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Abstract Pairwise disjoint 3-GDDs can be used to construct some optimal constant-weight
codes. We study the existence of a pair of disjoint 3-GDDs of type gtu1 and establish that its
necessary conditions are also sufficient.
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1 Introduction

Let X be a finite set of v elements and K a set of positive integers. A group divisible design
K-GDD is a triple (X,G,A) satisfying the following properties: (1) G is a partition of X

into subsets (called groups); (2) A is a set of subsets of X (called blocks), each of cardinality
from K , such that a group and a block contain at most one common point; (3) every pair of
points from distinct groups occurs in exactly one block. If G contains ui groups of size gi

for 1 ≤ i ≤ s, then we call g
u1
1 g

u2
2 · · · gus

s the group type (or type) of the GDD. If K = {k},
we write {k}-GDD as k-GDD. A k-GDD of type tk is denoted by TD(k, t) and is called a
transversal design. A K-GDD of type 1v is commonly called a pairwise balanced design,
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denoted by (v,K, 1)-PBD. When K = {k}, a pairwise balanced design is just a Steiner
system S(2, k, v). It is well-known that an S(2, 3, v) exists if and only if v ≡ 1, 3 (mod 6).

Colbourn et al. completely settle the necessary and sufficient conditions for the existence
of 3-GDDs of type gtu1.

Lemma 1.1 ([9]) Let g, t , and u be nonnegative integers. There exists a 3-GDD of type gtu1

if and only if the following conditions are all satisfied:
(1) if g > 0, then t ≥ 3, or t = 2 and u = g, or t = 1 and u = 0, or t = 0;
(2) u ≤ g(t − 1) or gt = 0;
(3) g(t − 1) + u ≡ 0 (mod 2) or gt = 0;
(4) gt ≡ 0 (mod 2) or u = 0;
(5) 1

2g2t (t − 1) + gtu ≡ 0 (mod 3).

Let 2 /∈ K . A partial group divisible design K-GDD is a triple (X,G,A) satisfying con-
ditions (1) and (2) of the definition of a K-GDD and (3’) every pair of points from distinct
groups occurs in at most one block. The leave of a partial K-GDD is a graph whose edges are
all the pairs which belong to distinct groups and do not appear in any block. A K-GDD can
be regarded as a partial K-GDD with an empty leave. Suppose that (X,G,B) and

(
X,G,B′)

are two partial K-GDDs. If B and B′ have no block in common, (X,G,B) and
(
X,G,B′) are

said to be disjoint.
The purpose of this paper is to determine the existence spectrum of a pair of disjoint

3-GDDs of type gtu1. The problem is itself interesting in the theory of combinatorial designs.
Also we have a motivation lying in a close relation between disjoint 3-GDDs and constant-
weight codes. In Chee et al. [6], pairwise disjoint combinatorial designs of various types,
including Steiner systems and group divisible designs, are utilized to construct optimal q-ary
constant-weight codes with q > 2. In particular, a pair of disjoint 3-GDDs of type 16t51

is proved to exist for any positive integer t , which is used in constructing optimal 3-ary
constant-weight codes of Hamming distance 4 and weight 3. In [7], the concept of group
divisible design is generalized to a new code named group divisible code, which is shown
useful in recursive constructions for constant-weight and constant-composition codes. One
can also find applications of disjoint group divisible designs in the determination of more
optimal constant-weight codes (see, for example, [19,20]).

In order to study the existence of two disjoint 3-GDDs, we introduce some related notions
and basic facts in this section. Let (X,G,A) be a K-GDD. A subset of the block set A is
called a parallel class if it contains every element of X exactly once. If A can be partitioned
into some parallel classes, the GDD is called resolvable. A resolvable S(2, 3, v) is the well-
known Kirkman triple system of order v, denoted by KTS(v). A KTS(v) exists if and only
if v ≡ 3 (mod 6) (see [12]).

A Latin square of order t (briefly by LS(t)) is a t × t array in which each cell contains
a single element from a t-set, such that each element occurs exactly once in each row and
exactly once in each column. Suppose that L = (

aij

)
is an LS(t) defined on and indexed

by a set T . If for each i ∈ T , aii = i, then the Latin square is called idempotent. If for any
i, j ∈ T , aij = aji , then it is called symmetric. Suppose that L = (

aij

)
and L′ = (

bij

)
are

LS(t)s on a set T . L and L′ are orthogonal if every element of T × T occurs exactly once
among the t2 pairs

(
aij , bij

)
, 1 ≤ i, j ≤ t .

A TD(3, t) is often defined on V × I with groups V × {i}, i ∈ I , where |V | = t , and
|I | = 3. If the TD(3, t) has a parallel class {{x}× I : x ∈ V }, then it is called idempotent and
denoted by ITD(3, t). An ITD(3, t) is equivalent to an idempotent LS(t). So when t ≥ 4,
an ITD(3, t) exists. If the block set of an ITD(3, t) can be partitioned into t parallel classes,
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one of which is the idempotent one, we call it resolvable and denote by RITD(3, t). An
RITD(3, t), which is equivalent to a pair of orthogonal LS(t)s, exists if and only if t �= 2, 6.

Let (X,G,B) and
(
X,G,B′) be two ITD(3, t)s. They are called disjoint if B and B′ have

no block in common except the common idempotent parallel class. Similarly we have the
definition of disjoint RITDs. Note that although a resolvable TD(3, t) can always be made
idempotent, two disjoint RTD(3, t)s do not always mean two disjoint RITD(3, t)s. The exis-
tence result of a pair of disjoint ITD(3, t)s and that of disjoint RITD(3, t)s are given as
follows.

Lemma 1.2 For any integer t ≥ 4, there exists a pair of disjoint ITD(3, t)s. For any integer
t ≥ 4 and t �= 6, 10, there exists a pair of disjoint RITD(3, t)s.

Proof By [10], for any integer t ≥ 4, there exists a pair of disjoint idempotent Latin squares
of order t . Equivalently, there is a pair of disjoint ITD(3, t)s.

By [2], for any integer t ≥ 4 and t �= 6, 10, there exist three mutually orthogonal Latin
squares defined on and indexed by It . By some permutations of rows and columns, we can
form three new mutually orthogonal Latin squares, say L1, L2, L3, in such a way that the
main diagonal entries of L3 are all 0’s. Accordingly, the main diagonal of Li (i = 1, 2) is a
transversal. By renaming the symbols of L1 and L2, we obtain two idempotent Latin squares
L′

1 and L′
2. Further L′

1, L
′
2 and L3 are still mutually orthogonal. Let L′

1 = (
aij

)
, L′

2 = (
bij

)
,

and L3 = (cij ). For each 0 ≤ k ≤ t − 1, let Tk = {
(i, j) : cij = k

}
. Thus T0, T1, . . . , Tt−1

form t disjoint transversals of L′
1 and L′

2, where T0 consists of the main diagonal posi-
tions. Then we can construct a pair of disjoint RITD(3, t)s on X = It × I3 with group set
G = {It ×{i} : i ∈ I3}. For 0 ≤ k ≤ t − 1, let P k

1 = {{
(i, 0), (j, 1),

(
aij , 2

)} : (i, j) ∈ Tk

}
,

and P k
2 = {{

(i, 0), (j, 1),
(
bij , 2

)} : (i, j) ∈ Tk

}
. It is readily checked that each P k

j (0 ≤
k ≤ t − 1, j = 1, 2) is a parallel class of X and P 0

1 = P 0
2 is an idempotent parallel class.

Let B1 = ∪0≤k≤t−1P
k
1 and B2 = ∪0≤k≤t−1P

k
2 . Observing that aij �= bij if i �= j , we obtain

two disjoint RITD(3, t)s (X,G,B1) and (X,G,B2). 	

We next record some known results on disjoint 3-GDDs for later use.

Lemma 1.3 (1) ([5]) Let u = 0, g, t, u satisfy all the conditions of Lemma 1.1, and
(g, t, u) �= (1, 3, 0). Then there exists a pair of disjoint 3-GDDs of type gt . (2) ([11]) There
exists a pair of disjoint 3-GDDs of type 1t31, where t ≡ 0, 4 (mod 6) and t ≥ 4.

It is trivial that there is a pair of disjoint 3-GDDs of type gtu1 if gt = 0. And Lemma 1.3
solves the case u = g or u = 0. So we only need to consider the case g, u all positive, u �= g,
and t ≥ 3. We call a triple (g, t, u) of positive integers with u �= g and t ≥ 3 admissible
provided that the five conditions in Lemma 1.1 all hold.

We shall utilize various methods to construct a pair of disjoint 3-GDDs of type gtu1 for
any admissible triple (g, t, u). And we finally prove that the necessary conditions for the
existence of a pair of 3-GDDs of type gtu1 are also sufficient. Our main result is:

Theorem 1.4 (Main Theorem) Let g, t , and u be nonnegative integers. There exists a a pair
of disjoint 3-GDDs of type gtu1 if and only if the following conditions are all satisfied:

(1) if g > 0, then t ≥ 3 and (g, t, u) �= (1, 3, 0), or t = 2 and u = g, or t = 1 and u = 0,
or t = 0;

(2) u ≤ g(t − 1) or gt = 0;
(3) g(t − 1) + u ≡ 0 (mod 2) or gt = 0;
(4) gt ≡ 0 (mod 2) or u = 0;
(5) 1

2g2t (t − 1) + gtu ≡ 0 (mod 3).
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2 Recursive constructions

In this section we shall present several powerful recursive constructions for disjoint 3-GDDs.
The following construction is a variation of Wilson’s Fundamental Construction in [18].

Construction 2.1 (Weighting Construction) Suppose that (X,G,A) is a K-GDD, and let
ω : X �−→ Z+ ∪ {0} be a weight function. For every block A ∈ A, suppose that there is a
pair of disjoint 3-GDDs of type {ω(x) : x ∈ A}. Then there exists a pair of disjoint 3-GDDs
of type

{∑
x∈G ω(x) : G ∈ G}

.

Proof For every x ∈ X, let S(x) be a set of ω(x) “copies” of x. For any Y ⊆
X, let S(Y ) = ⋃

x∈Y S(x). For every block A ∈ A, construct a pair of disjoint
3-GDDs (S(A), {S(x) : x ∈ A},BA) and

(
S(A), {S(x) : x ∈ A},B′

A

}
. Then it is readily

checked that there exists a pair of disjoint 3-GDDs (S(X), {S(G) : G ∈ G},∪A∈ABA) and(
S(X), {S(G) : G ∈ G},∪A∈AB′

A

)
. 	


We also employ “Filling Construction” to break up the groups as follows:

Construction 2.2 (Filling Construction I) Suppose that there is a pair of disjoint 3-GDDs
of type {g1, g2, . . . , gt }. For each 1 ≤ i ≤ t − 1, if gi ≡ 0 (mod s) and there is a pair
of disjoint 3-GDDs of type sgi/su1. Then there exists a pair of disjoint 3-GDDs of type

s
∑t−1

i=1 gi/s(gt + u)1.

Proof Let (X,H,B1) and (X,H,B2) be a pair of disjoint 3-GDDs of type {g1, g2, . . . , gt }.
Let H = {H1, H2, . . . , Ht } with |Hi | = gi for 1 ≤ i ≤ t , and Y be a set of cardinality u

such that X ∩ Y = ∅.
For each 1 ≤ i ≤ t − 1, we partition each Hi into gi/s subsets Hij , 1 ≤ j ≤

gi/s, such that |Hij | = s. By assumption, there is a pair of 3-GDDs on Hi

⋃
Y with{

Hij : 1 ≤ j ≤ gi/s
} ∪ {Y } as group set and A1

i and A2
i as the disjoint block sets.

Let G = {
Hij : 1 ≤ i ≤ t − 1, 1 ≤ j ≤ gi/s} ∪ {Ht ∪ Y }. It is readily checked that(

X
⋃

Y,G,
(
∪t−1

i=1A1
i

)⋃B1

)
and

(
X

⋃
Y,G,

(
∪t−1

i=1A2
i

)⋃B2

)
are two disjoint 3-GDDs

of type s
∑t−1

i=1 gi/s(gt + u)1. 	

Corollary 2.3 Let t ≥ 6 be an even integer. If there exists a pair of disjoint 3-GDDs of type
(2g)t/2u1, where (g, t/2) �= (1, 3), then so does a pair of disjoint 3-GDDs of type gt (u+g)1.

Proof It follows from Filling Construction I since a pair of disjoint 3-GDDs of type g3 exists
by Lemma 1.3. 	


Sometimes we only fill in one long group and use the following construction.

Construction 2.4 (Filling Construction II) Suppose that there is a pair of disjoint 3-GDDs
of type gtu1 and u = sg + x. If a pair of disjoint 3-GDDs of type gsx1 also exists, then there
exists a pair of disjoint 3-GDDs of type gs+t x1.

Proof Let (X,H ∪ {G},B1) and (X,H ∪ {G},B2) be a pair of disjoint 3-GDDs of type
gtu1, where H = {H1, H2, . . . , Ht } and G = (∪s

i=1Gi

) ∪ Gs+1 with |Gi | = g (1 ≤ i ≤
s), |Gs+1| = x, and

∣∣Hj

∣∣ = g (1 ≤ j ≤ t). Construct on G a pair of 3-GDDs of type gsx1

with same group set G = {Gi : 1 ≤ i ≤ s + 1} and disjoint block sets A1 and A2. It is
immediately checked that (X,G ∪ H,A1 ∪ B1) and (X,G ∪ H,A2 ∪ B2) are two disjoint
3-GDDs of type gs+t x1. 	
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What follows is a useful construction for generating 3-GDDs of type gtu1 with g relatively
large.

Construction 2.5 Suppose that there exists a 3-GDD of type {g1, g2, . . . , gs}. Let t ≥ 4. If
there is a pair of disjoint 3-GDDs of type gi

tu1 for each 1 ≤ i ≤ s, then there exists a pair
of disjoint 3-GDDs of type vtu1, where v = ∑s

i=1 gi .

Proof Let (X,G,B) be a 3-GDD of type {g1, g2, . . . , gs} and U be a set of cardinality u. We
will construct the desired designs on (X×It )∪U with group setH = {X×{i} : i ∈ It }∪{U}.

For each block B = {x, y, z} ∈ B, there is a pair of disjoint ITD(3, t)s by Lemma 1.2 on
B × It with groups {a}× It , a ∈ B. Delete the idempotent parallel class to form two disjoint
block sets A1

B and A2
B .

For each group G ∈ G, place on (G × It ) ∪ U a pair of disjoint 3-GDDs of type |G|t u1

with group set {G × {i} : i ∈ It } ∪ {U} and block sets C1
G and C2

G.
Then we produce on (X × It ) ∪ U a pair of disjoint 3-GDDs of type vtu1 with block sets(∪B∈BA1

B

) ∪ (∪G∈GC1
G

)
and

(∪B∈BA2
B

) ∪ (∪G∈GC2
G

)
. 	


3 Direct constructions and preliminary results

In this section we shall involve some methods of direct construction. The “method of differ-
ences” will be used to construct some 3-GDDs of type gtu1, as is usually used in constructing
cyclic designs. The cyclic partial Steiner triple systems also play a crucial role in constructing
3-GDDs.

The following result is simple but useful.

Lemma 3.1 Suppose that there exists a pair of disjoint partial 3-GDDs of type gtu1 on X,
where U ⊆ X is the group of size u, and L1, L2 are their leaves respectively. If the pairs of the
leave Lj (j = 1, 2) can be partitioned into s disjoint 1-factors of X\U , say, Fj

1 , F
j
2 , . . . , F

j
s ,

such that F 1
i ∩ F 2

i = ∅ holds for each 1 ≤ i ≤ s, then there exists a pair of disjoint 3-GDDs
of type gt (u + s)1.

Proof Let (X,G,B1) and (X,G,B2) be the assumed pair of disjoint partial 3-GDDs of type
gtu1 with U as the group of size u. Define V = {∞1,∞2, . . . ,∞s}, Cj = ∪s

i=1 {{∞i , x, y} :
{x, y} ∈ F

j
i

}
, andH = (G\{U})∪{U∪V }. Then (X∪V,H,B1∪C1) and (X∪V,H,B1∪C2)

are two disjoint 3-GDDs of type gt (u + s)1. 	

Each edge {a, b} of a graph on vertices Zv is assigned to an integer d between 1 and [v/2],

called its difference, if |b − a| = d or v − |b − a| = d . A difference triple in Zv is a set
{a, b, c} where a + b ≡ c (mod v) or a + b + c ≡ 0 (mod v). A difference d is called good
in Zv if v/gcd(d, v) is even.

Lemma 3.2 ([16]) Let v be even and D a subset of [1, v/2]. If D contains a good differ-
ence in Zv , then the set of all unordered pairs of Zv whose difference appears in D can be
partitioned into 1-factors.

Lemma 3.3 Let (g, t, u) be an admissible triple with u ≥ 2 and g(t − 1)−u ≡ 0 (mod 6).
Suppose that {1, 2, . . . , gt/2}\{t, 2t, . . . , [g/2]t} = D1 ∪ D2, where D1 can be partitioned
into (gt − g − u)/6 difference triples in Zgt and gt/2 ∈ D2 if g is odd, or D2 contains a
good difference in Zgt if g is even, then there exists a pair of disjoint 3-GDDs of type gtu1.
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Proof Take X = Zgt ∪ {∞1,∞2, . . . ,∞u} as the point set and G = {{j, t + j, 2t +
j, . . . , (g − 1)t + j} : 0 ≤ j ≤ t − 1} ∪ {{∞1,∞2, . . . ,∞u}} as the group set. Suppose that
D1 can be partitioned into difference triples {ai, bi, ci} in Zgt such that ai + bi ≡ ci (mod
v) or ai + bi + ci ≡ 0 (mod v), 1 ≤ i ≤ (gt − g − u)/6. Let

A1 = ∪1≤i≤(gt−g−u)/6
{{x, ai + x, ci + x} : x ∈ Zgt

}
,

and

A2 = ∪1≤i≤(gt−g−u)/6
{{x, bi + x, ci + x} : x ∈ Zgt

}
.

Then
(
Zgt ,A1

)
and

(
Zgt ,A2

)
form two disjoint partial 3-GDDs of type gt . Their common

leave L consists of all the pairs whose differences lie in D2. By the assumption, D2 contains
a good difference in Zgt . By Lemma 3.2, noting that g and u are both even or both odd, L
can be partitioned into u 1-factors, say, F1, F2, . . . , Fu. Let F ′

i = Fi+1 for i = 1, 2, . . . , u,
where the subscripts are modulo u. Since u ≥ 2, Fi ∩ F ′

i = ∅ i = 1, 2, . . . , u. Hence, there
exists a pair of disjoint 3-GDDs of type gtu1 by Lemma 3.1. 	

Corollary 3.4 Let u = g(t − 1), where g and t are positive integers such that gt is even.
Then there exists a pair of disjoint 3-GDDs of type gtu1.

Proof The conclusion follows immediately by applying Lemma 3.3 with D1 = ∅ and D2 =
{1, 2, . . . , gt/2} \ {t, 2t, . . . , [g/2]t}. 	


A partial S(2, 3, v) is called cyclic if it has an automorphism of order v. Usually, Zv is
taken as the point set of a cyclic design of order v and the corresponding automorphism is
i → i + 1 (mod v). So the blocks of a partial S(2, 3, v) can be partitioned into a number of
orbits, each of which can be represented by a starter block. An orbit is called full if it consists
of v different blocks and called short otherwise. In the proof of [9, Lemma 3.2], some cyclic
partial Steiner triple systems are constructed.

Lemma 3.5 ([9]) For k ≥ 1 and 1 ≤ s ≤ 6, let r ′ = 7 if s = 2 and k ≡ 2, 3 (mod 4), or
r ′ = s −1 otherwise. Then there is a cyclic partial S(2, 3, 6k + s) without short orbits whose
leave is r-regular, where r ≡ r ′ (mod 6), r ′ ≤ r ≤ 6k + s − 1. Further if r < 6k + s − 1,
then the cyclic partial S(2, 3, 6k + s) has a starter block containing a good difference.

Lemma 3.6 Suppose that (g, t, u) is an admissible triple with u ≥ 2 and g(t − 1) − u ≡ 0
(mod 6). Further suppose gt = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r = 7 if s = 2
and k ≡ 2, 3 (mod 4), or r = s − 1 otherwise. Whenever u ≥ 2g + r − 2 if g is odd, or
u ≥ 2g + r − 5 if g is even, there exists a pair of disjoint 3-GDDs of type gtu1.

Proof By Lemma 3.5, there is a cyclic partial S(2, 3, gt) without short orbit whose leave
is r-regular. Moreover, it has a starter block containing a good difference. Let F be the set
of difference triples associated with the starter blocks of this cyclic partial S(2, 3, gt). Let
F0 be the set of difference triples of F , each of which contains at least a multiple of t .
Since gt/2 does not appear in a difference triple of the cyclic partial S(2, 3, gt), we have
|F0| ≤ [(g−1)/2]. Choose a subset F ′ such that F0 ⊂ F ′ ⊂ F and

∣∣F ′∣∣ = [(g−1)/2]. Fur-
ther for even g we can ensure thatF ′ contains a difference triple which have a good difference
not being a multiple of t . This can be done obviously if all the multiples of t appear in less
than (g − 2)/2 difference triples. Even if each difference triple of F ′ contains a multiple of
t as a difference, it can be verified that the difference triple containing t also contains a good
difference not being a multiple of t . Set D1 = ∪B∈F\F ′B and let D2 be the set of differences
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(between 1 and gt/2) neither appear in F \F ′ nor are multiples of t . Since the cyclic partial
S(2, 3, gt) has no short orbit, we then have D1 ∪D2 = {1, 2, . . . , gt/2}\ {t, 2t, . . . , [g/2]t}.
Furthermore, |D2| = g + (r − 1)/2 and gt/2 ∈ D2 if g is odd, or |D2| = g − 2 + (r − 1)/2
and D2 contains a good difference in Zgt if g is even. By Lemma 3.3, there exists a pair of
disjoint 3-GDDs of type gtu1, where u = 2g + r − 2 if g is odd and u = 2g + r − 5 if g is
even. For other cases of larger u with g(t − 1) − u ≡ 0 (mod 6), diverting more differences
produced by the difference triples in F \ F ′ to D2 works similarly. 	


Similar to Lemmas 3.1, 3.3, and 3.6, we can obtain the result of disjoint partial 3-GDDs
of type gtu1, whose leaves are same, forming a 1-factor of the t groups of size g. We record
this in a remark.

Remark 3.7 Suppose that (g, t, u) is an admissible triple with u �= 2 and g(t − 1) − u ≡ 0
(mod 6). Further suppose gt = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r = 7 if s = 2
and k ≡ 2, 3 (mod 4), or r = s − 1 otherwise. Whenever u ≥ 2g + r − 2 if g is odd, or
u ≥ 2g + r − 5 if g is even, there exists a pair of disjoint partial 3-GDDs of type gt (u − 1)1,
whose leaves are same, forming a 1-factor of the t groups of size g.

Next we consider two small cases g = 1 and g = 2.

Lemma 3.8 ([8]) There exists a pair of disjoint 3-GDDs of type 1t u1 whenever u ≡ 1, 3
(mod 6), u + t ≡ 1, 3 (mod 6) and 7 ≤ u ≤ t − 1.

Lemma 3.9 The Main Theorem holds for any admissible triple (1, t, u).

Proof Since (1, t, u) is an admissible triple, u must be odd and u ≥ 3. We distinguish the
possibility of u to show the conclusion.

First if u = 3, then t ≡ 0, 4 (mod 6) and t ≥ 4. A pair of disjoint 3-GDDs of type 1t31

exists by Lemma 1.3.
Next if u ≡ 1, 3 (mod 6) and u ≥ 7, then u + t ≡ 1, 3 (mod 6) and u ≤ t − 1. By

Lemma 3.8, there exists a pair of disjoint 3-GDDs of type 1t u1.
Finally we treat u ≡ 5 (mod 6). Then t ≡ 0 (mod 6) and u ≤ t − 1. Corollary 3.4 solves

the case t = 6 and u = 5. For t ≥ 12, a pair of disjoint 3-GDDs of type 1t u1 is obtained by
taking g = 1 and r = 5 in Lemma 3.6. 	

Lemma 3.10 The Main Theorem holds for any admissible triple (2, t, u) with t ≡ 1, 2
(mod 3).

Proof Since (2, t, u) is an admissible triple, t ≡ 1 (mod 3) requires u ≡ 0 (mod 6)
(u ≥ 6), t ≡ 2 (mod 3) demands u ≡ 2 (mod 6) (u ≥ 8), and (1, 2t, u + 1) is also an
admissible triple satisfying the equality 1 · (2t − 1) − (u + 1) ≡ 0 (mod 6). Let 2t = 6k + s

and k, s, r be taken as in Remark 3.7. As u + 1 ≥ 7 ≥ r = 2 · 1 + r − 2, there is a pair
of partial 3-GDDs of type 12t u1 with U as the long group, whose leaves are same, forming
a 1-factor of the 2t groups of size 1. Take this 1-factor together with U as new groups, we
obtain a pair of disjoint 3-GDDs of type 2t u1. 	


The complete solution for the case g = 2 is left to Sect. 5.

4 The case t ≡ 3 (mod 6)

A useful auxiliary design to construct 3-GDDs is resolvable {2,3}-GDD with 3 groups of
even size, whose existence is investigated in [13]. We shall show in this section that two such
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GDDs with some restrictions also exist. Related results will be employed to solve the case
t ≡ 3 (mod 6) of the Main Theorem.

Lemma 4.1 Let g and u be even, 0 ≤ u ≤ 2g, (g, u) �= (2, 0) or (6, 0). Then there is a pair
of {2, 3}-GDD of type g3 with same groups and different block sets B1 and B2 satisfying all
of the following conditions:

(1) Both B1 and B2 can be resolved into u parallel classes containing only blocks of size 2
and g − u/2 parallel classes containing only blocks of size 3;

(2) B1 and B2 have no block of size 3 in common;
(3) The u parallel classes containing only blocks of size 2 of Bj (j = 1, 2) can be arranged

in sequence P
j
1 , P

j
2 , . . . , P

j
u , in such a way that P 1

i ∩ P 2
i = ∅ for each 1 ≤ i ≤ u.

Proof We follow the idea of Rees in [13]. Let X = Zg × I3 be the point set and G ={
Zg × {i} : i ∈ I3

}
be the group set.

First we handle the case u = 0. Obviously when g �= 2, 6, there exists a resolvable 3-GDD
(X,G, C) of type g3. Set C′ = {{(x, 0), (y, 1), (z+ 1, 2)} : {(x, 0), (y, 1), (z, 2)} ∈ C}. Then(
X,G, C′) is a resolvable 3-GDD disjoint with (X,G, C).

Next consider u ≥ 2. Let B be the union of following g + 1 parallel classes of X:

Si = {{(x, 0), (x + i, 1), (x + 2i, 2)} : x ∈ Zg

}
, 0 ≤ i ≤ g/2 − 1,

Si = {{(x, 0), (x + i, 1), (x + 2i + 1, 2)} : x ∈ Zg

}
, g/2 ≤ i ≤ g − 2,

M1 = {{(x, 0), (x − 1, 1)}, {(x + g/2, 0), (x + g/2 − 1, 2)}, {(x + g/2

−1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},
M2 = {{(x, 0), (x − 1, 1)}, {(x + g/2, 0), (x + g/2 − 1, 2)},

{(x + g/2 − 1, 1), (x − 1, 2)} : g/2 ≤ x ≤ g − 1}.

Then (X,G,B) is a resolvable {2,3}-GDD with two parallel classes of blocks of size 2.
To generate more parallel classes, some transformations from parallel classes of triples to

those of pairs are made.

(A) The pairs produced by Sg/2−1 and M1 can be divided into three parallel classes P1l , 1 ≤
l ≤ 3, described below. Let

M11 = {{(x, 0), (x − 1, 1)} : 0 ≤ x ≤ g/2 − 1},
M12 = {{(x, 0), (x − 1, 2)} : g/2 ≤ x ≤ g − 1 and x is even}

∪{{(x + g/2 − 1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2 − 1 and x is even},
M13 = (M1\M11)\M12.

For each block B of Sg/2−1 and 1 ≤ l ≤ 3, let h1
l (B) be the unique intersection of B

and M1l and let

P1l = M1l ∪ (∪ {
B \ {

h1
l (B)

} : B ∈ Sg/2−1
})

.

Note: By replacing M1 with M2 and “x is even” with “x is odd” and interchanging the
range 0 ≤ x ≤ g/2−1 and g/2 ≤ x ≤ g−1 in M1l , the pairs produced by Sg/2−1 and
M2 can also be divided into three parallel classes, which we denote by P2l , 1 ≤ l ≤ 3.
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(B) For 0 ≤ i ≤ g/2 − 2, all the pairs produced by the two classes Si and Sg/2+i can be
divided into four parallel classes Eik, 1 ≤ k ≤ 4, as follows:

Ei1 = {{(2x, 0), (2x + i, 1)}, {(2x + 1, 0), (2x + 2i + 2, 2)}, {(2x + i

+1, 1), (2x + 2i + 1, 2)} : 0 ≤ x ≤ g/2 − 1},
Ei2 = {{(2x + 1, 0), (2x + g/2 + i + 1, 1)}, {(2x, 0), (2x + 2i, 2)}, {(2x + g/2

+i, 1), (2x + 2i + 1, 2)} : 0 ≤ x ≤ g/2 − 1}.
Setting Ei,k+2 = {{(x + 1, s), (y + 1, t)} : {(x, s), (y, t)} ∈ Eik} for k = 1, 2 yields
another two parallel classes Ei3 and Ei4.

Let φ be a bijection on Zg × I3 such that φ((x, 0)) = (x, 0), φ((x, 1)) = (x, 1), and
φ((x, 2)) = (x + 1, 2). For a subset A of B, define φ(A) = {{φ(a), φ(b), φ(c)} : {a, b, c}
∈ A}.

If u/2 is odd, then in B by replacing Si and Sg/2+i with Eik (only if u ≥ 6) for 0 ≤
i ≤ (u − 6)/4, 1 ≤ k ≤ 4, we obtain a resolvable {2,3}-GDD

(
X,G,B1

)
with exactly u

parallel classes of pairs. P1 = {Ml : l = 1, 2} ∪ {Eik : 0 ≤ i ≤ (u − 6)/4, 1 ≤ k ≤ 4} is
the collection of the u parallel classes of pairs. And P2 = {Si : (u − 2)/4 ≤ i ≤ g/2 − 1,

or (u − 2)/4 + g/2 ≤ i ≤ g − 2} is the collection of the parallel classes of triples. Let
P = P1 ∪ P2 and B2 = φ

(B1
)
. Apparently,

(
X,G,B2

)
is a resolvable {2,3}-GDD with a

collection of parallel classes {φ(P ) : P ∈ P}. Besides, one can check that φ(M1) ∩ M2 =
∅, φ(M2) ∩ M1 = ∅, φ(Eik) ∩ Ei,k+2 = ∅ (0 ≤ i ≤ (u − 6)/4, k, k + 2 is modulo 4), and
φ(Q) ∩ R = ∅ for any Q,R ∈ P2. So we prove the lemma for u/2 odd.

Otherwise, u/2 is even. Then in B by replacing Si and Sg/2+i with Eik (only if u ≥ 8)
for 0 ≤ i ≤ (u − 8)/4, 1 ≤ k ≤ 4, and replacing Sg/2−1 and M1 with P1l , 1 ≤ l ≤ 3,
we obtain a resolvable {2,3}-GDD

(
X,G,B1

)
with exactly u parallel classes of pairs. P1 =

{Eik : 0 ≤ i ≤ (u − 8)/4, 1 ≤ k ≤ 4} ∪ {M2} ∪ {P1l : l = 1, 2, 3} contains the u parallel
classes of pairs. And P2 = {Si : (u− 4)/4 ≤ i ≤ g/2 − 2, or (u− 4)/4 + g/2 ≤ i ≤ g − 2}
contains all the parallel classes of triples. If we employ the same replacement except taking
M2 instead of M1, then another resolvable {2,3}-GDD

(
X,G,B′) is obtained. The collection

of parallel classes are P ′ = ((P1 ∪ P2) \ {M2, P11, P12, P13}) ∪ {M1} ∪ {P2l : l = 1, 2, 3}.
Let B2 = φ

(B′) . Then
(
X,G,B2

)
is a resolvable {2,3}-GDD of type g3 with a collection

of parallel classes
{
φ(P ) : P ∈ P ′}. Further, B1 and B2 satisfy the three conditions required

by the lemma, where φ(Eik) ∩ Ei,k+2 = ∅ (0 ≤ i ≤ (u − 8)/4, k, k + 2 is modulo 4),
φ(M1) ∩ M2 = ∅, and φ(P2l ) ∩ P1l = ∅ (l = 1, 2, 3), φ(Q) ∩ R = ∅ for any Q,R ∈ P2.

This completes the proof. 	

Corollary 4.2 The Main Theorem holds for any admissible triple (g, t, u) with t ≡ 3
(mod 6).

Proof (g, t, u) is admissible and t ≡ 3 (mod 6), so g ≡ 0 (mod 2), u ≡ 0 (mod 2), and
2 ≤ u ≤ g(t − 1).

We first treat t = 3. Suppose that (X,G,A1 ∪B1) and (X,G,A2 ∪B2) are two {2,3}-GDD
of type g3 satisfying all the three conditions in Lemma 4.1, where Ai (i = 1, 2) consists of
u parallel classes of pairs, say, F i

1, F i
2, . . . , F i

u, and Bi (i = 1, 2) consists of parallel classes
of triples. Further F 1

j ∩ F 2
j = ∅ for 1 ≤ j ≤ u and B1 ∩ B2 = ∅. By Lemma 3.1, there is a

pair of disjoint 3-GDDs of type g3u1.
Next let t = 6n + 3 where n ≥ 1. There is a KTS(t) on a t-set Y having 3n + 1

parallel classes P1, P2, . . . , P3n+1. Since u ≡ 0 (mod 2) and u ≤ g(t − 1), we can take
even integers uj , j = 1, 2, . . . , 3n + 1, such that 0 ≤ uj ≤ 2g and u = ∑3n+1

j=1 uj . Let
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Uj =
{
∞j

1,∞j
2, . . . ,∞j

uj

}
and U = ∪3n+1

j=1 Uj . For every block B = {x, y, z} of each

parallel class Pj , 1 ≤ j ≤ 3n + 1, construct on
(
B × Ig

) ∪ Uj a pair of disjoint 3-GDDs
of type g3uj

1 with group set {{x} × Ig : x ∈ B} ∪ {Uj } and block sets C1
B and C2

B . Set
Z = (

Y × Ig

) ∪ U,G = {{x} × Ig : x ∈ Y } ∪ {U} and Ci = ⋃
B∈Pj ,1≤j≤3n+1 Ci

B for

i = 1, 2. It is immediate that
(
Z,G, C1

)
and

(
Z,G, C2

)
are two disjoint 3-GDDs of type

gtu1. 	


Lemma 4.3 Let g and u be even, 2 ≤ u ≤ 2g − 2. Then there is a pair of {2, 3}-GDD of
type g3 with same groups and different block sets B1 and B2 satisfying all of the following
conditions:

(1) Both B1 and B2 can be resolved into u parallel classes containing only blocks of size 2
and g − u/2 parallel classes containing only blocks of size 3;

(2) B1 and B2 have a common parallel class of size 3 but have no other triple in common;
(3) The u parallel classes containing only blocks of size 2 of Bj (j = 1, 2) can be arranged

in sequence P
j
1 , P

j
2 , . . . , P

j
u , in such a way that P 1

i ∩ P 2
i = ∅ for each 1 ≤ i ≤ u.

Proof The proof is similar to that of Lemma 4.1. First we have a resolvable {2,3}-GDD
(X,G,B) of type g3 with M1 and M2 as the parallel classes of pairs, and Si, 0 ≤ i ≤ g − 2,

as the parallel classes of triples. The conclusion holds clearly for the case (g, u) = (2, 2),
so we assume that g ≥ 4. We will use transformation of kind (B) and another three kinds to
treat the parallel classes.

(C) The pairs produced by S0 and M1 can be divided into three parallel classes P0l , 1 ≤
l ≤ 3. Let

M01 = {{(x + g/2 − 1, 1), (x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},
M02 = {{(x, 0), (x − 1, 2)} : g/2 ≤ x ≤ g − 1 and x is even}

∪{{(x, 0), (x − 1, 1)} : 0 ≤ x ≤ g/2 − 1 and x is even},
M03 = (M1\M01)\M02.

For each block B of S0 and 1 ≤ l ≤ 3, let h0
l (B) be the unique intersection of B and

M0l and let

P0l = M0l ∪ (∪ {
B\ {

h0
l (B)

} : B ∈ S0
})

.

(D) The pairs produced by the two classes S0 and Sg−2 can be divided into four parallel
classes Fk, 1 ≤ k ≤ 4, as follows:

F1 = {{(2x + 1, 0), (2x − 1, 1)}, {(2x, 0), (2x, 2)}, {(2x, 1), (2x

−1, 2)} : 0 ≤ x ≤ g/2 − 1},
F2 = {{(2x, 0), (2x, 1)}, {(2x + 1, 0), (2x − 2, 2)}, {(2x

+1, 1), (2x + 1, 2)} : 0 ≤ x ≤ g/2 − 1}.

Setting Fk+2 = {{(x + 1, s), (y + 1, t)} : {(x, s), (y, t)} ∈ Fk} for k = 1, 2 yields
another two parallel classes F3 and F4.
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(E) The pairs produced by the two classes Sg/2−2 and Sg/2−1 can be divided into four
parallel classes Hk, 1 ≤ k ≤ 4, as follows:

H1 = {{(2x + 1, 0), (2x + g/2 − 1, 1)}, {(2x, 0), (2x − 4, 2)}, {(2x

+g/2, 1), (2x − 1, 2)} : 0 ≤ x ≤ g/2 − 1},
H2 = {{(2x, 0), (2x + g/2 − 1, 1)}, {(2x + 1, 0), (2x − 1, 2)}, {(2x + g/2

−2, 1), (2x − 4, 2)} : 0 ≤ x ≤ g/2 − 1}.

Setting Hk+2 = {{(x + 1, s), (y + 1, t)} : {(x, s), (y, t)} ∈ Hk} for k = 1, 2 yields
another two parallel classes H3 and H4.

Let φ be a bijection on Zg × I3 such that φ((x, 0)) = (x, 0), φ((x, 1)) = (x + 1, 1), and
φ((x, 2)) = (x + 3, 2). For a subset A of B define φ(A) = {{φ(a), φ(b), φ(c)} : {a, b, c} ∈
A}. Evidently, φ

(
Sg/2−1

) = Sg/2, which we will use as the common parallel class required
by the lemma.

First let u/2 be odd. If more parallel classes of pairs are required, then replace step by
step in B each pair S0 and Sg−2 with Fk, Sg/2−2 and Sg/2−1 with Hk, Si and Sg/2+i with
Eik (1 ≤ i ≤ (u − 10)/4, 1 ≤ k ≤ 4). Thus we obtain a resolvable {2,3}-GDD

(
X,G,B1

)

with a collection of parallel classes P = P1 ∪ P2, where P1 = {Mi : i = 1, 2} ∪ {Fk : 1 ≤
k ≤ 4} ∪ {Hk : 1 ≤ k ≤ 4} ∪ {Eik : 1 ≤ i ≤ (u − 10)/4, 1 ≤ k ≤ 4},P2 = {Si : i = g/2,

or (u − 6)/4 ≤ i ≤ g/2 − 3, or (u − 6)/4 + g/2 ≤ i ≤ g − 3} (observe that Sg/2 ∈ P).
Similarly, replace in B each pair S0 and Sg/2 with E0,k, Sg/2−2 and Sg−2 with Eg/2−2,k . And
we still replace Si and Sg/2+i with Eik (1 ≤ i ≤ (u − 10)/4, 1 ≤ k ≤ 4), then form another
resolvable {2, 3}-GDD

(
X,G,B′) with a collection of parallel classes P ′ = P ′

1 ∪ P ′
2, where

P ′
1 = {Mi : i = 1, 2} ∪ {Eik : 0 ≤ i ≤ (u − 10)/4, or i = g/2 − 2, 1 ≤ k ≤ 4},P ′

2 = {Si :
(u−6)/4 ≤ i ≤ g/2−3, or i = g/2−1, or (u−6)/4+g/2 ≤ i ≤ g−3}. Let B2 = φ

(B′) .

Obviously,
(
X,G,B2

)
is a resolvable {2,3}-GDD of type g3 with a collection of parallel clas-

ses
{
φ(P ) : P ∈ P ′} containing φ

(
Sg/2−1

)
. Besides, one can check that φ(P ) ∩ P = ∅ for

any P ∈ P ′
1 \ {

E0k, Eg/2−2,k : 1 ≤ k ≤ 4
}
, φ(E0k) ∩ Fk = ∅, φ(Eg/2−2,k) ∩ Hk = ∅

(a slight difference when g/2 is odd: φ
(
Eg/2−2,2

) ∩ H4 = φ(Eg/2−2,4) ∩ H2 = ∅), and
φ(Q) ∩ R = ∅ for any Q,R ∈ P ′

2 except φ
(
Sg/2−1

) = Sg/2.

Finally let u/2 be even. For 1 ≤ i ≤ (u − 4)/4, 1 ≤ k ≤ 4, replace in B each pair
Si and Sg/2+i with Eik , and replace S0 and M1 with P0l , 1 ≤ l ≤ 3. Thus we obtain a
resolvable {2,3}-GDD

(
X,G,B1

)
with a collection of parallel classes P = P1 ∪ P2, where

P1 = {Eik : 1 ≤ i ≤ (u − 4)/4, 1 ≤ k ≤ 4} ∪ {P0l : l = 1, 2, 3} ∪ {M2},P2 = {Si : u/4 ≤
i ≤ g/2, or u/4 + g/2 ≤ i ≤ g − 2} (note that both Sg/2−1 and Sg/2 belong to P). Similarly
let B2 = φ

(B1
)
. Then

(
X,G,B2

)
is a resolvable {2, 3}-GDD of type g3 with a collection

of parallel classes {φ(P ) : P ∈ P}, which also satisfy all the conditions required by the
lemma. 	


Corollary 4.4 Let g and u be even integers such that 0 ≤ u ≤ 2g − 2 and (g, u) �= (2, 0).
Then there exists a pair of 3-GDDs of type g3u1 with exactly g blocks in common and these
g blocks form a parallel class of the union of the three groups of size g.

Proof There is a pair of disjoint ITD(3, g)s for g ≥ 4 by Lemma 1.2, so the conclusion
holds if u = 0. If 2 ≤ u ≤ 2g − 2, there is a pair of {2,3}-GDDs meeting the conditions in
Lemma 4.3. Analogous to the proof for t = 3 in Corollary 4.2, the conclusion follows. 	
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5 The case g ≡ 0 (mod 3)

In this section, we mainly examine the existence of a pair of disjoint 3-GDDs of type gtu1

for g ≡ 0 (mod 3). We adopt a similar procedure as in Sect. 2 of [9], so we list some results
on K-GDDs derived therein.

Lemma 5.1 ([4,9,12–14])

(1) For odd integer t ≥ 3, there is a 4-GDD of type 3t
(

3(t−1)
2

)1
.

(2) For even integer t ≥ 6, there is a {4, 7}-GDD of type 3t
(

3(t−2)
2

)1
, in which precisely

one point of the long group belongs to blocks of size 7. Further this point does not belong
to any block of size 4 if t ≥ 8.

(3) There is a 4-GDD of type 35.

(4) For (t,m, k) = (4, 6, 3), (6, 8, 1), there is a {3, 4}-GDD of type 3tm1, in which precisely
k points of the long group belong to the blocks of size 3.

The following three lemmas are all presented by utilizing the Weighting Construction. So
we only point out the initial K-GDDs (all coming from Lemma 5.1), the weight function,
and the input designs in the proof.

Lemma 5.2 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0 (mod 6)
and t ≡ 1 (mod 2).

Proof Let g = 6x where x ≥ 1. Start from a 4-GDD of type 3t
(

3(t−1)
2

)1
with a long group

Y = {y1, y2, . . . , y3(t−1)/2} Then give even weight wi between 0 and 4x to each point yi of

Y such that u = ∑3(t−1)/2
i=1 wi . Next give weight 2x to any other point. By Lemma 1.3 and

Corollary 4.2, for even 0 ≤ w ≤ 4x there is a pair of disjoint 3-GDDs of type (2x)3w1. So
the conclusion follows by the Weighting Construction. 	

Lemma 5.3 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0 (mod
6), t ≡ 0 (mod 2), and t ≥ 8.

Proof Let g = 6x where x ≥ 1. Start from a {4, 7}-GDD of type 3t
(

3(t−2)
2

)1
with a long

group Y = {y1, y2, . . . , y3(t−2)/2}, where only one point y1 of Y belongs to the block of size
7, and y1 does not belong to any block of size 4. We give y1 weight w1 = 0 or 10x, give each
yi ∈ Y with i ≥ 2 even weight wi, 0 ≤ wi ≤ 4x, such that u = ∑3(t−2)/2

i=1 wi , and give each
point not in Y weight 2x. Since two disjoint 3-GDDs of type (2x)3w1 (w even, 0 ≤ w ≤ 4x),
or (2x)6v1 (v = 0, 10x) exist by Lemma 1.3, Corollaries 3.4 and 4.2, a pair of disjoint
3-GDDs of type gtu1 is obtained. 	

Lemma 5.4 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0 (mod 6)
and t = 4, 6.

Proof Let g = 6x where x ≥ 1. Set (m, k) = (6, 3) if t = 4 and (m, k) = (8, 1) if t = 6.
First we handle even u with 2kx ≤ u ≤ g(t − 1). Start from a {3, 4}-GDD of type 3tm1

with a long group Y = {y1, y2, . . . , ym}, in which precisely k points y1, y2, . . . , yk belong to
the blocks of size 3. Give each yi with 1 ≤ i ≤ k weight 2x and each yi with k + 1 ≤ i ≤ m

even weight wi, 0 ≤ wi ≤ 4x such that u = 2kx + ∑m
i=k+1 wi . Then weight 2x to every

point not in Y . Since a pair of disjoint 3-GDDs of type (2x)3w1 (w even, 0 ≤ w ≤ 4x)
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exists by Lemma 1.3 and Corollary 4.2, there is a pair of disjoint 3-GDDs of type gtu1 by
the Weighting Construction.

Next we consider even u with u < 2kx = 6x for t = 4. Start from a 4-GDD of type
35 with groups Gi, 1 ≤ i ≤ 5, where G5 = {y1, y2, y3}. Weight 2x to each point of Gi

with 1 ≤ i ≤ 4 and weight even weight wj , 0 ≤ wj ≤ 4x, to each point yj of G5 such
that u = ∑3

j=1 wj . Utilize a pair of disjoint 3-GDDs of type (2x)4 or (2x)3w1 for even

0 ≤ w ≤ 4x and then obtain a pair of disjoint 3-GDDs of type gtu1 similarly.
Finally let u be even with u < 2kx = 2x for t = 6. Start from a {4,7}-GDD of type

3661 with a long group Y = {y1, y2, . . . , y6}, in which precisely one point y1 in Y belongs
to blocks of size 7. Assign yi with 1 ≤ i ≤ 5 weight 0, y6 weight u, and each point of
the group of size 3 weight 2x. Utilize disjoint pairs of 3-GDDs of types (2x)s (s = 3, 4, 6)

and (2x)3u1 and then obtain a pair of disjoint 3-GDDs of type (6x)tu1. This completes the
proof. 	


We summarize the above results on g ≡ 0 (mod 6) in a corollary.

Corollary 5.5 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 0
(mod 6).

Then the solutions for g = 2, 3, 4 are ready-made.

Lemma 5.6 The Main Theorem holds for any admissible triple (3, t, u).

Proof Since (3, t, u) is admissible, t is even with t ≥ 4, u is odd with u �= 3, and 1 ≤ u ≤
3(t − 1). If u ≥ 5 and t ≥ 6, then by Corollary 5.5 there is a pair of disjoint 3-GDDs of type
6t/2(u − 3)1. Apply Corollary 2.3 to yield a pair of disjoint 3-GDDs of type 3t u1.

If t = 4, then u = 1, 5, 7, 9. A pair of disjoint 3-GDDs of type 3491 exists by Corollary 3.4.
The solutions for u = 1, 5, 7 are listed in the appendix.

For u = 1 and t = 6, 8, let X = I3 × It and G = {I3 ×{i} : i ∈ It } ∪ {∞}. First construct
on each {j}× It (j ∈ I3) a pair of disjoint 3-GDDs of type 1t+1. Then form a pair of disjoint
ITD(3, t)s and delete their idempotent parallel class. Thus a pair of disjoint 3-GDDs of type
3t11 is obtained.

For u = 1 and even t with t ≥ 10, there are pairs of disjoint 3-GDDs of types 3t−4131

and 3411 by the above arguments. Consequently a pair of disjoint 3-GDDs of types of 3t11

is produced by Filling Construction II. 	

Lemma 5.7 The Main Theorem holds for any admissible triple (4, t, u).

Proof Note that (4, t, u) is an admissible triple requires that 2 ≤ u ≤ 4(t − 1), u �= 4, t ≡ 0
(mod 3) and u ≡ 0 (mod 2), or t ≡ 1 (mod 3) and u ≡ 0 (mod 6), or t ≡ 2 (mod 3) and
u ≡ 4 (mod 6).

Firstly, when t ≡ 1 (mod 3) and u ≡ 0 (mod 6), or t ≡ 2 (mod 3) and u ≡ 4 (mod 6),
or t ≡ 0 (mod 3) and u ≡ 2 (mod 6), let D = {1, 2, . . . , 2t − 1} \ {t}. By Lemma 3.3, it
suffices to show that D can be partitioned into a set D1 of (4t − 4 − u)/6 difference triples
and a set D2 containing a good difference in Z4t . This has been done in Sect. 4 of [15].

Secondly, let t ≡ 0 (mod 3), u ≡ 0, 4 (mod 6), u ≥ 6, and t ≥ 9. By Corollary 5.5 there
is a pair of disjoint 3-GDDs of type 12t/3(u − 4)1. A pair of disjoint 3-GDDs of type 44 also
exists by Lemma 1.3. Apply Filling Construction I to produce a pair of disjoint 3-GDDs of
type 4t u1.

Finally, we only need to handle t = 3, 6, u ≡ 0, 4 (mod 6) and u ≥ 6. The case t = 3
is solved by Corollary 4.2. There is a pair of disjoint 3-GDDs of type 83(u − 4)1, so by
Corollary 2.3, there exists a pair of disjoint 3-GDD of type 46u1. 	
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Lemma 5.8 The Main Theorem holds for any admissible triple (2, t, u).

Proof By Lemma 3.10, we only need to deal with the admissible triples (2, t, u) with t ≡ 0
(mod 3) and even u with 4 ≤ u ≤ 2(t − 1). If t ≡ 3 (mod 6), a pair of disjoint 3-
GDDs of type 2t u1 is obtained by Corollary 4.2. Otherwise, t ≡ 0 (mod 6). There exists by
Lemma 5.7 a pair of disjoint 3-GDDs of type 4t/2(u − 2)1. Then the conclusion follows by
Corollary 2.3. 	


To conclude this section we prove that the necessary conditions of the existence of two
disjoint 3-GDDs of type gtu1 for g ≡ 3 (mod 6) are also sufficient.

Lemma 5.9 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 3
(mod 6).

Proof Since g ≡ 3 (mod 6) and (g, t, u) is admissible, t must be even with t ≥ 4, u be odd,
and u ≤ g(t − 1). Let (X,A) be a KTS(g), where A can be resolved into (g − 1)/2 parallel
classes P1, P2, . . . , P(g−1)/2. Choose integers ui, 1 ≤ i ≤ (g − 1)/2, such that u1 is odd,
1 ≤ u1 ≤ 3(t − 1) and for each 2 ≤ i ≤ (g − 1)/2, ui is even, 0 ≤ ui ≤ 2(t − 1). Let
U1, U2, . . . , U(g−1)/2 be pairwise disjoint sets with |Ui | = ui and let U = ∪(g−1)/2

i=1 Ui . The
desired two disjoint 3-GDDs will be constructed on the set Y = (X × It )∪U with group set
G = {X × {i} : i ∈ It } ∪ {U}.

For each block B = {x, y, z} ∈ P1, there is a pair of disjoint 3-GDDs
(
XB,GB,A1

B

)

and
(
XB,GB,A2

B

)
of type 3t u1

1 by Lemmas 1.3 and 5.6, where XB = (B × It ) ∪ U1 and
GB = {B × {i} : i ∈ It } ∪ {U1}.

For each block B = {x, y, z} ∈ Pi, 2 ≤ i ≤ (g − 1)/2, there is a pair of 3-GDDs of type
t3ui

1 with no block in common but a common parallel class P = {B ×{i} : i ∈ It } of B × It

by Corollary 4.4. Deleting the common parallel class P yields two disjoint block sets A1
B

and A2
B .

For i = 1, 2, let Bi = ∪B∈Pj ,1≤j≤(g−1)/2Ai
B . It can be checked that (Y,G,B1) and

(Y,G,B2) form a pair of disjoint 3-GDDs of type gtu1. 	


6 Further constructions

In this section, we shall go a step further to employ cyclic partial S(2, 3, v)s to construct a
pair of disjoint 3-GDDs.

Lemma 6.1 Suppose that g is an even integer and there is a cyclic partial S(2, 3, g) which
contains a starter block having a good difference and whose leave is r-regular. Let t ≥ 4 and
t �= 6, 10, 0 ≤ m ≤ t − 1, and 0 ≤ v ≤ 2(t − 1) such that a pair of disjoint 3-GDDs of type
2t v1 exists. Then there is a pair of disjoint 3-GDDs of type gt ((r − 1)(t − 1) + 6m + v)1.

Proof Let G = {∞1,∞2, . . . ,∞v}, X = (
Zg × It

)∪G, and G = {Zg ×{i} : i ∈ It }∪{G}.
For D ⊆ Zg, x ∈ Zg , denote D + x = {d + x : d ∈ D} and dev(D) = {

D + x : x ∈ Zg

}
.

For � ⊆ Zg × It , x ∈ Zg , denote � + x = {(d + x, i) : (d, i) ∈ �} and dev(�) ={
� + x : x ∈ Zg

}
.

Let S1, S2, . . . , Sn be the starter blocks of a cyclic partial S(2, 3, g) on Zg , whose
r-regular leave is L. Further suppose that S1 contains a good difference. Clearly, g/2 appears
as a difference in L but not in S1. Let L1 = ⋃

{a,b}⊆S1
dev({a, b}). By Lemma 3.2 and noting

that S1 contains a good difference, L has a 1-factorization with 1-factors F1, F2, . . . , Fr and
L1 has also a 1-factorization with H1, H2, . . . , H6, as 1-factors.
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First for each pair P ∈ F1, we can construct by the assumption on (P × It ) ∪ G a pair of
disjoint 3-GDDs of type 2t v1 with group set {P × {i} : i ∈ It } ∪ {G} and two disjoint block
sets C0

P and C1
P . Set Cs = ⋃

P∈F1
Cs

P for s = 0, 1. (The other 1-factors are left for later use.)
Next we employ the starter block S1. By Lemma 1.2, for t ≥ 4 and t �= 6, 10, there is a pair

of disjoint RITD(3, t)s on S1 × It with group set {{x} × It : x ∈ S1}. Let P s
0 , P s

1 , . . . , P s
t−1

(s = 0, 1) be their parallel classes, where P s
0 be the idempotent one. By deleting m + 1

parallel classes, P s
k , 0 ≤ k ≤ m, we obtain two disjoint partial 3-GDDs with block sets B0

1
and B1

1.
Then we employ the starter block Si (i �= 1). For each 2 ≤ i ≤ n, construct on Si × It

two disjoint ITD(3, t)s with group set {{x} × It : x ∈ Si}. Delete the idempotent parallel
class to form two disjoint block sets B0

i and B1
i .

After that, for s = 0, 1, define Bs = ⋃
1≤i≤n dev

(Bs
i

)
and As = Bs ∪ Cs . One can check

that
(
X,G,A0

)
and

(
X,G,A1

)
form two disjoint partial 3-GDDs of type gtv1 with leaves

L0 and L1. If (r − 1)(t − 1) + 6m = 0, then Ls is empty and we do have obtained a pair
of disjoint 3-GDDs of type gt ((r − 1)(t − 1) + 6m + v)1. So we assume that r ≥ 2 or
m ≥ 1. By the previous construction, for s = 0, 1,Ls consists of two parts Ls

1 and Ls
2, where

L0
1 = L1

1 = {{(a, i), (b, j)} : {a, b} ∈ L\F1, i �= j ∈ It }, and Ls
2 contains all the pairs in⋃m

k=1 dev
(
P s

k

)
.

Finally we partition eachLs into (r−1)(t−1)+6m disjoint 1-factors of Zg×It to complete
the proof. For {a, b} ∈ L \ F1 and 1 ≤ i ≤ t − 1, take f i

ab = {{(a, j), (b, j + i)} : 0 ≤ j ≤
t −1}. Then we have t −1 disjoint 1-factors of {a, b}×It . For {a, b} ∈ L1 and Q = dev

(
P s

k

)

(1 ≤ k ≤ m and s = 0, 1), take f
Q
ab = {{(a, l), (b, u)} : {(a, l), (b, u), (c, w)} ∈ Q}. Thus

we have m disjoint 1-factors of {a, b} × It for each s = 0, 1, which for convenience we also
denote in sequence by f s1

ab , f s2
ab , . . . , f sm

ab . Define

Dij =
⋃

{a,b}∈Fj

{{α, β} : {α, β} ∈ f i
ab}, where 1 ≤ i ≤ t − 1 and 2 ≤ j ≤ r,

Es
kl =

⋃

{a,b}∈Hl

{{α, β} : {α, β} ∈ f sk
ab }, where 1 ≤ k ≤ m and 1 ≤ l ≤ 6.

It is readily checked that the union of these Dij ’s and Es
kl’s equals Ls , forming (r −1)(t −1)

+ 6m disjoint 1-factors of Zg × It . Obviously the number of these 1-factors is greater than
2 when t ≥ 4 and r ≥ 2 or m ≥ 1, so we can arrange them such that Lemma 3.1 can be
applied to form a pair of disjoint 3-GDDs of type gt ((r − 1)(t − 1) + 6m + v)1. 	


For any integer g ≥ 2, there is a trivial cyclic S(2, 3, g) (with no starter block) whose
leave is (g−1)-regular. Then in a similar but simpler procedure than the proof of Lemma 6.1,
we have an analogous result (the details of the proof are omitted).

Lemma 6.2 Suppose that g is an even integer. Let t ≥ 4, t �= 6, 10, 0 ≤ m ≤ t − 1, and
0 ≤ v ≤ 2(t − 1) such that a pair of disjoint 3-GDDs of type 2t v1 exists. Then there is a pair
of disjoint 3-GDDs of type gt ((g − 2)(t − 1) + v)1.

Lemma 6.3 ([17]) Suppose that � is an abelian group of even order and S ⊆ � \ {0}. Let
G(�, S) be the graph with vertex set � and whose edge set is {{x, x + s} : x ∈ �, s ∈ S}.
Then G(�, S) has a 1-factorization whenever it is connected.

Lemma 6.4 Suppose that there is a cyclic partial S(2, 3, g) whose leave is r-regular with
r < g − 1. Let t ≥ 4 be even, 0 ≤ m ≤ t − 1, and 1 ≤ v ≤ t − 1 such that a pair
of disjoint 3-GDDs of type 1t v1 exists. Then there is a pair of disjoint 3-GDDs of type
gt (r(t − 1) + 6m + v)1.
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Proof Let G = {∞1,∞2, . . . ,∞v}, X = (
Zg × It

)∪G, and G = {Zg ×{i} : i ∈ It }∪{G}.
We first construct two disjoint partial 3-GDDs of type gtv1 on X with group set G. Then we
partition their leaves into r(t − 1) + 6m disjoint 1-factors. For D ⊆ Zg,� ⊆ Zg × It , and
x ∈ Zg , we use the notations D + x,� + x, dev(D), and dev(�) as in Lemma 6.1.

By the assumption, for each i ∈ Zg , there is a pair of 3-GDDs of type 1t v1 on ({i}×It )∪G

with G as the long group and disjoint block sets D0
i and D1

i . For s = 0, 1, set Ds = ∪i∈ZgDs
i .

Let S1, S2, . . . , Sn be the starter blocks of the cyclic partial S(2, 3, g) on Zg , whose
r-regular leave is L. For each 2 ≤ i ≤ n, construct on Si × It two disjoint ITD(3, t)s with
group set {{x} × It : x ∈ Si} and delete the idempotent parallel class to form two disjoint
block sets C0

i and C1
i .

Next we handle S1. Let S1 = {a, b, c}. If m = 0, we deal with S1 as Si . So suppose
m ≥ 1. For t ≥ 6 and t �= 12, there is an RITD(3, t/2) on S1 × {2k : 0 ≤ k ≤ t/2 − 1} with
group set {{x} × {2k : 0 ≤ k ≤ t/2 − 1} : x ∈ S1} and t/2 parallel classes P1, P2, . . . , Pt/2,
where P1 = {S1 × {2k} : 0 ≤ k ≤ t/2 − 1}. Define M = (t − m + 1)/2 if m is odd, or
M = (t − m + 2)/2 if m is even. We proceed with M parallel classes as follows:

Take any block B = {(a, 2i), (b, 2j), (c, 2k)} ∈ Pl, l = 1 if m is odd, or l = 1, 2 if m

is even. For s = 0, 1, form a partial 3-GDD of type 23 with group set {{a} × {2i + 2s, 2i +
2s + 1}, {b} × {2j, 2j + 1}, {c} × {2k, 2k + 1}} and block set As

B , where

As
B = {{(a, 2i + 2s), (b, 2j), (c, 2k)}, {(a, 2i + 2s + 1), (b, 2j + 1), (c, 2k + 1)}}, (1)

and the second components are modulo t .
For any block B = {(a, 2i), (b, 2j), (c, 2k) ∈ Pl, 2 ≤ l ≤ M if m is odd, or 3 ≤ l ≤ M

if m is even, take a 3-GDD with group set {{a} × {2i + 2s, 2i + 2s + 1}, {b} × {2j, 2j +
1}, {c} × {2k, 2k + 1}} and block set As

B , where s = 0, 1.
For s = 0, 1, define Cs

1 = ⋃
B∈Pl,1≤l≤M {dev(A) : A ∈ As

B}. Then by defining Cs =
⋃n

i=1 Cs
i andBs = Ds

⋃ Cs , we produce two disjoint partial 3-GDDs of type gtv1
(
X,G,B0

)

and
(
X,G,B1

)
. Denote their leaves by L0 and L1, respectively. By the construction, Ls (s =

0, 1) consists of at most three parts. We partition the pairs in the leave into r(t − 1) + 6m

disjoint 1-factors of Zg × It to complete the proof for t ≥ 6 and t �= 12.
Part I: For s = 0, 1, l = 1 if m is odd, or l = 1, 2 if m is even, observe that we take a

partial 3-GDD as in the expression (1) for each block B = {(a, 2i), (b, 2j), (c, 2k)} of Pl ,
leading to the leave Ls

l = Ls
l0 ∪ Ls

l1 ∪ Ls
l2 with

Ls
l0 =

⋃

B∈Pl

(dev({(a, 2i + 2s), (b, 2j + 1)}) ∪ dev({(a, 2i + 2s + 1), (b, 2j)})),

Ls
l1 =

⋃

B∈Pl

(dev({(a, 2i + 2s), (c, 2k + 1)}) ∪ dev({(a, 2i + 2s + 1), (c, 2k)})),

Ls
l2 =

⋃

B∈Pl

(dev({(b, 2j), (c, 2k + 1)}) ∪ dev({(b, 2j + 1), (c, 2k)})).

Observe that the second components of each pair in Ls
li (i = 0, 1, 2) are not equivalent

modulo 2. So the graph Ls
li consists of some cycles of even length. Thus each cycle has a

1-factorization with two 1-factors. By collecting the 1-factors corresponding to all the con-
nected cycles of Ls

li , we obtain two 1-factors of Zg × It , say F s
l,2i and F s

l,2i+1. Furthermore,

F 0
l,p ∩ F 1

l,p+2 = ∅, where p ∈ I6 and p + 2 is reduced to I6. Now for fixed s we have six
1-factors of Zg × It for odd m or twelve 1-factors for even m.

Part II: This part of leave exists only if m ≥ 3. For s = 0, 1, and M + 1 ≤ l ≤ t/2,
observe that we do not use any block in Pl , which leads to leave Ls

l described below. For
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each B = {(a, 2i), (b, 2j), (c, 2k)} ∈ Pl,Ls
l contains the pairs in the 2-GDD with group set

{{a}× {2i + 2s, 2i + 2s + 1}, {b}× {2j, 2j + 1}, {c}× {2k, 2k + 1}}. By similar arguments,
Ls

l can be partitioned into twelve disjoint 1-factors of Zg ×It and we obtain K 1-factors alto-
gether, say, Gs

0,G
s
1, . . . , G

s
K−1, where K = 6(m − 1) for odd m or K = 6(m − 2) for even

m. Furthermore, we can arrange them such that G0
i ∩ G1

i = ∅ holds for all 0 ≤ i ≤ K − 1.
Part III: This part of leave exists only if r �= 0. We consider the leave L of the cyclic partial

S(2, 3, g). Observe that dev(P ) is a 2-regular graph consisting of some cycles for any pair
P ∈ L. For each connected component C, the set {{(u, i), (w, j)} : {u,w} ∈ C, i �= j ∈ It }
can be 1-factorized by Lemma 6.3 (taking � = {(i mod |C|, i mod t) : 0 ≤ i ≤ lcm(|C|, t)}
and S = {0} × (Zt \ {0})). Thus r(t − 1) 1-factors of Zg × It are obtained when taking P

all over the r-regular leave L. These 1-factors, H0, H1, . . . , Hr(t−1)−1, are all contained in
both L0 and L1 and certainly Hi ∩ Hi+1 = ∅.

So we obtain r(t − 1) + 6m disjoint 1-factors altogether. By Lemma 3.1, there is a pair
of disjoint 3-GDDs of type gt (r(t − 1) + 6m + v)1 for t ≥ 6 and t �= 12.

If t = 4, we can utilize on S1 × I4 an RITD(3, 4) with the idempotent parallel class
omitted and further empty some parallel classes. If t = 12, we use on S1 × {3k : 0 ≤ k ≤ 3}
an RITD(3,4) with the idempotent parallel class omitted. And then deal with its four parallel
classes by two ways. Choose appropriate number of parallel classes to construct for each
s = 0, 1 an RTD(3,3) with groups {a} × {3i + 3s, 3i + 3s + 1, 3i + 3s + 2}, {b} × {3j +
3s, 3j + 3s + 1, 3j + 3s + 2}, and {c} × {3k + 3s, 3k + 3s + 1, 3k + 3s + 2}, where
{(a, 3i), (b, 3j), (c, 3k)} is any block of the chosen parallel classes. And for each block of
the remaining parallel classes of the RITD(3,4), also take RTD(3,3) similarly but delete some
parallel classes of this RTD. Then in a very similar way, a pair of disjoint 3-GDDs of type
gt (r(t − 1) + 6m + v)1 is constructed. This completes the proof. 	


Parallel to Lemma 6.2, the following result also holds.

Lemma 6.5 Suppose that g is a positive integer. Let t ≥ 4 be even, 0 ≤ m ≤ t − 1, and
1 ≤ v ≤ t − 1 such that a pair of disjoint 3-GDDs of type 1t v1 exists. Then there is a pair
of disjoint 3-GDDs of type gt ((g − 1)(t − 1) + v)1.

Lemma 6.6 Let (g, t, u) be any admissible triple with g > 5 and t ≥ 4. Then there exists a
pair of disjoint 3-GDDs of type gtu1 whenever one of the following conditions meets:

(1) g ≡ 2, 8 (mod 24) if t �= 6, 10;
(2) g ≡ 14, 20 (mod 24) and u ≥ 6(t − 1) if t �= 6, 10;
(3) g ≡ 4 (mod 6) and u ≥ 2(t − 1) if t �= 6, 10;
(4) g ≡ 1 (mod 6);
(5) g ≡ 5 (mod 6) and u > 4(t − 1);
(6) If t = 6, 10, then u > t − 1 for g ≡ 2, 8 (mod 24), or u > 7(t − 1) for g ≡ 14, 20 (mod

24), or u > 3(t − 1) for g ≡ 4 (mod 6).

Proof Suppose that g = 6k + s, where k ≥ 1 and 1 ≤ s ≤ 6. Let r ′ = 7 if s = 2 and
k ≡ 2, 3 (mod 4), or r ′ = s − 1 otherwise.

For any admissible (g, t, u) with g ≡ 2, 4 (mod 6), t ≥ 4, t �= 6, 10, and u ≥ (
r ′ − 1

)

(t − 1), first take 0 ≤ x < 6, x ≡ u − (
r ′ − 1

)
(t − 1) (mod 6) (x must be even) and

next choose r ≡ r ′ (mod 6) and 0 ≤ u − (r − 1)(t − 1) − x = 6m ≤ 6(t − 1), then
u = (r −1)(t −1)+6m+x and r ≤ g−1. By Lemma 3.5, there is a cyclic partial S(2, 3, g)

with an r-regular leave. Moreover, if r < g − 1, there is a starter block containing a good
difference. And we can check that (2, t, x) is an admissible triple and then obtain a pair of
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disjoint 3-GDDs of type 2t x1 by Lemma 5.8. Consequently there is a pair of disjoint 3-GDDs
of type gtu1 by Lemma 6.1. If r = g − 1, then (2, t, 6m + x) is admissible and a pair of
disjoint 3-GDDs of type 2t (6m + x)1 also exists. So the conclusion follows by Lemma 6.2.
This handles (1)–(3).

For any admissible (g, t, u) with g ≡ 1, 5 (mod 6) (or g ≡ 2, 4 (mod 6) and t = 6, 10)
and u > r ′(t − 1), first take 0 ≤ x < 6, x ≡ u − r ′(t − 1) (mod 6) (x must be odd) and next
choose r ≡ r ′ (mod 6) and 0 ≤ u−r(t −1)−x = 6m ≤ 6(t −1), then u = r(t −1)+6m+x

and r ≤ g − 1. By Lemma 3.5, there is a cyclic partial S(2, 3, g) with an r-regular leave. It
can be checked that (1, t, x) (if r < g − 1) or (1, t, 6m + x) (if r = g − 1) is an admissible
triple, so there is a pair of disjoint 3-GDDs of type 1t x1 or 1t (6m + x)1 by Lemma 3.9.
Consequently there is a pair of disjoint 3-GDDs of type gtu1 by Lemma 6.4 or 6.5. This
proves (4)–(6). 	


7 The case g ≡ 2, 4 (mod 6)

We handle the remaining cases when g ≡ 2, 4 (mod 6) in this section.

Lemma 7.1 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 4
(mod 6).

Proof By Lemma 6.6, we need only to consider admissible triples with u < 2(t − 1) if
t �= 6, 10 and u ≤ 3(t −1) if t = 6, 10. Let g = 6n+4. The case n = 0 or t = 3 is solved by
Lemma 5.7 and Corollary 4.2 respectively. So suppose that n ≥ 1 and t ≥ 4. Since (g, t, u)

is admissible, either u ≡ 0 (mod 2) if t ≡ 0 (mod 3), or u ≡ 0 (mod 6) if t ≡ 1 (mod 3), or
u ≡ 4 (mod 6) if t ≡ 2 (mod 3). We distinguish all the possible cases.

Case 1: n ≥ 3 and u ≤ 3(t − 1). There is a 3-GDD of type 6n41 by Lemma 1.1. There
are pairs of disjoint 3-GDDs of types 6t u1 and 4t u1 by Corollary 5.5 and Lemma 5.7. So a
pair of disjoint 3-GDDs of type (6n + 4)tu1 is obtained by Construction 2.5.

Case 2: n = 2 and u ≤ 3(t − 1). There is a 3-GDD of type 44 by Lemma 1.1. There
is a pair of disjoint 3-GDDs of type 4t u1 by Lemma 5.7. So there exists a pair of disjoint
3-GDDs of type 16t u1 by Construction 2.5.

Case 3: n = 1, t ≡ 2 (mod 3), and u < 2(t − 1). Then g = 10 and u ≡ 4 (mod 6). First
Lemma 3.6 solves such cases with u ≥ 2g + 2 = 22, leaving u = 4 if t ≤ 8 or u = 4, 16
if t ≥ 11 to be settled. Next utilize Lemma 3.3 to deal with t = 5 and u = 4 by taking
on Z50 the difference triples {1, 23, 24}, {4, 18, 22}, {6, 7, 13}, {8, 11, 19}, {9, 12, 21} and
{2, 14, 16}. Finally for t = 8 and u = 4, or t ≥ 11 and u = 4, 16, the Filling Construction
II works by filling a pair of disjoint 3-GDDs of type 10t−3(30 + u)1 with such pair of type
103u1.

Case 4: n = 1, t ≡ 0, 1 (mod 3), and u < 2(t − 1). There is a 3-GDD of type 2341 and
disjoint pairs of 3-GDDs of types 2t u1 and 4t u1 exist by Lemmas 5.7 and 5.8. So we produce
a pair of disjoint 3-GDDs of type 10t u1 by Construction 2.5.

Case 5: n = 1, t = 6, 10, and 2(t − 1) ≤ u ≤ 3(t − 1). Then u ≥ 10 if t = 6. So there
exists a pair of disjoint 3-GDDs of type 106u1 by Corollary 2.3 since there is a pair of disjoint
3-GDDs of type 203(u − 10)1 by Corollary 4.2. If t = 10, then u = 18, 24. Thus a pair of
disjoint 3-GDDs of type 1010u1 exists by Lemma 3.6. 	

Lemma 7.2 The Main Theorem holds for any admissible triple (g, t, u) with g = 14, 20.

Proof For g = 14, 20, the case t ≡ 3 (mod 6) has been solved by Corollary 4.2, so let t �≡ 3
(mod 6). If t ≥ 6 is even and u > g, a pair of disjoint 3-GDDs of type gtu1 can be obtained
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by Corollary 2.3 since a pair of disjoint 3-GDDs of type (2g)t/2(u−g)1 exists by Lemma 7.1.
Thus by Lemma 6.6 we need only to consider u < g if t ≥ 6 is even and u < 6(t − 1) if
t = 4 or t ≡ 1, 5 (mod 6). Since (g, t, u) is admissible, either u ≡ 0 (mod 2) if t ≡ 0 (mod
3), or u ≡ 0 (mod 6) if t ≡ 1 (mod 3), or u ≡ 2 (mod 6) if t ≡ 2 (mod 3).

(1) g = 14.

Case 1: t ≥ 5 and u < 14. Then u ≤ 2(t − 1) (noting that (g, t, u) is admissible) and
there exist a 3-GDD of type 27 and a pair of disjoint 3-GDDs of type 2t u1 by Lemma 5.8,
yielding a pair of disjoint 3-GDDs of type 14t u1 by Construction 2.5.

Case 2: t = 4, 6, 7 and u < 6(t − 1), or t = 5 and 14 ≤ u < 6(t − 1) = 24. Employ the
Weighting Construction. Start from a TD(t + 1, 7). Assign weight 2 to each point of the first
t groups and then assign appropriate weight w to the point of the last group, where w ≡ 0
(mod 2) if t = 6, or w ≡ 0 (mod 6) if t ∈ {4, 7}, or w ≡ 2 (mod 6) if t = 5.

Case 3: t ≡ 1, 5 (mod 6), t ≥ 9, and u < 6(t − 1). First Lemma 3.6 solves such cases
with u ≥ 2g + 2 = 30, leaving u ≤ 28 to be settled. Then fill a pair of disjoint 3-GDDs of
type 143u1 in that of type 14t−3(42 + u)1 to obtain a pair of disjoint 3-GDDs of type 14t u1.

(2) g = 20.

Case 1: t ≡ 1, 5 (mod 6), t ≥ 11 and u < 6(t − 1). Similarly Lemma 3.6 solves such
cases with u ≥ 2g + 2 = 42. For u ≤ 40, fill in the long group of a pair of disjoint 3-GDDs
of type 20t−3(60 + u)1 with that of type 203u1 to produce the desired pair of type 20t u1.

Case 2: even t ≥ 10 and u < 20, or t = 5 and u < 6(t − 1) = 24. If t = 5 and u = 14,
employ Lemma 3.3 on Z100 by taking difference triples {1, 2, 3}, {4, 7, 11}, {6, 8, 14},
{9, 12, 21}, {13, 16, 29}, {17, 19, 36}, {18, 23, 41}, {22, 24, 46}, {26, 27, 47}, {28, 33, 39},
and {31, 32, 37}. If t �= 5 or u �= 14, then u ≤ 2(t − 1). So these cases can be solved
similarly to the Case 1 of g = 14, using a 3-GDD of type 210 instead of 27.

Case 3: t = 4 and u < 6(t − 1) = 18, or t = 6 and u < 20. Then u ≤ 4(t − 1) and
we can apply Construction 2.5 to a 3-GDD of type 4381. A pair of disjoint 3-GDDs of type
4t u1 exist by Lemmas 5.7. If t = 4, or t = 6 and u ≥ 6, a pair of disjoint 3-GDDs of type
8t u1 exists by Lemma 6.6. And if t = 6 and u = 2, 4, a pair of disjoint 3-GDDs of types
8t u1 also exists since a 3-GDD of type 24 and a pair of disjoint 3-GDDs of type 2t u1 exist.
Thus Construction 2.5 gives a pair of disjoint 3-GDDs of type 20t u1.

Case 4: t = 8 and u < 20. Then u = 2, 8, 14. Similar to Case 1, fill in the long group of a
pair of disjoint 3-GDDs of type 205(60 + u)1 with that of type 203u1 to produce the desired
pair of type 208u1.

Case 5: t = 7 and u < 6(t − 1) = 36. Then u = 6, 12, 18, 24, 30. As in Case 3, we can
handle u ≤ 24. The last case u = 30 is treated as follows.

Let (X,G,B) be a {2, 3}-GDD of type 45, which is obtained by deleting a group of a
3-GDD of type 46. So the blocks of size 2 of B is partitioned into four parallel classes of X.
Let U = {∞1,∞2, . . . ,∞6}, Y = (X × I7) ∪ U , and H = {X × {i} : i ∈ I7} ∪ {U}. For
each B ∈ B and |B| = 3, construct on B × I7 a pair of disjoint RITD(3,7)s (but deleting the
idempotent parallel class) with group set {{x} × I7 : x ∈ B} and block sets A1

B and A2
B . For

each G ∈ G, construct on (G× I7)∪U a pair of disjoint 3-GDDs of type 4761 with group set
{{x}× I7 : x ∈ G} ∪ {U} and block sets C1

G and C2
G. Set Ci = (∪B∈B,|B|=3Ai

B

)∪ (∪G∈GCi
G

)

where i = 1, 2. Then
(
Y,H, C1

)
and

(
Y,H, C2

)
form a pair of disjoint partial 3-GDDs of

type 20761. Their common leave is {((x, i), (y, j)) : {x, y} ∈ B, i, j ∈ I7, i �= j}. Noting
that the pairs of B is partitioned into four parallel classes, we can partition the leave into
6 × 4 = 24 disjoint 1-factors of X × I7. Hence there is a pair of disjoint 3-GDDs of type
207301 by Lemma 3.1. 	
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Lemma 7.3 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 2
(mod 6).

Proof By Lemmas 6.6 and 7.2, for g ≡ 2, 8 (mod 24), we need only to consider t = 6, 10
and u ≤ t − 1. For g ≡ 14, 20 (mod 24), we need only to consider g ≥ 38 and u < 6(t − 1),
further u ≤ 7(t − 1) if t = 6, 10. The possible cases are listed as follows:

Case 1: g ≡ 2, 8 (mod 24), t = 6, 10, and u ≤ t − 1. Let g = 6n + 2. The case n = 0
is solved by Lemma 5.8. So let n ≥ 1. Since there are a 3-GDD of type 23n+1 and a pair of
disjoint 3-GDDs of type 2t u1 by Lemmas 1.1 and 5.8, there is a pair of disjoint 3-GDDs of
type (6n + 2)tu1 by Construction 2.5.

Case 2: g ≡ 14, 20 (mod 24), g ≥ 38, and u < 6(t − 1). Let g = 6l + 8, where l ≥ 5.
There exists a pair of disjoint 3-GDDs of type (6l +8)t81 by Construction 2.5 since there are
a 3-GDD of type 6l81 and disjoint pairs of 3-GDDs of types 6t u1 and 8t u1 by Corollary 5.5
and Lemma 6.6 or Case 1 of the proof.

Case 3: g ≡ 14 (mod 24), t = 6, 10, and 6(t − 1) ≤ u ≤ 7(t − 1), where m ≥ 1.
Employ a 3-GDD of type 83m141 and disjoint pairs of 3-GDDs of types 8t u1 and 14t u1

(whose existence is assured by Case 1 and Lemma 7.2). Then we obtain a pair of disjoint
3-GDDs of type (24m + 14)tu1.

Case 4: g ≡ 20 (mod 24), t = 6, 10, and 6(t − 1) ≤ u ≤ 7(t − 1). Let g = 24k + 20,
where k ≥ 1. Employ a 3-GDD of type 83k+1121 and disjoint pairs of 3-GDDs of types
8t u1 and 12t u1 (Case 1 and Corollary 5.5). Then obtain a pair of disjoint 3-GDDs of type
(24k + 20)tu1. 	


8 The case g ≡ 5 (mod 6)

We shall solve the existence problem of a pair of disjoint modified group divisible designs
in this section. By doing so, the case g ≡ 5 (mod 6) will be completed.

Let X be a finite set of gt points and K a set of positive integers. A modified group divisible
design (introduced by Assaf in [3]) K-GDD is a quadruple (X,G,H,A) satisfying the follow-
ing properties: (1) G is a partition of X into t g-subsets Gi = {xi,0, xi,1, . . . , xi,g−1}, 0 ≤ i ≤
t −1. Each Gi is called a group. H is a partition of X into g t-subsets Hj = {

x0,j , x1,j , . . . ,

xt−1,j

}
, 0 ≤ j ≤ g−1. Each Hj is called a hole; (2)A is a set of subsets of X (called blocks),

each of cardinality from K , such that a block contains no more than one point of any group
and any hole; (3) every pair of points from distinct groups and distinct holes occurs in exactly
one block. A modified group divisible design {3}-GDD with t groups and g holes is denoted
by 3-MGDD(g, t). Notice that a 3-MGDD(g, t) can also be regarded as a 3-MGDD(t, g).
The necessary conditions of the existence of a 3-MGDD(g, t) are g, t ≥ 3, (g−1)(t−1) ≡ 0
(mod 2), and gt (g − 1)(t − 1) ≡ 0 (mod 6). Similarly, a pair of disjoint 3-MGDD(g, t)s
means two 3-MGDD(g, t)s having same group set and hole set but disjoint block sets. A
3-MGDD(3, t) is actually same as an ITD(3, t). So there does not exist a pair of disjoint
3-MGDD(3,3)s. We shall show that it is the only exception.

Lemma 8.1 Suppose that there exists a (v,K, 1)-PBD. If there exists a pair of disjoint
3-MGDD(g, k)s for any k ∈ K , then so does a pair of disjoint 3-MGDD(g, v)s.

Proof Let (X,B) be a (v,K, 1)-PBD, G = {{x} × Ig : x ∈ X}, and H = {X × {i} : i ∈ Ig}.
For any block B ∈ B, construct a pair of disjoint 3-MGDD(g, |B|)s with group set GB =
{{x} × Ig : x ∈ B}, hole set HB = {B × {i} : i ∈ Ig}, and disjoint block sets A1

B and A2
B .
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Define A1 = ∪B∈BA1
B and A2 = ∪B∈BA2

B . Then it is immediate that
(
X,G,H,A1

)
and(

X,G,H,A2
)

are two disjoint 3-MGDD(g, v)s. 	

Lemma 8.2 ([1]) (1) There exists a (v, {3, 4, 6}, 1)-PBD for any v ≡ 0, 1 (mod 3). (2) There
exists a (v, {3, 5}, 1)-PBD for any v ≡ 1 (mod 2).

Lemma 8.3 For t = 4, 6, there exists a pair of disjoint 3-MGDD(5, t)s.

Proof (1) Let G = {{i, i + 1, i + 2, i + 3, i + 4} : i = 0, 5, 10, 15} and H =
{{j, j + 5, j + 10, j + 15} : j = 0, 1, 2, 3, 4}. We construct directly a pair of disjoint
3-MGDD(5,4)s (I20,G,H,A1) and (I20,G,H,A2), where the blocks are listed below.

A1 : {0,6,12} {0,7,11} {0,8,16} {0,9,17} {0,13,19} {0,14,18}
{1,5,12} {1,7,18} {1,8,14} {1,9,15} {1,10,19} {1,13,17}
{2,5,13} {2,6,19} {2,8,15} {2,9,10} {2,11,18} {2,14,16}
{3,5,16} {3,6,14} {3,7,19} {3,9,11} {3,10,17} {3,12,15}
{4,5,18} {4,6,17} {4,7,13} {4,8,10} {4,11,15} {4,12,16}
{5,11,19} {5,14,17} {6,10,18} {6,13,15} {7,10,16} {7,14,15}
{8,11,17} {8,12,19} {9,12,18} {9,13,16}

A2 : {0,6,13} {0,7,14} {0,8,17} {0,9,16} {0,11,18} {0,12,19}
{1,5,19} {1,7,15} {1,8,12} {1,9,13} {1,10,17} {1,14,18}
{2,5,18} {2,6,15} {2,8,14} {2,9,11} {2,10,16} {2,13,19}
{3,5,11} {3,6,19} {3,7,10} {3,9,17} {3,12,16} {3,14,15}
{4,5,12} {4,6,10} {4,7,18} {4,8,16} {4,11,17} {4,13,15}
{5,13,17} {5,14,16} {6,12,18} {6,14,17} {7,11,19} {7,13,16}
{8,10,19} {8,11,15} {9,10,18} {9,12,15}

(2) Let X = (Z5 × I5) ∪ {∞i : i ∈ I5},G = {{x} × I5 : x ∈ Z5} ∪ {∞i : i ∈ I5}, and
H = {(Z5 × {i}) ∪ {∞i} : i ∈ I5}. A 3-MGDD(5,6) is constructed on X in [3] with
group set G, hole set H and block sets B1 developed under (mod 5, −) by the following
blocks:

{(0,0), (1,1), (3,2)} {(0,0), (1,2), (2,4)} {(0,1), (3,2), (2,3)}
{(0,0), (3,1), (1,3)} {(0,2), (1,3), (4,4)} {(0,1), (1,2), (3,4)}
{(0,0), (2,3), (1,4)} {(0,0), (2,2), (4,3)} {(0,0), (2,1), (3,4)}
{(0,1), (1,3), (2,4)} {(0, 0), (4, 1),∞4} {(0, 2), (3, 3),∞4}
{(0, 0), (4, 2),∞3} {(0, 1), (4, 4),∞3} {(0, 0), (3, 3),∞1}
{(0, 2), (3, 4),∞1} {(0, 0), (4, 4),∞2} {(0, 1), (4, 3),∞2}
{(0, 1), (4, 2),∞0} {(0, 3), (2, 4),∞0}

Let B2 = {{(x, a + 2), (y, b + 2), (z, c + 2)} : {(x, a), (y, b), (z, c)} ∈ B1}, where
∞i + 2 = ∞i+2 for i ∈ I5. It is readily checked that B1 and B2 form block sets of two
disjoint 3-MGDD(5,6)s. 	


Lemma 8.4 There exists a pair of disjoint 3-MGDD(g, t)s for any one of the following
parameters:

(1) g ≥ 4 and t = 3;
(2) g ≡ 1, 3 (mod 6), g ≥ 4 and t = 4, 5, 6;
(3) g ≡ 0, 4 (mod 6), g ≥ 4 and t = 5;
(4) g ≡ 5 (mod 6), g ≥ 5 and t = 4, 6.

Proof A pair of disjoint 3-MGDD(g,3)s with g ≥ 4 exists by Lemma 1.2.
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For g ≡ 1, 3 (mod 6), g ≥ 4 and t = 4, 5, 6, since there are an S(2, 3, g) and a pair of
disjoint 3-MGDD(t ,3)s, we obtain a pair of disjoint 3-MGDD(g, t)s by Lemma 8.1.

For g ≡ 0, 4 (mod 6), there is a (g, {3, 4, 6}, 1)-PBD by Lemma 8.2. A pair of disjoint
3-MGDD(5,3)s exists by the above discussion. And a pair of disjoint 3-MGDD(5,4)s and
a pair of disjoint 3-MGDD(5,6)s are given in Lemma 8.3. So we obtain a pair of disjoint
3-MGDD(g,5)s by Lemma 8.1.

For g ≡ 5 (mod 6) and t = 4, 6, there is a (g, {3, 5}, 1)-PBD by Lemma 8.2. Utilize pairs
of disjoint 3-MGDD(t ,3)s and disjoint 3-MGDD(t ,5)s. And then obtain a pair of disjoint
3-MGDD(g, t)s again by Lemma 8.1. 	

Lemma 8.5 Let g and t be positive integers satisfying g, t ≥ 3, (g, t) �= (3, 3), (g − 1)

(t − 1) ≡ 0 (mod 2) and gt (g − 1)(t − 1) ≡ 0 (mod 6). Then there exists a pair of disjoint
3-MGDD(g, t)s.

Proof The conclusion follows by using Lemmas 8.1, 8.2 and 8.4. So we only point out the
main ingredients. For t ≡ 1, 3 (mod 6), t ≥ 3 and g ≥ 4, use an S(2, 3, t) and a pair disjoint
3-MGDD(g, 3)s. If t ≡ 2 (mod 6), then t ≥ 8, g ≥ 3 and g ≡ 1, 3 (mod 6). Use an S(2, 3, g)

and a pair disjoint 3-MGDD(t, 3)s. If t ≡ 5 (mod 6), then g ≡ 0, 1 (mod 3) and g ≥ 4.
Use a (t, {3, 5}, 1)-PBD and a pair of disjoint 3-MGDD(g, s)s for s = 3, 5. If t ≡ 0, 4 (mod
6), then g ≥ 3 is odd. Use a (t, {3, 4, 6}, 1)-PBD and a pair of disjoint 3-MGDD(g, s)s for
s = 3, 4, 6. 	


The following lemmas deal with the admissible triples (g, t, u) with g ≡ 5 (mod 6), so
either u ≡ 1 (mod 2) if t ≡ 0 (mod 6), or u ≡ 5 (mod 6) if t ≡ 2 (mod 6), or u ≡ 3 (mod 6)
if t ≡ 4 (mod 6).

Lemma 8.6 Let (g, t, u) be any admissible triple with g ≡ 1, 5 (mod 6), t ≡ 0, 4 (mod 6),
g ≥ 5, t ≥ 4, and u ≤ t − 1. Then there exists a pair of disjoint 3-GDDs of type gtu1.

Proof For g ≡ 1, 5 (mod 6), t ≡ 0, 4 (mod 6), g ≥ 5, and t ≥ 4, by Lemma 8.5 there
is a pair of disjoint 3-MGDD(g, t)s on a gt-set X with group set G, hole set H and dis-
joint block sets A1 and A2. Further (1, t, u) is also an admissible triple. Let U be a u-set
disjoint with X. For each H ∈ H, construct on H ∪ U a pair of disjoint 3-GDDs of type
1t u1 with U as the long group and B1

H and B2
H as the block sets. For i = 1, 2, let Ci =

Ai∪
(∪H∈HBi

H

)
. Thus (X,G∪{U}, C1) and (X,G∪{U}, C2) form a pair of disjoint 3-GDDs of

type gtu1. 	

Lemma 8.7 There exists a pair of disjoint 3-GDDs of type gtu1, where (g, t, u) ∈ {(5, 4, 3),

(5, 4, 9), (11, 4, 3), (11, 4, 9), (11, 4, 15), (11, 4, 21), (11, 4, 27), (11, 8, 5), (11, 6, 7),

(11, 6, 9)}.
Proof For (g, t, u) = (5, 4, 3), (5, 4, 9), (11, 4, 3), (11, 4, 9), (11, 4, 15), (11, 4, 21), (11,

4, 27), (11, 8, 5), let D = {1, 2, . . . , gt/2}\{t, 2t, . . . , [g/2]t}. Since a partition of D into
D1 and D2 satisfying the conditions of Lemma 3.3 is given in Sect. 5 of [9], there exists a
pair of disjoint 3-GDDs of type gtu1. For g = 11, t = 6 and u = 7, 9, apply the Weighting
Construction to a TD(7,7) as in [9, Lemma 5.4]. Take a block of the TD(7,7) and weight 5
to six points and weight 1 or 3 to the other point of the block. Then weight 1 to all the other
points. Since there is a pair of disjoint 3-GDDs of type 17, 1631, 1651, or 5631 (Lemmas 3.9
and 8.6), a pair of disjoint 3-GDDs of type gtu1 also exists. 	

Lemma 8.8 Let (g, t, u) be any admissible triple with g = 5, 11, u < g, t ≡ 2 (mod 6),
and t ≥ 14. Then there exists a pair of disjoint 3-GDDs of type gtu1.
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Proof For g = 5, 11, u < g, t ≡ 2 (mod 6), and t ≥ 14, there is a pair of disjoint 3-
GDDs of type (2g)(t−6)/2(5g + u)1 by Lemma 7.1. There exists a pair of disjoint 3-GDDs
of type gt−6(6g + u)1 by Corollary 2.3. There exists a pair of disjoint 3-GDDs of type
g6u1 by Lemmas 8.6 and 8.7. So a pair of disjoint 3-GDDs of type gtu1 exists by Filling
Construction II. 	

Lemma 8.9 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 5 (mod 6)
and 5 ≤ g ≤ 29.

Proof The case of u > 4(t − 1) is solved by Lemma 6.6. Also noting that for t ≥ 6 (must be
even) and u > g, there exists a pair of disjoint 3-GDDs of type gtu1 by Corollary 2.3 since
there is a pair of disjoint 3-GDDs of type (2g)t/2(u − g)1 by Lemma 7.1, we only need to
consider the cases u ≤ 12 if t = 4 and u ≤ 4(t − 1) and u < g if t ≥ 6. All the possibilities
are exhausted as follows (with (g, t, u) admissible):

Case 1: g = 5, 11, and u ≤ 4(t − 1), further u < g if t ≥ 6. There are several subcases of
t . (i) t = 4. There is a pair of disjoint 3-GDDs of type gtu1 by Lemma 8.7. (ii) t ≡ 2 (mod
6). If t = 8, then we use Lemma 8.7 to deal with the only possible triple (11,8,5). Otherwise
t ≥ 14 and Lemma 8.8 gives the solution. (iii) t ≡ 0, 4 (mod 6). If u ≤ t − 1, then we
use Lemma 8.6 to obtain the desired pair of 3-GDDs. Otherwise t − 1 < u < g. Thus all
the possible admissible triples are (11,6,7) and (11,6,9), the solutions of which are listed in
Lemma 8.7.

Case 2: g = 17, and u ≤ 4(t −1), and further u < g if t ≥ 6. Since (g, t, u) is admissible,
it is readily checked that u ≤ 3(t − 1). Hence a pair of disjoint 3-GDDs of type gtu1 exists
by Construction 2.5 since a 3-GDD of type 3451 and disjoint pairs of 3-GDDs of types 3t u1

and 5t u1 exist.
Case 3: g = 29, and u ≤ 4(t − 1). Then a pair of disjoint 3-GDDs of type gtu1 exists

by Construction 2.5 since a 3-GDD of type 5491 and disjoint pairs of 3-GDDs of types 5t u1

and 9t u1 exist.
Case 4: g = 23, u ≤ 4(t − 1), and u < g. If u ≤ 3(t − 1), a pair of disjoint 3-GDDs

of type gtu1 exists by Construction 2.5 since a 3-GDD of type 3651 and disjoint pairs of
3-GDDs of types 3t u1 and 5t u1 exist. Thus it remains only to deal with the cases t = 6 and
odd u with 15 < u ≤ 20.

Similar to [9, Lemma 4.3], start from a {2,3}-GDD of type 11851 (X,G,B), where
G ∈ G, |G| = 5, and the blocks of size 2 form four parallel classes of X \ G, say Pi , i ∈ I4.
Let U = {∞1,∞2, . . . ,∞u}, Y = (X × I6) ∪ U , and H = {X × {i} : i ∈ I6} ∪ {U}.
First for each B ∈ B and |B| = 3, construct on B × I6 a pair of disjoint ITD(3,6)s omitting
the idempotent parallel class, whose group set is {{x} × I6 : x ∈ B} and two block sets are
A1

B and A2
B . Then we deal with G, the group of size 5 in G. Construct on (G × I6) ∪ U a

pair of disjoint 3-GDDs of type 56u1 with group set {G × {i} : i ∈ I6} ∪ {U} and block
sets D1 and D2. After that let Uk = {∞5k+1,∞5k+2, . . . ,∞5k+5}, where k = 0, 1, 2, and
U3 = U \(U0∪U1∪U2). For each pair P ∈ P3 construct on (P ×I6)∪U3 a pair of disjoint 3-
GDDs of type 26(u−15)1, whose group set is {{x}×I6 : x ∈ B}∪{U3} and two block sets are
E1

P andE2
P . Finally for eachPk, k = 0, 1, 2, the set {{(x, i), (y, j)} : {x, y} ∈ Pk, i �= j ∈ I6}

can be partitioned into 5 disjoint 1-factors of X \ I6, denoted by Fk0, Fk1, . . . , Fk4. Let
F1

k = ∪0≤l≤4{{∞2k+1+l , α, β} : {α, β} ∈ Fkl} and F2
k = ∪0≤l≤4{{∞2k+1+l , α, β} :

{α, β} ∈ Fk,l+1}. For i = 1, 2, let Ci = Di ∪ (∪B∈B,|B|=3Ai
B

) ∪ (∪P∈P3E i
P

) ∪(∪0≤k≤2F i
k

)
. It can be checked that

(
Y,H, C1

)
and

(
Y,H, C2

)
form two disjoint 3-GDDs of

type 236u1. 	
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Lemma 8.10 The Main Theorem holds for any admissible triple (g, t, u) with g ≡ 5
(mod 6).

Proof We can employ Lemma 6.6 to treat u > 4(t − 1), Corollary 4.2 to treat t = 3, and
Lemma 8.9 to treat g ≤ 29. So let g = 6n + 5, n ≥ 5, t ≥ 4 and u ≤ 4(t − 1). Apply
induction on n. Suppose that there is a pair of 3-GDDs of type hsv1 for any admissible triple
(h, s, v) with h = 6l + 5, and l < n. If n ≡ 3, 5 (mod 6), then a 3-GDD of type n651

exists by Lemma 1.1. And disjoint pairs of 3-GDDs of types ntu1 and 5t u1 also exist by
Lemma 8.9 or by the assumption. So a pair of disjoint 3-GDDs of type (6n+ 5)tu1 exists by
Construction 2.5. If n ≡ 0, 4 (mod 6), or n ≡ 1 (mod 6), or n ≡ 2 (mod 6), also utilize Con-
struction 2.5 but taking instead a 3-GDD of type (n−1)6111, or (n−2)6171, or (n−3)6231,
and so on. This completes the proof. 	


9 Conclusion

Summing up the results of Lemmas 1.3, 5.9, 6.6, 7.1, 7.3, 8.10, and Corollary 5.5, we obtain
the Main Theorem.

To end this paper we mention a byproduct on group divisible codes, which play an impor-
tant role in the determination of some optimal constant-weight and constant-composition
codes. Here we do not dwell on relevant notations on coding theory and the interested read-
ers are referred to [7,19]. If (X,G,B1) and (X,G,B2) are a pair of disjoint 3-GDDs of type
gtu1, from which we can naturally obtain a pair of disjoint (n, 4, 3)2 codes C1 and C2 where
n = gt + u. As in [6], replace each occurrence of 1 with i in each codeword of Ci to yield
a new code C′

i (i = 1, 2). Thus C′
1 ∪ C′

2 forms a ternary group divisible codes of weight
three, distance four and size 2b, where b = 1

6

(
g2t (t − 1) + 2gtu

)
, the number of blocks in

a 3-GDD of type gtu1.
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Appendix

We list a pair of disjoint 3-GDDs of typegtu1, where (g, t, u) ∈ {(3, 4, 1), (3, 4, 5), (3, 4, 7)}.
The point set is Igt+u. The groups are

{
it + j : i ∈ Ig

}
, j ∈ It , and {gt, gt + 1, . . . , gt +

u − 1}. And the disjoint block sets A1 and A2 are as follows.

(1) (g, t, u) = (3, 4, 1).
A1 : {12,0,1} {12,2,3} {12,4,6} {12,5,7} {12,8,11} {12,9,10}

{0,2,5} {0,3,6} {0,7,9} {0,10,11} {1,2,8} {1,3,10}
{1,4,11} {1,6,7} {2,4,7} {2,9,11} {3,4,9} {3,5,8}
{4,5,10} {5,6,11} {6,8,9} {7,8,10}

A2 : {12,0,2} {12,1,3} {12,4,5} {12,6,9} {12,7,8} {12,10,11}
{0,1,6} {0,3,5} {0,7,10} {0,9,11} {1,2,7} {1,4,10}
{1,8,11} {2,3,4} {2,5,11} {2,8,9} {3,6,8} {3,9,10}
{4,6,11} {4,7,9} {5,6,7} {5,8,10}
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(2) (g, t, u) = (3, 4, 5).
A1 : {12,0,1} {12,2,3} {12,4,5} {12,6,7} {12,8,9} {12,10,11}

{13,0,2} {13,1,3} {13,4,6} {13,5,7} {13,8,10} {13,9,11}
{14,0,3} {14,1,2} {14,4,7} {14,5,6} {14,8,11} {14,9,10}
{15,0,5} {15,1,6} {15,2,8} {15,3,9} {15,4,11} {15,7,10}
{16,0,10} {16,1,11} {16,2,7} {16,3,4} {16,5,8} {16,6,9}
{0,6,11} {0,7,9} {1,4,10} {1,7,8} {2,4,9} {2,5,11}
{3,5,10} {3,6,8}

A2 : {12,0,2} {12,1,3} {12,4,6} {12,5,7} {12,8,10} {12,9,11}
{13,0,1} {13,2,3} {13,4,5} {13,6,7} {13,8,9} {13,10,11}
{14,0,5} {14,1,4} {14,2,8} {14,3,10} {14,6,11} {14,7,9}
{15,0,11} {15,1,10} {15,2,5} {15,3,4} {15,6,9} {15,7,8}
{16,0,6} {16,1,7} {16,2,9} {16,3,8} {16,4,11} {16,5,10}
{0,3,9} {0,7,10} {1,2,11} {1,6,8} {2,4,7} {3,5,6}
{4,9,10} {5,8,11}

(3) (g, t, u) = (3, 4, 7).
A1 : {12,0,1} {12,2,3} {12,4,5} {12,6,7} {12,8,9} {12,10,11}

{13,0,2} {13,1,3} {13,4,6} {13,5,7} {13,8,10} {13,9,11}
{14,0,3} {14,1,2} {14,4,7} {14,5,6} {14,8,11} {14,9,10}
{15,0,5} {15,1,4} {15,2,8} {15,3,9} {15,6,11} {15,7,10}
{16,0,6} {16,1,7} {16,2,9} {16,3,8} {16,4,10} {16,5,11}
{17,0,10} {17,1,11} {17,2,5} {17,3,4} {17,6,9} {17,7,8}
{18,0,11} {18,1,10} {18,2,7} {18,3,6} {18,4,9} {18,5,8}
{0,7,9} {1,6,8} {2,4,11} {3,5,10}

A2 : {12,0,2} {12,1,3} {12,4,6} {12,5,7} {12,8,10} {12,9,11}
{13,0,1} {13,2,3} {13,4,5} {13,6,7} {13,8,9} {13,10,11}
{14,0,5} {14,1,4} {14,2,8} {14,3,9} {14,6,11} {14,7,10}
{15,0,3} {15,1,2} {15,4,7} {15,5,6} {15,8,11} {15,9,10}
{16,0,10} {16,1,11} {16,2,4} {16,3,5} {16,6,8} {16,7,9}
{17,0,11} {17,1,10} {17,2,7} {17,3,6} {17,4,9} {17,5,8}
{18,0,7} {18,1,6} {18,2,9} {18,3,8} {18,4,11} {18,5,10}
{0,6,9} {1,7,8} {2,5,11} {3,4,10}
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