorem — to
prove what is claimed. �

As in the preceding section, we can deduce from this lemma non-localized or
localized results. Let us start with a non localized result.

Choosing η(θ) = λ2

2N

[
r1(θ) + r2(θ)

]
+ log(ε−1) we obtain

Corollary 2.3. For any λ ∈]0, 2N [, with P 2N probability at least 1 − ε, for
any posterior distribution ρ ∈ M1

+(Θ),

ρ
[
r2(θ)

]
≤
(

λ− λ2

2N

)−1{(
λ +

λ2

2N

)
ρ
[
r1(θ)

]
+ K(ρ, π) + log(ε−1)

}
.

As a special case, we find a result similar to Vapnik’s bounds. Let

N(X2N
1 ) =

∣∣{[fθ(Xk)
]2N

k=1
: θ ∈ Θ

}∣∣.
Corollary 2.4. For any λ ∈]0, 2N [, with P2N probability at least 1 − ε, for

any θ ∈ Θ,

r2(θ) ≤
(

λ− λ2

2N

)−1{(
λ +

λ2

2N

)
r1(θ) + log

[
N(X2N

1 )
]
+ log(ε−1)

}
.

Note that this is an improvement on classical Vapnik’s theory, since the com-
plexity term log

[
N(X2N

1 )
]

is observable. Note also that we proved in a previous
section that in the binary case when |Y| = 2,

log
[
N(X2N

1 )
]
≤ 2NH( h

2N ) ≤ h
[
log(2N

h ) + 1
]
,

where H(p) = −p log(p)− (1−p) log(1−p) is the Shannon entropy of the Bernoulli
distribution with parameter p and where

h = max
{
|A| : A ⊂ {Xk : 1 ≤ k ≤ 2N} and |{A ∩ f−1

θ (1) : θ ∈ Θ}| = 2|A|
}

is the VC dimension of the set
{
{X1, . . . , X2N} ∩ f−1

θ (1) ; θ ∈ Θ
}

of subsets of
{X1, . . . , X2N}.

Proof. Let
Ψ : θ 7→

[
fθ(Xk)

]2N

k=1
∈ Y2N .

For each y ∈ Ψ(Θ), let us choose θ(y) ∈ Ψ−1(y) to form a finite set Θ′ ⊂ Θ of
size N(X2N

1 ), as the collection {Ψ−1(y) : y ∈ Ψ(Θ)} is an exchangeable function
of X2N

1 , the random set Θ′(X2N
1 ) can be chosen to be an exchangeable function

of X2N
1 . Let π be the uniform measure on Θ′. Then considering as posterior
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distribution the Dirac mass at θ′ ∈ Θ′, we see that with P2N probability at least
1− ε, for any θ′ ∈ Θ′,

r2(θ′) ≤
(

λ− λ2

2N

)−1{(
λ +

λ2

2N

)
r1(θ′) + log

[
N(X2N

1 )
]
+ log(ε−1)

}
.

We end the proof with the remark that for any θ ∈ Θ, there is θ′ ∈ Θ′ such that
Ψ(θ) = Ψ(θ′), and therefore such that r1(θ) = r1(θ′) and r2(θ) = r2(θ′). �

It also makes sense to compare r1(θ) with

R2(θ) = P2N

[
YN+1 6= fθ(XN+1) |ZN

1

]
,

where we have put ZN
1 = (Xk, Yk)N

k=1 for short and assumed that there exists a
regular version of the conditional probability distribution P2N

(
·
∣∣ZN

1

)
.

To this purpose we can use a variant of lemma 2.2:

Lemma 2.5. For any λ ∈ R+,

P2N

{
P2N

[
sup

ρ∈M1
+(Θ)

λρ
[
r2(θ)

]
− λρ

[
r1(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π) |ZN

1

]
≥ 0
}
≤ P2N

{
π

[
exp
{ λ2

2N

[
r1(θ) + r2(θ)

]
− η(θ)

}]}
.

Proof. Let

U = sup
ρ∈M1

+(Θ)

λρ
[
r2(θ)

]
− λρ

[
r1(θ)

]
− ρ
[
η(θ)

]
−K(ρ, π)

and

ε = P2N

{
π

[
exp
[ λ2

2N

[
r1(θ) + r2(θ)

]
− η(θ)

]]}
.

Then as already proved, P2N

[
exp(U)

]
≤ ε. But in the same time, from the convex-

ity of the exponential function,

P2N

{
exp
[
P2N (U |ZN

1 )
]}

≤ P2N

[
exp(U)

]
,

as required. �

Choosing in lemma 2.5

η(θ) =
λ2

2N

[
r1(θ) + r2(θ)

]
+ log(ε−1)

we get

Corollary 2.6. For any λ ∈]0, 2N [, with P2N (dZN
1 ) (the distribution of ZN

1

under P2N ) probability at least 1− ε, for any regular conditional probability distri-
bution ρ : X2N × Y2N → M1

+(Θ),

P2N

{
ρ
[
r2(θ)

]
|ZN

1

}
≤
(

λ− λ2

2N

)−1{(
λ +

λ2

2N

)
P2N

{
ρ
[
r1(θ)

]
|ZN

1

}
+ P2N

{
K(ρ, π) |ZN

1

}
+ log(ε−1)

}
.

The interesting case is of course when ρ in fact does not depend on the non
observed labels Y 2N

N+1. This may look cumbersome, but has a simple application.
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Theorem 2.7. For any λ ∈]0, 2N [, with P2N (dZN
1 ) probability at least 1 − ε,

for any θ ∈ Θ,

R2(θ) ≤
(

λ− λ2

2N

)−1{(
λ +

λ2

2N

)
r1(θ)+P2N

{
log
[
N(X2N

1 )
]
|ZN

1

}
+log(ε−1)

}
.

Note that in the independent case when P2N = P⊗2N , then R2(θ) = R(θ)
defined in the previous sections.

Proof. This is an integrated variant of corollary 2.4. With the same notations,
we can define θ′ with values in Θ′, such that Ψ(θ) = Ψ(θ′). The proof for θ′ is a
direct consequence of the preceding corollary, and the proof for θ comes from the
fact that r1(θ) = r1(θ′) and r2(θ) = r2(θ′). �

Let us remark that theorem 2.7 can easily be made uniform in λ. Let us choose
some parameter ζ > 1 and consider the set of values

Λ =
{

2Nζ−k ; 0 ≤ k <
log(2N)
log(ζ)

}
.

Using the fact that for any λ ∈ [1, 2N ] there is λ′ ∈ Λ such that λ ≤ λ′ ≤ ζλ, we
can establish that with P2N (dZN

1 ) probability at least 1− ε, for any θ ∈ Θ,

R2(θ) ≤ inf
λ∈[1,2N/ζ[

(
1− ζλ

2N

)−1{(
1 +

ζλ

2N

)
r1(θ)

+
1
λ

[
P2N

{
log
[
N(X2N

1 )
]
|ZN

1

}
+ log

[
ε−1
(

log(2N)
log(ζ) + 1

)]]}
.

A simple computation shows that for any positive constants a, b, c, d,

(2.1) inf
λ∈]0,a−1[

(1− aλ)−1(b + cλ + dλ−1) = b + 2ad + 2
√

d(ab + a2d + c),

this infimum being reached when λ−1 = λ−1
∗ = a+

√
a2 + ab+c

d . In our case a = ζ
2N ,

b = r1(θ) ≤ 1, c = ζ
2N r1(θ) = ab and

(2.2) d = P2N

{
log
[
N(X2N

1 )
]
|ZN

1

}
+ log

[
ε−1
(

log(2N)
log(ζ) + 1

)]
≥ 1

as soon as ε ≤ e−1. Thus λ−1
∗ ≤ 1 as soon as N ≥ 4ζ and ε ≤ e−1.

Theorem 2.8. For any ζ > 1, any ε ≤ e−1, any integer N ≥ 4ζ, with P2N

probability at least 1− ε, for any θ ∈ Θ,

R2(θ) ≤ r1(θ) +
2d

N

(
ζ

2
+

√
ζ2

4
+

ζNr1(θ)
d

)
,

where d is defined by equation (2.2).

Remark 2.1. This result is to be compared with Vapnik’s one (see [32, page
138]), which, in the i.i.d. case when P2N = P⊗2N , says that with P⊗N probability
at least 1− ε,

R(θ) ≤ r1(θ) +
2d′

N

(
1 +

√
1 +

Nr1(θ)
d′

)
,
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where

d′ = log
{

P⊗2N
[
N
(
X2N

1

)]}
+ log(4ε−1).

We see that we obtain better constants when r1(θ) ≤ d′

N and d′ is large. We also
improve the bound by replacing the annealed entropy by something closer to the
VC entropy. The link with the VC entropy is enlightened by the simple inequality
log
[
N(X2N

1 )
]
≤ log

[
N(XN

1 )
]
+ log

[
N(X2N

N+1)
]
, which leads to

P2N

{
log
[
N(X2N

1

]∣∣ZN
1

}
≤ log

[
N(XN

1 )
]
+ P2N

{
log
[
N(X2N

N+1)
]}

.

Proving some variant of Vapnik’s theory is not the only possible use of corollary
2.3. Its right-hand side can also be optimized choosing for ρ the Gibbs distribution

dρ̂β(θ) =
exp
[
−βr1(θ)

]
π
{

exp
[
−βr1(θ)

]}dπ(θ).

(Note that ρ̂ depends not only on ZN
1 but also on X2N

N+1 through π.)

Corollary 2.9. For any λ ∈]0, 2N [, with P2N probability at least 1− ε,

ρ̂
λ+ λ2

2N

[
r2(θ)

]
≤
(

λ− λ2

2N

)−1{
− log

[
π
{

exp
[
−
(
λ + λ2

2N

)
r1(θ)

]}]
+ log(ε−1)

}

=
1 + λ

2N

1− λ
2N

{
1

λ + λ2

2N

∫ λ+ λ2
2N

0

ρ̂β

[
r1(θ)

]
dβ

}
+

log(ε−1)
λ− λ2

2N

.

3. Some possible applications of learning with an exchangeable prior

Before getting into more sophisticated bounds (localized or tailored for the
noisy classification case), let us put forward that the choice of π as a function of∑2N

k=1 δXk
opens interesting possibilities.

3.1. Compression schemes. Let us explore first the idea of compression
schemes, put forward by Littlestone and Warmuth [23, 17].

Let us consider some measurable training rule

f̂ :
+∞⋃
n=1

(
X× Y

)n × X → Y,

which produces for any size of problem n and any training set
Z ′ = (x′i, y

′
i)

n
i=1 ∈

(
X × Y

)
some classifier f̂Z′ : X → Y. Let us assume that

f̂Z′ is invariant under any permutation of the indices of the training set, as it is
usually the case with estimators designed for i.i.d. or exchangeable samples.

A sample Z = (Xi, Yi)2N
i=1 being given, it is natural to build in this case the

following model: for any h = 1, . . . , N

Rh =
{
f̂(x′i,y

′
i)

h
i=1

: {x′i : 1 ≤ i ≤ h} ⊂ {Xi : 1 ≤ i ≤ 2N}, (y′i)h
i=1 ∈ Yh

}
.

We will consider the union of all these models : R =
⋃N

h=1 Rh. Our exchangeable
prior will be uniform on each Rh, and such that for some parameter α ∈]0, 1[,
π(Rh) ≥ (1− α)αh. It is easy to see that

log(|Rh|) = log
[(

2N

h

)
|Y|h

]
≤ h

[
log
(

2N

h

)
+ 1 + log (|Y|)

]
.
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We are ready to apply corollary 2.3, in the case when we observe a training set
(Xi, Yi)N

i=1 and consider a test set (Xi, Yi)2N
i=N+1 under the exchangeable distribu-

tion P2N ∈ M1
+

[
(X × Y)2N

]
. According to this corollary, for any λ ∈]0, 2N [, with

P2N probability at least 1− ε, for any h = 1, . . . , N , any f ∈ Rh,

r2(f) ≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
r1(f)

+
1
λ

[
− log(1− α) + h

[
log
(

2N
h

)
+ 1 + log

(
|Y|
)
− log(α)

]
+ log(ε−1)

]}
,

where as usual

r1(f) =
1
N

N∑
i=1

1
[
f(Xi) 6= Yi

]
,

and r2(f) =
1
N

2N∑
i=N+1

1
[
f(Xi) 6= Yi

]
.

The next useful step is to make this statement uniform in λ ∈ [1, 2N ]. As
explained earlier in these lectures, this can be achieved by considering for some real
parameter ζ > 1 a grid of values Λ =

{
2Nζ−k : 0 ≤ k ≤ log(2N)

log(ζ)

}
. Applying the

previous inequality of any λ ∈ Λ, we get

Proposition 3.1. With P2N probability at least 1 − ε for any h = 1, . . . , 2N ,
for any f ∈ Rh

r2(f) ≤ inf
λ∈[1,2N [

B(λ, h, f),

where

(3.1) B(λ, h, f) =
(

1− ζλ

2N

)−1{(
1 +

ζλ

2N

)
r1(f)

+
1
λ

[
− log(1−α)+h

[
log
(

2N
h

)
+1+log(|Y|)−log(α)

]
+log(ε−1)+log

[
log(2N)
log(ζ) +1

]]}
.

(Note that the optimization in λ can easily be carried through explicitely using
equation 2.1, note also that we do not need to observe the test set (Xi, Yi)2N

i=N+1

to compute this bound when f = fZ′ with Z ′ ⊂ {Xi : 1 ≤ i ≤ N}.)
An adaptative estimator f̂a can then be built by minimizing (3.1). Let us

discuss the slightly less obvious case when the test set is not observed. Let R̂h be
the observable part of Rh, more precisely let

R̂h =
{
f̂(x′i,y

′
i)

h
i=1

: {x′i : 1 ≤ i ≤ h} ⊂ {Xi : 1 ≤ i ≤ N}, (y′i)h
i=1 ∈ Yh

}
.

Let us choose

ĥ ∈ arg min
h=1,...,N

inf
{
B(λ, h, f), λ ∈ [1, 2N ], f ∈ R̂h

}
f̂a ∈ arg min

f∈R̂ĥ

inf
λ∈[1,2N [

B(λ, ĥ, f).

Proposition 3.2. With the previous notations

r2(f̂a) ≤ inf
{
B(λ, h, f) : λ ∈ [1, 2N [, h ∈ [1, N ], f ∈ R̂h

}
.
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Note that this learning scheme is different from cross validation, since, although
we restrict ourselves to choosing f̂ as a function of (x′i, y

′
i)

h
i=1 only, we are allowed to

choose (x′i, y
′
i)

h
i=1 as a function of the observed sample (X1, . . . , XN ), (Y1, . . . , YN ),

and also if we wish of (XN+1, . . . , X2N ) in any suitable way.
Compression schemes in the i.i.d. case can be handled using a clever idea of

M. Seeger [29]. We will dedicate chapter 4 to this interesting approach leading
to tighter bounds than the ones presented here above (through the use of Gibbs
posterior distributions computable from the training set (Xi, Yi)N

i=1 only).

3.2. Pruning decision trees. One possible use of compression schemes is to
choose adaptively a (pruned) decision tree: given a set of questions (q1, q2, . . . , qn)
and a small set of (hopefully “critical”) examples (x′1, . . . , x

′
h) drawn from

(X1, . . . , XN ), we may build a pruned decision tree by stopping to ask questions as
soon as only one example in (x′i)

h
i=1 matches the query. Using proposition 3.1 in

this context leads to penalize the risk with a penalty proportional to the number
of nodes, something we could have achieved through a different approach (like con-
sidering a Galton Watson process as a deterministic prior on trees). But we can
do better : we can also prune inner nodes by deciding to remove questions which
do not split (x′i)

h
i=1, and we can think about more clever strategies to choose the

questions to be asked and the order in which they should be asked as a function
of our “compression” set (x′i)

h
i=1 (for instance we can choose a set of questions

leading to a balanced tree). We can also use the labels (y′i)
h
i=1 to prune the tree

and select questions: indeed we can choose the decision tree in any way we like,
as long as we build it in a unique way as a function of (x′i, y

′
i)

h
i=1 only. Then we

can compare the performance of the obtained classifiers on the whole training sam-
ple (X1, Y1, . . . , XN , YN ) and retain the best typical compression set (x′i, y

′
i) (using

proposition 3.1). This gives a theoretical framework to guide the implementation
of many algorithmic ideas in a data driven way.

3.3. Some boosting algorithm for compression schemes. Finding out
the minimum of the bound B(λ, h, f) may be difficult. We can instead use some
suboptimal heuristic mimicking the boosting algorithm. It goes in the following
way : find out first fZ′

2
∈ R̂2 minimizing infλ∈[1,2N [ B(λ, 2, f) on R̂2. As Z ′

2 has
only two elements, the complexity of this search is at worst proportional to N2.
Moreover, this boils down to minimizing r(f) on the given set. Then add to the
compression set Z ′

2 some example to form a compression set Z ′
3 of size three which

minimizes infλ∈[1,2N [ B(λ, 3, fZ′
3
). Here again, this is equivalent to minimizing r(f).

More generally, Z ′
h being formed, form Z ′

h+1 by adding to Z ′
h the example which

minimizes r(f), and therefore also infλ∈[1,2N [ B(λ, h+1, fZ′
h+1

). The search can be
restricted further by considering only to add examples which were misclassified at
the previous step. Doing so, only a limited number of examples is search at each
step. The algorithm may be stopped as soon as the criterion increases from one
step to the next. (A more costly alternative is to scan all the possible values of h
and to retain in the end the optimal value of h).

3.4. The transductive case. If we are in the so called “transductive learn-
ing” situation, where (Xi)2N

i=1 and (Yi)N
i=1 are observed (the estimator has to be

applied to a known batch of test examples at least of the same size as the training
set), we can use corollary 2.9 instead of corollary 2.4. Indeed, in this situation,
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for any h, the whole model Rh is observable, and therefore the Gibbs posterior
distributions ρ̂β can be computed.

These Gibbs distributions can in particular be approximated using some Me-
tropolis algorithm (see [16] for more details) where the coordinates of (x′i)

h
i=1 and

(y′i)
h
i=1 are moved one at a time, and where additions and deletion of coordinates

are also allowed to move from one Rh to Rh−1 and Rh+1.

4. Localization

We can localize our results for exchangeable priors as we had done in previously
encountered situations. To achieve this, let us apply lemma 2.2 with

η(θ) =
(

λ2

2N
+ β

)[
r1(θ) + r2(θ)

]
+ log

{
π

[
exp
[
−β
[
r1(θ) + r2(θ)

]]]}
+ log(ε−1),

where the positive parameters λ and β are chosen in such a way that λ−β− λ2

2N > 0.

Lemma 4.1. For any positive parameters λ and β such that λ − β − λ2

2N > 0,
with P2N probability at least 1− ε, for any ρ ∈ M1

+(Θ),(
λ− β − λ2

2N

)
ρ
[
r2(θ)

]
≤
(

λ + β +
λ2

2N

)
ρ
[
r1(θ)

]
+ log

{
π

[
exp
[
−β
[
r1(θ) + r2(θ)

]]]}
+ K(ρ, π) + log(ε−1).

Moreover, putting ξ = β

λ+ λ2
2N

,

dπexp[−β(r1+r2)](θ) =
exp
{
−β
[
r1(θ) + r2(θ)

]}
π
{

exp
[
−β
[
r1(θ) + r2(θ)

]]}dπ(θ),

and noticing that this is an exchangeable prior distribution, we get with P2N prob-
ability at least 1− ε,

log
{

π

[
exp
[
− β

[
r1(θ) + r2(θ)

]]]}
= −βπexp[−β(r1+r2)]

[
r1(θ) + r2(θ)

]
−K(πexp[−β(r1+r2)], π)

≤ −βπexp[−β(r1+r2)]

[
r1(θ)

]
−K(πexp[−β(r1+r2)], π)

− β

(
λ +

λ2

2N

)−1{(
λ− λ2

2N

)
πexp[−β(r1+r2)]

[
r1(θ)

]
− log(ε−1)

}
= −2ξλπexp[−β(r1+r2)]

[
r1(θ)

]
+ ξ log(ε−1)−K(πexp[−β(r1+r2)], π)

≤ sup
ρ∈M1

+(Θ)

−2ξλρ
[
r1(θ)

]
−K(ρ, π) + ξ log(ε−1).

Thus

(4.1) log
{

π

[
exp
[
−β
[
r1(θ) + r2(θ)

]]]}
≤ log

{
π
[
exp
[
−2ξλr1(θ)

]]}
+ ξ log(ε−1).

This leads to
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Lemma 4.2. For any positive parameter λ and any ξ ∈ [0, 1[ such that
(1− ξ)λ− (1 + ξ) λ2

2N > 0, with P2N probability at least 1− ε, for any ρ ∈ M1
+(Θ),

ρ
[
r2(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{
(1 + ξ)λ

(
1 +

λ

2N

)
ρ
[
r1(θ)

]
+ K(ρ, π) + log

{
π
[
exp
[
−2ξλr1(θ)

]]}
+ (1 + ξ) log( 2

ε )
}

=
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{[
(1− ξ)λ + (1 + ξ)

λ2

2N

]
ρ
[
r1(θ)

]
+ K(ρ, ρ̂2ξλ) + (1 + ξ) log( 2

ε )
}

.

Here again the right-hand side is minimized by a Gibbs distribution, leading to

Theorem 4.3. For any λ > 0 and ξ ∈ [0, 1[ such that (1− ξ)λ− (1+ ξ) λ2

2N > 0,
with P2N probability at least 1− ε,

ρ̂(1+ξ)λ(1+ λ
2N )

[
r2(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1

×
{∫ (1+ξ)λ(1+ λ

2N )

2ξλ

ρ̂β

[
r1(θ)

]
dβ + (1 + ξ) log( 2

ε )
}

≤
[
(1− ξ)λ− (1 + ξ)

λ2

2N

]−1{[
(1− ξ)λ + (1 + ξ)

λ2

2N

]
ρ̂2ξλ

[
r1(θ)

]
+ (1 + ξ) log( 2

ε )
}

.

In the same way, the following suboptimal but simpler inequality obtained from
cancelling the localized divergence term also holds as soon as (1+ξ)λ

4ξ(1−ξ)N < 1, with
P2N probability at least 1− ε:

ρ̂λ

[
r2(θ)

]
≤

[
1 +

(1 + ξ)λ
4ξ(1− ξ)N

]
ρ̂λ

[
r1(θ)

]
+

2ξ(1 + ξ)
(1− ξ)λ

log
(2

ε

)
1− (1 + ξ)λ

4ξ(1− ξ)N

.

Choosing ξ = 8−1/2 we can eventually weaken this last inequality to1

(4.2) ρ̂λ

[
r2(θ)

]
≤

(
1 +

3λ

2N

)
ρ̂λ

[
r1(θ)

]
+

3
2λ

log
(2

ε

)
1− 3λ

2N

.

5. A toy example

Let us work out a toy example explicitly to show that the localized bound (4.2)
above is sharper than any non localized bounds, such as those derived in this article,
but also by Vapnik [32] or Seeger [29].

1The constant 3/2 could be replaced with the slightly better constant 9
√

2+8
14

' 1.48 in the

three places where it appears in equation (4.2).
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Consider indeed the case when X = [0, 1], Y = {0, 1} and assume that for some
real parameter τ ∈]0, 1[, Y = 1(X ≥ τ), P almost surely. This is the most simple
noiseless classification problem that could be imagined !

Using the same notations as in the previous sections of this chapter, let us
consider the parameter set Θ = [0, 1] and the model F = {fθ : X → Y; θ ∈ Θ},
defined by

fθ(x) = 1(x ≥ θ), x ∈ X, θ ∈ Θ.

Let π ∈ M1
+(Θ) be the distribution

π =
1

2N

2N∑
i=1

δXi
.

Namely π is the uniform distribution on the design points, it is therefore an ex-
changeable prior distribution.

We are going to upper bound the right-hand side of inequality (4.2) in this
simple case. To obtain a rigorous mathematical result, it is handy to compare
ρ̂λ

[
r1(θ)

]
= πexp(−λr1)

[
r1(θ)

]
with π

exp
[
−γ(r1+r2)

][r1(θ)+ r2(θ)
]
, for some suitable

value of γ, since this quantity can be expressed, as we will see, by a simple closed
formula.

This can be done in general (not only on the example), by playing around with
entropies and Legendre transforms as shown below.

Let us first remark that for any λ > β ≥ 0,

(λ− β)πexp(−λr1)

[
r1(θ)

]
≤ log

{
π
[
exp
[
−βr1(θ)

]]}
− log

{
π
[
exp
[
−λr1(θ)

]]}
.

This comes from the convexity of λ 7→ log
{

π
[
exp
[
−λr1(θ)

]]}
.

We are going to upper bound both terms of the right-hand side separatly.
Taking in lemma 2.2

η(θ) = λ
[
r1(θ) + r2(θ)

]
+ log

{
π
[
exp
{
−(λ− λ2

2N )
[
r1(θ) + r2(θ)

]}]}
+ log(ε−1),

exchanging the (symmetrical) roles of the training set and the test set, and changing
for convenience λ into a new parameter α, we get, for any positive real α, with P2N

probability at least 1− ε,

log
{

π
[
exp
[
−2αr1(θ)

]]}
≤ log

{
π
[
exp
{
−α(1− α

2N )
[
r1(θ) + r2(θ)

]}]}
+ log(ε−1).

In the following, we will put for short r1(θ) + r2(θ) = r1,2(θ). Setting α = β/2, we
get

log
{

π
[
exp
[
−βr1(θ)

]]}
≤ log

{
π
[
exp
[
−β

2 (1− β
4N )r1,2(θ)

]]}
+ log(ε−1).

Still from lemma 2.2, we see that for any exchangeable distribution ρ : (X×Y)2N →
M1

+(Θ), with P2N probability at least 1− ε,

αρ
[
r1(θ)

]
− αρ

[
r2(θ)

]
≤ α2

2N
ρ
[
r1,2(θ)

]
+ log(ε−1).
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(This holds since we can take π = ρ in this case.) Adding αρ
[
r2(θ)

]
to both

members, we get

2αρ
[
r1(θ)

]
≤ α(1 + α

2N )ρ
[
r1,2(θ)

]
+ log(ε−1).

Thus with P2N probability at least 1− ε,

− log
{

π
[
exp
[
−λr1(θ)

]]}
= inf

ν∈M1
+(Θ)

λν
[
r1(θ)

]
+ K(ν, π)

≤ λ

2

(
1 +

α

2N

)
ρ
[
r1,2(θ)

]
+ K(ρ, π) +

λ

2α
log(ε−1).

In this inequality, it is legitimate to choose ρ = π
exp
[
−λ

2 (1+ α
2N )r1,2

], which is an

exchangeable prior, to get with P2N probability at least 1− ε,

− log
{

π
[
exp
[
−λr1(θ)

]]}
≤ − log

{
π
[
exp
[
−λ

2 (1 + α
2N )r1,2(θ)

]]}
+ λ

2α log(ε−1).

In conclusion, we have proved the following lemma (which holds in the general
case, and not only for our toy example):

Lemma 5.1. For any λ > β ≥ 0 and any α > 0, with P2N probability at least
1− ε,

πexp(−λr1)

[
r1(θ)

]
≤ (λ− β)−1

{
log
{

π
[
exp
[
−β

2 (1− β
4N )r1,2(θ)

]]}
− log

{
π
[
exp
[
−λ

2 (1 + α
2N )r1,2(θ)

]]}
+ (1 + λ

2α ) log( 2
ε )
}

≤
λ(1 + α

2N )− β(1− β
4N )

2(λ− β)
π

exp
[
− β

2 (1− β
4N )r1,2

][r1,2(θ)
]
+

1 + λ
2α

λ− β
log(2

ε ).

Let m = |{Xi; 1 ≤ i ≤ 2N,Xi ≥ τ}|. It is easy to see that

log
{

π
[
exp
[
−γr1,2(θ)

]]}
= log

{
1

2N

m−1∑
i=0

exp
(
−γi

N

)
+

1
2N

2N−m∑
i=1

exp
(
−γi

N

)}

= log

1 + exp
(
− γ

N

)
− exp

(
−γm

N

)
− exp

(
−γ(2N−m+1)

N

)
2N
[
1− exp

(
− γ

N

)]


= log

exp
(

γ
N

)
+ 1− exp

(
−γ(m−1)

N

)
− exp

(
−γ(2N−m)

N

)
2N
[
exp

(
γ
N

)
− 1
]


Thus

πexp(−γr1,2)

[
r1,2(θ)

]
= − ∂

∂γ
log
{

π
[
exp
[
−γr1,2(θ)

]]}
≤ 1

N

[
1− exp

(
− γ

N

)]−1

.

Substituting this expression into the previous lemma, we get with P2N probabililty
at least 1− ε

πexp(−λr1)

[
r1(θ)

]
≤

λ(1 + α
2N )− β(1− β

4N )

2N(λ− β)
{

1− exp
[
− β

2N (1− β
4N )

]} +
1 + λ

2α

λ− β
log
(

2
ε

)
.
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We have proved eventually the following bound.

Proposition 5.2. For the toy model X = [0, 1], Y = {0, 1}, Θ = [0, 1], fθ(x) =
1(x ≥ θ), π = 1

2N

∑2N
i=1 δXi , for any parameters 0 ≤ β < λ < 2N

3 , any α ∈ R+, for
any exchangeable probability distribution P2N , with P2N probability at least 1− ε2,(

1 +
3λ

2N

)
πexp(−λr1)

[
r1(θ)

]
+

3
2λ

log
(

2
ε1

)
1− 3λ

2N

≤
(1 + 3λ

2N )
[
λ(1 + α

2N )− β(1− β
4N )

]
(1− 3λ

2N )2N(λ− β)
{

1− exp
[
− β

2N (1− β
4N )

]}
+

3
2λ
(
1− 3λ

2N

) log
(

2
ε1

)
+

(
1 + 3λ

2N

) (
1 + λ

2α

)(
1− 3λ

2N

)
(λ− β)

log
(

2
ε2

)
.

Corollary 5.3. Taking λ = N
3 , β = N

6 and α = 2N
3 , we get with P2N

probability at least 1− ε2, for any ε1,(
1 +

3λ

2N

)
πexp(−λr1)

[
r1(θ)

]
+

3
2λ

log
(

2
ε1

)
1− 3λ

2N

≤ 41
16
[
1− exp(− 23

288 )
]
N

+
9
N

log
(

2
ε1

)
+

45
2N

log
(

2
ε2

)
≤ 33.4

N
+

9
N

log
(

2
ε1

)
+

22.5
N

log
(

2
ε2

)
.

Remark 5.1. For instance, we see that the localized bound (4.2) at level of
confidence 1 − ε1 = 0.9 is on the average with respect to P2N not greater than
98.5
N .(Taking expectations with respect to P2N is done by integrating the previous

inequality with respect to ε2: this boils down to replacing log(ε2) by 1). Integrating
also with respect to ε1, we deduce from the above computations that

P2N

{
πexp(−N

3 r1)

[
r2(θ)

]}
≤ 3P2N

{
πexp(−N

3 r1)

[
r1(θ)

]}
+

9
N

[
log(2) + 1

]
≤ 87

N
.

The conclusion is that we get on this simple example a bound of order N−1,
whereas non localized bounds (ours, Vapnik’s or Seeger’s) would be of order
log(N)/N . This shows that localization brings a qualitative improvement on pre-
vious results (at least when N is large enough). Even numerical constants are not
shameful here, although clearly suboptimal 2 (let us notice that for simplicity we did
not start from the sharpest inequality of theorem 4.3). Let us notice also that we did
not need to make any assumption on the distribution of the patterns Xi : adaptation
to the design distribution is a typical feature of the exchangeable prior approach.
Indeed, if we had tried the PAC-Bayesian approach with a fixed prior, choosing the
same family of classification rules {fθ(x) = 1(x ≥ θ) : x ∈ [0, 1], θ ∈ [0, 1]}, the

2We can expect the constants to improve when the dimension of the problem grows. Indeed,
the term involving ε, which has a strong impact on the bound in this toy example, is dimension
free, and therefore should not be felt in a high dimensional problem.

Olivier Catoni – October 9, 2004 Adaptive classification



46 CHAPTER 2. LEARNING WITH AN EXCHANGEABLE PRIOR

best results would have been obtained with a prior close to the distribution of the
patterns Xi, whereas the compression scheme prior turns out conveniently to be
related to the empirical distribution of the pattern sample (Xi)2N

i=1, which serves as
an estimator of its true distribution.
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CHAPTER 3

Noisy classification with an exchangeable prior

1. Non localized bound

As in the case of deterministic priors treated before, we can derive bounds
relative to a given reference classification rule which are sharper in the presence
of noise. We will assume here that the distribution of patterns and labels is i.i.d.
and therefore consider a product distribution P⊗2N on

(
(X× Y)2N , (B⊗B′)⊗2N

)
.

Similarly to what has been done in section 7 we consider some fixed (and unknown)
parameter θ̃ ∈ Θ and define

σk(θ) = 1
[
Yk 6= fθ(Xk)

]
r1(θ) =

1
N

N∑
k=1

σk(θ)− σk(θ̃)

r2(θ) =
1
N

2N∑
k=N+1

σk(θ)− σk(θ̃)

R(θ |Xk) = P
[
σk(θ)− σk(θ̃) |Xk

]
r′1(θ) =

1
N

N∑
k=1

R(θ |Xk),

r′2(θ) =
1
N

2N∑
k=N+1

R(θ |Xk).

For the sake of simplicity, we will assume that the rule feθ clearly outperforms
the other rules for any pattern, in the sense that for some constant α > 0 which
will stay fixed in the remaining of this discussion, for any x ∈ X,

α(x) = min
{
R(θ |x), θ ∈ Θ, fθ(x) 6= feθ(x)

}
≥ α.

Let us consider two real numbers β > λ > 0 such that β−α−1g( 2β
N )β2

N > 0 and
put for short κ = 1

αg( 2β
N ). The following exponential inequality will be helpful:

P⊗2N
{

exp
[
λr2(θ)− βr1(θ)

] ∣∣X2N
1

}
≤ exp

[
(λ + κλ2

N )r′2(θ)− (β − κβ2

N )r′1(θ)
]
.

Moreover, putting

λ′ = λ + κ
λ2

N
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β′ = β − κ
β2

N
,

we obtain

P⊗2N

{
exp
[
λ′r′2(θ)− β′r′1(θ)

] ∣∣ 2N∑
k=1

δXk

}

≤ P⊗2N

{
exp
{[

1
2N (λ′+β′

2 )2 − β′−λ′

2

][
r′1(θ) + r′2(θ)

]} ∣∣∣ 2N∑
k=1

δXk

}
.

Integrating these inequalities with respect to a random exchangeable prior dis-
tribution π : (X2N ,B⊗2N ) → M1

+(Θ) leads to

Lemma 1.1. For the choice of parameters explained above, with P⊗2N proba-
bility at least 1− ε, for any posterior ρ ∈ M1

+(Θ),

λρ
[
r2(θ)

]
≤ βρ

[
r1(θ)

]
+ K(ρ, π)

+ log
{

π

[
exp
{
−
[
(β′−λ′

2 − 1
2N (β′+λ′

2 )2
]︸ ︷︷ ︸

def
= β′′

[
r′1(θ) + r′2(θ)

]}]}
+ log(ε−1).

Moreover, with P⊗2N probability at least 1− ε, for any posterior ρ ∈ M1
+(Θ),

λ′ρ
[
r′2(θ)

]
≤ β′ρ

[
r′1(θ)

]
+ K(ρ, π)

+ log
{

π

[
π
{

exp
[
−β′′

[
r′1(θ) + r′2(θ)

]]}]}
+ log(ε−1),

(where β′′ is defined in the previous equation).

To get a non localized learning theorem, we can choose for some parameter µ

λ′ = µ− 1
2N

µ2 = λ + κ
λ2

N
,

β′ = µ +
1

2N
µ2 = β − κ

β2

N
,

and take advantage of the fact that r′1(θ) and r′2(θ) are all positive random variables
(since we assumed that θ̃ was everywhere optimal).

Theorem 1.2. For the choice of parameters explained above, with P⊗2N prob-
ability at least 1− ε, for any posterior ρ ∈ M1

+(Θ),

ρ
[
r2(θ)

]
≤ r2(θ̃) +

µ + µ2

2N + κβ2

N

µ− µ2

2N − κλ2

N

[
ρ
[
r1(θ)

]
− r1(θ̃)

]
+

1

µ− µ2

2N − κλ2

N

{
K(ρ, π) + log(ε−1)

}
.

2. Localized bound

To get a localized learning theorem, we need an upper bound for

log
{

π
{

exp
[
−β′′

[
r′1(θ) + r′2(θ)

]]}}
.
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We will achieve this in two steps. The first one is similar to the low noise case with
an exchangeable prior, and compares the above quantity with log{π[exp[−γ[r′1(θ)]]}
for a suitable choice of γ. Let us assume that β′ > λ′ and let us put

γ′ = β′′
β′ + λ′

β′ − β′′
= (β′ − λ′)

1− 1
N

(λ′+β′)2

4(β′−λ′)

1 + 1
2N

λ′+β′

2

ξ =
β′′

β′ − β′′
=

β′ − λ′

β′ + λ′

1− 1
N

(λ′+β′)2

4(β′−λ′)

1 + 1
N

λ′+β′

4

≤ β′ − λ′

β′ + λ′
.

The same computation that led to (4.1) shows that

Lemma 2.1. For the choice of parameters explained above, with P⊗2N proba-
bility at least 1− ε,

log
{

π

[
exp
{
−β′′

[
r′1(θ) + r′2(θ)

]}]}
≤ log

{
π

[
exp
{
−γ′

[
r′1(θ)

]}]}
+ ξ log(ε−1).

Now we need to compare log{π[exp[−γ′r′1(θ)]]} with log{π[exp[−γr1(θ)]]} for
some suitable value of γ. To achieve this, we use another learning lemma, derived
from the inequality

P⊗2N

{
exp
[
λ
[
r1(θ)− r′1(θ)

]
− µr′1(θ)

] ∣∣∣XN
1

}
≤ exp

[(
κλ2

N − µ
)
r′1(θ)

]
.

Lemma 2.2. For the choice of parameters explained above, with P⊗N probability
at least 1− ε, for any posterior probability distribution ρ ∈ M1

+(Θ),

λρ
[
r1(θ)

]
≤
(

λ + γ′ + κ
λ2

N

)
ρ
[
r′1(θ)

]
+ log

{
π
[
exp
[
−γ′r′1(θ)

]]}
+ K(ρ, π) + log(ε−1).

Exactly as we derived (6.3), we can establish that with P⊗N probability at
least 1− ε,

log
{

π
{

exp
[
−γ′r′1(θ)

]}}
≤ log

{
π
{

exp
[
− γ′

1+κ λ
N

r1(θ)
]}}

+ γ′

λ+κ λ2
N

log(ε−1).

Putting all these things together leads to a localized learning theorem for noisy
classification using an exchangeable prior. Let us put

ζ =

(
1− κ λ2+β2

N(β−λ)

)(
1− (λ′+β′)2

4N(β′−λ′)

)
(
1− κ λ

N

) (
1 + λ′+β′

4N

) .

Theorem 2.3. With the notations and choice of parameters introduced in
this section, with P⊗2N probability at least 1 − ε, for any posterior distribution
ρ ∈ M1

+(Θ),

ρ
[
r2(θ)

]
≤ r2(θ̃) +

β

λ

[
ρ
[
r1(θ)

]
− r1(θ̃)

]
+

1
λ

{
K(ρ, π) + log

{
π
[
exp
[
−(β − λ)ζ r1(θ)

]]}
+
(
1 + β′−λ′

β′+λ′ + β′−λ′

λ

)
log
(

3
ε

)}
= r2(θ̃) +

(
ζ + (1− ζ)β

λ

){
ρ
[
r1(θ)

]
− r1(θ̃)

}
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+
1
λ

{
K(ρ, ρ̂(β−λ)ζ) +

(
1 + β′−λ′

β′+λ′ + β′−λ′

λ

)
log
(

3
ε

)}
.

As a special case,

ρ̂β

[
r2(θ)

]
≤ r2(θ̃) +

1
λ

∫ β

(β−λ)ζ

ρ̂γ

[
r1(θ)

]
dγ +

1
λ

(
1 + β′−λ′

β′+λ′ + β′−λ′

λ

)
log
(

3
ε

)
.
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CHAPTER 4

Compression schemes in the i.i.d. case

We will devote this chapter to the clever approach proposed by M. Seeger [29].

1. Non localized bound

Let us consider some distribution P ∈ M1
+(X×Y), where (X,B) is a measurable

space and Y a finite set. Let (Θ,T) be some measurable set of parameters, indexing
a family {fθ : X → Y; θ ∈ Θ} of classification rules. Assume as usual that (θ, x) 7→
fθ(x) : Θ × X → Y is a measurable function. Let Z = (Zi)N

i=1 be the canonical
process on (X×Y)N . For any subset I of {1, . . . , N}, let ZI = (Zi)i∈I and consider
the empirical error on the complement Ic of I

r(I, θ) =
1
|Ic|

∑
j∈Ic

1
[
Yj 6= fθ(Xj)

]
.

This is a stochastic approximation to the expected error rate

R(θ) = P
[
Yi 6= fθ(Xi)

]
.

Let I be the set of subsets of {1, . . . , N}, and for each integer h, let Ih be the sets
of I with h elements. Let us consider some regular conditional probability measure
π : (X× Y)N → M1

+(I×Θ). Let π1 : X× Y → M1
+(I) be its first marginal and let

π2 : (X × Y)N × I → M1
+(Θ) be the regular conditionnal probability distribution

π(dθ|ZN
1 , I). Let us assume that π1 is in fact independent of ZN

1 , and is therefore
some fixed probability distribution belonging to M1

+(I). Let us also assume that
π2(dθ|ZN

1 , I) = π2(dθ|ZI , I). This means that the prior distribution π2 on the pa-
rameters depends only of the subsamble ZI of observations. For instance, in the
case of support vector machines, Θ may index all the support vector machines we
may build by changing the observed sample (including its size) and some kernel
parameter α and π2(dθ|I, Z) may be some distribution on the support vector ma-
chines trained on the subsamble ZI with various kernel parameters (whenever ZI

is separable, some default choice being made otherwise).
In this setting, we can use the independence of π2 from ZIc and Bernstein’s

inequality to get that for any random threshold η : (X × Y)N × I × Θ → R, such
that η(Z, I, θ) does not depend on ZIc , any I ∈ I, any positive real parameter λ,

P⊗Ic

{
π2

{
exp
[
λR(θ)− λr(I, θ)− g

(
λ
|Ic|
) λ2

|Ic|
R(θ)− η(Z, I, θ)

]}}
≤ P⊗Ic

{
π2

{
exp
[
−η(Z, I, θ)

]}}
.

(Both members of this inequality are random variables depending on ZI . The
notation P⊗Ic

stands for the product measure on (X × Y)Ic

whose marginals are
equal to P .)
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Integrating the previous inequality with respect to P⊗I and then π1, using
Fubini’s theorem and the Legendre transform (4.3) of chapter 1, we get

Lemma 1.1. For any real positive parameter λ

P⊗N

{
sup

ρ∈M1
+(I×Θ)

λρ
{[

1− g( λ
|Ic| )

λ
|Ic|

]
R(θ)

}
− λρ

[
r(I, θ)

]
− ρ
[
η(Z, I, θ)

]
−K(ρ, π) ≥ 0

}
≤ P⊗N

{
π
{

exp
[
−η(Z, I, θ)

]}}
.

In the same way

P⊗N

{
sup

ρ∈M1
+(I×Θ)

−λρ
{[

1 + g( λ
|Ic| )

λ
|Ic|

]
R(θ)

}
+ λρ

[
r(I, θ)

]
− ρ
[
η(Z, I, θ)

]
−K(ρ, π) ≥ 0

}
≤ P⊗N

{
π
{

exp
[
−η(Z, I, θ)

]}}
.

Taking η(Z, I, θ) = log(ε−1) gives a non localized result.

Corollary 1.2. For any integer h < N , any λ such that g( λ
N−h ) λ

N−h ≤ 1,
with P⊗N probability at least 1− ε, for any ρ ∈ M1

+(I×Θ) such that ρ(Ih×Θ) = 1,

ρ
[
R(θ)

]
≤
[
1− g( λ

N−h ) λ
N−h

]−1
{

ρ
[
r(I, θ)

]
+

K(ρ, π) + log(ε−1)
λ

}
.

When applied to the case when π2(dθ|Z, I) is always a Dirac mass, π1 is the
uniform probability measure on Ih, and when the posterior ρ = ρ1 × π2, where
ρ1 is a Dirac mass on some subset I, this result, once properly optimized in λ
through a union bound, is analogous to Seeger’s one [29], with the difference that
we use the slightly weaker Bernstein inequality, compared with the Chernoff one.
The details are very analogous to the situation described in previous chapters, so we
will take the liberty to skip them. Anyhow, the interest of working with Bernstein’s
inequality, apart from a more intuitive interpretation of the results in terms of bias
and variance (but this is rather a matter of taste than anything else), is that it
leads to localized bounds, which are the subject of the next section.

2. Localized bounds

Unfortunately, we will not, as mistakingly shown in some early version of this
paper, be able to perform a full localization. In order to satisfy the hypothesis
made on the random threshold η(Z, I, θ), we will consider setting it to

η(Z, I, θ) = βR(θ) + log
{

π2

[
exp
[
−βR(θ)

]]}
+ log(ε−1).

This will only localize the inequality with respect to θ for a given choice of index
set I, but will not localize it with respect to the choice of I. It would have been
tempting to consider also

η(I, θ) = βR(θ) + log
{

P⊗Nπ
[
exp
[
−βR(θ)

]]}
+ log(ε−1),
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but we do not know at the present time how to compare it with an observable
quantity (this would presumably require to use some concentration inequality). In
the first draft of this paper, we put carelessly

η(Z, I, θ) = βR(θ) + log
{

π
[
exp
[
−βR(θ)

]]}
+ log(ε−1),

which unfortunately depends on ZIc as well as on ZI . We apologize to the readers
of the first draft for this mistake.

We obtain that with P⊗N probability at least 1− ε, for any integer h < N , for
any ρ ∈ M1

+(I×Θ) such that ρ(Ih ×Θ) = 1, letting ρ1 be the first marginal of ρ,[
λ− β − g

(
λ

N−h

)]
ρ
[
R(θ)

]
≤ λρ

[
r(I, θ)

]
+ ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
+ K(ρ, π) + log(ε−1).

We have now to bound the right-hand side of this inequality by some empirical
quantity. Let us put

d(π2)exp(−βR) =
{

π2

[
exp
[
−βR

]]}−1

exp
[
−βR(θ)

]
dπ2.

Let us remark that

ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
= −βρ1

{
(π2)exp(−βR)

[
R(θ)

]}
− ρ1

[
K
[
(π2)exp(−βR), π2

]]
.

Let ν = ρ1×(π2)exp(−βR). According to the second part of the previous lemma,
with P⊗N probability at least 1− ε,

−
[
λ + β + g

(
λ

N−h

) λ2

N − h

]
ν
[
R(θ)

]
≤ −λν

[
r(I, θ)

]
+ K(ν, π)

+ ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
+ log(ε−1).

Thus, using the previous equality, we get with P⊗N probability at least 1− ε,

ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
≤ − βλ

β + λ + g
(

λ
N−h

)
λ2

N−h

ν
[
r(I, θ)

]
+

β

β + λ + g
(

λ
N−h

)
λ2

N−h

{
K(ν, π) + ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
+ log(ε−1)

}
− ρ1

{
K
[
(π2)exp(−βR), π2)

]}
.

Let us put ξ = β

β+λ+g
(

λ
N−h

)
λ2

N−h

. We obtain
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ρ1

{
log
{

π2

[
exp
[
−βR(θ)

]]}}
≤ −λξν

[
r(I, θ)

]
+ ξK(ν, π)

− (1 + ξ)ρ1

{
K
[
(π2)exp(−βR(θ), π2

]}
+ ξ log(ε−1)

= ρ1

{
ξλ(π2)exp(−βR)

[
r(I, θ)

]
−K

[
(π2)exp(−βR), π2)

]}
+ ξ
[
K(ρ1, π1) + log(ε−1)

]
≤ ρ1

{
log
{

π2

[
exp
[
−ξλr(I, θ)

]]}
+ ξ
[
K(ρ1, π1) + log(ε−1)

]
.

We have proved the following partially localized learning theorem:

Theorem 2.1. For any integer h < N , for any real parameter ξ ∈ [0, 1[, for
any positive real parameter λ such that g

(
λ

N−h

)
λ

N−h ≤ 1−ξ
1+ξ , with P⊗N probability

at least 1− ε, for any ρ ∈ M1
+(I×Θ) such that ρ(Ih×Θ) = 1, letting ρ1 be the first

marginal of ρ and ρ2(dθ|I) = ρ(dθ|I) be the conditional distribution of θ knowing I
under ρ,

ρ
[
R(θ)

]
≤
[
(1− ξ)λ− (1 + ξ)g

(
λ

N−h

) λ2

N − h

]−1

×

{
λρ
[
r(I, θ)

]
+ ρ1

{
log
{

π2

[
exp
[
−ξλr(I, θ)

]]}}

+ K(ρ, π) + ξK(ρ1, π1) + (1 + ξ) log(ε−1)

}

=
[
1− 1 + ξ

1− ξ
g
(

λ
N−h

) λ

N − h

]−1

×

{
ρ
[
r(I, θ)

]
+

1
(1− ξ)λ

ρ1

{
K
[
ρ2, (π2)exp(−ξλr)

]}
+

1 + ξ

(1− ξ)λ
[
K(ρ1, π1) + log(ε−1)

]}
.

Remark 2.1. It is clear from the proof that a little more is true: instead of
being constants, λ and ξ may be functions of h, and the results in this case holds
uniformly with P⊗N probability 1− ε for any choice of h and any choice of ρ such
that ρ(Ih ×Θ) = 1.

Remark 2.2. It is easy to optimize the right-hand side of the inequality stated
in the previous theorem. Since the result is a little bit awkward, we let this com-
putation as an exercice for the reader. It is more convenient (although slightly
suboptimal) to take ρ2 = (π2)exp(−ξλr). With this choice, the only entropy term
left deals with the choice of the index set I of the compression set.

The main interest of this study of compression schemes in the i.i.d. case, when
compared with what we did in the previous section with exchangeable priors, is
that in this setting, the Gibbs distributions optimizing the learning bounds can be
computed without being given any test set. This may be handy in many practical
situations. On the other hand, this advantage is tempered by the fact that it does
not seem easy to get fully localized learning bounds in this setting.
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CHAPTER 5

Support Vector Machines

A prerequisite to the definition of support vector machines is to study the sep-
aration of points by hyperplanes in a finite dimensional Euclidean space. Support
vector machines, introduced by V. Vapkik [32], are a fundamental classification
algorithm and a natural framework to apply the preceding PAC-Bayesian results.

1. The canonical hyperplane

We will deal in this section with the classification of points of Rd in two classes.
Let Z = (xi, yi)N

i=1 ∈
(
R

d × {−1,+1}
)N be some set of labelled examples (called

the training set hereafter). Let

I = {1, . . . , N},
I+ = {i ∈ I : yi = +1},
I− = {i ∈ I : yi = −1},

and consider
AZ =

{
w ∈ Rd : sup

b∈R
inf
i∈I

(〈w, xi〉 − b)yi ≥ 1
}
.

Let us remark that this set of admissible separating directions can also be written
as

AZ =
{
w ∈ Rd : max

i∈I−
〈w, xi〉+ 2 ≤ min

i∈I+
〈w, xi〉

}
.

As it is easily seen, the optimal value of b for a fixed value of w, in other words the
value of b which maximizes infi∈I(〈w, xi〉 − b)yi, is equal to

bw =
1
2

[
max
i∈I−

〈w, xi〉+ min
i∈I+

〈w, xi〉
]
.

Lemma 1.1. When AZ 6= ∅, inf{‖w‖2 : w ∈ AZ} is reached for only one value
wZ of w.

Proof. The set AZ is convex and w 7→ ‖w‖2 is strictly convex. �

Definition 1.1. When AZ 6= ∅, the training set Z is said to be linearly
separable. The hyperplane

H = {x ∈ Rd : 〈wZ , x〉 − bZ = 0},
where

wZ = arg min{‖w‖ : w ∈ AZ},
bZ = bwZ

,

is called the canonical separating hyperplane of the training set Z. The quantity
‖wZ‖−1 is called the margin of the canonical hyperplane.
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Note that as mini∈I+〈wZ , xi〉 −maxi∈I−〈wZ , xi〉 = 2, the margin is also equal
to half the distance between the projections on the direction wZ of the positive and
negative patterns.

2. Computation of the canonical hyperplane

Let us consider the convex hulls X+ and X− of the positive and negative
patterns:

X+ =
{∑

i∈I+

λixi :
(
λi

)
i∈I+

∈ RI+
+ ,
∑
i∈I+

λi = 1
}

,

X− =
{∑

i∈I−

λixi :
(
λi

)
i∈I−

∈ RI−
+ ,

∑
i∈I−

λi = 1
}

.

Let us introduce the convex set

V = X+ − X− =
{
x+ − x− : x+ ∈ X+, x− ∈ X−

}
.

As v 7→ ‖v‖2 is strictly convex, there is a unique vector v∗ such that

‖v∗‖2 = inf
v∈V

{
‖v‖2 : v ∈ V

}
.

Lemma 2.1. The set AZ is non empty (i.e. the training set Z is linearly
separable) if and only if v∗ 6= 0. In this case

wZ =
2

‖v∗‖2
v∗,

and the margin of the canonical hyperplane is equal to 1
2‖v

∗‖.

Proof. Let us assume first that v∗ = 0, or equivalently that X+ ∩ X− 6= ∅.
As for any vector w ∈ Rd,

min
i∈I+

〈w, xi〉 = min
x∈X+

〈w, x〉,

max
i∈I−

〈w, xi〉 = max
x∈X−

〈w, x〉,

we see that necessarily mini∈I+〈w, xi〉 − maxi∈I−〈w, xi〉 ≤ 0, which shows that w
cannot be in AZ and therefore that AZ is empty.

Let us assume now that v∗ 6= 0, or equivalently that X+ ∩X− = ∅. Let us put
w∗ = 2

‖v∗‖2 v∗. Let us remark first that

min
i∈I+

〈w∗, xi〉 −max
i∈I−

〈w∗, xi〉 = inf
x∈X+

〈w∗, x〉 − sup
x∈X−

〈w∗, x〉

= inf
x+∈X+,x−∈X−

〈w∗, x+ − x−〉

=
2

‖v∗‖2
inf
v∈V

〈v, v∗〉.

Let us now prove that infv∈V〈v, v∗〉 = ‖v∗‖2. Some arbitrary v ∈ V being fixed,
consider the function

β 7→ ‖βv + (1− β)v∗‖2 : [0, 1] → R.
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By definition of v∗, it reaches its minimum value for β = 0, and therefore has
a non negative derivative at this point. Computing this derivative, we find that
〈v − v∗, v∗〉 ≥ 0, as claimed. We have proved that

min
i∈I+

〈w∗, xi〉 −max
i∈I−

〈w∗, xi〉 = 2,

and therefore that w∗ ∈ AZ . On the other hand, any w ∈ AZ is such that

2 ≤ min
i∈I+

〈w, xi〉 −max
i∈I−

〈w, xi〉 = inf
v∈V

〈w, v〉 ≤ ‖w‖ inf
v∈V

‖v‖ = ‖w‖ ‖v∗‖.

This proves that ‖w∗‖ = inf
{
‖w‖ : w ∈ AZ

}
, and therefore that w∗ = wZ as

claimed. �

One way to compute wZ would be therefore to compute v∗ by minimizing{
‖
∑
i∈I

λiyixi‖2 : (λi)i∈I ∈ RI
+,
∑
i∈I

λi = 2,
∑
i∈I

yiλi = 0
}
.

Although this is a tractable quadratic programming problem, a direct computation
of wZ through the following proposition is usually prefered.

Proposition 2.2. The canonical direction wZ can be expressed as

wZ =
N∑

i=1

α∗i yixi,

where (α∗i )
N
i=1 is obtained by minimizing

inf
{
F (α) : α ∈ A

}
,

where
A =

{
(αi)i∈I ∈ RI

+,
∑
i∈I

αiyi = 0
}

,

and
F (α) =

∥∥∥∑
i∈I

αiyixi

∥∥∥2

− 2
∑
i∈I

αi.

Proof. Let w(α) =
∑

i∈I αiyixi and let S(α) = 1
2

∑
i∈I αi. We can ex-

press the function F (α) as F (α) = ‖w(α)‖2 − 4S(α). Moreover it is important
to notice that for any s ∈ R+ {w(α) : α ∈ A, S(α) = s} = sV. This shows
that for any s ∈ R+, inf{F (α) : α ∈ A, S(α) = s} is reached and that for any
αs ∈ {α ∈ A : S(α) = s} reaching this infimum, w(αs) = sv∗. As
s 7→ s2‖v∗‖2 − 4s : R+ → R reaches its infimum for only one value s∗ of s,
namely at s∗ = 2

‖v∗‖2 , this shows that F (α) reaches its infimum on A, and that for
any α∗ ∈ A such that F (α∗) = inf{F (α) : α ∈ A}, w(α∗) = 2

‖v∗‖2 v∗ = wZ . �

3. Support vectors

Definition 3.1. The set of support vectors S is defined by

S = {xi : 〈wZ , xi〉 − bZ = yi}.

Proposition 3.1. Any α∗ minimizing F (α) on A is such that

{xi : α∗i > 0} ⊂ S.

This implies that the representation wZ = w(α∗) involves in general only a limited
number of non zero coefficients and that wZ = wZ′ , where Z ′ = {(xi, yi) : xi ∈ S}.
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Proof. Let us consider any given i ∈ I+ and j ∈ I−, such that α∗i > 0 and
α∗j > 0 (there exists at least one such index in each set I− and I+, since the sum of
the components of α∗ on each of these sets are equal and since

∑
k∈I α∗k > 0). For

any t ∈ R, consider

αk(t) = α∗k + t1(k ∈ {i, j}), k ∈ I.

The vector α(t) is in A for any value of t in some neighborhood of 0, therefore
∂
∂t |t=0

F
[
α(t)

]
= 0. Computing this derivative, we find that

yi〈w(α∗), xi〉+ yj〈w(α∗), xj〉 = 2.

As yi = −yj , this can also be written as

yi

[
〈w(α∗), xi〉 − bZ

]
+ yj

[
〈w(α∗), xj〉 − bZ

]
= 2.

As w(α∗) ∈ AZ ,
yk

[
〈w(α∗), xk〉 − bZ

]
≥ 1, k ∈ I,

which implies necessarily as claimed that

yi

[
〈w(α∗), xi〉 − bZ

]
= yj

[
〈w(α∗), xj〉 − bZ

]
= 1.

�

4. Support Vector Machines

Definition 4.1. The symmetric measurable kernel K : X × X → R+ is said
to be positive (or more precisely positive semi-definite) if for any n ∈ N, any
(xi)n

i=1 ∈ Xn,

inf
α∈Rn

n∑
i=1

n∑
j=1

αiK(xi, xj)αj ≥ 0.

Let Z = (xi, yi)N
i=1 be some training set. Let us consider as in the previous

sections of this chapter

A =
{
α ∈ RN

+ :
N∑

i=1

αiyi = 0
}
.

Let

F (α) =
N∑

i=1

N∑
j=1

αiyiK(xi, xj)yjαj − 2
N∑

i=1

αi.

Definition 4.2. Let K be a positive symmmetric kernel. The training set Z
is said to be K-separable if

inf
{
F (α) : α ∈ A

}
> −∞.

Lemma 4.1. When Z is K-separable, inf{F (α) : α ∈ A} is reached.

Proof. Consider the training set Z ′ = (x′i, yi)N
i=1, where

x′i =
{[{

K(xk, x`)
}N N

k=1,`=1

]1/2

(i, j)
}N

j=1

∈ RN .

We see that F (α) =
∥∥∥∑N

i=1 αiyix
′
i

∥∥∥2

− 2
∑N

i=1 αi. We have proved in the previous
section that Z ′ is linearly separable if and only if inf{F (α) : α ∈ A} > −∞, and
that the infimum is reached in this case. �
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Proposition 4.2. Let K be a symmetric positive kernel and let (Zi)N
i=1 be some

K-separable training set. Let α∗ ∈ A be such that F (α∗) = inf{F (α) : α ∈ A}. Let

I∗− = {i ∈ N : 1 ≤ i ≤ N, yi = −1, α∗i > 0}
I∗+ = {i ∈ N : 1 ≤ i ≤ N, yi = +1, α∗i > 0}

b∗ =
1
2

{ N∑
j=1

α∗jyjK(xj , xi−) +
N∑

j=1

α∗jyjK(xj , xi+)
}

, i− ∈ I∗−, i+ ∈ I∗+,

where the value of b∗ does not depend on the choice of i− and i+. The classification
rule f : X → Y defined by the formula

f(x) = sign

(
N∑

i=1

α∗i yiK(xi, x)− b∗

)
is independent of the choice of α∗ and is called the support vector machine defined
by K and Z. The set S = {xj :

∑N
i=1 α∗i yiK(xi, xj)− b∗ = yj} is called the set of

support vectors. For any choice of α∗, {xi : α∗i > 0} ⊂ S.

Proof. The independence from the choice of α∗, which is not necessarily
unique, is seen as follows. Let (xi)N

i=1 and x ∈ X be fixed. Let us put for ease
of notations xN+1 = x. Let M be the (N + 1) × (N + 1) symmetric semi-definite
matrix defined by M(i, j) = K(xi, xj), i = 1, . . . , N + 1, j = 1, . . . , N + 1. Let us
consider the mapping Ψ : {xi : i = 1, . . . , N + 1} → R

N+1 defined by

(4.1) Ψ(xi) =
[
M1/2(i, j)

]N+1

j=1
∈ RN+1.

Let us consider the training set Z ′ =
[
Ψ(xi), yi

]N
i=1

. Then Z ′ is linearly separable,

F (α) =
∥∥∥ N∑

i=1

αiyiΨ(xi)
∥∥∥2

− 2
N∑

i=1

αi,

and we have proved that for any choice of α∗ ∈ A minimizing F (α),
wZ′ =

∑N
i=1 α∗i yiΨ(xi). Thus the support vector machine defined by K and Z

can also be expressed by the formula

f(x) = sign
[
〈wZ′ ,Ψ(x)〉 − bZ′

]
which does not depend on α∗. The definition of S is such that Ψ(S) is the set of
support vectors defined in the linear case, where its stated property has already
been prooved. �

5. Support vector machines seen as compression schemes

We can use support vector machines in the framework of compression schemes
and apply proposition 3.1 of chapter 2. More precisely, given some positive symmet-
ric kernel K on X, we may consider for any training set Z ′ = (x′i, y

′
i)

h
i=1 the classifier

f̂Z′ : X → Y which is equal to the support vector machine defined by K and Z ′

whenever Z ′ is K-separable, and which is equal to some constant classification rule
otherwise (we take this convention to stick to the framework of section 3.1, we will
only use f̂Z′ in the K-separable case, so this extension of the definition is just a
matter of presentation). In the application of proposition 3.1, in the case when the
observed sample (Xi, Yi)N

i=1 is K-separable, a natural (if not always optimal) choice
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of Z ′ is to choose for (x′i) the set of support vectors defined by Z = (Xi, Yi)N
i=1 and

to choose for (y′i) the corresponding values of Y . This is justified by the fact that
f̂Z = f̂Z′ , as shown in proposition 4.2. In the case when Z is not K-separable,
in theory, we can flip the smallest number of values of Yi to define a K-separable
training set Z ′ = (Xi, y

′
i)

N
i=1, and then restrict this training set to its support vec-

tors to see in which submodel this classification rule really lives. In practice, this
may be time consuming, and various minimization criterion directly adapted to the
non K-separable case are of common use. We suggest [17] as a further reading on
this topic. Another possible suggestion is to use the kind of boosting algorithm
described in section 3.3 of chapter 2. When applied to support vector machines it
has the interesting property that only misclassified examples and examples with a
margin lower than that of the current compression set Z ′

h have to be considered as
candidates to add to Z ′

h to form Z ′
h+1. Indeed, adding other examples would lead

to fZ′
h+1

= fZ′
h
, which would clearly not decrease the criterion infλ∈[1,2N ] B(λ, h, f)

which is an increasing function of h for f fixed.
Using a compression scheme based on support vector machines can also be

tailored to perform some feature extraction. Imagine that the kernel K is defined
as the scalar product in L2(π), where π ∈ M1

+(Θ). More precisely let us consider
for some set of soft classification rules

{
fθ : X → R ; θ ∈ Θ

}
the kernel

K(x, x′) =
∫

θ∈Θ

fθ(x)fθ(x′)π(dθ).

In this setting

fZ′
h
(x′) =

∫
θ∈Θ

∑
(x,y)∈Z′

h

yα(x)fθ(x)fθ(x′)π(dθ)

and we may replace it with some finite approximation

f̃Z′
h
(x′) =

m∑
k=1

wkfθk
(x′),

where the set {θk, k = 1, . . . ,m} and the weights {wk, k = 1, . . . ,m} are computed
in some suitable way from Z ′

h. For instance, we can draw {θk, k = 1, . . . ,m} at
random according to the probability distribution proportional to∣∣∣∣∣∣

∑
(x,y)∈Z′

h

yα(x)fθ(x)

∣∣∣∣∣∣π(dθ),

define the weights wk by

wk = sign

 ∑
(x,y)∈Z′

h

yα(x)fθk
(x)

∫
θ∈Θ

∣∣∣∣∣∣
∑

(x,y)∈Z′
h

yα(x)fθ(x)

∣∣∣∣∣∣π(dθ),

and choose the smallest value of m for which this approximation still classifies Z ′
h

without errors.
More generally, given Z ′

h, we can select a finite set of features Θ′ ⊂ Θ such
that Z ′

h is KΘ′ separable, where KΘ′(x, x′) =
∑

θ∈Θ′ fθ(x)fθ(x′) and consider the
support vector machines fZ′

h
built with the kernel KΘ′ . As soon as Θ′ is chosen as

a function of Z ′
h only, proposition 3.1 applies and provides some level of confidence

for the risk of fZ′
h
.
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In the i.i.d. case, we can furthermore apply the results of chapter 4 to support
vector machines at the price of simulating posterior distributions.

6. Building kernels

The results of this section (except the last one) are drawned from [17]. We
have no reference for the last proposition of this section, although we believe it is
well known. We include them for the convenience of the reader.

Proposition 6.1. Let K1 and K2 be positive symmetric kernels on X. Then
for any a ∈ R+

(aK1 + K2)(x, x′)
def
= aK1(x, x′) + K2(x, x′)

and (K1 ·K2)(x, x′)
def
= K1(x, x′)K2(x, x′)

are also positive symmetric kernels. Moreover, for any measurable function
g : X → R, Kg(x, x′)

def
= g(x)g(x′) is also a positive symmetric kernel.

Proof. It is enough to prove the proposition in the case when X is finite and
kernels are just ordinary symmetric matrices. Thus we can assume without loss of
generality that X = {1, . . . , n}. Then for any α ∈ RN , using usual matrix notations,

〈α, (aK1 + K2)α〉 = a〈α, K1α〉+ 〈α, K2α〉 ≥ 0,

〈α, (K1 ·K2)α〉 =
∑
i,j

αiK1(i, j)K2(i, j)αj

=
∑
i,j,k

αiK
1/2
1 (i, k)K1/2

1 (k, j)K2(i, j)αj

=
∑

k

∑
i,j

[
K

1/2
1 (k, i)αi

]
K2(i, j)

[
K

1/2
1 (k, j)αj

]
︸ ︷︷ ︸

≥0

≥ 0,

〈α, Kgα〉 =
∑
i,j

αig(i)g(j)αj =

(∑
i

αig(i)

)2

≥ 0.

�

Proposition 6.2. Let K be some positive symmetric kernel on X. Let p :
R → R be a polynomial with positive coefficients. Let g : X → R

d be a measurable
function. Then

p(K)(x, x′)
def
= p

[
K(x, x′)

]
,

exp(K)(x, x′)
def
= exp

[
K(x, x′)

]
and Gg(x, x′)

def
= exp

(
−‖g(x)− g(x′)‖2

)
are all positive symmetric kernels.

Proof. The first assertion is a direct consequence of the previous proposition.
The second one comes from the fact that the exponential function is the pointwise
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limit of a sequence of polynomial functions with positive coefficients. The third one
is seen from the second one and the decomposition

Gg(x, x′) =
[
exp
(
−‖g(x)‖2

)
exp
(
−‖g(x′)‖2

)]
exp
[
2〈g(x), g(x′)〉

]
�

Proposition 6.3. With the notations of the previous proposition, any training
set Z = (xi, yi)N

i=1 ∈
(
X×{−1,+1}

)N is Gg-separable as soon as g(xi), i = 1, . . . , N

are distinct points of Rd.

Proof. It is clearly enough to prove the case when X = R
d and g is the

identity. Let us consider some other generic point xN+1 ∈ Rd and define Ψ as in
(4.1). It is enough to prove that Ψ(x1), . . . ,Ψ(xN ) are affine independent, since
the simplex, and therefore any affine independent set of points can be shattered by
affine half-spaces. Let us assume that (x1, . . . , xN ) are affine dependent, this means
that for some (λ1, . . . , λN ) 6= 0 such that

∑N
i=1 λi = 0,

N∑
i=1

N∑
j=1

λiG(xi, xj)λj = 0.

Thus, (λi)N+1
i=1 , where we have put λN+1 = 0 is in the kernel of the symmetric

positive semi-definite matrix G(xi, xj)i,j∈{1,...,N+1}. Therefore
N∑

i=1

λiG(xi, xN+1) = 0,

for any xN+1 ∈ Rd. This would mean that the functions x 7→ exp(−‖x − xi‖2)
are linearly dependent, which can be easily proved to be false. Indeed, let n ∈ Rd

be such that ‖n‖ = 1 and 〈n, xi〉, i = 1, . . . , N are distinct (such a vector exists,
because it has to be outside the union of a finite number of hyperplanes, which is
of zero Lebesgue measure on the sphere). Let us assume for a while that for some
(λi)N

i=1 ∈ RN , for any x ∈ Rd,
N∑

i=1

λi exp(−‖x− xi‖2) = 0.

Considering x = tn, for t ∈ R, we would get
N∑

i=1

λi exp(2t〈n, xi〉 − ‖xi‖2) = 0, t ∈ R.

Letting t go to infinity, we see that this is only possible if λi = 0 for all values of
i. �
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CHAPTER 6

VC dimension of linear rules with margin
constraints

1. How far can subsets be linearly separated

The proof of the following theorem has been suggested to us by a similar proof
presented in [17].

Theorem 1.1. Consider a family of points (x1, . . . , xn) in some Euclidean
vector space E and a family of affine functions

H =
{
gw,b : E → R ;w ∈ E, ‖w‖ = 1, b ∈ R

}
,

where
gw,b(x) = 〈w, x〉 − b, x ∈ E.

Assume that there is a set of thresholds (bi)n
i=1 ∈ R

n such that for any
(yi)n

i=1 ∈ {−1,+1}n, there is gw,b ∈ H such that
n

inf
i=1

(
gw,b(xi)− bi

)
yi ≥ γ.

Let us also introduce the empirical variance of (xi)n
i=1,

Var(x1, . . . , xn) =
1
n

n∑
i=1

∥∥∥∥xi −
1
n

n∑
j=1

xj

∥∥∥∥2

.

In this case and with these notations,

(1.1)
Var(x1, . . . , xn)

γ2
≥

{
n− 1 when n is even,
(n− 1)n2−1

n2 when n is odd.

Moreover, equality is reached when γ is optimal, bi = 0, i = 1, . . . , n and (x1, . . . , xn)
is a regular simplex (i.e. when 2γ is the minimum distance between the convex hulls
of any two subsets of {x1, . . . , xn} and ‖xi − xj‖ does not depend on i 6= j).

Proof. Let (si)n
i=1 ∈ R

n be such that
∑n

i=1 si = 0. Let σ be a uniformly
distributed random variable with values in Sn, the set of permutations of the first
n integers {1, . . . , n}. By assumption, for any value of σ, there is an affine function
gw,b ∈ H such that

min
i=1,...,n

[
gw,b(xi)− bi

][
21(sσ(i) > 0)− 1

]
≥ γ.

As a consequence〈
n∑

i=1

sσ(i)xi, w

〉
=

n∑
i=1

sσ(i)

(
〈xi, w〉 − b− bi

)
+

n∑
i=1

sσ(i)bi
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≥
n∑

i=1

γ|sσ(i)|+ sσ(i)bi.

Therefore, using the fact that the map x 7→
(
max

{
0, x
})2

is convex,

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)
≥ E

(max

{
0,

n∑
i=1

γ|sσ(i)|+ sσ(i)bi

})2


≥

(
max

{
0,

n∑
i=1

γE
(
|sσ(i)|

)
+ E

(
sσ(i)

)
bi

})2

= γ2

(
n∑

i=1

|si|

)2

,

where E is the expectation with respect to the random permutation σ. On the
other hand

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=
n∑

i=1

E(s2
σ(i))‖xi‖2 +

∑
i 6=j

E(sσ(i)sσ(j))〈xi, xj〉.

Moreover

E(s2
σ(i)) =

1
n
E

(
n∑

i=1

s2
σ(i)

)
=

1
n

n∑
i=1

s2
i .

In the same way, for any i 6= j,

E
(
sσ(i)sσ(j)

)
=

1
n(n− 1)

E

∑
i 6=j

sσ(i)sσ(j)


=

1
n(n− 1)

∑
i 6=j

sisj

=
1

n(n− 1)

[(
n∑

i=1

si︸ ︷︷ ︸
=0

)2

−
n∑

i=1

s2
i

]

= − 1
n(n− 1)

n∑
i=1

s2
i .

Thus

E

(∥∥∥∥ n∑
i=1

sσ(i)xi

∥∥∥∥2
)

=

(
n∑

i=1

s2
i

) 1
n

n∑
i=1

‖xi‖2 − 1
n(n− 1)

∑
i 6=j

〈xi, xj〉


=

(
n∑

i=1

s2
i

)[(
1
n

+
1

n(n− 1)

) n∑
i=1

‖xi‖2

− 1
n(n− 1)

∥∥∥∥ n∑
i=1

xi

∥∥∥∥2
]

=
n

n− 1

(
n∑

i=1

s2
i

)
Var(x1, . . . , xn).
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We have proved that

Var(x1, . . . , xn)
γ2

≥
(n− 1)

( n∑
i=1

|si|
)2

n
n∑

i=1

s2
i

.

This can be used with si = 1(i ≤ n
2 ) − 1(i > n

2 ) in the case when n is even and
si = 2

(n−1)1(i ≤ n−1
2 )− 2

n+11(i > n−1
2 ) in the case when n is odd to establish the

first inequality (1.1) of the theorem.
Checking that equality is reached for the simplex is an easy computation when

the simplex (xi)n
i=1 ∈ (Rn)n is parametrized in such a way that

xi(j) =

{
1 if i = j,

0 otherwise.

Indeed the distance between the convex hulls of any two subsets of the simplex is
the distance between their mean values (i.e. centers of mass). �

2. Application to support vector machines

We are going to apply theorem 1.1 to support vector machines in the transduc-
tive case. So let us consider (Xi, Yi)2N

i=1 distributed according to some exchangeable
distribution P2N and assume that (Xi)2N

i=1 and (Yi)N
i=1 are observed. Let us con-

sider some positive kernel K on X. For any K-separable training set of the form
Z ′ = (Xi, y

′
i)

2N
i=1, where (y′i)

2N
i=1 ∈ Y2N , let f̂Z′ be the support vector machine defined

by K and Z ′ and let γ(Z ′) be its margin. Let

R2 = max
i=1,...,2N

K(xi, xi) +
1

4N2

2N∑
j=1

2N∑
k=1

K(xj , xk)− 1
N

2N∑
j=1

K(xi, xj).

(This is an easily computable upper-bound for the radius of some ball containing
the image of (X1, . . . , X2N ) in feature space.)

Let us define for any integer h the margins

(2.1) γ2h = (2h− 1)−1/2 and γ2h+1 =
[
2h

(
1− 1

(2h + 1)2

)]−1/2

.

Let us consider for any h = 1, . . . , N the exchangeable model

Rh =
{
f̂Z′ : Z ′ = (Xi, y

′
i)

2N
i=1 is K-separable and γ(Z ′) ≥ Rγh

}
.

The family of models Rh, h = 1, . . . , N is nested, and we know from theorem 1.1
of this chapter and theorems 1.2 and 1.3 of chapter 2 that

log
(
|Rh|

)
≤ h

[
log
(

2N
h

)
+ 1
]
.

We can then consider on the large model R =
⊔N

h=1 Rh (the disjoint union of the
submodels) an exchangeable prior π which is uniform on each Rh and is such that
π(Rh) ≥ (1−α)αh for some parameter α ∈]0, 1[. Applying corollary 2.3 of chapter
2, and taking as posterior all the Dirac masses, we get
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Proposition 2.1. For any λ ∈]0, 2N [, with P2N probability at least 1− ε, for
any h = 1, . . . , N , any support vector machine f ∈ Rh,

r2(f) ≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
r1(f)

+
1
λ

[
h
[
log
(

2N
h

)
+ 1− log(α)

]
− log(1− α)− log(ε)

]}
.

(This proposition could of course be made uniform in λ in the standard way
many times explained in this paper.)

3. Non transductive margin bounds for support vector machines

In order to establish non transductive margin bounds, we will need a different
combinatorial lemma. It is due to [1]. We will reproduce their proof with some
tiny improvements on the values of constants.

Let us consider the finite case when X = {1, . . . , n}, Y = {1, . . . , b} and
b ≥ 3 (the question we will study would be meaningless in the case when b ≤ 2).
Assume as usual that we are dealing with a prescribed set of classification rules
R =

{
f : X → Y

}
. Let us say that a pair (A, s), where A ⊂ X is a non empty set

of shapes and s : A → {2, . . . , b − 1} a threshold function, is shattered by the set
of functions F ⊂ R if for any (σx)x∈A ∈ {−1,+1}A, there exists some f ∈ F such
that minx∈A σx

[
f(x)− s(x)

]
≥ 1.

Definition 3.1. Let the fat shattering dimension of (X,R) be the maximal
size |A| of the first component of the pairs which are shattered by R.

Let us say that a subset of classification rules F ⊂ YX is separated whenever
for any pair (f, g) ∈ F 2 such that f 6= g, ‖f −g‖∞ = maxx∈X|f(x)−g(x)| ≥ 2. Let
M(R) be the maximum size |F | of separated subsets F of R. Note that if F is a
separated subset of R such that |F | = M(R), then it is a 1-net for the L∞ distance:
for any function f ∈ R there exists g ∈ F such that ‖f − g‖∞ ≤ 1 (otherwise f
could be added to F to create a larger separated set).

Lemma 3.1. With the above notations, whenever the fat shattering dimension
of (X,R) is not greater than h,

log
[
M(R)

]
< log

[
(b− 1)(b− 2)n

]{ log
[∑h

i=1

(
n
i

)
(b− 2)i

]
log(2)

+ 1

}
+ log(2)

≤ log
[
(b− 1)(b− 2)n

]{[
log
[

(b−2)n
h

]
+ 1
]

h

log(2)
+ 1

}
+ log(2).

Proof. For any set of functions F ⊂ YX, let t(F ) be the number of pairs
(A, s) shattered by F . Let t(m,n) be the minimum of t(F ) over all separated sets
of functions F ⊂ YX of size |F | = m (n is here to recall that the shape space X is
made of n shapes). For any m such that t(m,n) >

∑h
i=1

(
n
i

)
(b− 2)i, it is clear that

any separated set of functions of size |F | ≥ m shatters at least one pair (A, s) such
that |A| > h. Indeed, t(m,n) is clearly from its definition a non decreasing function
of m, so that t(|F |, n) >

∑h
i=1

(
n
i

)
(b−2)i. Moreover there are only

∑h
i=1

(
n
i

)
(b−2)i

pairs (A, s) such that |A| ≤ h. As a consequence, whenever the fat shattering
dimension of (X,R) is not greater than h we have M(R) < m.
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It is clear that for any n ≥ 1, t(2, n) = 1.

Lemma 3.2. For any m ≥ 1, t
[
mn(b−1)(b−2), n

]
≥ 2t

[
m,n−1

]
, and therefore

t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]
≥ 2r.

Proof. Let F = {f1, . . . , fmn(b−1)(b−2)} be some separated set of functions of
size mn(b− 1)(b− 2). For any pair (f2i−1, f2i), i = 1, . . . ,mn(b− 1)(b− 2)/2, there
is xi ∈ X such that |f2i−1(xi) − f2i(xi)| ≥ 2. Since |X| = n, there is x ∈ X such
that

∑mn(b−1)(b−2)/2
i=1 1(xi = x) ≥ m(b − 1)(b − 2)/2. Let I = {i : xi = x}. Since

there are (b−1)(b−2)/2 pairs (y1, y2) ∈ Y2 such that 1 ≤ y1 < y2−1 ≤ b−1, there
is some pair (y1, y2), such that 1 ≤ y1 < y2 ≤ b and such that

∑
i∈I 1({y1, y2} =

{f2i−1(x), f2i(x)}) ≥ m. Let J =
{
i ∈ I : {f2i−1(x), f2i(x)} = {y1, y2}

}
. Let

F1 = {f2i−1 : i ∈ J, f2i−1(x) = y1} ∪ {f2i : i ∈ J, f2i(x) = y1},
F2 = {f2i−1 : i ∈ J, f2i−1(x) = y2} ∪ {f2i : i ∈ J, f2i(x) = y2}.

Obviously |F1| = |F2| = |J | = m. Moreover the restrictions of the functions of F1

to X \ {x} are separated, and it is the same with F2. Thus F1 strongly shatters
at least t(m,n− 1) pairs (A, s) such that A ⊂ X \ {x} and it is the same with F2.
Eventually, if the pair (A, s) where A ⊂ X \ {x} is both shattered by F1 and F2,
then F1 ∪ F2 shatters also (A ∪ {x}, s′) where s′(x′) = s(x′) for any x′ ∈ A and
s′(x) = by1+y2

2 c. Thus F1 ∪F2, and therefore F , shatters at least 2t(m,n− 1) pairs
(A, s). �

Resuming the proof of lemma 3.1, let us choose for r the smallest integer such

that 2r >
∑h

i=1

(
n
i

)
(b− 2)i, which is no greater than

{
log
[Ph

i=1 (n
i)(b−2)i

]
log(2) + 1

}
. In

the case when 1 ≤ n ≤ r,

log(M(R)) < |X| log(|Y|) = n log(b) ≤ r log(b) ≤ r log
[
(b− 1)(b− 2)n

]
+ log(2),

which proves the lemma. In the remaining case n > r,

t
[
2nr(b− 1)r(b− 2)r, n

]
≥ t
[
2n(n− 1) . . . (n− r + 1)(b− 1)r(b− 2)r, n

]
>

h∑
i=1

(
n

i

)
(b− 2)i.

Thus |M(R)| < 2
[
(b− 2)(b− 1)n

]r
as claimed. �

In order to apply this combinatorial lemma to support vector machines, let us
consider now the case of separating hyperplanes in Rd. Assume that X = R

d and
Y = {−1,+1}. For any sample X2N

1 , let

R(X2N
1 ) = max{‖Xi‖ : 1 ≤ i ≤ 2N}.

Let us consider the set of parameters

Θ =
{
(w, b) ∈ Rd ×R : ‖w‖ = 1

}
.

For any (w, b) ∈ Θ, let gw,b(x) = 〈w, x〉 − b. Let h be some fixed integer and let
γ = R(X2N

1 )γh, where γh is defined by equation (2.1).
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Let us define ζ : R→ Z by

ζ(r) =



−5 when r ≤ −4γ,

−3 when −4γ <r ≤ −2γ,

−1 when −2γ <r ≤ 0,

+1 when 0 <r ≤ 2γ,

+3 when 2γ <r ≤ 4γ,

+5 when 4γ <r.

Let Gw,b(x) = ζ
[
gw,b(x)

]
. The fat shattering dimension (as defined in 3.1) of(
X2N

1 ,
{
(Gw,b + 7)/2 : (w, b) ∈ Θ

})
is not greater than h (according to theorem 1.1), therefore there is some set F of
functions from X2N

1 to {−5,−3,−1,+1,+3,+5} such that

log
(
|F|
)
≤ log(40N)

{
h

log(2)

[
log
(

8N

h

)
+ 1
]

+ 1

}
+ log(2).

and for any (w, b) ∈ Θ, there is fw,b ∈ F such that sup
{
|fw,b(Xi)−Gw,b(Xi)| : i =

1, . . . , 2N
}
≤ 2. Moreover, the choice of fw,b may be required to depend on X2N

1 in
an exchangeable way. Very similarly to the proof of corollary 2.3 of chapter 2, it can
be proved that for any exchangeable probability distribution P2N ∈ M1

+

[
(X×Y)2N

]
,

for any λ ∈]0, 2N [, with P2N probability at least 1− ε, for any fw,b ∈ F,

1
N

2N∑
i=N+1

1
[
fw,b(Xi)Yi ≤ 1

]
≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
1
N

N∑
i=1

1
[
fw,b(Xi)Yi ≤ 1

]
+

1
λ

[
log
(
|F|
)

+ log(ε−1)
]}

.

Let us remark that

1

{
21
[
gw,b(Xi) ≥ 0

]
− 1 6= Yi

}
= 1

[
Gw,b(Xi)Yi < 0

]
≤ 1

[
fw,b(Xi)Yi ≤ 1

]
and

1
[
fw,b(Xi)Yi ≤ 1

]
≤ 1

[
Gw,b(Xi)Yi ≤ 3

]
≤ 1

[
gw,b(Xi)Yi ≤ 4γ

]
.

This proves the following theorem.

Theorem 3.3. For any λ ∈]0, 2N [, any positive integer h, with P2N probability
at least 1− ε, for any (w, b) ∈ Θ,

1
N

2N∑
i=N+1

1

{
21
[
gw,b(Xi) ≥ 0

]
− 1 6= Yi

}

≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
1
N

N∑
i=1

1
[
gw,b(Xi)Yi ≤ 4R(X2N

1 )γh

]
+

1
λ

[
log(40N)

{
h

log(2)

[
log
(

8N
h

)
+ 1
]
+ 1
}

+ log(2ε−1)
]}

.
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As usual, this result can be made uniform in h and λ. A simple consequence
though, in the case when R(X2N

1 ) ≤ R and
N∑

i=1

1
[
gw,b(Xi)Yi ≤ γ

]
= 0,

is obtained by choosing λ = N and h to be the smallest integer such that
γ ≥ Rγh. This choice shows that with P2N probability at least 1 − ε, for any
(w, b) ∈ Θ,

1
N

2N∑
i=N+1

1
[
gw,b(Xi)Yi < 0

]
≤ 2

N

{
log(40N)

{
1

log(2)

(
16R2

γ2
+ 2
)

×
[
log
(

Nγ2

2R2

)
+ 1
]

+ 1
}

+ log
(

2
ε

)}
.

This inequality compares favourably with similar inequalities in [17], which more-
over do not extend to the margin quantile case as this one.

Let us also remark that it is easy to circonvent the fact that R(X2N
1 ) is not

observed when the test set X2N
N+1 is not observed.

Indeed, we can consider the sample obtained by projecting X2N
1 on some ball

of fixed radius R, putting

Xi(R) = min
{

1,
R

‖Xi‖

}
Xi.

As a consequence of the previous theorem,

Corollary 3.4. For any λ ∈]0, 2N [ and any positive integer h, with P2N

probability at least 1− ε, for any (w, b) ∈ Θ,

1
N

2N∑
i=N+1

1

{
21
[
gw,b

[
Xi(R)

]
≥ 0
]
− 1 6= Yi

}

≤
(

1− λ

2N

)−1{(
1 +

λ

2N

)
1
N

N∑
i=1

1

[
gw,b

[
Xi(R)

]
Yi ≤ 4Rγh

]
+

1
λ

[
log(40N)

{
h

log(2)

[
log
(

8N
h

)
+ 1
]
+ 1
}

+ log(2ε−1)
]}

.

Choosing a sequence Rm, m ∈ N of values of R increasing to infinity, we can
make this result uniform in λ, h and m (using a union bound), and optimize the
right-hand side of the above inequality in λ, h and m.
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Conclusion

It is our hope that this PAC-Bayesian study of adaptive classification will have
provided some useful insights on an already powerful but in the same time still
promising technique. The main improvements on previous works are localization
and the use of exchangeable priors. It puts Vapnik’s theory in a new perspective
and opens the road for new mathematically justified ways of adapting classification
algorithms to the data. The use of compression schemes should in particular be
very flexible. We hope to investigate further applications in forthcoming papers. It
is also to be mentioned that a substantial part of the techniques used here are not
specific to classification and are relevant in any situation where a non asymptotic
deviation inequality is available for each value of the parameter (in this respect,
some materials about the use of PAC-Bayesian tools in the regression setting can
be found in [16], this is where we felt for the first time the interest and possibility
of getting localized bounds).
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to decision trees [Méthodes de mélange et d’agrégation d’estimateurs en reconnaissance

de formes. Application aux arbres de décision.] in English with an introduction in French,
PhD dissertation, Université Paris XIII, January 2001.
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