{: SCISPACE

formerly Typeset

@ Open access « Proceedings Article - DOI:10.1145/109648.109680
A packing problem with applications to lettering of maps — Source link [

Michael Formann, Frank Wagner

Institutions: Free University of Berlin

Published on: 01 Jun 1991 - Symposium on Computational Geometry

Topics: Set packing, Cutting stock problem, Rectangle, Packing problems and Approximation algorithm

Related papers:

« An empirical study of algorithms for point-feature label placement
+ Point labeling with sliding labels

« Positioning Names on Maps

« The Computational Complexity of Cartographic Label Placement

 Label placement by maximum independent set in rectangles

Share this paper: @ ¥ M &

View more about this paper here: https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-
3thw0Ogaheq

https://typeset.io/
https://www.doi.org/10.1145/109648.109680
https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq
https://typeset.io/authors/michael-formann-lr3ekhdtyh
https://typeset.io/authors/frank-wagner-4vt2dr08nf
https://typeset.io/institutions/free-university-of-berlin-1l0gh9y9
https://typeset.io/conferences/symposium-on-computational-geometry-32binlzv
https://typeset.io/topics/set-packing-hamrmwzo
https://typeset.io/topics/cutting-stock-problem-3hatxvwk
https://typeset.io/topics/rectangle-u25q292o
https://typeset.io/topics/packing-problems-1neue2qg
https://typeset.io/topics/approximation-algorithm-3j82mu0v
https://typeset.io/papers/an-empirical-study-of-algorithms-for-point-feature-label-2sqlcsomng
https://typeset.io/papers/point-labeling-with-sliding-labels-372qhhsjwy
https://typeset.io/papers/positioning-names-on-maps-1wppkck2fy
https://typeset.io/papers/the-computational-complexity-of-cartographic-label-placement-zx9g8lh14s
https://typeset.io/papers/label-placement-by-maximum-independent-set-in-rectangles-3p2fiuwkib
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq
https://twitter.com/intent/tweet?text=A%20packing%20problem%20with%20applications%20to%20lettering%20of%20maps&url=https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq
https://typeset.io/papers/a-packing-problem-with-applications-to-lettering-of-maps-3thw0gaheq

A packing problem

with applications to lettering of maps

*

MicHAEL FORMANN AND FRANK WAGNER
Institut fiir Informatik, Fachbereich Mathematik, Freie Universitiat Berlin,
Arnimallee 2-6, W1000 Berlin 33, Germany

e-mail: formann@tcs.fu-berlin.de, wagner@tcs.fu-berlin.de

Abstract

The following packing problem arises in connection with
lettering of maps: Given n distinct poinis p1,ps,...,pn
in the plane, determine the supremum o ,py of all reals o,
such that there are n pairwise disjoint, aris-parallel,
closed squares Q1,Qs,...,Qy, of side-length o, where
each p; 15 a corner of Q;. Note that — by using affine
transformation — the problem is equivalent to the case
when we want largest homothetic copies of a fized reci-
angle or parallelogram instead of equally-sized squares.

In the cartographic application, the points are items
(groundwater-drillkoles etc.) and the squares are places
for labels associated with these items (sulphate concen-
tration elc.).

An algorithm is presented, that in O(nlogn) time ei-
ther produces a solution, that ts guaranteed to be at least
half as large as the supremum. This is optimal, n the
sense that the corresponding decision problem is N'P-
complete, no polynomual approrimation algorithm with
a guaranteed faclor exceeding —% exisis, provided that
P # NP; and there 1s also a lower bound of Q(nlogn)
for the running time.

1 Introduction

The more there is a need for large, especially technical
maps, for which legibility is much more important than

*This work was partially supported by the ESPRIT Il Ba-
sic Research Action of the European Community under contract
Nos. 3075 and 3299 (project ALCOM and working group “Com-
puting by Graph Transformations”).

Permission to copy without fee all or part of this material 1s granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machmnery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

© 1991 ACM 0-89791-426-0/91/0006/0281 $1.50

281

beauty, the more the computerization of maps asks for
fully automated algorithms.

A basic task in the process of producing maps is the
lettering, the positioning of labels which describe prop-
erties of points on the map, such that the inscriptions
are legible, 1.e. large enough and non-overlapping, and
a user of the map can easily and intuitively identify the
label of a specific point.

An adequate formalization is the following:

Problem R4 (Rectangles in four positions) We are
given n distinct points in the plane each associ-
ated with an axis-parallel rectangle and we want
to know whether it is possible to shift these rect-
angles horizontally and vertically such that

(i) all rectangles are pairwise disjoint and

(ii) each point is a corner of “its” rectangle.

If the answer is positive, of course we also want to
know the solution — the position of the rectangles.

Note, that each rectangle can be placed exactly in four
possible positions by restriction (ii). Figure 1 shows an
example for seven points, the four possible positions of
each rectangle are drawn with thin lines, a solution is
indicated in bold.

Cartographers often get into trouble with the letter-
ing of maps, in particular naive computer-based ap-
proaches produce either overlappings of inscriptions or,
in order to avoid that, omit some of the labels, thus pro-
ducing illegible or incornplete maps. Incompleteness is
not that large a problem in usual geographical maps,
where the points are cities and the labels are their re-
spective names; one may leave out some small or less
important citites. But in technical maps, there is usu-
ally no unimportant information.

Cartographers in the municipal authorities of
Miinchen encountered the problem for the simipler case
of equally-sized rectangles, when they tried to automate

Figure 1. An example for 7 points.

the production of labellings for groundwater maps.
There the points are drill-holes and the rectangles are
associated labels, e.g. the name of the drill-hole, the
groundwater level, the sulphate concentration etc.

Unfortunately, problem R4 is A'P-complete, even for
equally-sized squares. This will be shown at the end of
this paper in section 5. Firstly in section 2 we will show,
how to solve efficiently a variant of the problem, where
we allow only two fixed out of the four possible positions
for each rectangle. This partial result is not of great in-
terest in itself, but it is used as the key subroutine of
the main algorithm, which comes in section 3, where
we tackle the original problem from another point of
view. We start with infinitesimal equally-sized squares
and want to know how big we can simultaneously “blow
up” the squares, such that we still have a solution. An
algorithm will be presented, that blows up the squares
to at least 50% of the maximal size. We also show,
provided that P # NP, no better approximating algo-
rithm with polynomial runtime exists. Our algorithm
runs in O(nlogn) optimal time.

2 Two positions

As indicated in the introduction, we can solve the prob-
lemn efficiently if we allow only two out of the four pos-
sible positions for each rectangle, in the sequel we will
call this problem R2 (Rectangles in two positions).

The algorithm is fairly simple and proceeds in three
steps.

Algorithm AR2 (Algorithm for rectangles in two po-
sitions)

1. We consider the points as Boolean variables. De-
nominate the two positions of the rectangle associ-

ated with the i** point by z; and T;.

2. If two placements overlap, say #; and Z7, form the
clause

TINT;)=T; Vx;.
J J

This gives us a set of clauses.

One should interprete the left side of the equa-
tion as: “We don’t want, that z; and Tj are si-
multanously in a solution, because these positions
overlap”.

3. Check, if there is a satisfying truth assignment for
the set of clauses. If there is such an assignment
take position z; (Z7) for the i*® rectangle, if variable
z; is set to the value true (false) in this assignment.

Now it is obvious, that a satisfying truth assignment
gives us a valid (non-overlapping) solution for R2 and
vice versa.

Step (3) of algorithm AR2 is simply the classi-
cal 2-SAT problem, which was shown to be solv-
able in time linear in the number of clauses by
[Even, Itai and Shamir]. So, what is the number of
clauses and how fast can we generate the clauses?

In general, we can have Q(n?) pairwise intersections
of rectangles and therefore Q(n?) clauses. Note, that
there are instances of R2 with ©(n?) clauses, that still
have solutions (cf. Figure 3). [Imai and Asano] exploit
the geometric flavour of the problem and present an
O(nlog® n) algorithm for Problem R2. Still, one can
do better for equally-sized squares, since then there are
at most O(n) intersections in solvable cases.

Lemma 1 Given an instance of R2 with equally-sized
squares. If any square 1s cul by more than 2{ other
squares than there ezxists no valid solution.

Proof: Let @ be any square. W.l.o.g. the lower left
corner p of @ has coordinates (0,0). Then any square
that cuts @ must lie within the square spanned by the
points (-1,-1) and (2,2). Furthermore all their “part-
ner squares” (the other possible positions of the cutting
squares) must lie within the square spanned by (-2,-2)
and (3,3). (see Figure 2).

This big square has an area of 25 square units and we
have to choose one square from each pair (square that
cuts s, its partner). If more than 24 squares cut s, any
partial solution for these pairs and for s has to use more
than 25 square units, a contradiction.

p intersections can be found in O(nlogn + p) time
[Edelsbrunner]. Therefore we can sum up the results of
this chapter:

282

5 9

*—

points

59

[

(59

1

(W

55

1

¢ ¢

*~—{ o— *—
"\J . -
M\ (M M\
T B L]

+——— 3 points ——

Figure 3: A solvable example with ©(n2) squares.

Figure 2: Any square that cuts s or whose partner cuts
s must lie within the dashed big square.

Theorem 2 Problem R2 1s solvable in O(nlog®n)
time for arbitrary rectangles and in O(nlogn) time for
equally-sized squares.

283

3 Approximating the optimal size

Apart from the fact that — most likely — we cannot solve
the problem R4 in polynomial time; even if we could,
a negative answer would not be very helpful, because
we must label our points somehow by all means. So in
this case we should better use a larger scale or, in other
words, smaller labels.

In this section we therefore consider the following
variant of our original problem.

Problem S4a (Squares in four positions, approxima-
tion) Given n distinct points in the plane, what is
the supremum o, of all reals o, such that there is
a closed square with side length o for every point
with the two properties:

(i) the point is in one of its corners and

(ii) all squares are pairwise disjoint.
oopt Will be called the optimal size.

Note that, it makes a difference whether we consider the
rectangles as being topologically closed or open. Take
four equidistant points on a horizontal line. In the first
case the optimal size is just the distance between two
points but in the second case the solution is infinitely
large. For problem R2 in the previous section we did
not, state explicitly, which of the two cases we meant,
because our methods work for both of them.

Here, this is not the case. The key fact (Lemma 3),
which enables us to develop an approximation algo-
rithm, does not hold for topologically open rectangles.

With topologically open rectangles it can be the case,
that from a labelling we cannot reconstruct uniquely the
point which belongs to a label. This might not be very
useful for practical purposes.

As already said, the best we can hope for is an algo-
rithm that approximates o by at least 50%. This will
be proved in section 5.

Intuitively our algorithm works along the following

lines:
We start with infinitesimal equally-sized squares and
want to know how big we can simultaneously “blow
up” the squares, such that we still have a solution. The
inherent difficulty of our problem is that we have to
choose one of 4™ possible solutions, since each of the four
positions of each point is a candidate in the beginning.
With growing current size o we exclude as much squares
as possible from being a candidate by eliminating them,
thus reducing the number of possible solutions.

Of course, we have to be sure that we do not eliminate
squares which are needed in a solution of the size we aim
at (at least 50% of the optimal size).

We divide the squares into three different types for a
fixed current size o:

Definition 1 For a point p in the plane denote by p;
(i € {1,2,3,4}) an azis-parallel unit square with p in ils
southwest, southeast, northeast resp. northwest corner
(the numbering is chosen like that of quadrants); for
a real o denote by op; analogously a square with side-
length o.

For a point set P and a real o we call p; (p € P)

1. o-dead, if 20p, contains another point ¢ € P;

2. o-pending, if p; is not o-dead and op; has
nonempty intersection with oq;, where q; is an-
other non-c-dead square;

3.

o-alive, if p; is neither o-dead nor o-pending.

The algorithm can be formulated very simply now. It
is designed in order to maintain two invariants: Firstly,
only o-dead squares are eliminated and secondly it can
always efficiently construct a solution of the current size
from the set of those squares, which are not yet elimi-
nated.

By using AR2 in step 2.2 of the following algorithm
we assume, that the case that three or more of a vertices
squares are pending, cannot occur. This assumption
will be justified by Lemma 3 below.

Algorithm AS4a (algorithm for squares in four posi-
tions, approximation)

284

1 Start with all four squares of size o := 0 assigned
to each point;

2 Let o grow:
2.1 eliminate all o-dead squares;
2.2 for the set of all points that have no o-alive
square use the algorithm AR2;
2.2 stop if one point has no more square or the

algorithm AR2 in step 2.2 gives the
answer “no”;

3 decrease the stop-value of ¢ by an arbitrary small
amount resulting in oy.;.

4 Construct a solution:

4.1 for every point that still has o,.,-alive
squares, choose one of them;
4.2 for the rest take the solution of AR2;

Note, that it is possible that the loop in the algorithm
does not stop as o tends to infinity. This is the case, if
there are at most four points, all of which are vertices
of the convex hull. We exclude this special case for the
rest of the discussion.

The first invariant, described above, obviously holds.

For this reason we can conclude, that we do not elimi-
nate squares which are needed in a solution of the size
we aim at, this can be seen as follows:
From a solution of optimal size o,,; we can obviously
construct an approximate solution of the claimed qual-
ity by shrinking the squares to half of their size. No
such half-size square is eliminated as long as the cur-
rent size is at most oop;/2. This is the case because
these squares are not oop;/2-dead.

The second invariant we claimed, i1s that, as long as
the stop-condition is not fulfilled, we can always effi-
ciently construct a solution of the current size from the
set of those squares, which are not yet eliminated. To
see this, note that a o-alive square does not intersect
with any other square of size o, that is not yet elimi-
nated. So for all points, that still have o-alive squares
we are able to take one for a solution. For the other
points we know by the first part of the stop-condition,
that each of them has at least one o-pending square.
The second part of the stop-condition guarantees, that
we can complete the solution according to the truth
assignment given by algorithm AR2.

The algorithm stops, when it reaches a size where no
such solution exists anymore. But, what will be the
output? Of course we have stored the status of the
squares at the size, which was current just before the
stop-condition was fulfilled!

As already stated implicitely we assume in the algo-
rithm, that the case that three or more of a vertices
squares are pending, cannot occur. This assumption
will be justified by the following Lemma 3. It is some-
how the most important tool in our algorithm because
by this lemma we can use the polynomial-time 2-SAT
algorithm.

Lemma 3 The number of o-pending squares of a point
1s at most two.

Proof: Suppose p; is o-pending. Then there exists
another square ¢; such that op; and o¢; have nonempty
intersection. But none of them is o-dead by definition,
so neither 2op; (20¢;) contain another point, especially
not q resp. p. But then ¢ must lie in the square ops
or opa; note that j = 1 and ¢; = ¢; must be o-pending
too. It follows that opy or opy is then certainly o-dead
(see Fig. 4).

Figure 4: illustration for the proof of Lemma 2

Analogous facts hold for ps, ps and py. Now suppose
three squares of p, w.1.0.g. p;, p2 and p3 are pending. All
corresponding “pending partners” must lie in o-dead
squares of p. This can be managed for p; and ps but
not for py.

To summarize:

Theorem 4 Algorithm AS{a consiructs a solution for
problem S{a with at least 50% of the optimal size.

Clearly, be rescaling one of the coordinates, our al-
gorithm can also be applied to equally-sized rectangles.
Furthermore, by using affine transformations, our al-
gorithm can be used for such strange label shapes as
parallelograms.

4 Analysis of the algorithm

In this chapter we will sketch how the algorithm AS4a
can be implemented efficiently.

The main difficulty lies in finding those values of o,
where a square changes its status. Firstly, it is clear that
a square becomes o-dead only once. The 4n values of ¢
where this happens, can be found by four plane-sweeps
(one for each of the four square types) in O(nlogn)
total time.

285

For o-pending squares the situation is more com-
plicated. Note, that by definition a o-pending square
has non-empty intersection with at least one other (o-
pending) square. In the next Lemma we will show, that
the number of those “pending partners” cannot be to
large.

Lemma 5 Only the first 13 values of ¢ when a square
gets another pending partner must be considered mn al-
gorithm AS{a for each square.

Proof: By a similar packing argument as in the proof
of Lemma 1.

These 13 values of o can be found by plane-sweep
techniques again in O(nlogn) time. So, summing up
we can find all O(n) relevant o-values (events), where
the status of a square changes, in O(nlogn) time.

By Lemma 5 the total number of clauses ever consid-
ered in step 2.2 by using AR2 as subroutine is linear.
How can we circumvent the difficulty that one single
satisfiability test will cost us O(n) time and we have to
do O(n) of these, resulting in O(n?) running time? We
do this by ignoring line 2.2 of the algorithm and run-
ning the algorithm till the events are used up. Then,
by binary search, we find the value when in the original
version our algorithm would have stopped, because the
set of clauses became unsatisfiable. This results in the
following Lemma.

Lemma 6 Algorithm AS{a can be implemented to run
tn O(nlogn) time.

In the full paper we will show by using [Ben-Or]’s meth-
ods that Q(nlogn) is a lower bound as well for the “ex-
act problem” R4 as for the approximation problem S4a.

5 NP-completeness result

As already stated, problem R4, is NP-complete. We
will show this for a very special case, the proof will
only be sketched.

Theorem 7 Problem R is N'P-complete even if all
rectangles are squares of the same size.

Proof: Obviously, the problem is in NP. We
show the A'P-hardness by reducing 3-SAT (cf.
[Garey and Johnson], p. 259) to it. Recall that 3-SAT
is the following problem:

3-SAT (3-SATISFIABILITY)

INSTANCE: Set U of variables, collection C of
clauses over U, such that each clause has ex-
actly three literals.

QUESTION: Is there a satisfying truth assign-
ment for C7

For each variable we use one special point, whose
square is forced — by other points — to be in two of
the four positions, below left or below right. The posi-
tion taken symbolizes the setting of the variable, true
or false. From each variable point z “pipes” lead to
the clauses that contain & or . For negated variables
the pipes are flanged at the “true-side” of the variables
and unnegated on the “false-side”. The idea is that
the pipes transmit the “pressure” produced by the set-
ting of the variable squares. Finally the pipes lead into
the clauses. These clauses are constructed in such a
way that they can stand pressure from at most two
pipes. Recall that these pipes carry a variable setting
that does not satisfy the clause. So, either each clause
takes up pressure by at most two non-satisfying pipes
and is therefore satisfied or there is a clause which is ex-
pected to take up pressure from three pipes. Then there
is no solution for problem R4. So, there is a solution for
the given instance of 3-SAT if and only if problem R4
has a solution for the constructed point set. Figure 5
gives the basic construction and Figure 6 shows how the
details are modelled.

Lemma 8 Provided that P # NP, no polynomial-time
algorithm with a guaranteed factor exceeding % exists.

Proof: Just look at the detailed construction of our
NP-completeness proof in figure 6.

If the set of clauses is satisfiable, then there exists
also a solution with squares nearly twice as large as
the unit-squares in our construction. Note, that in the
figure all squares can be blown up to twice their size
simultanously without intersection.

So an algorithm with better approximation-quality
would produce a solution with bigger squares than our
unit-squares.

On the other hand, if the set of clauses is not satis-
fiable such an algorithm would produce a solution with
small squares (smaller than unit-size).

So we would have a polynomial-time decision algo-
rithm for problem RA4.

Acknowledgement

We would like to thank Rudi Kramer (Amt
fiir Informations- und Datenverarbeitung der Stadt
Miunchen) and Kurt Mehlhorn for bringing this prob-
lem to our attention. We would also like to thank Emo
Welzl for a simplification of the presentation of algo-
rithm AS4a.

286

References

[Ben-Or] M. Ben-Or, Lower bounds for algebraic com-
putation trees Proc. 15th ACM Ann. Symp. The-
ory of Computing (1983), 80-86

[Edelsbrunner] H. Edelsbrunner, Dynamic data struc-
tures for orthogonal intersection gquertes, Rep.
F59, Technische Universitat Graz, Institute fir
Informationsverarbeitung (1980)

[Even, Itai and Shamir] S. Even, A. Itai and A.
Shamir, On the complexity of timetable and mul-
ticommodity flow problems, SIAM J. Comput. 5
(1976), 691-703

[Garey and Johnson] M. R. Garey and D. S. Johnson,
Computers and Intractability, A guide to the the-
ory of NP-completeness, Freeman, 1979

[Imai and Asano] H. Imai and T. Asano, Efficient Al-
gorithms for Geometric Graph Search Problems,
SIAM J. Comput. 15 (1986), 478-494

[Imhof] E. Imhof, Positioning Names on Maps, The
American Cartographer 2 (1975), 128-144

[Yoeli] P. Yoeli, The Logic of Automated Map Lettering,
The Cartographic Journal 9, 1972, 99-108

- - . - J->->->->->->->->->->->->->->->->->->->
¥ z ¥
Y I‘TT_(‘ FoT 1
t ¥ ¥
¥ ¥ t
Y hallhalinalinalialioalinaling 1
t ¥ 1
— v **+v* ¥ ¥
FoT ¥ = ¥ t
¥ ¥ ¥ ¥ t
¥ L ¥ Y .
helihaliualialibalihalinaling £l Sina ¥) Bhelisalinaiisaiing £ Shiaiinalinaiinaiinaiining | 3 Wi
1 ¥ ¥ 1 1
pullinaiiining ¥ ¥ 1 ' ¥
1 2 ¥ ¥ ¥ ¥ ¥
¥ prallinatl O PSSP t ¥ ¥ ¥ ¥
' ¥ ¥ ¥ ¥ 1 ¥
¥ ¥ L ¥ 1 ¥
¥ Rallialinalinalinalinaiinaiing § § M £ 1 M ¥ 1 ¥
1 el |y ¥ 1 t
NEanaibalibalinaiiisiiuniinalinaiing § J Sin K3 Bl §) Salialiine ') Sy 1 ¥
2 1 t ¥
- - t Bl —- | B I - -
i:fFHT Yy Sy ¥ ¥ t ¥
¥ Y ¥ ¥ 1 t ¥ ¥ ¥
¥ ¥ ¥ ¥ ¥ L |y
Belietinsiinaiinaiinaiinaing £ 7 Ml £ Y Sinel |) Ssalinaling ') Minel K} Mina K2 Susliaciiion K3 Bina X Mg
¥ ¥ ¥ ¥ ¥ ¥ 1 ¥ 1.
]L] J_r]¢ Lt "—]L . 'I-
zVyVz 2V 2zVE TVyVvt

Figure 5: The basic construction; example for the formula (z VIV 2)A(z V2V A(ZVy Vi)

287

oo

. B

knee of a pipe

H o
t]
nooaano nogon

&
a))
0 g
0 0
afle
E%TEE tonoon
0
c) d)
- n

crossing of two pipes, transmitting pressure from a)
no, b,c) one and d) both pipes

Iz bog sl
o b g = af
L O | _ | 0
IS SR S .
o O o O o o A 0 O O I T
cl'ause, receiving pressure from two cl.ause, receiving pressure from two
pipes pipes
“HYpo _o_p-oof do-so_no_o2Hb
DUDDDD DEDQQD
O - DO 0 0 a - o O - a
oono O,s =—, O oano;
variable z set true variable = set false
Figure 6:

288

