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Abstract

Purpose: Throughout their development, tumors are

challenged by the immune system, and they acquire fea-

tures to evade its surveillance. A systematic view of these

traits, which shed light on how tumors respond to immu-

notherapies, is still lacking.

Experimental Design: Here, we computed the relative

abundance of an array of immune cell populations tomeasure

the immune infiltration pattern of 9,174 tumors of 29 solid

cancers. We then clustered tumors with similar infiltration

pattern to define immunophenotypes. Finally, we identified

genomic and transcriptomic traits associated to these immu-

nophenotypes across cancer types.

Results: In highly cytotoxic immunophenotypes, we found

tumors with low clonal heterogeneity enriched for alterations

of genes involved in epigenetic regulation, ubiquitin-mediat-

ed proteolysis, antigen presentation, and cell–cell communi-

cation, which may drive resistance in combination with the

ectopic expression of negative immune checkpoints. Tumors

with immunophenotypes of intermediate cytotoxicity are

characterized by an upregulation of processes involved in

neighboring tissue invasion and remodeling that may foster

the recruitment of immunosuppressive cells. Tumors with

poorly cytotoxic immunophenotype tend to be of more

advanced stages and bear a greater burden of copy number

alterations and frequent alterations of cell cycle, hedgehog,

b-catenin, and TGFb pathways, which may cause immune

depletion.

Conclusions: We provide a comprehensive landscape of

the characteristics of solid tumors that may influence (or be

influenced by) the characteristics of their immune infiltrate.

These results may help interpret the response of solid tumors

to immunotherapies and guide the development of novel

drug combination strategies. Clin Cancer Res; 24(15); 3717–28.

�2018 AACR.

Introduction

Solid tumors and the immune cells infiltrating them interact in

a dynamic equilibrium that shapes the progression of the disease.

Tumor evasion of immunosurveillance is a hallmark shared by all

types of cancer (1). In this process, the features that protect cancer

cells from the action of a cytotoxic immune infiltrate or promote

the suppression of this infiltrate are positively selected. Although

several mechanisms of immune evasion have been experimen-

tally identified for some tumor types (2–4), to date, there is no

comprehensive view of the routes of tumor escape. Some of these

mechanisms, such as the activation of immune checkpoints, have

been therapeutically exploited, with a remarkable clinical success

across a variety of cancer types (4). Therefore, the discovery of

features acquired by tumors in response to the immune cells that

surround them may open up new strategies to treat the disease.

The genomic and transcriptomic sequences of large cohorts of

tumors generated by international projects, such as The Cancer

Genome Atlas (TCGA, http://cancergenome.nih.gov/), have pro-

vided the opportunity to identify the distinguishing molecular

traits of cancer in unprecedented detail. Furthermore, the abun-

dance of immune cells in the infiltrate of tumors can be estimated

using computational methods that exploit the fact that tumor

bulk samples are admixtures of cancer cells and cells of their

microenvironment (5). Although several recent studies using

these approaches have explored some features of the tumors

associated with specific characteristics of the immune infiltrate

(6–10), a comprehensive pan-cancer landscape of the interactions

between the tumor and the immune cells is still lacking.

Here, we first aimed to determine to which extent the cancer

type and the tissue of origin shape the immune infiltrate of

tumors. To this end, we estimated the immune infiltration pattern

of 9,174 tumors and computed its heterogeneity across the 29

solid cancer types they represent. We also compared this immune

infiltration pattern to that of 6,544 healthy donors. Our results

showed that the cancer type and the tissue of origin do not explain
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all the variability of the immune infiltrate of tumors. Therefore,we

set out to identify intrinsic tumor features that significantly

associate with their immune infiltrate. We first grouped the

tumors of each cancer type with similar immune infiltration

pattern (immunophenotypes). These immunophenotypes repre-

sent differentiated scenarios of immune infiltration, and there-

fore,we reasoned that they could result in the selectionof different

tumor mechanisms for evading the action of the immune system.

To test this hypothesis, we systematically correlated the immu-

nophenotypes with: (i) clinical and pathologic features of the

tumors; (ii) genomic characteristics, including putative driver

mutations and copy number alterations (CNA; identified by the

Cancer Genome Interpreter; ref. 11); and (iii) the activation status

of cancer cell processes (after subtracting the contribution of the

immune cells to the expression of genes in the bulk sample;

ref. 12). As a result, we revealed that solid cancers develop a very

distinct set of molecular traits when progressing in different

scenarios of immune infiltration. Our findings provide a land-

scape of the interactions between tumor and immune cells across

cancer types and have clear implications for anticancer immu-

notherapies currently employed in the clinic and their potential

combination with targeted drugs.

Materials and Methods

Sample data collection and processing

TCGA data, mutations, CNAs, gene expression (RSEM gene-

normalized), clinical annotations (with tumor stage manually

annotated using the available pathologic and clinical data),

for 9,174 tumors across 29 cancer types were downloaded

from the most recent freeze contained in the Firebrowse server

(2016_01_28). Triple-negative breast tumors were considered

as a separated cancer cohort. The expression data (RPKM) of

8,304 donors across 22 healthy tissues were downloaded from

the GTEx portal (version 6). The quantification of virus

expression across tumors was retrieved from previous pub-

lications (7, 13). We considered a tumor infected if the

expression of a virus was higher than the observed across

healthy tissues, following the approach described by Rooney

and colleagues (7).

A tumor was considered hypermutated if its mutation burden

was greater than the median mutation burden of its cohort plus

4.5 times the interquartile range and greater than 500 mutations.

The clonal heterogeneity of each tumor was computed as the

ratio between the dispersion of the variant allele fraction of the

mutations in the sample and itsmedian variant allele fraction (9).

We analyzed the RNA sequencing (RNA-seq) data of samples

from melanoma patients treated with anti-CTLA4 (14) (RPKM

matrix provided by the authors, 42 patients) and anti–PD-1

(FPKM matrix downloaded from GEO: GSE78220, 28 patients;

ref. 15) therapies.

Estimation of the abundance of immune cell populations

The relative abundance of 16 immune populations in tumors

andhealthy tissueswere computed from theRNA-seqof eachbulk

sample. In detail, we used the gene set variation analysis (GSVA;

ref. 16), a sample-level enrichment method, which proved to be

more appropriate for our aim than available deconvolution-

based methods (Supplementary Material). We selected immune

cell populations, the relative abundance of which could be

computed with confidence from the expression data of the

admixture samples (Supplementary Material). Immune popula-

tions were represented by nonoverlapping gene sets specifically

overexpressed in each cell type, selected from several previous

publications (5, 17, 18) (Supplementary Material; Supplemen-

tary Table S1A). We also calculated the relative abundance of

cytotoxic cells as a proxy of the antitumor activity of the overall

immune infiltrate. The gene set to compute the abundance of

cytotoxic cells includes genes overexpressed in CD8-activated

T cells, gd T cells, and natural killer cells (Supplementary Mate-

rial). The GSVA produces normalized enrichment scores ranging

from�1 to 1, which represent the abundance of the immune cell

population in the sample relative to other tumors of the analyzed

cohort. Overall, 31 independent GSVA analyses were carried

out for the pan-cancer cohort (all tumor samples pooled together,

n ¼ 1), the healthy donors cohort (all healthy samples pooled

together, n ¼ 1), and each cancer cohort separately (n ¼ 29).

Comparison of the immune infiltration pattern of tumors and

their tissue of origin

We first matched each solid cancer type in TCGA to its closest

corresponding healthy tissue included in the GTEx project

(Supplementary Material). We then compared the GSVA scores

computed for the pan-cancer cohort with those in matching

healthy tissue samples (Supplementary Material). We considered

that the abundance of a given immune population was different

between tumors and healthy samples if the median of GSVA

values across tumors of the cancer type differed significantly

(Mann–Whitney Q value < 0.1) and more than 0.2 from that

measured across matching healthy samples.

Tumor sample clustering

Tumorswithqualitatively different immune infiltrationpattern

were grouped using a hierarchical agglomerative clustering (based

on Euclidean distance and Ward linkage) method. To cluster the

tumors across the whole pan-cancer cohort, we used the GSVA

scores of 16 immune cell populations of the 9,174 tumors

analyzed together. To build the immunophenotypes, we clustered

the tumors of each cohort separately. We included the GSVA

scores of cytotoxic cells and overweighed this signature by a factor

of four in the process of clustering (Supplementary Material). The

Translational Relevance

In this study, we define the immunophenotype of 9,174

tumors of 29 solid cancers on the basis of a set of 16 immune

cell populations infiltrating them. We identify genomic and

transcriptomic features of individual tumors significantly

associated with these immunophenotypes. These features will

help to shed light on how tumors respond to immunothera-

pies, as well as to provide rationale for the development of

novel therapeutic strategies. Oncogenic traits associated to

immunophenotypes with high cytotoxicity may reveal

mechanisms of immune resistance that render them unre-

sponsive to checkpoint inhibitors. On the other hand, the

features associated to immunophenotypes of lower cytotox-

icity could be targeted by existing drugs, potentially improving

the outcome of immunotherapies. We provide examples of

these translational opportunities in the article.

Tamborero et al.
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optimal number of clusters of tumorswasdeterminedon thebasis

of the percentage of variance of the data explained by them

(Supplementary Material).

Quantification of mutational signatures

The deconstructSigs software (19) was used with default para-

meters to compute the contribution of previously reported muta-

tional signatures (http://cancer.sanger.ac.uk/cosmic/signatures)

to the overall landscape of mutations of each tumor. This calcu-

lation was limited to tumor samples with at least 50 mutations.

We considered all mutations fitting signatures 3, 6, 10, 15, 18, 20,

21, and 26 (among the 30 available in the current version of

http://cancer.sanger.ac.uk/cosmic/signatures) likely caused by

altered POLE and BRCA-1/2, and base excision repair and

mismatch repair deficiency; and those fitting signatures 2 and

13 caused by APOBEC activity.

Identification of genomic drivers associated to

immunophenotypes

We first identified genomic alterations (point mutations, small

indels, and gene copy number gains or losses) that are potential

drivers of each tumor using the Cancer Genome Interpreter

(https://www.cancergenomeinterpreter.org; ref. 11). Then, to

identify the genes with driver alterations that significantly asso-

ciate with a particular immunophenotype, we implemented a

regularized logistic regression analysis adjusted by the count of

protein-affecting mutations and gene CNAs. Our model specifi-

cally addresses the spurious fitting derived from the sparsity of the

data and provides empirical significance scores (Supplementary

Material). The choice of the regularization algorithm can be

interpreted as a Bayesian logistic regression with a Gaussian

weakly-informative prior distribution for the parameters of the

immune clusters and adjustment covariates. We applied the

logistic regression to each cancer cohort separately, and we also

performed a pan-cancer analysis in which all the tumors with the

equivalent immunophenotype (the ordinal number representing

the cytotoxicity level) were pooled together irrespective of their

cancer type. Only genes bearing mutations in at least 2.5% of the

samples of the cohort and/or CNAs in at least 5% were included.

Expression adjustment

To adjust the gene expressionmeasured in a tumor bulk sample

by its immune content, we followed the rationale described in

ref. 12. Briefly, we adjusted the expression value of each gene in

each tumor sample according to the contribution of CD45 to the

expression of that gene observed in the matching healthy tissue

(Supplementary Material; Supplementary Fig. S1). Cancers with

no matching healthy tissue data available (cholangiocarcinoma,

mesothelioma, and uveal melanomas) were excluded from this

analysis.

Pathway enrichment analysis

We identified upregulated pathways among tumors of a certain

immunophenotype running a gene set enrichment analysis

(GSEA; ref. 20) on the adjusted expression data (available for

8,971 tumors across 26 cancer types, due to the exclusion of the

three cohorts in which the adjustment of the expression for the

leukocyte content was not available; see above). Significance was

considered for values of corrected P (which takes into account the

size of each gene set plus the multiple test correction, as provided

by the method) lower than 0.25, as recommended by the authors

(http://software.broadinstitute.org/gsea/doc/GSEAUserGuide

Frame.html?Interpreting_GSEA). Gene sets were downloaded

from the MSigDB database (20). We included broad hall-

marks and specific pathways of interest from the curated

gene sets/canonical pathways collection. In addition, we

manually gathered pathways not found in the aforemen-

tioned collections. Overall, we considered a total of 51 path-

ways (Supplementary Table S1B) with minimal gene set

overlap between them (Supplementary Fig. S2A) as well as

with the gene sets used to compute the immune cells abun-

dance (Supplementary Fig. S2B).

General model of association between tumor features and

immunophenotypes

We grouped the genomic and transcriptomic features of the

tumors into several broad terms that summarize our results. For

example, the transcriptomic term "invasion and remodeling"

comprises the findings for the epithelial-to-mesenchymal transi-

tion (MsigDB Hallmarks), extracellular matrix organization

(Reactome database), and focal adhesion (KEGG database) path-

ways. The details of the mapping of pathways and genes to broad

terms employed in the model are included in Supplementary

Table S2. To build the corresponding summary figure, we con-

sidered that each of these broad termswas associated to the highly

cytotoxic immune scenario if the median of the immunopheno-

types (numbered from 1 to 6 from lowest to highest relative

abundance of cytotoxic cells) associated to all the features inte-

grating the term was greater than 4.5, to the poorly cytotoxic

immune scenario if themedianwas lower than2.5, and to themid

cytotoxic immune scenario otherwise.

Statistical analysis

Unless explicitly stated, the association between pairs of cate-

gorical variables was evaluated using the Fisher exact test. The

distributions of two sets of any continuous variable were com-

pared using the Mann–Whitney U test. The homogeneity of the

distribution of samples across different groups was computed via

an entropy score (described in Supplementary Methods). The

influence of the immunophenotype on survival was evaluated

through the Cox proportional hazard model. A linear regression

was used to assess whether the value of a variable (e.g., the

mutation burden) increases (or decreases) across immunophe-

notypes. For the Cox and lineal regression analyses, a model

selection procedure was conducted by considering several cluster

aggregation levels for the immune phenotypes, resulting in a

model with a three-level factor. The selection criteria were the

size and significanceof theparameter estimates and the likelihood

of the model (Akaike information criterion). P values were cor-

rected using the two-stage Benjamini–Hochberg FDR method as

appropriate and a corrected P value of 0.1 was considered statis-

tically significant unless otherwise stated.

Results

The immune infiltration pattern of tumors is heterogeneous

across and within cancer types

We defined the immune infiltration pattern of each tumor as

the relative abundance of an array of 16 cell populations of the

adaptive and innate immune system. These populations and

the gene signatures representing them were selected upon com-

parisonof several sources (SupplementaryMethods). In each case,

Tumor Features Associated to Immunophenotypes
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we chose the most specific cell population that produced biolog-

ically sound results (Supplementary Methods; Supplementary

Table S1). Also, after rigorous evaluation of the performance of

several tools, we employed a sample-level gene set enrichment

method (GSVA; ref. 16) to compute the relative abundance of

selected cell populations from the tumor RNA-seq bulk data

(Supplementary Methods).

We first computed the immune infiltration pattern, that is, the

GSVA enrichment scores of the 16 selected immune cell popula-

tions, across the 9,174 tumors (pan-cancer cohort; Table 1;

Supplementary Table S3A). This analysis revealed that the relative

abundance of many immune cell populations is correlated (Sup-

plementary Fig. S3), suggesting at least some degree of coinfiltra-

tion of the tumor (21). We then computed the healthy immune

infiltrationpatternof samples of 22matchinghealthy tissues from

6,544 donors using the samemethod (Supplementary Table S3B)

and observed that the immune infiltration pattern of tumors

clearly deviated from that of their matched healthy tissue

(Supplementary Fig. S4). Next, we grouped the GSVA scores of

the 9,174 tumors using a hierarchical clustering. We obtained 17

groups (Supplementary Fig. S5, see Materials and Methods),

which reflect distinct profiles of immune infiltration of solid

tumors (Supplementary Fig. S6). Tumors of some cancer types

(e.g., prostate adenocarcinomas and malignancies affecting the

immune privileged brain and eye; refs. 22, 23) appearedmostly in

a single cluster. However, tumors of most malignancies were

distributed across several clusters with varying degrees of disper-

sion. Furthermore, tumors of different cancer types grouped

together, suggesting that they possess similar immune infiltration

patterns. In summary, the tissue of origin and the cancer type of a

tumor do not suffice to determine its immune infiltration pattern.

The variability of this immune infiltrate could thus be largely

explained by specific features of individual tumors.

Identification of six immunophenotypes across cancer types

We reasoned that the cytotoxic component of the immune

infiltrate is the main responsible for the selective pressure applied

on tumors, which may result in the positive selection of specific

features that support the escape of immunosurveillance. There-

fore, we incorporated an additional gene signature representing

the meta-population of all cytotoxic cells (see Materials and

Methods). We then recomputed the immune infiltration pattern

of tumors within each cancer cohort separately, to get rid of the

confounder of cancer type-specific patterns. Intracohort GSVA

scoreswere then used to group tumors via a hierarchical clustering

(Fig. 1A; Supplementary Tables S3C–S3ZE) in which the GSVA

score of the cytotoxic cells received a 25% of the overall weight

(Supplementary Methods). As a result, we obtained six (see

Materials and Methods) cytotoxic-driven clusters (Fig. 1B and

C; Supplementary Fig. S7; Supplementary Table S4), which we

named immunophenotypes. The weight of the cytotoxic meta-

population in the clustering was selected to guarantee that immu-

nophenotypes had different median relative abundance of cyto-

toxic cells, but that also the abundance of the remaining 16 cell

populations contributed to the clustering (see Materials and

Methods). As a result, although the immunophenotypes from

one to six contained growing abundances of cytotoxic cells, the

tumors contained in each of them differ between 25% and 54%,

depending on the cancer cohort, with respect to clusters built

solely on thebasis of the abundance of cytotoxic cells (cyt-clusters;

Supplementary Fig. S8). Moreover, the abundance of most cell

populations grows monotonically along cyt-clusters, probably

due to the aforementioned coinfiltration effect. On the contrary,

the immunophenotypes group tumors whose abundance of

certain immune populations deviate from the monotonic trend

of the increase of cytotoxic cells (Supplementary Fig. S9). We

hypothesized that these patterns captured by the immunophe-

notypesmay relate to particular traits of the tumors that would be

missed by cyt-clusters.

We next explored whether the different immunophenotypes

associated with clinical and pathologic characteristics of the

tumors. In coherence with previous studies (8, 24), we

observed that the survival of patients tended to improve with

the increase of the cytotoxic level of the immunophenotypes

in several cancer types (Fig. 1D). An intriguing exception was

low-grade gliomas, the clinical outcome of which is worse in

the case of immunophenotypes of higher cytotoxicity. This

may be explained by the loss of integrity of the blood–brain

barrier, which facilitates immune infiltration but also corre-

lates with high tumor size and aggressiveness (Supplementary

Fig. S10; refs. 25, 26). Finally, we also observed that tumors of

more advanced pathologic stage at diagnosis significantly

associated to lower cytotoxicity of the immunophenotypes

in several cancer types (Fig. 1E). These observations suggest

that tumors preferentially progress in the presence of a poorly

cytotoxic immune infiltrate. In contrast, tumors with highly

cytotoxic immunophenotype would be partially kept in

check by the immune system and progress less frequently to

more advanced stages.

Table 1. Summary of the cohorts of tumors employed in the study

Cancer type

acronym Cancer type full name

Number of

patients

(RNA-seq)

ACC Adrenocortical carcinoma 78

BLCA Bladder urothelial carcinoma 404

BRCA Breast invasive carcinoma 924

BRCA-TN Breast triple-negative invasive carcinoma 158

CESC Cervical squamous cell carcinoma and

endocervical adenocarcinoma

301

CHOL Cholangiocarcinoma 36

COREAD Colorectal adenocarcinoma 370

ESCA Esophageal carcinoma 182

GBM Glioblastoma multiforme 163

HNSC Head and neck squamous cell carcinoma 515

KICH Kidney chromophobe 65

KIRC Kidney renal clear cell carcinoma 515

KIRP Kidney renal papillary cell carcinoma 285

LGG Brain lower grade glioma 514

LIHC Liver hepatocellular carcinoma 368

LUAD Lung adenocarcinoma 511

LUSC Lung squamous cell carcinoma 485

MESO Mesothelioma 87

OV Ovarian serous cystadenocarcinoma 300

PAAD Pancreatic adenocarcinoma 156

PCPG Pheochromocytoma and paraganglioma 178

PRAD Prostate adenocarcinoma 493

SARC Sarcoma 254

SKCM Skin cutaneous melanoma 434

STAD Stomach adenocarcinoma 405

THCA Thyroid carcinoma 499

UCEC Uterine corpus endometrial carcinoma 357

UCS Uterine carcinosarcoma 57

UVM Uveal melanoma 80

Total 9,174

Tamborero et al.
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Different tumor genomic events associated to

immunophenotypes

We reasoned that different selective pressures represented by

diverse immunophenotypes could result in the positive selection

of distinct tumoral mechanisms of immune evasion. Therefore,

we next aimed to identify the genomic features of tumors asso-

ciated with these immunophenotypes.

The mutational burden of tumors, treated as a continuous

variable, positively correlated with the level of cytotoxicity of

their immunophenotype only in few cancer types (Fig. 2A).When

we specifically evaluated hypermutated tumors and/or tumors

with mutational signatures reflective of DNA repair deficiencies

(Materials and Methods), we found them to be significantly

overrepresented among immunophenotypes of higher cytotoxic-

ity in four cancer types (Supplementary Figs. S11 and S12). The

presence of viral infection, another known immunogenic event,

inferred from the abundance of likely APOBEC-causedmutations

(27) or the expression of known viral genes (7, 13), positively

correlatedwith the level of cytotoxicity of the immunophenotypes

in six cancer types (Fig. 2B). Strikingly, hepatitis B–infected

hepatocellular carcinomas were significantly overrepresented

among poorly cytotoxic immunophenotypes. On the other hand,

Figure 1.

Tumor immunophenotypes. A, We defined the immune infiltration pattern of a tumor as the relative abundance of a set of immune cell populations

estimated via a GSVA. The tumors of each TCGA cohort were then grouped into six immunophenotypes with different cytotoxic content. B, Immunophenotypes

of the breast cancer cohort (n ¼ 924) excluding triple-negative breast tumors. Immunophenotypes are numbered in ascending order of their median relative

abundance of cytotoxic cells (from one to six and from dark blue to dark red in the bar below the heatmap). C, Proportion of tumors with each immunophenotype

across cohorts. Note that immunophenotypes represent tumors with distinct immune infiltrate profiles within each cohort regardless of the overall immune

infiltration differences betweenmalignancies. Cancer types aredisplayed in ascendingorder of their absolute leukocyte content (measured throughCD45 expression

of the bulk samples; left boxplot). D, Influence of the immunophenotypes on the overall survival. A log2 HR below zero (vertical dot line) indicates that patients with

tumors of higher cytotoxic immunophenotypes exhibit improved survival. P values were calculated using the Cox regression model. E, Association between

advanced (III/IV) pathologic stage of the tumors and their immunophenotypes at diagnosis. Events associatedwith higher cytotoxic immunophenotypes are shown

in red, and events associated with lower cytotoxic immunophenotypes are in blue (solid circles for Q values <0.1, empty circles for Q values <0.2, calculated

using linear regression; see Materials and Methods).

Tumor Features Associated to Immunophenotypes
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in agreement with a recent study (28), we observed that the

burden of gene CNAs of tumors negatively correlated with the

cytotoxicity of their immunophenotypes in a large fraction of

cancer types (Fig. 2C). Finally, we observed that tumors with a

more heterogeneous clonal composition were associated with

lowly cytotoxic immunophenotypes in a significant number of

solid cancers (Fig. 2D). This may be the result of tumor immune-

edition, in which the action of a highly cytotoxic immune infil-

trate results in the restriction of the clonal diversity of tumors.

Then, we focused on individual driver genomic alterations

identified in each of the tumors across the 29 cohorts (see

Materials and Methods) using the Cancer Genome Interpreter

Figure 2.

Genomic features of tumors that

significantly associate to

immunophenotypes. Association

between themutational (missense and

frameshift) burden (A), virus infection

(B), the CNAs burden (C), and the

clonal heterogeneity (D) of tumors and

their immunophenotypes. Events

associated to highly cytotoxic

immunophenotypes are highlighted in

red, and events associated with lowly

cytotoxic immunophenotypes are in

blue (solid circles for Q values <0.1,

empty circles for Q values <0.2,

calculated using linear regression; see

Materials and Methods). E, Genes with

driver alterations significantly

associated to immunophenotypes (see

Materials and Methods). Associations

with Q value <0.1 for individual cancer

cohorts or for the pan-cancer cohort

were considered significant.

Associations with uncorrected P value

<0.05 for specific cancer cohorts

that appeared significant in the

pan-cancer analysis are also shown

(HLA-A, -B, and -C mutations are

considered together). The color of the

circle represents the cancer

immunophenotype significantly

enriched by driver alterations of the

gene (see legend at the bottom), and

the size of the circle is proportional to

the magnitude of that enrichment. The

type of driver alterations (mutations,

amplifications, or deletions) is color-

coded at the left of the gene name.

Cancer types are sorted in decreasing

order of number of genes with

significant associations (at least one).
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(11). To address the statistical issues derived from the sparsity of

the data, we implemented a regularized logistic regression anal-

ysis adjusting for the number of mutations and CNAs of each

tumor (seeMaterials andMethods). The regressionwas computed

in each cohort separately and also grouping all tumors with

equivalent immunophenotypes from different cohorts, thus

increasing the statistical power to detect associations that are

coherent across malignancies (Fig. 2E; Supplementary Table

S5). Some driver alterations that were significantly overrepresent-

ed among tumors with highly cytotoxic immunophenotypes

(immunophenotypes 5 and 6) have already been described to

elicit resistance to immune destruction. These include mutations

of members of theHLA gene family and B2M (part of the antigen

presentation machinery), mutations of CASP8 (extrinsic apopto-

sis pathway), and amplifications of the PDL-1/2 genes (negative

immune checkpoints; refs. 3, 4, 7, 29). We also identified other

genomic alterations significantly overrepresented among these

tumors affecting epigenetic regulators (e.g., EP300, ARID1A,

ARID2, TRRAP, and CHD8), E3 ubiquitin ligases (e.g., UBR5,

CUL3, and TRIP12), and genes encoding cell–cell interaction

proteins (e.g.MYH9,MYH10, ANK3, ROCK12,CDH1, and FAT1).

These alterations constitute novel potential drivers of immune

resistance. On the other hand, genes involved in the regulation of

cell cycle, DNA replication, and telomere maintenance (e.g.,

ATRX, STAG2, AURKA, BAP1, FBXW7, SMARCB1, CDKN2A,

CDKN2B, CCND2, CCND3, and CDK6), and others part of the

WNT–b-catenin signaling pathway (e.g., CTNNB1, APC, AXIN1,

and SMAD4) contained driver alterations that were significantly

overrepresented among tumors with poorly cytotoxic immuno-

phenotypes (immunophenotypes 1 and 2). Of note, driver altera-

tions affecting one gene were in some cases associated with

different immunophenotypes in diverse cancer types. Mutations

of NRAS/HRAS, for example, significantly associated to highly

cytotoxic immunophenotypes in head and neck squamous car-

cinomas and paragangliomas but to poorly cytotoxic immuno-

phenotypes in thyroid carcinomas. NF1 mutations were signifi-

cantly associated with highly cytotoxic immunophenotypes in

ovarian serous cystadenocarcinomas, low-grade gliomas, and

glioblastomas, but with poorly cytotoxic immunophenotypes in

paragangliomas. TP53 alterations, which significantly associated

with various immunophenotypes across 15 malignancies, con-

stituted the most salient example of this phenomenon. Of note,

no consistent association between these driver alterations and

particular immune cell populations could explain these seem-

ingly contradictory observations across cancers (Supplementary

Table S6).

In summary, we identified genomic events strongly associated

with specific tumor immunophenotypes, which constitute a cat-

alog of putative genomic drivers of immune evasion. Some of

these associations varied depending on the cancer type, which

could be explained by context-dependent effects of a gene alter-

ation across malignancies.

Several transcriptional programs appear upregulated across

immunophenotypes

To complete the landscape of the mechanisms of immune

evasion, we identified cellular programs that appear significantly

upregulated in different immunophenotypes. To do this, we first

selected a comprehensive collection of cell pathways involved in

cancer development with minimal overlap of their gene sets (see

Materials and Methods; Supplementary Fig. S2; Supplementary

Table S1B). Then, we inferred their differential activation across

immunophenotypes from the collective upregulation of the genes

integrating them using GSEA (20). Because tumor samples are

admixtures of tumor cells and their microenvironment, we

applied the GSEA after adjusting the expression level of each gene

for the contribution of the immune content (see Materials and

Methods). This step prevented the overestimation of upregulation

of pathways with genes that are highly expressed in immune cells

(e.g., immune-related cytokines or immune checkpoints) or the

underestimation of those with genes with lower expression in

nontumor cells (e.g., cancer testis antigens; Fig. 3A; Supplemen-

tary Fig. S1).

We observed that tumors with different immunophenotypes

presented distinct sets of upregulated cell pathways (Fig. 3B andC;

Supplementary Table S7). The upregulation of immune-related

genes, such as theHLA I/II families, cancer germline antigens, and

proinflammatory cytokines and chemokines, appeared overrep-

resented among tumors with highly cytotoxic immunopheno-

types (5 and 6). These tumors were also enriched for the upre-

gulation of several pathways of the energy metabolism, with the

exception of glycolysis. Other pathways that appear upregulated

in this scenario, such as the JAK/STAT signaling or a set of

suppressive cytokines, may directly curb the pressure of a highly

cytotoxic infiltrate (2–4). As expected, the overexpression of the

PD-L1/PD-L2–negative immune checkpoints was also enriched

among tumors with these immunophenotypes in most cancer

types (Supplementary Fig. S13; refs. 4, 30).

The upregulation of pathways and processes related to tumor

invasion and the remodeling of neighboring tissues, response to

hypoxia, angiogenesis, glycolysis, focal adhesion, inflammation,

epithelial-to-mesenchymal transition, and extracellular matrix

remodeling, was overrepresented among tumors with immuno-

phenotypes of intermediate cytotoxicity (3 and 4). Of note,

paragangliomas and stomach adenocarcinomas did not follow

this pattern, with these processes upregulated preferentially with-

in highly cytotoxic immunophenotypes. As previously hypothe-

sized, the discovery of these associations, related to immunophe-

notypes with high relative abundance of immunosuppressive

cells, would have been missed if the tumors had been grouped

only on the basis of their cytotoxic cells infiltrate (Supplementary

Fig. S14).

Finally, lowly cytotoxic immunophenotypes (1 and 2) were

enriched for the upregulation of TGFb, Notch, and Hedgehog

signaling pathways, which have been described to actively

prevent immune infiltration (31–33). Furthermore, these

immunophenotypes were also strongly associated with the

overexpression of genes involved in the progression of the

cell cycle, mRNA and protein synthesis, response to DNA

damage, and telomere maintenance, all of them related to an

accelerated rate of cell growth and proliferation. On the

contrary, in head and neck and lung squamous carcinomas

and colorectal adenocarcinomas, these pathways were upre-

gulated primarily among tumors with highly or intermediate

cytotoxic immunophenotypes.

Three scenarios of tumor immune infiltration

Our results identified immunophenotypes that represent dis-

tinct scenarios of immune infiltration in solid tumors. On the

basis of these scenarios and the tumor features that we found

significantly associated to each of them, we propose a general

model that, despite variations between cancer types, describes the

Tumor Features Associated to Immunophenotypes
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Figure 3.

Immunophenotypes with enrichment for upregulated cell pathways across cohorts. A, Bar plot of the proportion of genes of each pathway whose

expression changed after adjustment for the immune content of the tumor sample (pale green: decrease, dark green: increase, gray: unchanged; see

Materials and Methods). B, Immunophenotypes enriched for selected upregulated cell pathways (Q value provided by GSEA <0.25; see Materials and Methods).

Pathways are grouped in the panel according to broad cell processes. The position of each circle represents the median immunophenotype (between 1 and 6)

in which the enrichment of the upregulated pathway was detected in each cancer type (black whiskers represent percentiles 25 and 75). The size of the

circles follows the number of cancer types in which these significant associations are observed, with the shade of gray proportional to the median GSEA

enrichment scores. C, Heatmap detailing the significance of the enrichment of the upregulation of each pathway for immunophenotypes across cohorts

(which are summarized in B). Cohorts are sorted in decreasing order of the overall number of pathways with significant enrichment.
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progression of tumors in these diverse microenvironments

(Fig. 4).

The first scenario describes the progression of tumors with

highly cytotoxic immunophenotypes (Fig. 4, top). This highly

cytotoxic infiltrate may be partially explained by the enrichment

of tumors for immunogenic events, such as the ectopic expression

of cancer testis antigens, virus infection, or a high mutation

burden frequently associated to alterations in genes involved in

the intrinsic DNA damage response. Other potentially immuno-

genic events associated to this scenario include the upregulation

of several oxygen free radical–producing metabolic pathways

(34), and the upregulation of the antigen presentationmachinery

and IFN signaling. The selective pressure of this highly cytotoxic

immunophenotype results in the recurrence, among these

tumors, of loss-of-function mutations in genes already identified

by previous publications, such as members of the HLA family,

B2M and CASP8 (3, 4, 7, 29), and the development of other, also

already described, mechanisms such as the upregulation of the

PD-L1/2 genes (partially explained by their genomic amplifica-

tion), inhibitory chemokines, and the JAK/STAT signaling path-

way (35). Other genomic alterations overrepresented among

these tumors, which had not been previously described, affect

a variety of chromatin-regulatory factors, E3 ubiquitin ligases, and

cell–cell interaction genes involved in several tumor processes

that could potentially drive resistance to the effective immune

infiltrate (36–41).

In the second scenario (Fig. 4, center), tumors with immuno-

phenotypes of intermediate cytotoxicity are enriched for the

upregulation of processes involved in the invasion and remodel-

ing of neighboring tissues, such as the epithelial-to-mesenchymal

transition, focal adhesion, and extracellular matrix remodeling.

Theupregulationof other hallmarks of tumor progression, such as

angiogenesis, inflammation, and hypoxia, are also overrepresent-

ed among them. These processes have been associated with the

Figure 4.

A model of tumor development under different scenarios of immune infiltration. The left panel comprises tumor features associated to three scenarios

of immune infiltration integrated, respectively, by the tumors of immunophenotypes 5–6 (high cytotoxicity; top), immunophenotypes 3–4 (intermediate

cytotoxicity with large contribution of the immunosuppressive component; center), and immunophenotypes 1–2 (poor cytotoxicity; bottom). Each row of the

figure groups several genomic or transcriptomic events (labeled as green squares and purple triangles, respectively) into broad terms (following the mapping in

Supplementary Table S2). Circlesmark the cancer types inwhich events includedwithin the term are associated to one of these three scenarios of immune infiltration

(see Materials and Methods). The figure only displays the scenario in which associations appear more frequent across cancer types, and thus, results in

malignancies with different associations are not shown. The cohorts are sorted in descending order of total significant associations. Cohorts marked with an asterisk

lack association with cell pathways due to absence of matching healthy tissue data. SHH, Hedgehog.
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infiltration of suppressive immune cell populations (42–45),

such as macrophages that appear with abnormally high relative

abundance within the immune infiltration pattern of these

tumors (Supplementary Fig. S9). Of note, the high correlation

between macrophage abundance and the expression of CD163

expression indicates that this metric predominantly captures the

relative abundance of M2-polarized macrophages (Supplemen-

taryMaterial). Tumor cells that progress in this scenariomay thus,

at least partly, keep the immunosurveillance in check through

mechanisms that foster the recruitment of an immunosuppressive

infiltrate. The upregulation of glycolysis, also overrepresented

among these tumors, may favor this suppressive infiltrate via the

depletion of glucose in the microenvironment. Indeed, recent

studies have shown that the differentiation of immune cells into

cytotoxic populations relies on the availability of glucose rather

than other carbon sources (46, 47).

The third scenario describes the progression of tumors with

poorly cytotoxic immunophenotypes (Fig. 4, bottom), which

present high aneuploidy. These tumors also tend to overexpress,

and/or present genomic alterations of, genes involved in cell

processes that are key to cell growth and proliferation, such as

the regulation of cell cycle, cell division, telomere maintenance,

and mRNA and protein synthesis. Some of these molecular traits

may contribute to the disruption of the cancer-immunity cycle,

and thus drive immune evasion, whereas others may constitute

opportunistic events fostered by the lowly cytotoxic immune

infiltrate (48, 49). Examples of the former are the mutations

of the IDH1 gene, in brain tumors, and of genes of the

WNT–b-catenin pathway, as well as the upregulation of the TGFb

and Hedgehog signaling pathways, all of which have been

reported to reduce immune cell infiltration in certain conditions

(31, 32, 35, 50, 51). These tumors also exhibit worse prognosis

across several cancer types, which is partially explained by their

further advanced pathologic stage. The lower antitumor pressure

exerted by these immunophenotypes also allows the growth of

more tumor clones, resulting in more heterogeneous malignan-

cies with greater metastatic potential (52).

Discussion

Here, we describe a comprehensive landscape of tumor

immune infiltration pattern across 29 solid cancers and identify

tumor features that are significantly associated with distinct

immunophenotypes. Although the estimation of the immune

infiltration pattern based on the expression of the bulk sample

presents several limitations, the size of the cohorts included in the

study provides the power to detect these associations. New

methods that address some of these limitations will contribute

to refine these analyses (21). Our study presents certain metho-

dologic particularities that set it apart from previous works. First,

to our knowledge, we have evaluated themost comprehensive, to

date, catalog of genomic and transcriptomic characteristics of

tumors that may be positively selected under the pressure applied

by the immune system. Furthermore, in the case of genomic

events, we have focused specifically on those most likely under

positive selection, that is, likely drivers according to the Cancer

Genome Interpreter (11). Second, we have adjusted the values of

gene expression for the contribution of the immune content in the

bulk sample, thus enhancing the detection of the upregulation of

tumor-specific processes. Third, we have represented the immune

infiltration as an array of immune populations, which revealed

specific patterns associated to tumor characteristics that would

have been missed otherwise. Finally, because we conducted a

pan-cancer analysis, our results provide a landscape of the dis-

tribution of diverse mechanisms of escape from immunosurveil-

lance across a comprehensive set of solid malignancies.

Certain genomic and transcriptomic features of tumors that we

have found associated to particular immunophenotypes have

been reported by previous studies with approaches similar to

ours (6–8, 10). However, as a result of the methodologic parti-

cularities of our study (described above), we have also been able

to identify novel features of the tumors that are significantly

associated to particular scenarios of immune infiltration. Some

of these features correspond to alterations of genes that constitute

new candidates to drivers of immune resistance. Both confirmed

and novel findings are summarized in the final section of Results.

Furthermore, we have extended to the pan-cancer realm some

drivers of immune evasion that had previously been identified in

particular cancer types (35). Among these are the overexpression

of TGFb, as well as cell proliferation-related processes. To our

knowledge, this is thefirst study that, by virtue of its completeness,

is able to delineate three broad pan-cancer scenarios of immune

infiltration and the mechanisms that allow tumors to evolve in

each of them.

It is not clear from our results to what point the three scenarios

of immune infiltration delineated in the final section of Results

represent tumorswith separate evolutionary pathways or different

stages of their progression. In the latter case, tumors with highly

cytotoxic immunophenotype would be at their early stages, and

equipped with mechanisms to curb a robust immune pressure.

They would then progressively evolve to invade neighboring

tissues while their immunophenotype shifts toward a more

immunosuppressive infiltration pattern. Tumors with a poor

cytotoxic infiltrate would represent advanced stages of a malig-

nancy in full progression and virtually unchecked by the host's

immune system.

The most immediate result of our analysis is the identification

of tumor features that are positively selected due to their inter-

action with the immune infiltrate. In this regard, we have

described a general approach to classify tumors on the basis of

their immunophenotype. More long-term outcomes of this work

include understanding how these somatic genomic events and

transcriptomic programs may actively shape the immune infil-

trate. This knowledge shall have important implications for the

design of novel therapeutic approaches (36). Currently, the most

widely exploited immunotherapies involve immune checkpoint

inhibitors. We explored transcriptomics data of small cohorts of

patientswithmetastaticmelanomas that received anti-CTLA4 and

anti–PD-1 therapies (42 and 28 patients, respectively; refs. 14,

15). Patients with tumors with poorly cytotoxic immunopheno-

types tend to respondworse to the anti-CTLA4 treatment,whereas

patients with tumors that overexpress genes involved in the

WNT–b-catenin, extracellular matrix organization, and angiogen-

esis pathways respond worse to anti–PD-1 (see Supplementary

Note and Supplementary Fig. S15). Further analysis of larger

cohorts of patients treated with immunotherapies will continue

to clarify which characteristics of the tumors and/or their micro-

environment are better predictors of their response. We also

envision that the inclusion of drugs able to counteract mechan-

isms of immune-resistance or immunosuppression (such as the

ones identified in our study) in clinical trials will reveal their

potential for synergies with existing immunotherapies. Some of
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our findings, such as those supporting the use of drugs targeting

the cell cycle to favor a transformation of the immune infiltrate,

and TGFb inhibitors or epigenetic modulators to improve the

response to negative immune checkpoint inhibitors (33, 37, 48),

constitute promising examples to explore in this direction.

In summary, this study provides a comprehensive landscape

of the characteristics of solid tumors that may influence (or be

influenced by) the characteristics of their immune infiltrate. These

results may help interpret the response of solid tumors to immu-

notherapies and guide the development of novel drug combina-

tion strategies.
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