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A packing problem

with applications to lettering of maps*
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Abstract

The following packing problem arises in connection with

lettering of maps: Given n distinct points pl, p2, . . . . pn

in the plane, determine the supremum uoPi of all reals U,

such that there are n pan-wise dtsjomt, axis-parallel,

closed squares Ql, Q2, . . . . Qn of side-length u, where

each pi ts a corner of Qi. Note that — by using afine

transformation — the problem is equivalent to the case

when we want largest homothetic cop~es of a jized rect-

angle or parallelogram tnstead of equal ly-szzed squares.

In the cartographic application, the points are items

(groundwater-drillho les etc.) and the squares are places

for labels associated with these items (sulphate concen-

tration etc.).

An algorithm is presented, that in O(n log n] time ei-

ther produces a solution, that is guaranteed to be at least

half as large as the supremum. This is optimal, m the

sense that the corresponding decision problem is NP -

complete, no po[ynomzal approximation algorithm with

a guaranteed factor ezceedmg ~ exwts, provided that

P # AfP; and there M also a lower bound of C2(n log n)

for the running time.

1 Introduction

The more there is a need for large, especially technical

maps, for which legibility is much more important than
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beauty, the more the computerization of maps asks for

fully automated algorithms.

A basic task in the process of producing maps is the

lettering, the positioning of labels which describe prop-

erties of points on the map, such that the inscriptions

are legible, i.e. large enough and non-overlapping, and

a user of the map can easily and intuitively identify the

label of a specific point.

An adequate formalization is the following:

Problem R4 (Rectangles in four positic,ns) We are

given n distinct points in the plane each associ-

ated with an axis-parallel rectangle and we want

to know whether it is possible to shift these rect-

angles horizontally and vertically such that

(i) all rectangles are pairwise disjoint and

(ii) each point is a corner of “its” rectangle.

If the answer is positive, of course we also want to

know the solution – the position of the rectangles.

Note, that each rectangle can be placed exactly in four

possible positions by restriction (ii). Figure 1 shows an

example for seven points, the four possible positions of

each rectangle are drawn with thin lines, ii solution is

indicated in bold.

Cartographers often get into trouble with the letter-

ing of maps, in particular naive computer-based ap

preaches produce either overlappings of inscriptions or,

in order to avoid that, omit some of the labels, thus pro-

ducing illegible or incomplete maps. Incompleteness is

not that large a problem in usual geographical maps,

where the points are cities and the labels :are their re-

spective names; one may leave out some sn!all or less

important citites. But in technical maps, there is usu-

ally no unimportant information.

Cartographers in the municipal authorities of

Miinchen encountered the problem for the simpler case

of equally-sized rectangles, when they tried to automate
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Figure 1: An example for 7 points.

the production of labelings for groundwater maps.

There the points are drill-holes and the rectangles are

associated labels, e.g. the name of the drill-hole, the

groundwater level, the sulphate concentration etc.

Unfortunately, problem R4 is ~P-complete, even for

equally-sized squares. This will be shown at the end of

this paper in section 5. Firstly in section 2 we will show,

how to solve efficiently a variant of the problem, where

we allow only two fixed out of the four possible positions

for each rectangle. This partial result is not of great in-

terest in itself, but it is used as the key subroutine of

the main algorithm, which comes in section 3, where

we tackle the original problem from another point of

view. We start with infinitesimal equally-sized squares

and want to know how big we can simultaneously “blow

up” the squares, such that we still have a solution. An

algorithm will be presented, that blows up the squares

to at least 50% of the maximal size. We also show,

provided that P # JVT, no better approximating algo-

rithm with polynomial runtime exists. Our algorithm

runs in O(rr log n) optimal time.

2 Two positions

As indicated in the introduction, we can solve the prob-

lem efficiently if we allow only two out of the four pos-

sible positions for each rectangle, in the sequel we will

call this problem R2 (Rectangles in two positions).

The algorithm is fairly simple and proceeds in three

steps.

Algorithm AR2 (Algorithm for rectangles in two po-

sitions)

1. We consider the points as Boolean variables. De-

nominate the two positions of the rectangle associ-

2.

3.

ated with the ith point by xi and K.

If two placements overlap, say xi and ~, form the

clause

(~iA~)=~V~j.

This gives us a set of clauses.

One should interpret the left side of the equa-

tion as: “We don’t want, that xi and ~ are si-

multaneously in a solution, because these positions

overlap”.

Check, if there is a satisfying truth assignment for

the set of clauses. If there is such an &signment

take position xi (z) for the ith rectangle, if variable

z; is set to the value true (false) in this assignment.

Now it is obvious, that a satisfying truth assignment

gives us a valid (non-overlapping) solution for R2 and

vice versa.

Step (3) of algorithm AR2 is simply the classi-

cal 2-SAT problem, which was shown to be solv-

able in time linear in the number of clauses by

[Even, Itai and Shamir]. So, what is the number of

clauses and how fast can we generate the clauses?

In general, we can have ~(nz) pairwise intersections

of rectangles and therefore f2(n2) clauses. Note, that

there are instances of R2 with 0(n2) clauses, that still

have solutions (cf. Figure 3). [Imai and Asano] exploit

the geometric flavour of the problem and present an

O(n log2 n) algorithm for Problem R2. Still, one can

do better for equally-sized squares, since then there are

at most O(n) intersections in solvable cases.

Lemma 1 Given an instance of R2 with equally-sized

squares. If any square M cut by more than ,24 other

squares than there exists no valid solution.

ProoE Let Q be any square. W.1.o.g. the lower left

corner p of Q has coordinates (0,0). Then any square

that cuts Q must lie within the square spanned by the

points (-1 ,-1) and (2,2). Furthermore all their “part-

ner squares” (the other possible positions of the cutting

squares) must lie within the square spanned by (-2,-2)

and (3,3). (see Figure 2).

This big square has an area of 25 square units and we

have to choose one square from each pair (square that

cuts s, its partner). If more than 24 squares cut s, any

partial solution for these pairs and for s has to use more

than 25 square units, a contradiction. ❑

p intersections can be found in O(n log n + p) time

[Edelsbrunner]. Therefore we can sum up the results of

this chapter:
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Figure 3: A solvable example with ~(nz) squares.
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Figure 2: Any square that cuts s or whose partner cuts

s must lie within the dashed big square.

Theorem 2 Problem R2’ M solvable Zn O(n log2 n)

time for arbitrary rectangles and in O(n log n) tzme for

equally-sued squares.

3 Approximating the optimal size

Apart from the fact that – most likely – we cannot solve

the problem R4 in polynomial time; even if we coulcl,

a negative answer would not be very helpful, because

we must label our points somehow by all jmeans. So in

this case we should better use a larger scale or, in other

words, smaller labels.

In this section we therefore consider the following

variant of our original problem.

Problem S4a (Squares in four positions, approxima-

tion) Given n distinct points in the plane, what is

the supremum uoP~ of all reals u, such that there is

a closed square with side length u for every point

with the two properties:

(i) the point is in one of its corners and

(ii) all squares are pairwise disjoint.

O~Pj will be called the optimal wze.

Note that, it makes a difference whether we consider the

rectangles as being topologically closed or open. Take

four equidistant points on a horizontal line. In the first

case the optimal size is just the distance between two

points but in the second case the solution is infinitely

large. For problem R2 in the previous section we did

not state explicitly, which of the two cases we meant,

because our methods work for both of them.
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Here, this is not the case. The key fact (Lemma 3),

which enables us to develop an approximation algo-

rit hm, does not hold for t opologically open rectangles.

With topologically open rectangles it can be the case,

that from a labelling we cannot reconstruct uniquely the

point which belongs to a label. This might not be very

useful for practical purposes.

As already said, the best we can hope for is an algo-

rithm that approximates a by at least 50Y0. This will

be proved in section 5.

Intuitively our algorithm works along the following

lines:

We start with infinitesimal equally-sized squares and

want to know how big we can simultaneously “blow

up” the squares, such that we still have a solution. The

inherent difficulty of our problem is that we have to

choose one of 4n possible solutions, since each of the four

positions of each point is a candidate in the beginning.

With growing current size awe exclude as much squares

as possible from being a candidate by eliminating them,

thus reducing the number of possible solutions.

Of course, we have to be sure that we do not eliminate

squares which are needed in a solution of the size we aim

at (at least, 50% of the optimal size).

We divide the squares into three different types for a

fixed current size a:

Definition 1 For a poz71t p in the plane denote by pi

(i E {1,2,3, 4}) an axis-parallel unit square wzth p in its

southwest, southeast, northeast resp. northwest corner

(the numbering is chosen like that of quadrants); for

a real u denote by rrpi analogously a square with side-

length u.

For a point set P and a real u we call pi (p c P)

1. u-dead, if2rp, contains another point q E P;

2. u-pending, if pi is not u-dead and Upi has

nonempty intersection with Uqj J where qj is an-

other non-u-dead square;

3. u-alive, if pi is neither u-dead nor u-pending.

The algorithm can be formulated very simply now. It

is clesigned in order to maintain two invariants: Firstly,

only u-dead squares are eliminated and secondly it can

always efficiently construct a solution of the current size

from the set of those squares, which are not yet elimi-

nated.

By using AR2 in step 2.’2 of the following algorithm

we assume, that the case that three or more of a vertices

squares are pencling, cannot occur. This assumption

will be justified by Lemma 3 below.

Algorithm AS4a (algorithm for squares in four posi-

tions, approximation)

1

2

2.1

2.2

2.2

3

4

4.1

4.2

Start with all four squares of size a := O assigned

to each point;

Let u grow:

eliminate all a-dead squares;

for the set of all points that have no u-alive

square use the algorithm AR2;

stop if one point has no more square or the

algorithm AR2 in step 2.2 gives the

answer “no”;

decrease the stop-value of u by an arbitrary small

amount resulting in ure~.

Construct a solution:

for every point that still has ur.~-alive

squares, choose one of them;

for the rest take the solution of AR2;

Note, that it is possible that the loop in the algorithm

does not stop as u tends to infinity. This is the case, if

there are at most four points, all of which are vertices

of the convex hull. We exclude this special case for the

rest of the discussion.

The first invariant, described above, obviously holds.

For this reason we can conclude, that we do not elimi-

nate squares which are needed in a solution of the size

we aim at, this can be seen as follows:

From a solution of optimal size uOPt we can obviously

construct an approximate solution of the claimed qual-

ity by shrinking the squares to half of their size. No

such half-size square is eliminated as long as the cur-

rent size is at most aOPt/2. This is the case because

these squares are not uOPt/2-dead.

The second invariant we claimed, is that, as long as

the stop-condition is not fulfilled, we can always effi-

ciently construct a solution of the current size from the

set of those squares, which are not yet eliminated. To

see this, note that a u-alive square does n~t intersect

with any other square of size a, that is not yet elimi-

nated. So for all points, that still have u-alive squares

we are able to take one for a solution. For the other

points we know by the first part of the stop-conclition,

that each of them has at least one u-pending square.

The second part of the stop-condition guarantees, that

we can complete the solution according to the truth

assignment given by algorithm AR2.

The algorithm stops, when it reaches a size where no

such solution exists anymore. But, what will be the

output? Of course we have stored the status of the

squares at the size, which was current just before the

stop-condition was fulfilled!

284



As already stated implicitly we assume in the algo-

rithm, that the case that three or more of a vertices

squares are pending, cannot occur. This assumption

will be justified by the following Lemma 3. It is some-

how the most important tool in our algorithm because

by this lemma we can use the polynomial-time 2-SAT

algorithm.

Lemma 3 The number of u-pendzng squares of a point

is at most two.

Proof: Suppose pl is u-pending. Then there exists

another square qj such that Upl and uqj have nonempty

intersection. But none of them is u-dead by definition,

so neither 2up1 (2~qj ) contain another point, especially

not q resp. p. But then q must lie in the square up2

or CP4; note that j = 1 and qj = ql must be u-pending

too. It follows that ap2 or UpA is then certainly u-dead

(see Fig. 4).

%
,,
{q;
.. ---,

Figure 4: illustration for the proof of Lemma 2

Analogous facts hold for p2, p3 and p~. Now suppose

three squares of p, w.1.o.g. pl, p2 and p~ are pending. All

corresponding “pending partners” must lie in u-dead

squares of p. This can be managed for pl and p3 but

not for pZ. ❑

To summarize:

Theorem 4 Algorithm ASJa constructs a solution for

problem S~a with at least 50% of the optimal size.

Clearly, be resealing one of the coordinates, our al-

gorithm can also be applied to equally-sized rectangles.

Furthermore, by using affine transformations, our al-

gorithm can be used for such strange label shapes as

parallelograms.

4 Analysis of the algorithm

In this chapter we will sketch how the algorithm AS4a

can be implemented efficiently.

The main difficulty lies in fincling those values of CT,

where a square changes its status. Firstly, it is clear that

a square becomes a-dead only once. The 411 values of m

where this happens, can be founcl by four plane-sweeps

(one for each of the four square types) in O(n log n)

total time.

For u-pending squares the situation is more com-

plicated. Note, that by definition a u-pending square

has non-empty intersection with at least one other (s-

pending) square. In the next Lemma we will show, that

the number of those “pending partners” cannot be to

large.

Lemma 5 Only the jirst 13 values of u when a square

gets another pending partner must be considered m al-

gorithm ASJa for each square.

ProoE By a similar packing argument as in the proof

of Lemma 1. Q1

These 13 values of u can be found by plane-sweep

techniques again in O(n log n) time. So, summing up

we can find all O(n) relevant u-values (events), where

the status of a square changes, in O(rr log n) time.

By Lemma 5 the total number of clauses ever consid-

ered in step 2.2 by using AR2 as subroutine is linear.

How can we circumvent the difficulty that one single

satisfiability test will cost us O(n) time and we have to

do O(n) of these, resulting in 0(n2) running time? We

do this by ignoring line 2.2 of the algorithm and run-

ning the algorithm till the events are useld up. Then,

by binary search, we find the value when in the original

version our algorithm would have stopped, because the

set of clauses became unsatisfiable. This results in the

following Lemma.

Lemma 6 Algorithm ASJa can be implemented to run

in O(n log n) time.

In the full paper we will show by using [Ben-Or]’s meth-

ods that f2(n log n) is a lower bound as well for the “ex-

act problem” R4 as for the approximation problem S4a.

5 NP-completeness result

As already stated, problem R4, is AfP-complete. We

will show this for a very special case, the proof will

only be sketched.

Theorem 7 Problem RJ is AfP-cornplete even if all

rectangles are squares of the same size.

Proof: Obviously, the problem is in fl~. we

show the Jf?-hardness by reducing 3-SAT (cf.

[Garey and Johnson], p. 259) to it. Recall that 3-SAT

is the following problem:

3-SAT(3-SATISFIABILITY)

INSTANCE: Set U of variables, collection C of

clauses over U, such that each clause has ex-

actly three literals.

QUESTION: Is there a satisfying truth assign-

ment for C?
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For each variable we use one special point, whose

square is forced – by other points – to be in two of

the four positions, below left or below right. The posi-

tion taken symbolizes the setting of the variable, true

or false. From each variable point z “pipes” lead to

the clauses that contain z or Z. For negated variables

the pipes are flanged at the “true-side” of the variables

and unnegated on the “false-side”. The idea is that

the pipes transmit the “pressure” produced by the set-

ting of the variable squares. FinalIy the pipes lead into

the clauses. These clauses are constructed in such a

way that they can stand pressure from at most two

pipes. Recall that these pipes carry a variable setting

that does not satisfy the clause. So, either each clause

takes up pressure by at most two non-satisfying pipes

and is therefore satisfied or there is a clause which is ex-

pected to take up pressure from three pipes. Then there

is no solution for problem R4. So, there is a solution for

the given instance of 3-SAT if and only if problem R4

has a solution for the constructed point set. Figure 5

gives the basic construction and Figure 6 shows how the

details are modelled. ❑

Lemma 8 Provided that P # NP, no polynomial-time

algorithm with a guaranteed factor exceeding ~ exists.

Proof: Just look at the detailed construction of our

NP-completeness proof in figure 6.

If the set of clauses is satisfiable, then there exists

also a solution with squares nearly twice as large as

the unit-squares in our construction. Note, that in the

figure all squares can be blown up to twice their size

sinlultauously without intersection.

So an algorithm with better approximation-quality

would produce a solution with bigger squares than our

unit-squares.

On the other hand, if the set of clauses is not satis-

fiable such an algorithm would produce a solution with

small squares (smaller than unit-size).

So we would have a polynomial-time decision algo-

rithm for problem R4. •1
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