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Abstract: Cancer hallmark genes and proteins orchestrate and drive carcinogenesis to a large ex-
tent, therefore, it is important to study these features in different cancer types to understand the
process of tumorigenesis and discover measurable indicators. We performed a pan-cancer analysis
to map differentially interacting hallmarks of cancer proteins (DIHCP). The TCGA transcriptome
data associated with 12 common cancers were analyzed and the differential interactome algorithm
was applied to determine DIHCPs and DIHCP-centric modules (i.e., DIHCPs and their interacting
partners) that exhibit significant changes in their interaction patterns between the tumor and control
phenotypes. The diagnostic and prognostic capabilities of the identified modules were assessed to
determine the ability of the modules to function as system biomarkers. In addition, the druggability
of the prognostic and diagnostic DIHCPs was investigated. As a result, we found a total of 30 DIHCP-
centric modules that showed high diagnostic or prognostic performance in any of the 12 cancer types.
Furthermore, from the 16 DIHCP-centric modules examined, 29% of these were druggable. Our
study presents candidate systems’ biomarkers that may be valuable for understanding the process of
tumorigenesis and improving personalized treatment strategies for various cancers, with a focus on
their ten hallmark characteristics.

Keywords: hallmarks of cancer; differential interactome; system biomarkers; druggability;
personalized treatments

1. Introduction

Cancer is one of the leading causes of death in almost every country in the world.
According to GLOBOCAN, there were about 19.3 million new cancer cases and 10 million
cancer deaths in 2020 [1], and these numbers make the fateful picture clear. Cancer is an
uncontrolled cell-division process that leads to cell transformation through the occurrence
of various and successive genetic alterations. This transformation is the result of a complex
process, and this complexity makes the disease an enigma shrouded in mystery and
incurable [2].

In 2000, Hanahan and Weinberg wondered, as there were a variety of cancers, how
many regulatory mechanisms were affected, or were the same regulatory mechanisms
destroyed in the cell to become cancerous? Additionally, were there common signals? After
asking these questions, they proposed that cancer cells exhibited six biological phenomena,
which they called “hallmarks of cancer”. They proposed that these six hallmarks play a
critical role in cancer development and are likely to occur in all cancers [3]. In the coming
years, Hanahan and Weinberg added four more cancer features to the list of characteristics
with the ongoing studies. Subsequently, with this update, the ten hallmarks of cancer
approved today (eight trait characteristics and two enabling characteristics) were formed.
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These hallmarks include: (i) activating invasion and metastasis; (ii) enabling replicative im-
mortality; (iii) evading growth suppressors; (iv) avoiding immune destruction; (v) genome
instability and mutation; (vi) inducing angiogenesis; (vii) deregulating cellular energetics;
(viii) resisting cell death; (ix) sustaining proliferative signaling; and (x) tumor-promoting
inflammation [4]. Hanahan suggested, in his latest article, that potential features such as
cellular plasticity, non-mutative epigenetic reprogramming, polymorphic microbiomes,
and impaired differentiation could be added to the list in the future. However, he believes
that the definition of these conceptual features needs to be discussed and experimentally
validated with cancer biology studies [5].

Since the hallmarks of cancer genes and proteins orchestrate and drive carcinogenesis
to a large extent, it is noteworthy to study these features in different cancers to under-
stand the process of tumorigenesis and discover measurable indicators of altered biological
states such as biomarkers. A study which was conducted by Nagy et al. [6] performed a
pan-cancer survival analysis of cancer hallmark genes by not considering the associations
among them. However, the development of cancer is generally induced by a combination of
genes, proteins, metabolites, and other factors. In 2019, Yu and co-workers, by considering
the association between genes, identified cancer hallmarks based on the gene co-expression
networks for seven cancers [7]. Nevertheless, deciphering the changes at the protein level
(protein interactome) is essential to understand tumorigenesis at the systemic level. There-
fore, deciphering the hallmarks of different cancers using protein–protein interactions (PPIs)
within the protein interactome is a promising approach to understand the mechanisms of
cancer and to propose diagnostic, prognostic or therapeutic biomarker targets.

In our study, we performed a pan-cancer analysis and aimed to map differential
hallmarks of cancer-associated protein–protein interactions (Figure 1). We examined the
Cancer Genome Atlas (TCGA) transcriptome data from 12 different cancers: breast inva-
sive carcinoma (BRCA); colon adenocarcinoma (COAD); head and neck squamous cell
carcinoma (HNSC); kidney renal clear cell carcinoma (KIRC); kidney renal papillary cell
carcinoma (KIRP); liver hepatocellular carcinoma (LIHC); lung adenocarcinoma (LUAD);
lung squamous cell carcinoma (LUSC); prostate adenocarcinoma (PRAD); stomach adeno-
carcinoma (STAD); thyroid carcinoma (THCA); and uterine corpus endometrial carcinoma
(UCEC), having sufficient samples in both tumor and control groups (n > 30) and applied
a differential protein interactome algorithm [8], to determine differentially interacting
hallmark of cancer proteins (DIHCPs) and DIHCP-centered modules (i.e., DIHCPs and
their interacting partners) that represent significant changes in their interaction patterns
between the tumor and control phenotypes. The diagnostic and prognostic capabilities of
the identified DIHCP-centered modules were assessed in order to identify the modules’
potential ability to function as system biomarkers. In addition, the druggability of the prog-
nostic and diagnostic DIHCPs were investigated. Ultimately, this study presents candidate
system biomarkers that may be useful for understanding tumorigenesis, developing novel
diagnostic tools, and improving personalized treatment strategies for various cancers, with
a focus on the hallmarks of cancer.
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Figure 1. The systematic approach for the study. The steps of the applied systems’ biology methodol-
ogy for the study. After collecting the data from different repositories, the differential interactome
algorithm was applied. This algorithm was used to identify differentially interacting hallmark of can-
cer proteins (DIHCPs) and DIHCPs-centered modules. The prognostic and diagnostic performance of
the DIHCPs-centered modules was evaluated. The enrichment analyses were performed and finally
the components of the modules’ druggability were discovered.

2. Materials and Methods
2.1. Collecting of Gene Expression Data

RNA-sequencing (RNA-seq) fragments per kilobase of transcript per million fragments
mapped (FPKM) normalized gene expression data were collected from the Cancer Genome
Atlas (TCGA) [9]. For this study, gene expression data of 12 cancers with at least 30 normal
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and tumor samples of 33 different cancers were collected from the TCGA. In total, gene
expression data were collected from 6239 tumor and 637 matched normal tissue samples.
The 12 cancer types studied and their sample numbers are represented in Figure 2.
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Figure 2. Distribution of samples from 12 human cancers. The diagram shows control and tumor
samples from 12 human cancers analyzed in the study.

2.2. Collection of Cancer Hallmark Genes

Genes representing all the ten hallmarks of cancer [4] were collected from two publicly
available biological repositories which are Cancer Hallmark Genes (CHG) da-tabase [10]
and the Catalogue of Somatic Mutations in Cancer (COSMIC) database [11] (v.95). A total
of 1906 different cancer hallmark genes were collected from these two repositories. The
GeneCards: The Human Gene Database [12] was used to define proteins encoded by the
cancer hallmark genes.

2.3. Collection of Human Protein Interactome Data

Human PPI data were extracted from the BioGRID database [13] (MV-Physical-4.2.191),
which contains 51,745 physical and experimentally detected PPIs among 10,177 human
proteins. Integration of the obtained PPI interaction data with proteins encoded by genes
for which gene expression data are available in TCGA and with proteins encoded by cancer
hallmark genes resulted in a network consisting of 7422 PPIs among 1906 proteins.

2.4. Identification of Differentially Interacting Hallmark of Cancer Proteins

The differential protein interactome algorithm [8] was applied to the gene expression
profiles of all 12 cancer types using the R platform [14] (version 4.0.2). Briefly, differential
hallmarks of cancer-associated PPIs (dHCPPIs) were determined to detect changes in PPI
patterns between tumors and controls. To this end, the algorithm uses gene expression
profiling to predict the relative frequency of observation (q-value) for each PPI to represent
the dHCPPIs.

The following criteria were chosen to determine dHCPPIs: (i) if the predicted q value
for PPI is less than 0.10, the interaction is significantly suppressed in the tumor state; (ii) if
the predicted q value for PPI is greater than 0.90, the interaction is significantly activated
in the tumor state; (iii) the normalized frequency of observation in the tumor or normal
phenotype is greater than 20%.

Application of the differential protein interactome algorithm yielded DIHCPs rep-
resenting significant changes in their interaction patterns during the transition between
the normal and tumor phenotypes. The DIHCPs were classified into 2 groups according
to their interaction partners: (i) proteins with suppressed interactions in the tumor state
and (ii) proteins with activated interactions in the tumor state. DIHCPs (the hub hallmark
of cancer proteins) together with their interacting protein partners were designated as
DIHCP-centered modules (modular structures around hubs). Further analyses were per-
formed using the DIHCP-centered modules with at least 10 proteins. The dHCPPIs and
DIHCP-centered modules were visualized using Cytoscape (v3.5.0) [15].
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2.5. Diagnostic Performance Analyses of Differentially Interacting Hallmark of Cancer
Protein Modules

Principal component analyses (PCA) were performed based on TCGA-derived gene
expression profiles of the genes encoding DIHCPs in each DIHCP-centered module. Each
simulation was performed with at least 30 randomly selected normal and 30 tumor samples,
and the first 3 principal components representing the highest variances (at least 80% of the
total variance) were considered in determining the sensitivity (the proportion of positive test
results among diseased individuals) and specificity (the proportion of negative test results
among healthy individuals) metrics. Simulations were repeated until the robustness of the
average value of the sensitivity and specificity metrics was ensured. The DIHCP-centered
modules with at least 90% of the sensitivity and specificity values were considered statistically
significant in this study and were accepted as a diagnostic DIHCP-centered module.

2.6. Prognostic Performance Analyses of Differentially Interacting Hallmarks of Cancer
Protein Modules

To evaluate the prognostic performance of the DIHCP-centered modules, clinical
information on 12 cancer types was collected from TCGA and used in the prognostic
performance analyses. Prognostic abilities were evaluated by Kaplan–Meier plots and the
log-rank test. All analyses were performed using the Survival package in R [14] (version
4.0.2). Samples were analyzed according to the prognostic index (PI), which is the linear
component of the Cox model (PI = β1 × 1 + β2x2 + . . . + βpxp, where xi is the expression
value of each gene, βi is the coefficient obtained from the Cox fit). The hazard ratio
(HR = (O1/E1)/(O2/E2)) was calculated using the ratio between the relative mortality
rate in group 1 and the relative mortality rate in group 2, where O and E are the observed
and expected number of deaths, respectively. DIHCP-centered modules with a log-rank
p-value < 0.01 were considered as statistically significant and accepted as a prognostic
DIHCP-centered module in this study.

2.7. Enrichment Analyses of Diagnostic and Prognostic Modules

To obtain clues about the biological characteristics of the diagnostic and prognos-
tic modules, over-representation analyses were performed using the bioinformatics tool
Database for Annotation, Visualization and Integrated Discovery (DAVID) [16] to identify
functional annotations (i.e., biological pathways) significantly associated with DIHCPs.
Pathway p-values were determined using Fisher’s exact test, and the Benjamini–Hochberg
correction was used as a correction technique for multiple testing. Pathways with adjusted
p < 0.01 were considered statistically significant.

Moreover, although the DIHCPs were already associated with hallmarks of cancer and
to determine which cancer hallmarks are prominent and to further examine the distribution
of the hallmarks, the components of the DIHCP-centered modules (i.e., DIHCPs) were
subjected to enrichment analysis. For the analyses, we used the obtained cancer hallmark
genes from the two repositories [10,11] and integrated them with the diagnostic and
prognostic DIHCPs.

2.8. Druggability of the Diagnostic and Prognostic Differentially Interacting Hallmark of Cancer
Protein Modules

The DIHCP-centered modules that were (i) accepted as diagnostic in this study,
(ii) accepted as prognostic in this study, and (iii) all dHCPPIs that were suppressed or
activated in the tumor state were included in the druggability analysis. Components of the
DIHCP-centered modules that met the established criteria were screened for druggability
using the Drug Gene Interaction Database (DGIdb v4.2.0) [17]. Only FDA-approved drugs
were considered throughout the screening process. The types of protein–drug interaction
(activator, suppressor, inhibitor, etc.) were also considered. Namely, if all dHCPPIs in the
modules were suppressed, the drug candidates with activator activity were considered, or
if all dHCPPIs in the modules were activated, the drug candidates with inhibitor activity
were considered.
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3. Results
3.1. Interpreting Differential Protein Interactome Algorithm in Human Cancers

To identify dHCPPIs between tumor and normal tissue samples, the differential
protein interaction algorithm [8] was independently applied to the gene expression profiles
of the 12 cancer types and integrated with the reconstructed human protein interactome
(7422 PPIs between 1906 proteins). Application of the algorithm yielded the hub proteins
representing significant changes in the interaction patterns between “tumor phenotype”
and “normal phenotype”, which we named “DIHCPs”.

We identified a total of 4405 dHCPPIs among 832 different hallmarks of cancer proteins
(i.e., DIHCPs) for 12 cancer types. While HNSC had the highest number of dHCPPIs,
KIRP had the lowest dHCPPIs. The tumor specificity of dHCPPIs varied by cancer type.
Of all the dHCPPIs found, 786 (18.5%) of the dHCPPIs were specific to a cancer type.
COAD had the highest number of specific interactions (230 specific dHCPPIs), whereas
there was one specific dHCPPI for LUAD (0.2%) (Figure 3A). In addition, HNSC had
the highest number of nonspecific dHCPPIs. On the other hand, none of the dHCPPIs
was the same for all cancer types studied, and five interactions were the same in at most
seven different cancers (i.e., CAV1-CTNNB1, COL1A1-IGFBP3, LDHA-LDHB, PCNA-
GAPDH, and PSMB7-PSMB3). Comparative analysis of the interaction type (i.e., activated
or suppressed) of these dHCPPIs revealed that the dHCPPIs were generally activated in
the tumor state (88% activated).
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Figure 3. Distribution of differential hallmark of cancer-associated protein–protein interactions and
differentially interacting hallmark of cancer proteins. (A) The pie-donut chart showing the percentage
of specific and non-specific differential hallmark of cancer-associated protein–protein interaction
(dHCPPIs) between cancer types. (B) The pie-donut chart showing the percentage of specific and
non-specific differentially interacting hallmark of cancer proteins (DIHCPs) between cancer types.

3.2. Differentially Interacting Hallmark Proteins and Modules in Human Cancers

Of the 832 DIHCPs identified, 26% of the DIHCPs were specific for one cancer type.
There were two common proteins (EGFR and ESR1) that had DIHCP features in all cancers
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studied. COAD had the highest number of specific DIHCPs. Namely, 16.9% of the DIHCPs
of COAD were COAD-specific (Figure 3B).

The differential interactome showed a network topology with modular organization.
Therefore, the DIHCPs (hub cancer hallmark proteins) together with their interacting
protein partners, were referred to as modules, which we called “DIHCP-centered modules”.
The DIHCP-centered modules with at least 10 components were considered, and each
DIHCP-centered module was named after the name of the hub protein of the module.

In the comparative analysis of DIHCP-centered modules, we found that modules
whose hubs belong to the protease or 14-3-3 protein complex shared the vast majority of
DIHCPs. Therefore, DIHCP-centered modules sharing at least 70% of the common proteins
were pooled based on cancer type to increase the robustness of DIHCP-centered modules.
These pooled modules were designated as mPSMcomp or mYWHAcomp. For BRCA, four
proteasome complex-associated hub modules were pooled. For COAD, two proteasome
and two 14-3-3 protein complex-associated hub modules were pooled separately. In HNSC,
25 proteasome-associated and 3 of the 14-3-3 protein complex-associated hub modules were
pooled. In LUAD and UCEC, five protease complex-associated hub modules were pooled
independently. In LUSC, 31 proteasome complex-associated hub modules were pooled.

As a result, a total of 111 DIHCP-centered modules were identified (Table S1
(Supplementary Materials)). HNSC provided the highest number of DIHCP-centered
modules (21 DIHCP-centered modules), while KIRP provided only 2 DIHCP-centered
modules (Figure 4).

3.3. Diagnostic and Prognostic Power of Differentially Interacting Hallmarks of Cancer
Protein-Centered Modules

In this study, the DIHCP-centered modules have the ability to be potential systems’
biomarkers because we believe that the potential disease differences depending on diseased
and control status are mainly due to the coordinated action of a group of biological entities.
We further hypothesize that the DIHCP-centered module, as a systems’ biomarker, would
have high diagnostic and prognostic capabilities.

The diagnostic feature of each module was analyzed by PCA. Considering the most
significant principal components (accounting for at least 80% of the total variance), sensitiv-
ity and specificity metrics were calculated, and modules with at least 90% of the sensitivity
and specificity values were considered as diagnostic DIHCP-centered modules. Of the
111 DIHCP-centered modules, 39 had significantly high diagnostic performance (sensitivity
≥ 90% and specificity ≥ 90%), and some of these are shown in Figure 5. No diagnostic
DIHCP-centered module could be observed for PRAD and THCA (Table S2).

The prognostic performance of the modules was assessed using Kaplan–Meier survival
plots. The log-rank p-value and hazard ratios were considered to determine whether
the DIHCP-centered modules had a high impact on overall patient survival. A total of
88 DIHCP-centered modules had a high impact on patients’ overall survival (log-rank
p-value < 0.01) in different cancer types (Figure 6), except for PRAD that had no effect on
the prognostic DIHCP-centered modules (Table S2).
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Figure 4. Differential interactome networks in 12 human cancers. For each cancer type, a differential
interactome network was constructed around a differential hallmark of cancer-associated PPIs
(dHCPPIs). The number of differentially interacting hallmarks of cancer proteins (DIHCPs) for each
cancer type was presented.
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Figure 5. Principal component analyses for different cancer types. PCA plots showing individual
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Figure 6. Prognostic analyses for different types of cancer. Kaplan–Meier Plots estimating patients’
survival for 11 cancers with p-value and hazard ratio given for each curve.

Among the DIHCP-centered modules, there were a total of 30 DIHCP-centered mod-
ules that showed a high diagnostic or prognostic performance in any of the cancer types:
one module in BRCA (mPPP1CA), KIRC (mCCND1) and STAD (mHSP90AA1); two mod-
ules in HNSC (mCAV1 and mEGFR), KIRP (mHSPB1 and mMET) and LIHC (mHSP90AA1
and mHSPB1; three modules in UCEC (mGNB1, mPCNA and mSFN); four modules in
LUAD (mNPM1, mPPP1CA, mSTAT1, and mVIM); seven modules in COAD (mCDC37,
mCTNNB1, mGNB2, mJUN, mMYC, mNONO, and mYWHAcomp); and LUSC (mCAV1,
mCDH1, mNONO, mPCNA, mPPP1CA, mPSMcomp, and mYWHAG) indicated both
diagnostic and prognostic properties.

3.4. Enrichment Analyses of Diagnostic and Prognostic Protein Modules

Pathway and hallmark enrichment analyses were performed to obtain further biolog-
ical characteristics of the diagnostic and prognostic 30 modules. The DIHCPs pathway
over-representation analysis of modules based on annotations stored in the KEGG database
revealed various pathways (Figure 7). For instance, cancer-associated pathways such as



J. Pers. Med. 2022, 12, 1919 11 of 16

bladder cancer, chronic myeloid leukemia, gastric cancer, glioma, and melanoma come
into prominence. Signaling pathways such as Hippo, JAK-STAT, MAPK, PI3K-AKT, and
WNT, which are known to be associated with cancer development and progression, were
found to be statistically significant. Interestingly, viral carcinogenesis and viral infections
associated with cancer (i.e., HBV, HPV, HTLV1, and KSHV) [18] were remarkable pathways
associated with DIHCPs. Moreover, the hallmarks of cancer comprise ten distinct biological
capabilities derived during the multi-staged development of tumors; however, to reveal the
most fundamental trait of cancer cells, hallmark enrichment analyses were performed in di-
agnostic and prognostic DIHCP-centered modules (Figure 8A). Among the ten hallmarks of
cancer, DIHCPs were most enriched in sustaining proliferative signaling, presumably due
to the fact that unlimited replication is essential in cancer cells for tumor development. In
addition, genome instability and mutation and enabling replicative immortality hallmarks
remain in the background when compared to others.
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enrichment results according to q-value (−log10) significance.
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4. Discussion 
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work to carry out these biological functions. The state of interconnectedness of molecules 

establishes the phenomenon of the “biological network”. A biological network is an 
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Figure 8. The hallmark enrichment and druggability analyses results. (A) The heat-map represents
the hallmark enrichment results of the module’s differentially interacting hallmark of cancer proteins
(DIHCPs). AID: avoiding immune destruction; AIM: activating invasion and metastasis; DCE: dereg-
ulating cellular energetics; ERI: enabling replicative immortality; EGS: evading growth suppressors;
GIM: genome instability and mutation; IA: inducing angiogenesis; RCD: resisting cell death; SPS:
sustaining proliferative signaling; TPI: tumor-promoting inflammation. (B) The druggability distri-
bution of module’s DIHCPs. The bar graph indicates the number of DIHCPs, which are druggable
(light grey bars) and undruggable (dark grey bars).

3.5. Druggability of Differentially Interacting Hallmarks of Cancer Proteins

The DIHCPs were promising therapeutic targets because they represent significant
changes in the interaction patterns between tumor and normal phenotype. For this reason,
we investigated the druggability of the modules. Of the 30 diagnostic and prognostic
DIHCP-centered modules, the DIHCPs of 17 modules were examined according to the
established third criteria, because 13 of the dHCPPIs modules had both suppressed and
activated interactions that did not meet our third criteria (see Materials and Methods).

We found that of the 17 DIHCP-centered modules, 28% of the DIHCPs were druggable.
The mPSMcomp belonging to LUSC had the highest percentage (66%) of druggable proteins,
whereas the lowest number of druggable DIHCPs among all cancers analyzed belonged to
mGNB2 (10%) of COAD (Figure 8B).

A total of 200 different drugs targeting DIHCPs were found. A total of 54% of the
drugs were specific for only one cancer type. None of the drugs were specific for all cancers
studied, and 25 of the drugs were specific for no more than 6 different cancers (Table S3).

4. Discussion

Complex diseases such as cancer usually arise as a result of interactions between
biological entities. The biological molecules that trigger the development of a cancer
or biological process never function alone; they work together in a complex, intercon-
nected network to carry out these biological functions. The state of interconnectedness of
molecules establishes the phenomenon of the “biological network”. A biological network is
an advanced concept that allows researchers to model, characterize, and decipher complex



J. Pers. Med. 2022, 12, 1919 13 of 16

interactions between different biologically relevant entities in a biological system [19]. Bio-
logical networks thus change our perspective and shed light on the internal organization of
the cell, allowing us to understand the mechanisms underlying complex diseases. More-
over, predictive, preventive, and personalized medicine is a holistic healthcare strategy
that aims to predict individual predisposition, provide targeted prevention, and provide
personalized treatment [20]. To advance personalized medicine strategies, the discovery of
new treatments is essential. However, with today’s financial resources, it is nearly impossi-
ble to discover drugs from scratch using traditional methods. Using biological network
analysis, researchers can also discover and/or predict anti-cancer drugs [21]. We believe
that network-based systems biology is a new approach for discovering treatment and
prevention strategies, especially for cancer, which is currently a major burden worldwide,
and researchers are embracing this concept. For example, researchers have integrated
gene expression profiling with multiple networks to identify new biomarkers and drug
candidates for breast cancer [22], pancreatic cancer [23], cervical cancer [24], acute myeloid
leukemia [25], thyroid cancer [26], and so on. Accordingly, these holistic analyses enable
the discovery of potential biomarkers for diagnosis, prognosis, or therapeutic purposes.
Therefore, biological networks hold great potential for the present and the future, especially
for complex diseases such as cancer [27].

The protein–protein interactome represents a biological network that encompasses
all physical protein interactions within the cell. These protein–protein interactions play
a crucial role in the living organism. These are essential for almost all cellular functions,
involved in the physiology and biochemistry of the organism. These can also influence
cancer cell growth, transmit oncogenic signals, and even cause the development of typical
cancer features. Targeting such interactions is a promising strategy for new drug devel-
opment [28,29]. Thus, it is strongly suggested that significant changes in protein–protein
interactions occur depending on the phenotype of the individual (i.e., diseased versus
healthy) [30].

We applied our constructed differential interactome algorithm, which had proven
to be a powerful tool in other studies [8,31,32], for the protein–protein interactome data
on hallmarks of cancer. Our results revealed DIHCPs showing remarkable changes in
the interaction patterns of patients during the transition from the “normal” phenotype to
the “cancer” phenotype. As mentioned earlier, cancers occur and spread usually due to
the coordinated action of a group of biological molecules. In this study, DIHCPs and the
modular structures around these proteins (DIHCP-centered modules) were considered as
potential systems’ biomarkers. However, we believe that a valid biomarker must provide
prognostic or diagnostic information about the specific cancer. For this reason, to provide
confidence in the precise diagnostic and prognostic capacity of the systems’ biomarkers we
clearly demonstrated their diagnostic and prognostic performances by PCA and survival
analyses and demonstrated high biomarker performances in multiple tumors (30 diagnostic
and prognostic DIHCP-centered modules).

In this study, we only used hallmark of cancer proteins, while we integrated proteomics
data to apply the differential interactome algorithm. Hallmarks of cancer proteins are
considered as driver proteins of tumorigenesis. These proteins are responsible for the
most basic phenotypic features of tumor initiation and progression [3]. Therefore, we
hypothesized that we can highlight the principles and mechanisms of tumorigenesis by
focusing only on the proteins essential for carcinogenesis (hallmarks of cancer proteins),
we can reduce the complexity of the disease, and typify the process by characteristic and
complementary features. In addition, if the potential system biomarker components (i.e.,
DIHCPs) presented in the study are all among the hallmark characteristics of human
cancers, we believe we will identify highly robust cancer biomarkers. Moreover, since
these hallmarks represent features of cancer cells, recent therapeutic approaches have been
increasingly aiming at targeting hallmark proteins [33]. Therefore, the systems’ biomarkers
identified in this study will have remarkable clinical value. For this reason, this study also
evaluated the druggability of the diagnostic and prognostic systems’ biomarkers.
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The hubs of the diagnostic and prognostic systems’ biomarkers are mostly associated
with the sustaining proliferative signaling involved as an important feature in the hallmarks
of cancer. It is known that cancer cells can stimulate their own proliferation indefinitely and
this cancer hallmark characteristic is chronically activated in all cancers. The well-known
mechanism for sustaining proliferative signaling is to activate oncogenes [34]. Oncogenes
encode proteins that stimulate cell proliferation and programmed cell death. An oncogene
arises when a proto-oncogene is altered genetically (i.e., mutated) and over-expressed. For
instance, in cancers, the most noticeable oncogenes are BRAF and RAS [35]. Moreover,
resisting the cell-death hallmark feature comes into prominence for diagnostic and prognos-
tic hubs. Resistance to cell death is a natural barrier to cancer development and is mostly
regulated by programmed cell death. The best-known form of programmed cell death is
apoptosis, in which cells are destined to die. In addition to apoptosis, necroptosis is referred
to as the second important process for inducing cell death. Apoptosis and necroptosis cause
different immune responses. Necroptosis releases molecules that promote inflammation,
while apoptosis triggers silent immunological responses [36]. Autophagy is another process
that leads to cell death [34]. The autophagy process allows cells to remove unnecessary or
dysfunctional components. In cancer, autophagy may play a tumor-suppressor or oncogene
role under certain conditions and at certain stages of carcinogenesis [37]. A recent review
systematically described the hallmarks of different cell death modes [38].

The major limitation of the study is the lack of experimental validations of the diagnos-
tic and prognostic modules with relevant tissue samples or cell lines. Therefore, the most
important aspect of this study is to translate these computational findings into experimental
approaches. For example, future in vitro studies need to be performed to investigate the
impact of the identified modules in terms of their response to cell viability, cell migration
and disease progression. In addition, the accuracy, consistency, reproducibility, and reliabil-
ity of the biomarkers presented in this study should be experimentally validated if they
prove to be clinically useful. In addition, the mechanism of action of these modules needs
to be experimentally evaluated to clearly elucidate their effects on the hallmarks of cancer
characteristics. We believe that computational analysis is an important and first step in
biomarker development. However, to address the broad medical and scientific audience,
the need for experimental validation is inevitable.

In conclusion, the knowledge of specific proteins being impacted within a given hallmark
of the patient’s cancer type could offer the opportunity to personalize treatments. One such
approach would be to target proteins from the proteins in the enrichment analysis that match
the patient’s specific tumor type and prioritize repurposing the drugs proposed from our
analysis. Furthermore, our investigation on the hallmarks of cancer protein provides valuable
data for further experimental and clinical efforts in a variety of cancer types since the proposed
systems’ biomarkers have the potential to be diagnostic and/or prognostic. Moreover, the
protein–protein interactions could be utilized as therapeutic targets.
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//www.mdpi.com/article/10.3390/jpm12111919/s1, Table S1: Differentially interacting hallmark of
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tially interacting hallmark of cancer protein (DIHCP)-centered modules; Table S3: Drugs targeting
module’s differentially interacting hallmark of cancer proteins (DIHCPs).
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