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Abstract. Droughts in Africa cause severe problems, such as crop failure, food shortages, famine, epidemics

and even mass migration. To minimize the effects of drought on water and food security on Africa, a high-

resolution drought dataset is essential to establish robust drought hazard probabilities and to assess drought

vulnerability considering a multi- and cross-sectional perspective that includes crops, hydrological systems,

rangeland and environmental systems. Such assessments are essential for policymakers, their advisors and

other stakeholders to respond to the pressing humanitarian issues caused by these environmental hazards. In

this study, a high spatial resolution Standardized Precipitation-Evapotranspiration Index (SPEI) drought dataset

is presented to support these assessments. We compute historical SPEI data based on Climate Hazards group

InfraRed Precipitation with Station data (CHIRPS) precipitation estimates and Global Land Evaporation Am-

sterdam Model (GLEAM) potential evaporation estimates. The high-resolution SPEI dataset (SPEI-HR) pre-

sented here spans from 1981 to 2016 (36 years) with 5 km spatial resolution over the whole of Africa. To facil-

itate the diagnosis of droughts of different durations, accumulation periods from 1 to 48 months are provided.

The quality of the resulting dataset was compared with coarse-resolution SPEI based on Climatic Research

Unit (CRU) Time Series (TS) datasets, Normalized Difference Vegetation Index (NDVI) calculated from the

Global Inventory Monitoring and Modeling System (GIMMS) project and root zone soil moisture modelled

by GLEAM. Agreement found between coarse-resolution SPEI from CRU TS (SPEI-CRU) and the developed

SPEI-HR provides confidence in the estimation of temporal and spatial variability of droughts in Africa with

SPEI-HR. In addition, agreement of SPEI-HR versus NDVI and root zone soil moisture – with an average cor-

relation coefficient (R) of 0.54 and 0.77, respectively – further implies that SPEI-HR can provide valuable

information for the study of drought-related processes and societal impacts at sub-basin and district scales

in Africa. The dataset is archived in Centre for Environmental Data Analysis (CEDA) via the following link:

https://doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb (Peng et al., 2019a).

Published by Copernicus Publications.
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1 Introduction

Drought is a complex phenomenon that affects natural en-

vironments and socioeconomic systems in the world (von

Hardenberg et al., 2001; Vicente-Serrano, 2007; Van Loon,

2015; Wilhite and Pulwarty, 2017). Impacts include crop fail-

ure, food shortage, famine, epidemics and even mass mi-

gration (Wilhite et al., 2007; Ding et al., 2011; Zhou et al.,

2018). In recent years, severe events have occurred across

the world, such as the 2003 central Europe drought (García-

Herrera et al., 2010), the 2010 Russian drought (Spinoni

et al., 2015), the 2011 Horn of Africa drought (Nicholson,

2014), the 2000 drought in southeastern Australia (van Dijk

et al., 2013; Peng et al., 2019c), the 2013–2014 California

drought (Swain et al., 2014), the 2014 North China drought

(Wang and He, 2015) and the 2015–2017 southern Africa

drought (Baudoin et al., 2017; Muller, 2018). Widespread

negative effects of these droughts on natural and socioe-

conomic systems have been reported afterwards (Wegren,

2011; Arpe et al., 2012; Griffin and Anchukaitis, 2014; Mann

and Gleick, 2015; Dadson et al., 2019; Marvel et al., 2019).

Thus, there is a clear need to improve our knowledge about

the spatial and temporal variability of drought, which pro-

vides a basis for quantifying drought impacts and the expo-

sure of society, the economy, and the environment over dif-

ferent areas and timescales (Pozzi et al., 2013; AghaKouchak

et al., 2015).

Generally, drought is defined as a temporal anomaly char-

acterized by a deficit of water compared with long-term

conditions (Mishra and Singh, 2010; Van Loon, 2015).

Droughts can typically be grouped into five types: meteo-

rological (precipitation deficiency), agricultural (soil mois-

ture deficiency), hydrological (runoff and/or groundwater

deficiency), socioeconomic (social response to water sup-

ply and demand) and environmental or ecologic (Keyantash

and Dracup, 2002; AghaKouchak et al., 2015; Crausbay et

al., 2017). These different drought categories involve differ-

ent event characteristics in terms of timing, intensity, dura-

tion and spatial extent, making it very difficult to character-

ize droughts quantitatively (Panu and Sharma, 2002; Lloyd-

Hughes, 2014; Vicente-Serrano, 2016). For this reason nu-

merous drought indices have been proposed for precise appli-

cations, and reviews of the available indices have been pro-

vided by previous studies, such as Heim Jr. (2002), Keyan-

tash and Dracup (2002), and Mukherjee et al. (2018). Van

Loon (2015) noted that there is no best drought index for

all types of droughts because every index is designed for a

specific drought type, thus multiple indices are required to

capture the multifaceted nature of drought. Nevertheless, the

Standardized Precipitation Index (SPI) is recommended by

the World Meteorological Organization (WMO) for drought

monitoring, which is calculated based solely on long-term

precipitation data over different time spans (McKee et al.,

1993). The advantages of SPI are its relative simplicity and

its ability to characterize different types of droughts given the

different times of response of different usable water sources

to precipitation deficits (Kumar et al., 2016; Zhao et al.,

2017). However, information on precipitation is inadequate

to characterize drought; in most definitions, drought condi-

tions also depend on the demand of water vapour from the at-

mosphere. More recently, Vicente-Serrano et al. (2010) pro-

posed an alternative drought index for SPI, which is called

Standardized Precipitation Evapotranspiration Index (SPEI).

Compared to SPI, it considers not only the precipitation sup-

ply but also the atmospheric evaporative demand (Beguería

et al., 2010; Vicente-Serrano et al., 2012b). This makes the

index more informative of the actual drought effects over

various natural systems and socioeconomic sectors (Vicente-

Serrano et al., 2012b; Bachmair et al., 2016, 2018; Kumar

et al., 2016; S. Sun et al., 2016, 2018; Peña-Gallardo et al.,

2018a, b).

For the calculation of SPEI, high-quality and long-term

observations of precipitation and atmospheric evaporative

demand are necessary. These observations may either come

from ground-based station data or gridded data, such as satel-

lite and reanalysis datasets. For example, the SPEIbase (Be-

guería et al., 2010) and the Global Precipitation Climatol-

ogy Centre Drought Index (GPCC-DI) (Ziese et al., 2014)

both provide SPEI datasets at a global scale. SPEIbase pro-

vides gridded SPEI with a 50 km spatial resolution and is

calculated from Climatic Research Unit (CRU) Time Series

(TS) datasets, which are produced based on measurements

from more than 4000 ground-based weather stations across

the world (Harris et al., 2014). The SPEI dataset provided by

GPCC-DI has a spatial resolution of 1◦ and was generated

from GPCC precipitation (Becker et al., 2013; Schneider et

al., 2016) and National Oceanic and Atmospheric Adminis-

tration (NOAA)’s Climate Prediction Center (CPC) temper-

ature dataset (Fan and Van den Dool, 2008). Both of these

datasets have been applied for various drought-related stud-

ies at global and regional scales (e.g. Chen et al., 2013;

Vicente-Serrano et al., 2013, 2016; Isbell et al., 2015; Q. Sun

et al., 2016; Deo et al., 2017). However, these global SPEI

datasets’ spatial resolution are too coarse to be applied at

district or sub-basin scales (Vicente-Serrano et al., 2017). A

sub-basin-scale quantification of drought conditions is par-

ticularly crucial in regions such as Africa, in which geospa-

tial data and drought indices can be essential to manage ex-

isting drought-related risks (Vicente-Serrano et al., 2012a)

and where in situ measurements are scarce (Trambauer et

al., 2013; Masih et al., 2014; Anghileri et al., 2019). Over

last century, Africa has been severely influenced by intense

drought events, which has led to food shortages and famine

in many countries (Anderson et al., 2012; Yuan et al., 2013;

Sheffield et al., 2014; Awange et al., 2016; Funk et al., 2018;

Nicholson, 2018; Gebremeskel et al., 2019). Therefore, the

availability of a high-resolution drought index dataset may

contribute to an improved characterization of drought risk

and vulnerability and minimize its impact on water and food

security by supporting policymakers, water managers and

Earth Syst. Sci. Data, 12, 753–769, 2020 www.earth-syst-sci-data.net/12/753/2020/



J. Peng et al.: A pan-African high-resolution drought index dataset 755

stakeholders. Conveniently, with the advancement of satel-

lite technology, the estimation of precipitation and evapo-

ration from remote sensing datasets is becoming more ac-

curate (Fisher et al., 2017). In particular, the long-term Cli-

mate Hazards group InfraRed Precipitation with Station data

(CHIRPS) (Funk et al., 2015a) precipitation dataset and

Global Land Evaporation Amsterdam Model (GLEAM) (Mi-

ralles et al., 2011) evaporation dataset provide high-quality

data for near-real-time drought monitoring. Here, we use

CHIRPS and GLEAM datasets to develop a pan-African high

spatial resolution (5 km) SPEI dataset, which may be useful

to inform drought relief management strategies for the conti-

nent. The dataset covers the period from 1981 to 2016 and it

is comprehensively inter-compared with soil moisture, vege-

tation index and coarse-resolution SPEI datasets.

2 Data and methodology

2.1 Data

2.1.1 CHIRPS

CHIRPS is a recently developed high-resolution daily, pen-

tadal, dekadal and monthly precipitation dataset (Funk et

al., 2015a). It was produced by blending a set of satellite-

only precipitation values (CHIRP) with additional monthly

and pentadal station observations. CHIRP is based on in-

frared cold cloud duration (CCD) estimates calibrated with

the Tropical Rainfall Measuring Mission Multi-satellite Pre-

cipitation Analysis version 7 (TMPA 3B42 v7) and the Cli-

mate Hazards group Precipitation climatology (CHPclim).

CHPclim (Funk et al., 2015a, b) is based on station data

from the Food and Agriculture Organization (FAO) and the

Global Historical Climate Network (GHCN). Compared with

other global precipitation datasets, such as Multi-Source

Weighted-Ensemble Precipitation (MSWEP) (Beck et al.,

2017) and Global Precipitation Climatology Project (GPCP)

(Adler et al., 2003), CHIRPS has several advantages: a long

period of record, high spatial resolution (5 km), low spatial

biases and low temporal latency. It has been widely vali-

dated and applied in various applications (e.g. Shukla et al.,

2014; Maidment et al., 2015; Duan et al., 2016; Zambrano-

Bigiarini et al., 2017; Rivera et al., 2018). In particular, it

was recently validated over East Africa and Mozambique and

demonstrated good performance compared to other precipi-

tation datasets (Toté et al., 2015; Dinku et al., 2018). Further-

more, CHIRPS was specifically designed for drought moni-

toring over regions with deep convective precipitation, scarce

observation networks and complex topography (Funk et al.,

2014). Several studies (e.g. Toté et al., 2015; Guo et al., 2017)

have used CHIRPS for drought monitoring. Its high spatial

resolution makes it particularly suitable for local-scale stud-

ies, such as sub-basin drought monitoring, especially in ar-

eas with complex topography. The detailed description of the

Table 1. Categories of dry and wet conditions indicated by SPEI

values.

SPEI Category

2 and above Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near Normal

−1.0 to −1.49 Moderately dry

−1.5 to −1.99 Severely dry

−2 and less Extremely dry

dataset was provided by Funk et al. (2015a). In this study,

daily CHIRPS precipitation from 1981 to 2016 was used.

2.1.2 GLEAM

GLEAM is designed to estimate land surface evaporation

and root zone soil moisture from remote sensing observa-

tions and reanalysis data (Miralles et al., 2011; Martens et

al., 2017). Specifically, the Priestley–Taylor equation is used

to calculate potential evaporation within GLEAM based on

near-surface temperature and net radiation, while the root

zone soil moisture is obtained from a multilayer water bal-

ance driven by precipitation observations and updated with

microwave soil moisture estimates (Martens et al., 2017).

The actual evaporation is estimated by constraining poten-

tial evaporation with a multiplicative evaporative stress fac-

tor based on root zone soil moisture and vegetation opti-

cal depth (VOD) estimates. GLEAM version 3a (v3a) pro-

vides global daily potential and actual evaporation, evapora-

tive stress conditions, and root zone soil moisture from 1980

to 2018 at spatial resolution of 0.25◦ (Martens et al., 2017)

(see http://www.gleam.eu, last access: 29 March 2020).

GLEAM datasets have already been comprehensively eval-

uated against FLUXNET observations and used for multiple

hydro-meteorological applications (Greve et al., 2014; Mi-

ralles et al., 2014; Trambauer et al., 2014; Forzieri et al.,

2017; Lian et al., 2018; Richard et al., 2018; Vicente-Serrano

et al., 2018; Zhan et al., 2019). In particular, two recent stud-

ies detected global drought conditions based on GLEAM po-

tential and actual evaporation data (Vicente-Serrano et al.,

2018; Peng et al., 2019b). For this study, the GLEAM poten-

tial evaporation and root zone soil moisture were used.

2.1.3 CRU-TS

The global gridded CRU-TS datasets provide most widely

used climate variables, including precipitation, potential

evaporation, diurnal temperature range, maximum and min-

imum temperature, mean temperature, frost day frequency,

cloud cover, and vapour pressure (Harris et al., 2014). The

CRU TS datasets were produced using angular distance

weighting (ADW) interpolation based on monthly mete-
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Figure 1. Spatial patterns of 3-month and 12-month SPEI at high spatial resolution (5 km) and coarse spatial resolution (50 km) in June 1995.

The high spatial resolution SPEI (SPEI-HR) is based on CHIRPS precipitation and GLEAM potential evaporation, while the coarse spatial

resolution SPEI (SPEI-CRU) is calculated from CRU TS datasets.

orological observations collected at ground-based stations

across the world. The recently released CRU TS version 4.0.1

covers the period 1901–2016 and provides monthly data at

50 km spatial resolution. The CRU TS datasets have been

widely used for various applications since their release (e.g.

van der Schrier et al., 2013; Chadwick et al., 2015; Delworth

et al., 2015; Jägermeyr et al., 2016). The SPEIbase dataset

was generated from CRU TS datasets (Beguería et al., 2010).

In this study, the CRU TS precipitation and potential evapo-

ration from 1981 to 2016 was used.

2.1.4 GIMMS NDVI

The Normalized Difference Vegetation Index (NDVI) can

serve as a proxy of vegetation status and has been widely ap-

plied to investigate the effects of drought on vegetation (e.g.

Rojas et al., 2011; Vicente-Serrano et al., 2013, 2018; Törn-

ros and Menzel, 2014). The Global Inventory Monitoring and

Modeling System (GIMMS) NDVI was generated based on

Advanced Very-High-Resolution Radiometer (AVHRR) ob-

servations and has accounted for various deleterious effects,

such as orbital drift, calibration loss and volcanic eruptions

(Beck et al., 2011; Pinzon and Tucker, 2014). For the current

study, the latest version of GIMMS NDVI (3g.v1) was used,

which covers the time period from 1981 to 2015 at biweekly

temporal resolution and 8 km spatial resolution (Pinzon and

Tucker, 2014).

2.2 Methods

2.2.1 SPEI calculation

The SPEI proposed by Vicente-Serrano et al. (2010) has been

used for a wide variety of agricultural, ecological and hydro-

meteorological applications (e.g. Schwalm et al., 2017; Nau-

mann et al., 2018; Jiang et al., 2019). It accounts for the im-

pacts of evaporation demand on droughts and inherits the

simplicity and multi-temporal characteristics of SPI. The

procedure for SPEI calculation includes the estimation of a

climatic water balance (namely the difference between pre-

cipitation and potential evaporation), the aggregation of the

climatic water balance over various timescales (e.g. 1, 3, 6,

12, 24 months or more) and a fitting to a certain parame-

ter distribution. As suggested by Beguería et al. (2014) and

Vicente-Serrano and Beguería (2016), the log-logistic proba-

Earth Syst. Sci. Data, 12, 753–769, 2020 www.earth-syst-sci-data.net/12/753/2020/



J. Peng et al.: A pan-African high-resolution drought index dataset 757

Figure 2. Correlation (p < 0.05) between SPEI-HR and SPEI-CRU, with the number indicating different months.
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Figure 3. Box plot of the correlation (p < 0.05) between SPEI-HR

and SPEI-CRU for each month of the entire record. The results here

are based on 6-month SPEI, and the red line in each box represents

the median.

bility distribution is best for SPEI calculation, from which the

probability distribution of the difference between precipita-

tion and potential evaporation can be calculated as suggested

by Vicente-Serrano et al. (2010) and Beguería et al. (2014).

The negative and positive SPEI values indicate dry and wet

conditions, respectively. Table 1 summarizes the category of

dry and wet conditions based on SPEI values. In this study,

the CHIRPS and GLEAM datasets were used for SPEI calcu-

lation at high spatial resolution (5 km). For comparison, the

SPEI at 50 km was also calculated based on CRU TS datasets

for the same 1981–2016 period. It should be noted that the

SPEI over sparsely vegetated and barren areas were masked

out based on the Moderate Resolution Imaging Spectrora-

diometer (MODIS) land cover product (MCD12Q1) (Friedl

et al., 2010) because SPEI is not reliable over these areas

(Beguería et al., 2010, 2014; Zhao et al., 2017).

2.2.2 Evaluation criteria

The SPEIbase dataset (Beguería et al., 2010) was calculated

with CRU TS dataset, which has been evaluated and applied

by many studies (e.g. Chen et al., 2013; Vicente-Serrano et

al., 2013; Isbell et al., 2015; Q. Sun et al., 2016; Greenwood

et al., 2017; Um et al., 2017). The newly generated SPEI

at high spatial resolution based on CHIRPS and GLEAM

(SPEI-HR) is compared temporally and spatially to the SPEI

calculated from CRU TS datasets. In addition, the NDVI can

also serve as an indicator for drought and vegetation health

and to assess the performance of drought indices (Vicente-

Serrano et al., 2013; Aadhar and Mishra, 2017). Furthermore,

root zone soil moisture is an ideal hydrological variable for

agricultural (soil moisture) drought monitoring. The recently

released root zone soil moisture (RSM) from GLEAM v3

provides a great opportunity to evaluate whether soil mois-

ture drought is well represented by SPEI. To facilitate di-

rect comparison between SPEI, NDVI and RSM, both NDVI

and RSM are standardized by subtracting their correspond-

ing (1981–2016) mean and expressed the resulting anoma-

lies as numbers of standard deviations. This standardization

has been applied by many studies to evaluate drought indices

(Anderson et al., 2011; Mu et al., 2013; Zhao et al., 2017).

The correlation between SPEI and the standardized NDVI

and RSM is quantified using Pearson’s correlation coefficient

(R). In addition, the high-resolution SPEI from GLEAM and

CHIRPS is also resampled to the same grid size of SPEI from

CRU TS in order to quantify their correlation and disentan-

gle whether the added value of the former arises from its in-

creased accuracy or higher resolution. In the following sec-

tion, the high-resolution (5 km) SPEI is referred to as SPEI-

HR, while the coarse 50 km resolution SPEI is referred to as

coarse spatial resolution SPEI (SPEI-CRU).

3 Results and discussion

3.1 Inter-comparison between high- and

coarse-resolution SPEI

Figure 1 shows the spatial distribution of SPEI-HR and

SPEI-CRU at different resolutions for an example month

(June 1995). Figure 1a, b show the 3-month SPEI and 12-

month SPEI, respectively. It can be seen that the high-

resolution and coarse-resolution SPEI display quite similar

dry and wet patterns over the whole of Africa for both tempo-

ral scales. However, as expected, the SPEI-HR shows much

more spatial detail that, as a result, reflects mesoscale geo-

graphic and climatic features, which highlights the advan-

tages of this new dataset. The differences in patterns be-

tween 3-month and 12-month SPEI indicate the different wa-

ter deficits caused by different aggregation timescales, which

can further separate agricultural, hydrological, environmen-

tal and other droughts. For example, in June 1995, southern

Africa showed persistent dry conditions over a prolonged pe-

riod, while western Africa only showed a short-term drought.

In order to quantify how different SPEI-HR is from SPEI-

CRU, the correlation between them is calculated for each

grid cell over the whole study period. Figure 2 shows the cor-

relations for timescales 1, 3, 6, 9, 12, 24, 36 and 48 months.

In general, the SPEI-HR and SPEI-CRU agree well in terms

of temporal variability with high positive correlations over

most of Africa for every timescale. However, relatively low

correlations appear in central Africa, and they become lower

as the SPEI timescale increases. This region has very few

station observations. It should be noted that the correlations

shown here are statistically significant, with p values of less

than 0.05. In addition, the average correlation between 6-

month SPEI-CRU and SPEI-HR for each month of the year

is summarized in Fig. 3 using a box plot. In general, pos-
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Figure 4. Spatial maps of correlation between SPEI and root zone soil moisture (RSM) for 6-month SPEI: (a) SPEI-HR and (b) SPEI-CRU.

The time series of the African area mean RSM and SPEI are shown in (c), where R refers to the correlation coefficient. The correlations

shown here are all significant at the 95 % confidence level.

Table 2. The correlation (p < 0.05) between area mean RSM and SPEI at different timescales.

SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48

R (SPEI-CRU) 0.52 0.74 0.72 0.64 0.56 0.41 0.26 0.16

R (SPEI-HR) 0.49 0.76 0.77 0.69 0.62 0.44 0.29 0.18

itive correlations with a median larger than 0.6 (p < 0.05)

are found for every month. There are no substantial differ-

ences in correlations between different months. Figure A1

in Appendix shows additional box plots for SPEI at other

timescales.

3.2 Comparison against root zone soil moisture and

NDVI

To gain more insights into their significance and applicabil-

ity, the SPEI datasets are compared with NDVI and RSM.

Figure 4 shows the results of the spatial and temporal com-

parison between 6-month SPEI and RSM as indicated by

Törnros and Menzel (2014). Figure 4a, b display the corre-

lation (p < 0.05) of SPEI-HR and SPEI-CRU against RSM

during the whole time period, respectively. In general, both

SPEI-HR and SPEI-CRU show strong correlations with RSM

over the whole African continent. Compared to SPEI-CRU,

the SPEI-HR shows higher correlations, particularly over

central Africa. Since Sect. 3.1 shows that relatively large dis-

crepancy between SPEI-CRU and SPEI-HR exists over cen-

tral Africa, the results presented here suggest a potentially

better performance of SPEI-HR compared with SPEI-CRU

in this region.

The time series of SPEI and RSM, averaged over the en-

tire study area, are shown in Fig. 4c, together with the cor-

responding correlations. It can be seen that both SPEI-HR

and SPEI-CRU agree well with each other and with the RSM

dynamics. Consistent with the results from the spatial cor-

relation analysis, the SPEI-HR and SPEI-CRU show simi-

www.earth-syst-sci-data.net/12/753/2020/ Earth Syst. Sci. Data, 12, 753–769, 2020
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Figure 5. Spatial maps of the correlation between SPEI and NDVI for 6-month SPEI: (a) SPEI-HR and (b) SPEI-CRU. The time series of

area mean NDVI and SPEI are shown in (c), where R refers to the correlation coefficient. The correlations shown here are all significant at

the 95 % confidence level.

Table 3. The correlation (p < 0.05) between area mean NDVI and SPEI at different timescales.

SPEI-01 SPEI-03 SPEI-06 SPEI-09 SPEI-12 SPEI-24 SPEI-36 SPEI-48

R (SPEI-CRU) 0.23 0.42 0.47 0.48 0.47 0.50 0.34 0.20

R (SPEI-HR) 0.31 0.51 0.54 0.56 0.57 0.57 0.44 0.29

lar results when compared with RSM (R = 0.77 for SPEI-

HR; R = 0.72 for SPEI-CRU). Furthermore, the scatter plots

between 6-month SPEI and RSM for the entire data record

are shown in Appendix Fig. A2, where positive and signif-

icant correlations with RSM are found for both SPEI-HR

(R = 0.51) and SPEI-CRU (R = 0.42). To explore the cor-

relation between RSM and different timescales of SPEI, Ta-

ble 2 summarizes the correlation value calculated in the same

way as Fig. 4c. It can be seen that the highest correlations

against RSM are found at 3- and 6-month timescales. It

should be noted that satellite-data-driven estimates of root

zone soil moisture are more suitable for evaluating SPEI

compared to satellite-based top-layer soil moisture or reanal-

ysis soil moisture data (Mo et al., 2011; Xu et al., 2018).

Similar to the above analysis between SPEI and RSM,

the comparison of results between SPEI and NDVI is shown

in Fig. 5. First, Fig. 5a, b present the spatial distribution of

the correlations (p < 0.05) between SPEI-HR and NDVI and

between SPEI-CRU and NDVI, respectively. While correla-

tions are overall lower than for RSM, it can be seen that both

SPEI datasets are positively correlated with NDVI over most

of the continent. It is also clear that SPEI-HR shows higher

correlations. The time series comparison between the area

mean SPEI and NDVI is shown in Fig. 5c. Both SPEI-HR

and SPEI-CRU show agreement with NDVI, with R = 0.54

and R = 0.47, respectively. In addition, the comparison be-

tween 6-month SPEI and NDVI for the entire data record was

also calculated, with R = 0.24 for SPEI-HR and R = 0.21

for SPEI-CRU significant at 95 % confidence level (Fig. A3).
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Figure 6. Evolution of the spatial patterns of 6-month SPEI-HR, NDVI and root zone soil moisture (RSM) during the 2011 East Africa

drought (a) and 2002 southern Africa drought (b).

While these correlations are admittedly low, overall results

suggest that the SPEI has a positive relation with NDVI,

which is also reported by previous studies (e.g. Törnros and

Menzel, 2014; Vicente-Serrano et al., 2018). The lower cor-

relations against NDVI than against RSM are likely due to

complex physiological processes associated with vegetation

and the fact that ecosystem state is driven by multiple vari-

ables other than water availability (Nemani et al., 2003). Fur-

thermore, there are also clearly documented lags between

precipitation and NDVI, with NDVI time series typically

peaking 1 or even 2 months after the period of maximum

rainfall (Funk and Brown, 2006). Finally, Table 3 summa-

rizes the correlation between SPEI and NDVI at different

timescales. Compared with the results presented in Table 2

for RSM, the correlation with NDVI shown in Table 3 is also

generally lower, and the highest correlations appear between

9- and 24-month SPEI (R > 0.5).

Altogether, the comparisons between SPEI and RSM and

between SPEI and NDVI indirectly indicate the validity of

the generated SPEI datasets. Therefore, the generated high-

resolution SPEI-HR from satellite products has the potential

to improve upon the state of the art of drought assessment

over Africa.
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3.3 Patterns of SPEI, RSM and NDVI during specific

drought events

Most of Africa has suffered severe droughts in past decades

(Naumann et al., 2014; Blamey et al., 2018). Among them,

the 2011 East Africa drought (Anderson et al., 2012; AghaK-

ouchak, 2015) and 2002 southern Africa drought (Masih et

al., 2014) were extremely severe and had devastating effects

on the natural and socioeconomic environment. Taking these

two events as case studies, the spatial patterns of the newly

developed high-resolution 6-month SPEI-HR are analysed,

together with the variability in NDVI and RSM. Figure 6a, b

show the evolution of 6-month SPEI, NDVI and RSM during

the 2011 East Africa and the 2002 southern Africa drought,

respectively. The 6-month periods end in the named month,

with the 6-month June 2011 SPEI values based on data for

January to June. In general, these three variables reflect the

progressive dry-out during the events. For example, strong,

severe drought is revealed by the SPEI with values less than

−1.5, coinciding with a decline in NDVI and RSM from June

to September 2011 over East Africa; the drought was offset

in October. Similarly, dry and wet conditions variations dur-

ing the 2002 southern Africa drought were also captured by

the three variables. Despite differences over space and time,

results here demonstrate that the generated SPEI-HR cap-

tures the main drought conditions that are reflected by neg-

ative anomalies in NDVI and RSM and can thus be used to

study local drought-related processes and societal impacts in

Africa.

4 Data availability

The high-resolution SPEI dataset is publicly

available from the Centre for Environmental

Data Analysis (CEDA) from the following link:

https://doi.org/10.5285/bbdfd09a04304158b366777eba0d2aeb

(Peng et al., 2019a). It covers the whole of Africa at

a monthly temporal resolution and 5 km spatial resolu-

tion from 1981 to 2016 and is provided with geographic

latitude–longitude projection and NetCDF format.

5 Conclusions

The study presents a newly generated high-resolution SPEI

dataset (SPEI-HR) over Africa. The dataset is produced from

satellite-based CHIRPS precipitation and GLEAM poten-

tial evaporation and covers the entire African continent over

the time period from 1981 to 2016 with a spatial resolu-

tion of 5 km. The accumulated SPEI, ranging from 1 to 48

months, is provided to facilitate applications from meteoro-

logical to hydrological droughts. The SPEI-HR was com-

pared with widely used coarse-resolution SPEI data (SPEI-

CRU), GIMMS NDVI and GLEAM root zone soil moisture

to investigate its capability for drought detection. In general,

the SPEI-HR has good correlation with SPEI-CRU tempo-

rally and spatially. They both agree well with NDVI and

root zone soil moisture, although SPEI-HR displays higher

correlations overall. These results indicate the validity and

advantage of the newly developed high-resolution SPEI-HR

dataset, and its unprecedentedly high spatial resolution offers

important advantages for drought monitoring and assessment

at district and river basin level in Africa.
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Appendix A

Figure A1. Box plots of the correlation (p < 0.05) between SPEI-HR and SPEI-CRU for each month and the entire monthly record.
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Figure A2. Scatter plots between 6-month SPEI and RSM for the entire data record. R is correlation coefficient with p < 0.05, and the

colours denote the occurrence frequency of values.

Figure A3. Scatter plots between 6-month SPEI and NDVI for the entire data record. R is correlation coefficient with p < 0.05, and the

colours denote the occurrence frequency of values.
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