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Abstract

We introduce a fourth order CR invariant operator on pluriharmonic functions on a

three-dimensional CR manifold, generalizing to the abstract setting the operator discovered

by Branson, Fontana and Morpurgo. For a distinguished class of contact forms, all of which

have vanishing Hirachi-Q curvature, these operators determine a new scalar invariant with

properties analogous to the usual Q-curvature. We discuss how these are similar to the

(conformal) Paneitz operator and Q-curvature of a four-manifold, and describe its relation

to some problems for three-dimensional CR manifolds.

1. Introduction

It is well-known that there is a deep analogy between the study of

three-dimensional CR manifolds and of four-dimensional conformal mani-

folds. Two important ingredients in the study of the latter are the Paneitz

operator P4 and the Q-curvature Q4. Given a metric g, the Paneitz oper-

ator is a formally self-adjoint fourth-order differential operator of the form

∆2 plus lower-order terms, while the Q-curvature is a scalar invariant of

the form ∆R plus lower-order terms, where R is the scalar curvature of g

and “order” is measured according to the number of derivatives taken of g.

The pair (P4, Q4) generalizes to four-dimensions many important properties
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of the pair (−∆,K) of the Laplacian and the Gauss curvature of a two-

manifold. For example, if (M4, g) is a Riemannian manifold and ĝ = e2σg is

another choice of metric, then

e4σP̂4(f) = P4(f) (1.1)

e4σQ̂4 = Q4 + P4(σ) (1.2)

for all f ∈ C∞(M). Since also P4(1) = 0, the transformation formula (1.2)

implies that on a compact conformal manifold (M4, [g]), the integral of the

Q-curvature is a conformal invariant; indeed, the Gauss–Bonnet–Chern for-

mula states that this integral is a linear combination of the Euler character-

istic of M4 and the integral of a pointwise conformal invariant, namely the

norm of the Weyl tensor. The pair (P4, Q4) also appears in the linearization

of the Moser–Trudinger inequality. Denoting by (S4, g0) the standard four-

sphere with g0 a metric of constant sectional curvature one, it was proven by

Beckner [1], and later by Chang and the second author [9] using a different

technique, that�
S4

uP4u+ 2

�
S4

Q4u−
1

2

(�
S4

Q4

)
log

( 
S4

e4u
)

≥ 0 (1.3)

for all u ∈ C∞(S4), and that equality holds if and only if e2ug0 is an Einstein

metric on (S4, g0).

A natural question is whether there exist analogues of P4 and Q4 defined

for a three-dimensional pseudohermitian manifold (M3, J, θ). In a certain

sense this is already known; the compatibility operator studied by Graham

and Lee [18] is a fourth-order CR invariant operator with leading order term

∆2
b +T 2 and Hirachi [20] has identified a scalar invariant Q4 which is related

to P4 through a change of contact form in a manner analogous to (1.2).

However, while the total Q-curvature of a compact three-dimensional CR

manifold is indeed a CR invariant, it is always equal to zero. Moreover, the

Q-curvature of the standard CR three-sphere vanishes identically; indeed,

this is true for the boundary of any strictly pseudoconvex domain [14], as is

explained in Section 4. In particular, while (1.3) is true on the CR three-

sphere, it is trivial, as it only states that the Paneitz operator is nonnegative.

Using spectral methods, Branson, Fontana and Morpurgo [3] have re-

cently identified a new operator P ′
4 on the standard CR three-sphere (S3, J, θ0)
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such that P ′
4 is of the form ∆2

b plus lower-order terms, P ′
4 is invariant un-

der the action of the CR automorphism group of S3, and P ′
4 appears in an

analogue of (1.3) in which the exponential term is present. There is, how-

ever, a catch: the operator P ′
4 acts only on the space P of CR pluriharmonic

functions on S3, namely those functions which are the boundary values of

pluriharmonic functions in the ball {(z, w) : |z|2+ |w|2 < 1} ⊂ C
2. The space

of CR pluriharmonic functions on S3 is itself invariant under the action of

the CR automorphism group, so it makes sense to discuss the invariance of

P ′
4. Using this operator, Branson, Fontana and Morpurgo [3] showed that�

S3

uP ′
4u+ 2

�
S3

Q′
4u−

(�
S3

Q′
4

)
log

( 
S3

e2u
)

≥ 0 (1.4)

for all u ∈ P, where Q′
4 = 1 and equality holds in (1.4) if and only if euθ0 is

a torsion-free contact form with constant Webster scalar curvature.

Formally, the operator P ′
4 is constructed using Branson’s principle of

analytic continuation in the dimension [2]. More precisely, there exists in

general dimensions a fourth-order CR invariant operator with leading order

term ∆2
b+T 2, which we shall also refer to as the Paneitz operator. On the CR

spheres, this is an intertwining operator, and techniques from representation

theory allow one to quickly compute the spectrum of this operator. By

carrying out this program, one observes that the Paneitz operator on the

standard CR three-sphere kills CR pluriharmonic functions, and moreover,

the Paneitz operator P4,n on the standard CR (2n + 1)-sphere acts on CR

pluriharmonic functions as n−1
2 times a well-defined operator, called P ′

4. One

observation in [3] is that this operator is in fact a fourth-order differential

operator acting on CR pluriharmonic functions which is, in a suitable sense,

CR invariant.

The purpose of this article is to show that there is a meaningful definition

of the “P ′-operator” on general three-dimensional CR manifolds enjoying

the same algebraic properties as the operator P ′
4 defined in [3], and also to

investigate the possibility of defining a scalar invariant Q′
4 which is related to

P ′
4 in a manner analogous to the way in which the Q-curvature is related to

the Paneitz operator. It turns out that one cannot define Q′
4 in a meaningful

way for a general choice of contact form on a CR three-manifold, though one

can for a distinguished class of contact forms, namely the so-called pseudo-

Einstein contact forms. These are precisely those contact forms which are
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locally volume-normalized with respect to a closed section of the canonical

bundle, which is a meaningful consideration in dimension three (cf. [25] and

Section 3). Having made these definitions, we will also begin to investigate

the geometric meaning of these invariants.

To describe our results, let us begin by discussing in more detail the

ideas which give rise to the definitions of P ′
4 and Q′

4. To define P ′
4, we follow

the same strategy of Branson, Fontana, and Morpurgo [3]. First, Gover and

Graham [16] have shown that on a general CR manifold (M2n+1, J), one can

associate to each choice of contact form θ a formally-self adjoint real fourth-

order operator P4,n which has leading order term ∆2
b + T 2, and that this

operator is CR covariant. On three-dimensional CR manifolds, this reduces

to the well-known operator

P4 := P4,1 = ∆2
b + T 2 − 4Im∇αAαβ∇

β

which, through the work of Graham and Lee [18] and Hirachi [20], is known

to serve as a good analogue of the Paneitz operator of a four-dimensional

conformal manifold. As pointed out by Graham and Lee [18], the kernel of

P4 (as an operator on a three-dimensional CR manifold) contains the space

P of CR pluriharmonic functions, and thus one can ask whether the operator

P ′
4 := lim

n→1

2

n− 1
P4,n|P

is well-defined. As we verify in Section 4, this is the case. It then follows

from standard arguments (cf. [5]) that if θ̂ = eσθ is any other choice of

contact form, then the corresponding operator P̂ ′
4 is related to P ′

4 by

e2σP̂ ′
4(f) = P ′

4(f) + P4(σf) (1.5)

for any f ∈ P. Thus the relation between P ′
4 and P4 is analogous to the rela-

tion (1.2) between the Q-curvature and the Paneitz operator; more precisely,

the P ′-operator can be regarded as a Q-curvature operator in the sense of

Branson and Gover [5]. Moreover, since the Paneitz operator is self-adjoint

and kills pluriharmonic functions, the transformation formula (1.5) implies

that

e2σP̂ ′
4(f) = P ′

4(f)modP⊥
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for any f ∈ P, returning P ′
4 to the status of a Paneitz-type operator. This

is the sense in which the P ′-operator is CR invariant, and is the way that it

is studied in (1.4).

From its construction, one easily sees that P ′
4(1) is exactly Hirachi’s

Q-curvature. Thus, unlike the Paneitz operator, the P ′-operator does not

necessarily kill constants. However, there is a large and natural class of

contact forms for which the P ′-operator does kill constants, namely the

pseudo-Einstein contact forms; see Section 3 for their definition. It turns

out that two pseudo-Einstein contact forms θ̂ and θ must be related by a

CR pluriharmonic function, log θ̂/θ ∈ P (cf. [25]). If (M3, J) is the boundary

of a domain in C
2, such contact forms exist in profusion, arising as solutions

to Fefferman’s Monge-Ampère equation (cf. [15, 14]). In this setting, it is

natural to ask whether there is a scalar invariant Q′
4 such that P ′

4(1) =
n−1
2 Q′

4. This is true; we will show that if (M3, J, θ) is a pseudo-Einstein

manifold, then the scalar invariant

Q′
4 := lim

n→1

4

(n − 1)2
P4,n(1)

is well-defined. As a consequence, if θ̂ = eσθ is another pseudo-Einstein

contact form (in particular, σ ∈ P), then

e2σQ̂′
4 = Q′

4 + P ′
4(σ) +

1

2
P4(σ

2). (1.6)

Taking the point of view that P ′
4 is a Paneitz-type operator, we may also

write

e2σQ̂′
4 = Q′

4 + P ′
4(σ)modP⊥.

The upshot is that, on the standard CR three-sphere, Q′
4 = 1, so that

this indeed recovers the interpretation of the Beckner–Onofri-type inequal-

ity (1.4) of Branson–Fontana–Morpurgo [3] as an estimate involving some

sort of Paneitz-type operator and Q-type curvature. Additionally, we also

see from (1.6) that the integral of Q′
4 is a CR invariant; more precisely, if

(M3, J) is a compact CR three-manifold and θ, θ̂ are two pseudo-Einstein

contact forms, then �
M

Q̂′
4 θ̂ ∧ dθ̂ =

�
M

Q′
4 θ ∧ dθ.



290 JEFFREY S. CASE AND PAUL YANG [September

In conformal geometry, the total Q-curvature plays an important role in

controlling the topology of the underlying manifold. For instance, the total

Q-curvature can be used to prove sphere theorems (e.g. [19, Theorem B]

and [8, Theorem A]). We will prove the following CR analogue of Gursky’s

theorem [19, Theorem B].

Theorem 1.1. Let (M3, J, θ) be a compact three-dimensional pseudo-Einstein

manifold with nonnegative Paneitz operator and nonnegative CR Yamabe

constant. Then �
M

Q′
4 θ ∧ dθ ≤

�
S3

Q′
0 θ0 ∧ dθ0,

with equality if and only if (M3, J) is CR equivalent to the standard CR three

sphere.

Here, the CR Yamabe constant of a CR manifold (M3, J) is the infimum

of the total Webster scalar curvature over all contact forms θ such that�
θ ∧ dθ = 1 (cf. [22]). The proof of Theorem 1.1 relies upon the existence

of a CR Yamabe contact form — that is, the existence of a smooth unit-

volume contact form with constant Webster scalar curvature equal to the

CR Yamabe constant [11, 22]. In particular, it relies on the CR Positive

Mass Theorem [11]. One complication which does not arise in the conformal

case [19] is the possibility that the CR Yamabe contact form may not be

pseudo-Einstein. We overcome this difficulty by computing how the local

formula (4.6) for Q′
4 transforms with a general change of contact form; i.e.

without imposing the pseudo-Einstein assumption. For details, see Section 6.

In conformal geometry, the total Q-curvature also arises when consid-

ering the Euler characteristic of the underlying manifold. Burns and Ep-

stein [4] have shown that there is a biholomorphic invariant, now known as

the Burns–Epstein invariant, of the boundary of a strictly pseudoconvex do-

main which is related to the Euler characteristic of the domain in a similar

way. It turns out that the Burns–Epstein invariant is a constant multiple

of the total Q′-curvature, and thus there is a nice relationship between the

total Q′-curvature and the Euler characteristic.

Theorem 1.2. Let (M3, J) be a compact CR manifold which admits a

pseudo-Einstein contact form θ, and denote by µ(M) the Burns–Epstein
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invariant of (M3, J). Then

µ(M) = −16π2

�
M

Q′ θ ∧ dθ.

In particular, if (M3, J) is the boundary of a strictly pseudoconvex domain

X, then �
X

(
c2 −

1

3
c21

)
= χ(X) −

1

16π2

�
M

Q′ θ ∧ dθ,

where c1 and c2 are the first and second Chern forms of the Kähler–Einstein

metric in X obtained by solving Fefferman’s equation and χ(X) is the Euler

characteristic of X.

While we were discussing a preliminary version of this work at Banff

in Summer 2012, it was suggested to us by Kengo Hirachi that a version

of Theorem 1.2 should be true. It was then pointed out to us by Jih-Hsin

Cheng that Theorem 1.2 can be proved by using the formula given by Burns

and Epstein [4] (see also [12]) for their invariant. This fact has since been

independently verified by Hirachi [21], to which we refer the reader for the

details of the verification of Theorem 1.2.

Finally, we point out that much of the background described above

generalizes to higher dimensions. On any even-dimensional Riemannian

manifold (M2n, g) there exists a pair (P2n, Q2n) of a conformally-invariant

differential operator P2n of the form (−∆)n plus lower order terms, the so-

called GJMS operators [17], and scalar invariants Q2n of the form (−∆)n−1R

plus lower-order terms, the so-called (critical) Q-curvatures [2], which sat-

isfy transformation rules analogous to (1.1) and (1.2). On the standard 2n-

sphere, Beckner [1] and Chang–Yang [9] showed that the analogue of (1.3)

still holds, including the characterization of equality. Likewise, Branson,

Fontana and Morpurgo [3] defined operators P ′
2n+2 on the standard CR

(2n+1)-sphere which are CR invariant operators of order 2n+2 and for which

an analogue of (1.4) holds, including the characterization of equality, where

again Q′
2n+2 are only identified as explicit constants. After a preliminary

version of this article was presented at Banff in Summer 2012, Hirachi [21]

showed how to use the ambient calculus to extend the P ′-curvature and

Q′-curvature to higher dimensions in such a way that the transformation

formulae (1.5) and (1.6) hold. In a forthcoming work with Rod Gover, we

produce tractor formulae for the P ′-operator and the Q′-curvature. This
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allows us to produce for pseudo-Einstein manifolds with vanishing torsion

a product formula for the P ′-operator and an explicit formula for the Q′-

curvature, giving a geometric derivation of the formulae given by Branson,

Fontana and Morpurgo [3].

This article is organized as follows. In Section 2, we recall some basic

definitions and facts in CR geometry, and in particular recall the depth of the

analogy between aspects of conformal and CR geometry. In Section 3, we in-

troduce the notion of a pseudo-Einstein contact form on a three-dimensional

CR manifold, and explore some basic properties of such forms. In Sec-

tion 4, we give a general formula for the Paneitz operator on a CR manifold

(M2n+1, J, θ). We then use this formula to give the definitions of the P ′-

operator and the Q′-curvature, and establish some of their basic properties.

In Section 5, we check by direct computation that the P ′-operator satisfies

the correct transformation law. Indeed, this computation shows that P ′ no

longer satisfies this rule if it is considered on a space strictly larger than

the space of CR pluriharmonic functions. In Section 6, we check by direct

computation that the Q′-curvature satisfies the correct transformation law,

and use this computation to prove Theorem 1.1. In the appendices, we will

derive in two different ways the local formula for the CR Paneitz operator

in general dimension. First, Appendix A gives the derivation using the CR

tractor calculus [16]. Second, Appendix B gives the derivation using Lee’s

construction [24] of the Fefferman bundle.

2. CR Geometry

Throughout this article, we will follow the conventions used by Gover

and Graham [16] for describing CR and pseudohermitian invariants and per-

forming local computations using a choice of contact form. These conven-

tions are identical to the the conventions used by Lee in his work on pseudo-

Einstein structures [25], except that we will sometimes describe invariants as

densities rather than functions. This has the effect that exponential factors

will generally not appear in our formulae for how these invariants transform

under a change of contact form. Both for the convenience of the reader and

to hopefully avoid any confusion caused by the many different notations used

in the literature, we use this section to make precise these conventions as

necessary for this article.
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2.1. CR and pseudohermitian manifolds

A CR manifold is a pair (M2n+1, J) of a smooth oriented (real) (2n+1)-

dimensional manifold together with a formally integrable complex structure

J : H → H on a maximally nonintegrable codimension one subbundle H ⊂

TM . In particular, the bundle E = H⊥ ⊂ T ∗M is orientable and any

nonvanishing section θ of E is a contact form; i.e. θ ∧ (dθ)n is nonvanishing.

We will assume further that (M2n+1, J) is strictly pseudoconvex, meaning

that the symmetric tensor dθ(·, J ·) on H∗ ⊗H∗ is positive definite; since E

is one-dimensional, this is independent of the choice of contact form θ.

Given a CR manifold (M2n+1, J), we can define the subbundle T 1,0 of

the complexified tangent bundle TCM as the +i-eigenspace of J , and T 0,1 as

its conjugate. We likewise denote by Λ1,0 the space of (1, 0)-forms — that is,

the subbundle of T ∗
C
M which annihilates T 0,1 — and by Λ0,1 its conjugate.

The canonical bundle K is the complex line-bundle K = Λn+1
(
Λ1,0

)
.

A pseudohermitian manifold is a triple (M2n+1, J, θ) of a CR manifold

(M2n+1, J) together with a choice of contact form θ. The assumption that

dθ(·, J ·) is positive definite implies that the Levi form Lθ(U∧V̄ ) = −2idθ(U∧

V̄ ) defined on T 1,0 is a positive-definite Hermitian form. Since another

choice of contact form θ̂ is equivalent to a choice of (real-valued) function

σ ∈ C∞(M) such that θ̂ = eσθ, and the Levi forms of θ̂ and θ are related by

L
θ̂
= eσLθ, we see that the analogy between CR geometry and conformal

geometry begins through the similarity of choosing a contact form or a metric

in a conformal class (cf. [22]).

Given a pseudohermitian manifold (M2n+1, J, θ), the Reeb vector field T

is the unique vector field such that θ(T ) = 1 and Tydθ = 0. An admissible

coframe is a set of (1, 0)-forms {θα}nα=1 whose restriction to T 1,0 forms a

basis for
(
T 1,0

)∗
and such that θα(T ) = 0 for all α. Denote by θᾱ = θα the

conjugate of θα. Then dθ = ihαβ̄θ
α∧θβ̄ for some positive definite Hermitian

matrix hαβ̄ . Denote by {T,Zα, Zᾱ} the frame for TCM dual to {θ, θα, θᾱ},

so that the Levi form is

Lθ

(
UαZα, V

ᾱZᾱ

)
= hαβ̄U

αV β̄.

Tanaka [26] and Webster [27] have defined a canonical connection on

a pseudohermitian manifold (M2n+1, J, θ) as follows: Given an admissible
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coframe {θα}, define the connection forms ωα
β and the torsion form τα =

Aαβθ
β by the relations

dθβ = θα ∧ ωα
β + θ ∧ τβ,

ωαβ̄ + ωβ̄α = dhαβ̄ ,

Aαβ = Aβα,

where we use the metric hαβ̄ to raise and lower indices; e.g. ωαβ̄ = hγβ̄ωα
γ . In

particular, the connection forms are pure imaginary. The connection forms

define the pseudohermitian connection on T 1,0 by ∇Zα = ωα
β ⊗ Zβ, which

is the unique connection preserving T 1,0, T , and the Levi form.

The curvature form Πα
β := dωα

β − ωα
γ ∧ ωγ

β can be written

Πα
β = Rα

β
γδ̄θ

γ ∧ θδ̄ mod θ,

defining the curvature of M . The pseudohermitian Ricci tensor is the con-

traction Rαβ̄ := Rγ
γ
αβ̄ and the pseudohermitian scalar curvature is the

contraction R := Rα
α. As shown by Webster [27], the contraction Πγ

γ is

given by

Πγ
γ = dωγ

γ = Rαβ̄θ
α ∧ θβ̄ +∇βAαβθ

α ∧ θ −∇β̄Aᾱβ̄θ
ᾱ ∧ θ. (2.1)

For computational and notational efficiency, it will usually be more use-

ful to work with the pseudohermitian Schouten tensor

Pαβ̄ :=
1

n+ 2

(
Rαβ̄ −

1

2(n+ 1)
Rhαβ̄

)

and its trace P := Pα
α = R

2(n+1) . The following higher order derivatives

Tα =
1

n+ 2

(
∇αP − i∇βAαβ

)

S = −
1

n

(
∇αTα +∇ᾱTᾱ + Pαβ̄P

αβ̄ −AαβA
αβ
)

will also appear frequently (cf. [16, 24]).

In performing computations, we will usually use abstract index notation,

so for example τα will denote a (1, 0)-form and ∇α∇βf will denote the (2, 0)-

part of the Hessian of a function. Of course, given an admissible coframe,
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these expressions give the components of the equivalent tensor. The following

commutator formulae established by Lee [25, Lemma 2.3] will be useful.

Lemma 2.3. Let (M2n+1, J, θ) be a pseudohermitian manifold. Then

∇α∇βf −∇β∇αf = 0, ∇β̄∇αf −∇α∇β̄f = ihαβ̄∇0f,

∇α∇0f −∇0∇αf = Aαγ∇
γf, ∇β∇0τα −∇0∇

βτα = Aγβ∇γτα + τγ∇αA
γβ,

where ∇0 denotes the derivative in the direction T .

The following consequences of the Bianchi identities established in [25,

Lemma 2.2] will also be useful.

Lemma 2.4. Let (M2n+1, J, θ) be a pseudohermitian manifold. Then

∇αPαβ̄ = ∇β̄P + (n− 1)Tβ̄ (2.2)

∇0R = ∇α∇βAαβ +∇α∇βA
αβ . (2.3)

In particular, combining the results of Lemma 2.3 and Lemma 2.4 yields

∆bR− 2nIm∇α∇βAαβ = −2∇α
(
∇αR− in∇βAαβ

)
. (2.4)

An important operator in the study of pseudohermitian manifolds is the

sublaplacian

∆b := − (∇α∇α +∇α∇
α) .

Defining the subgradient ∇bu as the projection of du onto H∗ ⊗ C — that

is, ∇bf = ∇αf +∇ᾱf — it is easy to show that�
M

u∆bv θ ∧ dθn =

�
M

〈∇bu,∇bv〉θ ∧ dθn

for any u, v ∈ C∞(M), at least one of which is compactly supported, and

where 〈·, ·〉 denotes the Levi form.

One important consequence of Lemma 2.3 is that the operator C has

the following two equivalent forms:

Cf := ∆2
bf + n2∇2

0f − 2in∇β

(
Aαβ∇αf

)
+ 2in∇β (Aαβ∇

αf)

= 4∇α
(
∇α∇β∇

βf + inAαβ∇
βf
)
. (2.5)
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In dimension n = 1, the operator C is the compatibility operator found by

Graham and Lee [18]. Hirachi [20] later observed that in this dimension

C is a CR covariant operator, in the sense that it satisfies a particularly

simple transformation formula under a change of contact form. Thus, in

this dimension C is the CR Paneitz operator P4; for further discussion, see

Section 4.

2.2. CR pluriharmonic functions

Given a CR manifold (M2n+1, J), a CR pluriharmonic function is a

function u ∈ C∞(M) which is locally the real part of a CR function v ∈

C∞(M ;C); i.e. u = Re (v) for v satisfying ∂v := ∇ᾱv = 0. We will denote by

P the space of pluriharmonic functions on M , which is usually an infinite-

dimensional vector space. When additionally a choice of contact form θ

is given, Lee [25] proved the following alternative characterization of CR

pluriharmonic functions which does not require solving ∂v = 0.

Proposition 2.5. Let (M2n+1, J, θ) be a pseudohermitian manifold. A func-

tion u ∈ C∞(M) is CR pluriharmonic if and only if

Bαβ̄u := ∇β̄∇αu−
1

n
∇γ∇γuhαβ̄ = 0, if n ≥ 2

Pαu := ∇α∇β∇
βu+ inAαβ∇

βu = 0, if n = 1.

Using Lemma 2.3, it is straightforward to check that (cf. [18])

∇β̄
(
Bαβ̄u

)
=

n− 1

n
Pαu. (2.6)

In particular, we see that the vanishing of Bαβ̄u implies the vanishing of Pαu

when n > 1. Moreover, the condition Bαβ̄u = 0 is vacuous when n = 1, and

by (2.6), we can consider the condition Pαu = 0 from Proposition 2.5 as the

“residue” of the condition Bαβ̄u = 0 (cf. Section 3 and Section 4).

Note also that, using the second expression in (2.5), we have that C =

4∇αPα. In particular, it follows that P ⊂ kerP4 for three-dimensional CR

manifolds (M3, J). It is easy to see that this is an equality when (M3, J)
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admits a torsion-free contact form (cf. [18]), but a good characterization of

when equality holds is not yet known.

2.3. CR density bundles

One generally wants to study CR geometry using CR invariants; i.e.

using invariants of a CR manifold (M2n+1, J). However, it is frequently

easier to do geometry by making a choice of contact form θ so as to make

use of the Levi form and the associated pseudohermitian connection. If

one takes this point of view, it then becomes important to know how the

pseudohermitian connection and the pseudohermitian curvatures transform

under a change of contact form, and also to have a convenient way to describe

objects which transform in a simple way with a change of contact form. This

goal is met using CR density bundles.

Given a CR manifold (M2n+1, J), choose a (n+2)-nd root of the canon-

ical bundle K and denote it by E(1, 0); this can always be done locally, and

since we are entirely concerned with local invariants, this poses no problems.

Given any w,w′ ∈ R with w − w′ ∈ Z, the (w,w′)-density bundle E(w,w′)

is the complex line bundle

E(w,w′) = E(1, 0)⊗w ⊗ E(1, 0)
⊗w′

.

For our purposes, the important property of E(w,w′) is that a choice of

contact form θ induces an isomorphism between the space E(w,w′) of smooth

sections of E(w,w′) and C∞(M ;C),

E(w,w′) ∋ u ∼= uθ ∈ C∞(M ;C),

with the property that if θ̂ = eσθ is another choice of contact form, then u
θ̂

is related to uθ by

u
θ̂
= e

w

2
σe

w
′

2
σ̄uθ; (2.7)

for details, see [16]. We will also consider density-valued tensor bundles; for

example, we will denote by Eα(w,w′) and Eᾱ(w,w′) the tensor products

T 1,0 ⊗ E(w,w′) and T 0,1 ⊗ E(w,w′), respectively, and by Eα(w,w′) and

E ᾱ(w,w′) their respective spaces of smooth sections. In this way, we may

regard the Levi form as the density hαβ̄ ∈ Eαβ̄(1, 1), thereby suppressing the
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exponential factor which normally appears when writing how it transforms

under a change of contact structure.

Since we will be primarily interested in real-valued functions and ten-

sors, our primary interest will be in the (w,w)-density bundles and tensor

products thereof. In particular, if u ∈ E(w,w) is real-valued and we restrict

ourselves to real-valued contact forms, the transformation rule (2.7) becomes

u
θ̂
= ewσuθ.

In [25] (see also [16]), the transformation formulae for the pseudoher-

mitian connection and its torsion and curvatures under a change of contact

form are given, which we record below:

Lemma 2.6. Let (M2n+1, J, θ) be a pseudohermitian manifold and regard

the torsion Aαβ ∈ Eαβ(0, 0), the pseudohermitian Schouten tensor Pαβ̄ ∈

Eαβ̄(0, 0), and its trace P = Pα
α ∈ E(−1,−1). Additionally, let f ∈ E(w,w)

and τα ∈ Eα(w,w). If θ̂ = eσθ is another choice of contact form and

Âαβ, P̂αβ̄ , P̂ are its torsion, pseudohermitian Schouten tensor, and its trace,

respectively, then

Âαβ = Aαβ + i∇β∇ασ − i(∇ασ)(∇βσ)

P̂αβ̄ = Pαβ̄ −
1

2

(
∇β̄∇ασ +∇α∇β̄σ

)
−

1

2
|∇γσ|

2hαβ̄

P̂ = P +
1

2
∆bσ −

n

2
|∇γσ|

2

∇̂αf = ∇αf + wf∇ασ

∇̂0f = ∇0f + i(∇ασ)(∇
αf)− i(∇ασ)(∇αf) + wf∇0σ

∇̂ατβ = ∇ατβ + (w − 1)τβ∇ασ − τα∇βσ

∇̂β̄τα = ∇β̄τα + wτα∇β̄σ + τγ∇
γσhαβ̄ .

There are a few technical comments necessary to properly interpret

Lemma 2.6.

First, we define the norm |∇γσ|
2 := (∇γσ)(∇

γσ). In particular, |∇γσ|
2 =

1
2〈∇bσ,∇bσ〉. We define norms on all (density-valued) tensors in a similar

way; for example, |Aαβ |
2 = AαβA

αβ and |Pαβ̄ |
2 = Pαβ̄P

αβ̄.

Second, for these formulae to be valid component-wise, one also needs to

change the admissible frame in which one computes the components of the
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torsion and CR Schouten tensor. Explicitly, if {θ, θα, θᾱ} is an admissible

coframe for the contact form θ, one defines

θ̂α = θα + i(∇ασ)θ

and θ̂ᾱ by conjugation, ensuring that {θ̂, θ̂α, θ̂ᾱ} is an admissible coframe for

the contact form θ̂. In the above formulae, this frame is used to compute the

components of ∇̂α and ∇̂ᾱ, while the coframe {θ, θα, θᾱ} is used to compute

the components of ∇α and ∇ᾱ.

Third, to regard P ∈ E(−1,−1) means to extend the function P to a

density ρ ∈ E(−1,−1) by requiring ρθ = P , and we use hαβ̄ ∈ Eαβ̄(1, 1) to

raise and lower indices. This has the effect that, at the level of functions,

Lemma 2.6 states that

P̂ = e−σ

(
P +

1

2
∆bσ −

n

2
|∇γσ|

2

)
,

which is the transformation formula proven in [25]. It also means that we

can quickly compute how ∇αP transforms under a change of contact form:

Using Lemma 2.6 with P ∈ E(−1,−1), it follows immediately that

∇̂αP̂ = ∇α

(
P +

1

2
∆bσ −

n

2
|∇γσ|

2

)
−

(
P +

1

2
∆bσ −

n

2
|∇γσ|

2

)
∇ασ.

These conventions will be exploited heavily in Section 5.

3. Pseudo-Einstein Contact Forms in Three Dimensions

In [25], Lee defined pseudo-Einstein manifolds as pseudohermitian man-

ifolds (M2n+1, J, θ) such that Pαβ̄ − 1
n
Phαβ̄ = 0 and studied their existence

when n ≥ 2. In particular, he showed in this case that θ is pseudo-Einstein

if and only if it is locally volume-normalized with respect to a closed non-

vanishing section of K; that is, using the terminology of Fefferman and

Hirachi [14], θ is pseudo-Einstein if and only if it is an invariant contact

form. While Lee’s definition of pseudo-Einstein contact forms is vacuous in

dimension three, the notion of an invariant contact form is not. It turns out

that, analogous to Proposition 2.5, there is a meaningful way to extend the

notion of pseudo-Einstein contact forms to the case n = 1 as a higher order

condition on θ which retains the equivalence with invariant contact forms.
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As this notion will be essential to our discussion of the Q′-curvature, and

because it did not appear elsewhere in the literature at the time the work

of this paper was being completed, we devote this section to explaining this

three-dimensional notion of pseudo-Einstein contact forms.

Definition 3.1. A pseudohermitian manifold (M2n+1, J, θ) is said to be

pseudo-Einstein if

Rαβ̄ −
1

n
Rhαβ̄ = 0, if n ≥ 2,

∇αR− i∇βAαβ = 0, if n = 1.

One way to regard this definition is as an analogue of Lee’s character-

ization [25] of CR pluriharmonic functions from Proposition 2.5. Indeed, a

straightforward computation using Lemma 2.4 shows that

∇β̄

(
Rαβ̄ −

1

n
Rhαβ̄

)
=

n− 1

n

(
∇αR− in∇βAαβ

)
(3.1)

holds for any CR manifold (M2n+1, J, θ). In particular, our definition of a

three-dimensional pseudo-Einstein manifold can be regarded as the “residue”

of the usual definition when n ≥ 2.

The characterization of pseudo-Einstein contact forms as invariant con-

tact forms persists in the case n = 1. To see this, let us first recall what it

means for a contact form to be volume-normalized with respect to a section

of K.

Definition 3.2. Given a CR manifold (M2n+1, J) and a nonvanishing sec-

tion ω of the canonical bundle K, we say that a contact form θ is volume-

normalized with respect to ω if

θ ∧ (dθ)n = in
2

n!θ ∧ (Tyω) ∧ (Tyω).

By considering all the terms in dωα
α, Lee’s argument [25, Theorem 4.2]

establishing the equivalence between pseudo-Einstein contact forms and in-

variant contact forms can be extended to the case n = 1.

Theorem 3.3. Let (M3, J) be a three-dimensional CR manifold. A contact

form θ on M is pseudo-Einstein if and only if for each point p ∈ M , there
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exists a neighborhood of p in which there is a closed section of the canonical

bundle with respect to which θ is volume-normalized.

The main step in the proof of Theorem 3.3 is the following analogue

of [25, Lemma 4.1].

Lemma 3.4. Let (M3, J) be a three-dimensional CR manifold. A contact

form θ on M is pseudo-Einstein if and only if with respect to any admissible

coframe {θ, θα, θᾱ} the one-form ωα
α + iRθ is closed.

Proof. Using (2.1) and the assumption n = 1, it holds in general that

dωα
α = Rhαβ̄θ

α ∧ θβ̄ +∇βAαβθ
α ∧ θ −∇β̄Aᾱβ̄θ

ᾱ ∧ θ. (3.2)

It thus follows that

d (ωα
α + iRθ) = 2iRe

(
(∇αR− i∇βAαβ)θ

α ∧ θ
)
,

from which the conclusion follows immediately. ���

Proof of Theorem 3.3. First suppose that θ is volume-normalized with

respect to a closed section ξ ∈ K on a neighborhood U of p, and choose an

admissible coframe {θ, θα, θᾱ} such that dθ = iθα ∧ θᾱ. Since ξ ∈ K, there

is a function λ ∈ C∞(M,C) such that ξ = λθ∧ θα. On the other hand, since

θ is volume-normalized with respect to ξ, it must hold that |λ| = 1. Thus,

upon replacing θα by λ−1θα, we have that ξ = θ ∧ θα.

Now, using the definition of the connection one-form ωα
α, it holds in

general that

dξ = −ωα
α ∧ ξ. (3.3)

Since ξ is closed, this shows that ωα
α is a (1, 0)-form. But ωα

α is also pure

imaginary, hence ωα
α = iuθ for some u ∈ C∞(M). Differentiating, we see

that

dωα
α = −uθα ∧ θᾱ + i∇αuθ

α ∧ θ + i∇ᾱuθ
ᾱ ∧ θ.

It thus follows from (3.2) that R = −u and ∇βAαβ = i∇αu. In particular,

θ is pseudo-Einstein.

Conversely, suppose that θ is pseudo-Einstein. In a neighborhood of

p ∈ M , let {θ, θα, θᾱ} be an admissible coframe such that dθ = iθα∧ θᾱ, and
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define ξ0 = θ ∧ θα ∈ K. By (3.3) it holds that dξ0 = −ωα
α ∧ ξ0, while by

Lemma 3.4 there exists a function φ such that

ωα
α + iRθ = idφ.

Since ωα
α is pure imaginary, we can take φ to be real, whence d

(
eiφξ0

)
= 0.

Since θ is volume-normalized with respect to eiφξ0, this gives the desired

section of K. ���

Another nice property of pseudo-Einstein contact forms when n ≥ 2 is

that, when they exist, they can be characterized in terms of CR plurihar-

monic functions. This too persists in the case n = 1, which is crucial to

making sense of the Q′-curvature. To see this, let (M3, J, θ) be a pseudoher-

mitian manifold and define the (1, 0)-form Wα by

Wα := ∇αR− i∇βAαβ.

Observe that Wα vanishes if and only if θ is pseudo-Einstein. As first

observed by Hirachi [20], Wα satisfies a simple transformation formula;

given another contact form θ̂ = eσθ, a straightforward computation using

Lemma 2.6 shows that

Ŵα = Wα − 3Pασ, (3.4)

where here we regard Wα ∈ Eα(−1,−1). An immediate consequence of (3.4)

is the following correspondence between pseudo-Einstein contact forms and

CR pluriharmonic functions.

Proposition 3.5. Let (M3, J, θ) be a pseudo-Einstein three-manifold. Then

the set of pseudo-Einstein contact forms on (M3, J) is given by

{euθ : u is a CR pluriharmonic function} .

Following [25], there are topological obstructions to the existence of

an invariant contact form θ on a three-dimensional CR manifold (M3, J).

However, if (M3, J) is the boundary of a strictly pseudoconvex domain in C
2,

then there always exists a closed section of K, and hence a pseudo-Einstein

contact form. This is a slight refinement of the observation by Fefferman
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and Hirachi [14] that any such CR manifold admits a contact form θ such

that the Q-curvature

Q := −
4

3
∇αWα (3.5)

vanishes.

4. The CR Paneitz and Q-Curvature Operators

The CR Paneitz operator in dimension three is well-known and given by

P4 = C. However, in higher dimensions the operator C is not CR covariant.

The correct definition, in that P4 is CR covariant, is as follows.

Definition 4.1. Let (M2n+1, J, θ) be a CR manifold. The CR Paneitz op-

erator P4 is the operator

P4f := ∆2
bf +∇2

0f − 4Im
(
∇α(Aαβ∇

βf)
)
+ 4Re

(
∇β̄(

◦

P
αβ̄

∇αf)

)

−
4(n2 − 1)

n
Re
(
∇β(P∇βf)

)
+

n− 1

2
Q4f.

where

Q4 =
2(n+ 1)2

n(n+ 2)
∆bP −

4

n(n+ 2)
Im
(
∇α∇βAαβ

)
−

2(n − 1)

n
|Aαβ |

2

−
2(n + 1)

n
|

◦

Pαβ̄ |
2 +

2(n− 1)(n + 1)2

n2
P 2

and
◦

Pαβ̄ = Pαβ̄ − P
n
hαβ̄ is the tracefree part of the CR Schouten tensor.

The above expression for the CR Paneitz operator in general dimension

does not seem to appear anywhere in the literature, though its existence and

two different methods to derive the formula have been established by Gover

and Graham [16]. In particular, their construction immediately implies that

the CR Paneitz operator is CR covariant,

P4 : E

(
−
n− 1

2
,−

n− 1

2

)
→ E

(
−
n+ 3

2
,−

n+ 3

2

)
. (4.1)
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By inspection, it is clear that P4 is a real, (formally) self-adjoint fourth order

operator of the form ∆2
b + T 2 plus lower order terms, and thus has the form

one expects of a “Paneitz operator” (cf. [16]). For convenience, we derive in

the appendices the above expression for the CR Paneitz operator using both

methods described in [16], namely the CR tractor calculus and restriction

from the Fefferman bundle.

As mentioned in Section 2, in the critical case n = 1 we have that

P ⊂ kerP4. Motivated by [3, 5], we define the P ′-operator corresponding

to the CR Paneitz operator as a renormalization of the part of P4 which

doesn’t annihilate pluriharmonic functions.

Definition 4.2. Let (M2n+1, J, θ) be a CR manifold. The P ′-operator

P ′
4 : P → C∞(M) is defined by

P ′
4f =

2

n− 1
P4f.

When n = 1, we define P ′
4 by the formal limit

P ′
4f = lim

n→1

2

n− 1
P4f.

The key property of the P ′-operator, which we check explicitly below,

is that the expression for P ′
4 as defined in Definition 4.2 is rational in the

dimension and does not have a pole at n = 1; in particular, it is meaningful

to discuss the P ′-operator on three-dimensional CR manifolds.

Lemma 4.3. Let (M2n+1, J, θ) be a CR manifold. Then the P ′-operator is

given by

P ′
4f =

2(n+ 1)

n2
∆2

bf −
8

n
Im
(
∇α(Aαβ∇

βf)
)
−

8(n+ 1)

n
Re (∇α(P∇αf))

+
16(n + 1)

n(n+ 2)
Re

(
(∇αP −

in

2(n+ 1)
∇βAαβ)∇

αf

)

+

[
2(n+ 1)2

n(n+ 2)
∆bP −

4

n(n+ 2)
Im
(
∇α∇βAαβ

)

−
2(n− 1)

n
|Aαβ |

2 −
2(n+ 1)

n
|

◦

Pαβ̄ |
2 +

2(n − 1)(n + 1)2

n2
P 2

]
f. (4.2)
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In particular, if n = 1, the critical P ′-operator is given by

P ′
4f = 4∆2

bf − 8Im
(
∇α(Aαβ∇

βf)
)
− 4Re (∇α(R∇αf))

+
8

3
Re
(
(∇αR− i∇βAαβ)∇

αf
)
+

2

3

(
∆bR−

1

2
Im∇α∇βAαβ

)
f. (4.3)

Proof. When n > 1, this follows directly from the definition of the CR

Paneitz operator and the fact that f ∈ P if and only if

∇β̄∇αf = µhαβ̄

for some µ ∈ C∞(M), which in turn implies, using (2.5), that

∆2
bf + n2∇2

0f − 4nIm
(
∇α(Aαβ∇

βf)
)
= 0.

Letting n → 1 then yields the case n = 1. ���

Note that, as an operator on C∞(M), the P ′-operator is only determined

uniquely up to the addition of operators which annihilate P. We have chosen

the expression (4.3) so that our expression does not involve T -derivatives.

In particular, this allows us to readily connect the P ′-operator to similar

objects already appearing in the literature.

1. On a general CR manifold (M3, J, θ),

P ′
4(1) =

2

3

(
∆bR− 2Im∇α∇βAαβ

)
,

which is, using (2.4), Hirachi’s Q-curvature (3.5).

2. On (S3, J, θ) with its standard CR structure, the P ′-operator is given by

P ′
4 = 4∆2

b + 2∆b,

which is the operator introduced by Branson, Fontana and Morpurgo [3].

The means by which we defined the P ′-operator, and which we will

further employ to establish its CR covariance, is called “analytic continuation

in the dimension” (cf. [2]). However, due to the relatively simple form of the

expression for P ′
4, we can also check its CR covariance directly, as is carried

out in Section 5.
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In the case that (M3, J, θ) is a pseudo-Einstein manifold, the P ′-operator

takes the simple form

P ′
4 = 4∆2

b − 8Im∇α
(
Aαβ∇

β
)
− 4Re∇α(R∇α). (4.4)

In particular, we see that P ′
4 annihilates constants, leading us to consider

the “Q-curvature of the P ′-operator,” which we shall simply call the Q′-

curvature.

Definition 4.4. Let (M2n+1, J, θ) be a pseudo-Einstein manifold. The Q′-

curvature Q′
4 ∈ C∞(M) is the local invariant defined by

Q′
4 =

2

n− 1
P ′
4(1) =

4

(n− 1)2
P4(1).

When n = 1, we define Q′
4 as the formal limit

Q′
4 = lim

n→1

4

(n− 1)2
P4(1).

Again, it is straightforward to give an explicit formula for Q′
4.

Lemma 4.5. Let (M2n+1, J, θ) be a pseudo-Einstein manifold. Then the

Q′-curvature is given by

Q′
4 =

2

n2
∆bR−

4

n
|Aαβ|

2 +
1

n2
R2. (4.5)

In particular, when n = 1 the Q′-curvature is

Q′
4 = 2∆bR− 4|Aαβ |

2 +R2. (4.6)

Proof. When n > 1, it follows from (3.1) and the pseudo-Einstein assump-

tion that |
◦

Pαβ̄ |
2 = 0 and

∆bR− 2nIm
(
∇α∇βAαβ

)
= 0.

Plugging in to (4.2), we see that

P ′
4(1) =

n− 1

n2
∆bR−

2(n− 1)

n
|Aαβ |

2 +
(n− 1)

2n2
R2.
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Multiplying by 2
n−1 then yields the desired result. ���

Let us now verify some basic properties of the P ′-operator and the Q′-

curvature. These objects are best behaved and the most interesting in the

critical dimension n = 1, so we shall make our statements only in this di-

mension.

Proposition 4.6. Let (M3, J, θ) be a pseudohermitian manifold with P ′-

operator P ′
4 : P → C∞(M). Then the following properties hold.

1. P ′
4 is formally self-adjoint.

2. Given another choice of contact form θ̂ = eσθ with σ ∈ C∞(M), it holds

that

e2σP̂ ′
4(f) = P ′

4(f) + P4(fσ) (4.7)

for all f ∈ P, where P̂ ′
4 denotes the P ′

4-operator defined in terms of θ̂.

Proof. On a general pseudohermitian manifold (M2n+1, J, θ), it follows from

Definition 4.2 and the self-adjointness of P4 that, given u, v ∈ P,

n− 1

2

�
M

uP ′
4v =

�
M

uP4v =

�
M

v P4u =
n− 1

2

�
M

v P ′
4u,

establishing the self-adjointness of P ′
4. Likewise, the covariance (4.1) of the

CR Paneitz operator implies that for all u ∈ P,

n− 1

2
e

n+3

2
σP̂ ′

4(u) = P4

(
e

n−1

2
σu
)
=

n− 1

2
P ′
4(u) + P4

((
e

n−1

2
σ − 1

)
u
)
.

Multiplying both sides by 2
n−1 and taking the limit n → 1 yields (4.7). ���

Remark 4.7. It would be nice to have a formula for the critical P ′
4-operator

which is manifestly formally self-adjoint on all functions. At present, we

have not been able to find such a formula without the assumption that θ is

a pseudo-Einstein contact form, in which case (4.4) gives such a formula.

Using the same argument with Q′
4 in place of P ′

4 and P ′
4 in place of P4,

we get a similar result for transformation law of the Q′-curvature when the

contact form is changed by a CR pluriharmonic function.



308 JEFFREY S. CASE AND PAUL YANG [September

Proposition 4.8. Let (M3, J, θ) be a pseudo-Einstein manifold. Given σ ∈

P, denote θ̂ = eσθ. Then

e2σQ̂′
4 = Q′

4 + P ′
4(σ) +

1

2
P4(σ

2). (4.8)

In particular, if M is compact then�
M

Q̂′
4 θ̂ ∧ dθ̂ =

�
M

Q′
4 θ ∧ dθ. (4.9)

Proof. For n > 1 and σ ∈ P, we have that

(
n− 1

2

)2

e
n+3

2
σQ̂′

4 =

(
n− 1

2

)2

Q′
4 + P4

(
e

n−1

2
σ − 1

)

=

(
n−1

2

)2

Q′
4+

n− 1

2
P4

(
σ+

n−1

4
σ2+O

(
(n−1)2

))
.

Multiplying by 4
(n−1)2

and taking the limit n → 1 yields (4.8). The in-

variance (4.9) then follows from the self-adjointness of P ′
4 and P4 on their

respective domains and the facts that P4(1) = 0 for any contact form and

P ′
4(1) = 0 for any pseudo-Einstein contact form. ���

We conclude this section with a useful observation about the sign of

the P ′-operator, which can be regarded as a CR analogue of a result of

Gursky [19] for the Paneitz operator in conformal geometry.

Proposition 4.9. Let (M3, J) be a compact CR manifold which admits a

pseudo-Einstein contact form θ with nonnegative scalar curvature. Then

P ′
4 ≥ 0 and the kernel of P ′ consists of the constants.

Proof. It follows from (4.7) that the conclusion P ′
4 ≥ 0 with kerP ′

4 = R is

CR invariant, so we may compute in the scale θ. From the definition of the

sublaplacian we see that

∆2
b − 2Im∇β (Aαβ∇

α) = 2Re∇α
(
∇α∇

β∇β + Pα

)
.

It thus follows that the P ′-operator is equivalently defined via the formula

P ′
4u = 4Re∇α

(
2∇α∇

β∇βu−R∇αu
)

(4.10)
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for all u ∈ P. Multiplying (4.10) by u and integrating yields�
M

uP ′
4u = 4

�
M

(
2
∣∣∣∇β∇βu

∣∣∣
2
+ 2R |∇βu|

2

)
.

Since R ≥ 0, this is clearly nonnegative, showing that P ′
4 ≥ 0. Moreover,

if equality holds, then ∇β∇βu = 0, which is easily seen to imply that u is

constant, as desired. ���

It would be preferable for Proposition 4.9 to require checking only CR

invariant assumptions. For instance, one might hope to prove the same

result assuming that (M3, J) has nonnegative CR Yamabe constant and

admits a pseudo-Einstein contact form. However, it is at present unclear

whether these assumptions imply that one can choose a contact form as in

the statement of Proposition 4.9.

5. CR Covariance of the P ′-operator

In this section we give a direct computational proof of transformation

formula (4.7) of the P ′-operator after a conformal change of contact form.

Indeed, we will compute the transformation formula for the operator P ′
4

as defined by (4.3) acting on functions — rather than only pluriharmonic

functions — and thus establish that one cannot hope to find an invariant

operator acting instead on the kernel of the CR Paneitz operator.

To begin, we recall from Lemma 2.6 and (3.4) that given a three-

dimensional pseudohermitian manifold (M3, J, θ) and an arbitrary one-form

τα ∈ Eα(−1,−1), if θ̂ = eσθ then

∇̂ατ̂α = ∇ατα and Ŵα = Wα − 3Pασ. (5.1)

Another useful computation in preparation for our identification of the

transformation law of P ′
4 is the following expression for the CR Paneitz

operator applied to a product of two functions.

Lemma 5.1. Let (M3, J, θ) be a pseudohermitian three-manifold and let P4

be the CR Paneitz operator. Given f, σ ∈ E(0, 0), it holds that
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1
4P4(fσ) =

1
4fP4(σ) +

1
4σP4(f) + 4Re

(
∇ασ∇α∇

β∇βf
)

+4Re
(
∇αf∇α∇

β∇βσ
)
+ 2Re (R∇ασ∇αf)

+2Re
(
∇α∇βσ∇α∇βf

)
+ 4Re

(
∇α∇ασ∇β∇

βf
)
.

Alternatively,

P4(σf) = σP4(f) + fP4(σ) + 4∇ασPαf + 4∇αfPασ

+4∇α
(
2∇ασ∇β∇

βf +∇βσ∇α∇βf + 2∇αf∇β∇
βσ +∇βf∇α∇βσ

)
.

Proof. The second expression follows by a direct expansion using the second

formula for P4 in (2.5). To establish the first expression, observe that the

term involving ∇ασ in the second expression of the lemma is

∇ασ
(
∇α∇β∇

βf + iAαβ∇
βf +∇β∇β∇αf

)
. (5.2)

Using the assumption that M is three-dimensional and the commutator for-

mula

∇γ̄∇β∇αf −∇β∇γ̄∇αf = i∇0∇αf hβγ̄ +Rα
ρ
βγ̄∇ρf

due to Lee [25, Lemma 2.3], it holds that

∇β∇β∇αf −∇α∇
β∇βf = i∇0∇αf +R∇αf. (5.3)

It then follows from Lemma 2.3 that (5.2) can be rewritten

∇ασ
(
2∇α∇

β∇βf +R∇αf
)
,

from which the desired expression immediately follows. ���

The transformation formulae (5.1) immediately yield the transformation

formulae for the zeroth and first order terms of P ′
4. Thus it remains to

compute the transformation formulae for the higher order terms.

Proposition 5.2. Let (M3, J, θ) be a pseudohermitian three-manifold and

define the operator D : E(0, 0) → E(−2,−2) by

Df = 4∆2
bf − 8Im

(
∇α(Aαβ∇

βf)
)
− 4Re (∇α(R∇αf)) .
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If θ̂ = eσθ is another choice of contact form, then

D̂f=Df+8Re∇α
(
2∇β∇

βσ∇αf+∇β∇βσ∇αf +∇α∇βf∇
βσ−∇β∇βf∇ασ

)
.

Proof. To begin, consider how each summand of D transforms. By a

straightforward application of Lemma 2.6, we compute that

∆̂2
b f̂ = ∆b (∆bf − 〈∇f,∇σ〉) + 2Re∇α ((∆bf − 〈∇f,∇σ〉)∇ασ)

∇̂α
(
Âαβ∇̂β f̂

)
= ∇α

(
(Aαβ + i∇α∇βσ − i∇ασ∇βσ)∇

βf
)

∇̂α
(
R̂∇̂αf̂

)
= ∇α

(
(R + 2∆bσ − 2|∇γσ|

2)∇αf
)
.

The conclusion of the proposition then follows immediately from a straight-

forward computation. ���

Together, (5.1), Lemma 5.1, and Proposition 5.2 yield another proof of

the transformation law (4.7) of the P ′-operator. In fact, the computations

above allow us to compute the transformation rule for P ′
4 under a change of

contact form when the local formula (4.3) is extended to all of C∞(M).

Proposition 5.3. Let (M3, J, θ) be a pseudohermitian three-manifold and

let σ ∈ C∞(M). Set θ̂ = eσθ and denote by P̂ ′
4 and P ′

4 the operator (4.3)

defined in terms of θ̂ and θ, respectively. Then

e2σP̂ ′
4(f) = P ′

4(f) + P4(fσ)− σP4(f)− 8Re (Pαf∇
ασ) (5.4)

for all f ∈ C∞(M). In particular,

e2σP̂ ′
4(f) = P ′

4(f) + P4(fσ)

for all f ∈ P.

Remark 5.4. The transformation rule (5.4) obviously remains true when

one adds a multiple of the CR Paneitz operator to P ′
4.

Proof. It follows from (5.1) and Proposition 5.2 that

e2σP̂ ′
4(f) = P ′

4(f) + fP4σ − 8Re (Pασ∇
αf)

+8Re∇α
(
2(∇β∇

βσ)(∇αf) + (∇β∇βσ)(∇αf) + (∇α∇βf)(∇
βσ)

−(∇β∇βf)(∇ασ)
)
.
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Using Lemma 5.1 to write fP4σ in terms of P4(fσ), we find that

e2σP̂ ′
4(f) = P ′

4(f) + P4(σf)− σP4f − 4Re (Pαf∇
ασ)

+4Re
(
(2∇α∇β∇

βσ−∇α∇β∇βσ−∇β∇
β∇ασ+3iAαβ∇βσ)∇αf

)

−4Re
(
(2∇α∇β∇

βf + 2∇α∇β∇βf −∇β∇
β∇αf)∇ασ

)
.

The result then follows by using (5.3) to commute derivatives in the last two

lines and the definition of the third order operator Pα. ���

6. CR Transformation Property of the Q′-curvature

In this section we give a direct computational proof of the transformation

formula (4.8) relating theQ′-curvatures of two pseudo-Einstein contact forms

on the same CR manifold. As in Section 5, we will in fact compute how the

scalar (4.6) transforms under a conformal change of contact form without

assuming either contact form is pseudo-Einstein. This has two benefits.

First, it makes clear that the Q′-curvature only transforms as in (4.8) when

both contact forms are pseudo-Einstein, as opposed to having vanishing Q-

curvature. Second, it will allow us to prove Theorem 1.1 by appealing to the

resolution of the CR Yamabe Problem [11, 22, 23].

First, as a consequence of Lemma 2.6, we see that if θ̂ = eσθ, then

R̂2 = R2 + 4R∆bσ + 4(∆bσ)
2 − 4R|∇γσ|

2 − 8|∇γσ|
2∆bσ + 4|∇γσ|

4

4|Âαβ |
2 = 4|Aαβ |+ 8Im

(
Aαβ∇

α∇βσ
)
+ 4|∇α∇βσ|

2

− 8Im
(
Aαβ∇

ασ∇βσ
)
− 8Re

(
(∇αβσ)∇

ασ∇βσ
)
+ 4|∇γσ|

4

2∆̂bR̂ = 2∆b

(
P+2∆bσ−2|∇γσ|

2
)
+4Re∇β

((
R+2∆bσ−2|∇γσ|

2
)
∇βσ

)
.

It is immediately clear that the transformation law for Q′
4 depends at most

quadratically on σ. Using the three-dimensional Bochner formula (cf. [6, 7,

10, 13])

−∆b|∇γσ|
2 = 2∇α∇βσ∇

α∇βσ + 2∇α∇
ασ∇β∇βσ − 〈∇bσ,∇b∆bσ〉

− 2Re
(
∇ασ(∇α∇β∇

βσ −∇β∇β∇ασ)
)
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together with the consequence

1

2
P4(σ

2)− σP4(σ) = 8Re (∇ασPασ) + 8Re
(
∇ασ∇β∇β∇ασ

)

+4∇α∇β∇α∇βσ + 8∇α∇
ασ∇β∇βσ −R|∇γσ|

2

of Lemma 5.1, it follows immediately that the term of Q̂′
4 which is quadratic

in σ is given by

U(σ) :=
1

2
P4(σ

2)− σP4(σ)− 16Re (∇ασPασ) .

In particular, if σ ∈ P, then

U(σ) = 1
2P4(σ

2),

as expected.

On the other hand, the term of Q̂′
4 which is linear in σ is given by

V (σ) := 4∆2
bσ − 8Im

(
∇α(Aαβ∇

βσ)
)
− 4Re (∇α(R∇ασ)) + 8Re (Wα∇

ασ)

= P ′
4(σ) +

16

3
Re (Wα∇

ασ)−Qσ

= P ′
4(σ) +

16

3
Re∇α (σWα) + 3Qσ.

In particular, if θ is a pseudo-Einstein contact form, then

V (σ) = P ′
4(σ),

as expected. In fact, we have computed the general transformation formula

for the scalar invariant

Q′
4 = 2∆bR− 4|Aαβ |

2 +R2. (6.1)

Proposition 6.1. Let (M3, J, θ) be a three-dimensional pseudohermitian

manifold, regard P ′
4 as an operator P ′

4 : C
∞(M) → C∞(M), and define Q′

4

by (6.1). Given any σ ∈ C∞(M), the scalars Q′
4 and Q̂′

4 defined in terms of

the contact forms θ and θ̂ = eσθ, respectively, are related by

e2σQ̂′
4 = Q′

4 + P ′
4(σ) +

16

3
Re∇α (σWα) + 3Qσ

+
1

2
P4(σ

2)− σP4(σ) − 16Re ((∇ασ)(Pασ)) . (6.2)
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In particular, if M is compact, then�
M

Q̂′
4 θ̂ ∧ dθ̂ =

�
M

Q′
4 θ ∧ dθ + 3

�
M

(σP4σ + 2Qσ) θ ∧ dθ (6.3)

for Q = P ′
4(1) Hirachi’s Q-curvature (3.5).

Proof. (6.2) follows from the computations given above. (6.3) follows by

integration by parts. ���

Proof of Theorem 1.1. Let θ̂ be a CR Yamabe contact form; that is,

suppose that Vol
θ̂
(M) = 1 and R

θ̂
= Λ[θ] for Λ[θ] the CR Yamabe constant

of (M3, J, θ). Then �
M

R̂2 θ̂ ∧ dθ̂ = Λ[θ]2 ≤ Λ[S3]2 (6.4)

for Λ[S3] = Vol (S3) the CR Yamabe constant of the standard CR three-

sphere. Moreover, by the CR Positive Mass Theorem [11], equality holds

in (6.4) if and only if (M3, J, θ) is CR equivalent to the standard CR three-

sphere. On the other hand, the nonnegativity of the CR Paneitz operator

combined with (6.3) yield�
M

Q′
4 θ ∧ dθ ≤

�
M

Q̂′
4 θ̂ ∧ dθ̂, (6.5)

while the expression (6.1) yields�
M

Q̂′
4 θ̂ ∧ dθ̂ ≤

�
M

R̂2 θ̂ ∧ dθ̂. (6.6)

The result then follows from (6.4), (6.5), and (6.6). ���

Appendex A: CR Tractor Bundles and the CR Paneitz Operator

In this appendix we give the derivation of the CR Paneitz operator in

general dimension using tractor bundles in CR geometry, as outlined by

Gover and Graham [16]. In the interests of brevity, we compute in a fixed

scale θ and only state the necessary tractor formulae, and refer the reader

to [16] for definitions of the tractor bundles and operators we use here.
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The main objects we are concerned with are the CR tractor bundle

EA ∼= E(1, 0)⊕Eα(1, 0)⊕E(0,−1), its canonical connection, and the tractor-

D operator D : E∗(w,w′) → EA ⊗ E∗(w − 1, w′), which are given by

∇β




σ

τα
ρ


 =




∇βσ − τβ
∇βτα + iσAαβ

∇βρ− Pβ
ατα + σTβ




∇β̄




σ

τα
ρ


 =




∇β̄σ

∇β̄τα + σPαβ̄ + ρhαβ̄
∇β̄ρ+ iAα

β̄τα − σTβ̄




∇0




σ

τα
ρ


 =




∇0σ + i
n+2Pσ − iρ

∇0τα − iPα
βτβ + i

n+2Pτα + 2iσTα

∇0ρ+
i

n+2Pρ+ 2iTατα + iSσ




DAf =




w(n + w +w′)f

(n +w + w′)∇αf

−
(
∇β∇βf + iw∇0f + w(1 + w′−w

n+2 )Pf
)


 ,

where E∗(w,w′) denotes any (weighted) tractor bundle. As always, the top-

most nonvanishing slot is CR invariant. In particular, we see that the bot-

tom row of DADBf is the topmost nonvanishing row if n+w+w′ = 1; as is

straightforward to check, if we assume that f ∈ E(w,w′) for n+w+w′ = 1,

then the “bottom left” spot is the only nonvanishing term, and hence is CR

invariant. More precisely, the operator P4 defined by

−

(
∇β∇β + i(w−1)∇0+(w−1)(1+

w′−w+1

n+2
)P

)
DAf=




0

0
1
4P4f


 (A.1)

will necessarily be a CR covariant operator which, as we shall see, has leading

order term ∆2
b + T 2 (this is the reason for the factor of 4). To get the usual

CR Paneitz operator, we need to assume further that w = w′; in particular,

w = −n−1
2 .

In order to evaluate (A.1) to determine P4, we need to know the bottom

components of both ∇0DAf and ∇β∇βDAf . The latter is the most involved
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computation: Marking irrelevant terms by asterisks, we see that

∇β∇β




σ

τα
ρ




= hβγ̄∇γ̄∇β




σ

τα
ρ




= hβγ̄∇γ̄




∇βσ − τβ
∇βτα + iσAαβ

∇βρ− Pα
β τα + σTβ




=




∗

∗

∇β∇βρ−∇β(Pα
β τα−σTβ)+iAαβ∇βτα−σAαβAαβ−(∇βσ−τβ)T

β


 .

In particular, we see that the bottom component of ∇β∇βDAf is given by

−∇β∇β(∇
α∇αf + iw∇0f + wPf)−∇β

(
Pα
β ∇αf − wfTβ

)

+iAαβ∇β∇αf − wfAαβAαβ − (w − 1)T β∇βf. (A.2)

The other derivative we must compute is ∇0DAf ; it is straightforward to

check that the bottom component is given by

−∇0

(
∇β∇βf + iw∇0f + wPf

)
−

i

n+ 2
P
(
∇β∇βf + iw∇0f + wPf

)

+2iTα∇αf + iwSf. (A.3)

Evaluating (A.1) using (A.2) and (A.3), we thus find that (after identifying

tractor terms with their bottom components)

1

4
P ′
4f = −∇β∇βDAf − i(w − 1)∇0DAf −

(w − 1)(n + 3)

n+ 2
PDAf

= ∇β∇β(∇
α∇αf + iw∇0f + wPf) +∇β

(
Pα
β ∇αf −wfTβ

)

−iAαβ∇β∇αf + wfAαβAαβ + (w − 1)T β∇βf

+i(w − 1)∇0

(
∇β∇βf + iw∇0f + wPf

)

+(w − 1)P
(
∇β∇βf + iw∇0f +wPf

)

+2(w − 1)Tα∇αf + w(w − 1)Sf.
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Our goal is now to simplify this so that we can identify the CR Paneitz

operator. Towards that end, let us regroup terms into those with a w coef-

ficient and those without; in other words, write

P ′
4f = Af + wBf (A.4)

for

1

4
Af = ∇β∇β∇

α∇αf − i∇0∇
β∇βf

+∇β
(
Pα
β ∇αf

)
− iAαβ∇β∇αf − 3T β∇βf − P∇β∇βf

1

4
Bf = −(w − 1)∇0∇0f + i∇0∇

β∇βf + i∇β∇β∇0f

+∇β∇β(Pf)−∇β(Tβf) +AαβAαβf+3T β∇βf + i(w−1)∇0(Pf)

+P∇β∇βf + i(w − 1)P∇0f + (w − 1)P 2f + (w − 1)Sf.

First, let us rewrite Af in a more familiar way. Using (2.2) and (2.5),

it is straightforward to check that

1

4
Af =

1

4
Cf + i(n−1)∇0∇

β∇βf+i(n−1)Aαβ∇β∇αf+in
(
∇βA

αβ
)
∇αf

+ (∇βP + (n− 1)T β)∇βf + (Pαβ̄ − Phαβ̄)∇β̄∇αf − 3T β∇βf

=
1

4
Cf +

◦

P αβ̄∇β̄∇αf

+
n− 1

2

[
2i∇0∇

β∇βf + 2i∇β(A
αβ∇αf)−

2

n
P∇β∇βf + 4T β∇βf

]
.

Since
◦

Pαβ̄ = 0 and w = 0 when n = 1, we check in particular that P4f = Cf

in this dimension.

Second, recalling that w = −n−1
2 , we see from the above that

Af = Cf + 4
◦

P αβ̄∇β̄∇αf + wEf

1

4
Ef := −2i∇0∇

β∇βf − 2i∇β(A
αβ∇αf) +

2

n
P∇β∇βf − 4T β∇βf.

In particular, the operator F defined by F = B + E is such that
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P4f = Cf + 4
◦

P αβ̄∇β̄∇αf + wFf , and is given by

1

4
Ff = (1− w)∇0∇0f + i∇β∇β∇0f − i∇0∇

β∇βf − 2i∇β(A
αβ∇αf)

+
2(n + 1)

n
P∇β∇βf + 2i(w − 1)P∇0f +∇βP∇βf +∇βP∇βf

−T β∇βf − Tβ∇
βf +

(
∇β∇βP −∇βTβ + i(w − 1)∇0P +AαβAαβ

+(w − 1)P 2 + (w − 1)S
)
f

= (1− w)∇0∇0f + i∇β(Aαβ∇
αf)− i∇β(A

αβ∇αf)

+
2(n + 1)

n
P∇β∇βf + 2i(w − 1)P∇0f +∇βP∇βf +∇βP∇βf

−T β∇βf − Tβ∇
βf +

(
∇β∇βP −∇βTβ + i(w − 1)∇0P +AαβAαβ

+(w − 1)P 2 + (w − 1)S
)
f.

Writing this entirely in terms of n, Pαβ̄ , P , and Aαβ then yields the

desired form.

Appendix B: Checking Via the Fefferman Metric

In this appendix, we follow the other perspective of Gover and Gra-

ham [16] and give the formula for the CR Paneitz operator using the Feffer-

man metric. To arrive at the formula given in Definition 4.1, we use Lee’s

intrinsic formulation [24] of the Fefferman metric.

To begin, let (M2n+1, J, θ) be a pseudohermitian manifold and let

(M̃2n+2, g) be the Fefferman bundle, which is an S1-bundle over M with

g a particular Lorentzian metric. The Paneitz operator L4 on a pseudo-

Riemannian manifold is defined by

L4u = ∆2u+4P ij∇i∇ju− (N −2)P i
i∆u− (N −6)(∇jP i

i )(∇ju)+
N − 4

2
Qu,

where N = 2n + 2 is the dimension of M̃ , Pij = 1
N−2

(
Rij −

1
2(N−1)R

k
kgij

)

is the Schouten tensor of g, ∆ = ∇i∇i is the Laplacian (with nonpositive

spectrum), and

Q = −∆P i
i − 2PijP

ij +
N

2

(
P i
i

)2
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is the (conformal) Q-curvature. The key facts about the Paneitz operator

on the Fefferman bundle are that it is conformally invariant and that its

restriction to functions which are invariant under the circle action is itself

invariant under the circle action. In particular, these facts together imply

that L4 descends to a CR covariant operator on (M2n+1, J, θ). Explicitly,

the operator P4 defined by

P4u =
1

4
π∗ (L4(π

∗u)) (B.1)

will necessarily be a CR covariant operator of the form ∆2
b + T 2 plus lower

order terms. Its explicit form can be computed using the following sequence

of lemmas which are a consequence of Lee’s intrinsic characterization [24] of

the Fefferman bundle. First, we have the following simple expressions for

the scalar curvature, the Laplacian, and the inner product of two gradients

on both manifolds.

Lemma B.1. Let (M2n+1, J, θ) be a pseudohermitian manifold and let

(M̃2n+2, g) denote the associated Fefferman bundle. Then, given any u, v ∈

C∞(M), it holds that

π∗ (∆(π∗u))=−2∆bu, π∗J=2P, π∗〈∇(π∗u),∇(π∗v)〉=4Re (∇αu∇αv) .

Next, we have the relationship between the norms of the Schouten tensor

on both manifolds.

Lemma B.2. Let (M2n+1, J, θ) be a pseudohermitian manifold and let

(M̃2n+2, g) denote the associated Fefferman bundle. It holds that

π∗
(
PijP

ij
)
=

2(n+ 1)

n
Pαβ̄P

αβ̄ +
2(n − 1)

n
AαβA

αβ

+
4

n(n+ 2)
Im
(
∇α∇βAαβ

)
+

4

n(n+ 2)
Re (∇α∇αP ) .

The last ingredient from [24] is the inner product of the Schouten tensor

with a Hessian, which follows from the formulae for the Ricci tensor and the

connection on both manifolds.

Lemma B.3. Let (M2n+1, J, θ) be a pseudohermitian manifold and let

(M̃2n+2, g) denote the associated Fefferman bundle. Then, given any u ∈
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C∞(M), it holds that

π∗
(
P ij∇i∇ju

)
= 4∇2

0u− 16Im
(
Aαβ∇

α∇βu
)
+ 16Re

(
Pαβ̄∇2

β̄α
u
)

−48Re (Tα∇
αu) .

Putting these together, we provide another derivation for the formula

given in Definition 4.1 for the CR Paneitz operator.

Proposition B.4. Let (M2n+1, J, θ) be a pseudohermitian manifold and let

(M̃2n+2, g) denote the associated Fefferman bundle. Denote by F and Q the

operators

F (u) = 4P ij∇i∇ju− (N − 2)P k
k∆u− (N − 6)(∇jP i

i )(∇ju)

Q = −∆P i
i − 2PijP

ij +
N

2
(P i

i )
2

on M̃N . Then, given any u ∈ C∞(M), it holds that

1

4
π∗
(
∆2(π∗u)

)
= ∆2

bu

1

4
π∗ (F (π∗u)) = ∇2

0u− 4Im
(
∇α(Aαβ∇

βu
)

+ 4
◦

P αβ̄∇2
β̄α

u−
4(n2 − 1)

n
Re (∇α(P∇αu))

−
32(n2 − 1)

n(n+ 2)
Re

(
(∇αP −

in

2(n + 1)
∇βAαβ)∇

αu

)

1

4
π∗Q =

(n+ 1)2

n(n+ 2)
∆bP −

2

n(n+ 2)
Im
(
∇α∇βAαβ

)

−
n+ 1

n
|
◦

P αβ̄ |2 −
n− 1

n
|A|2 +

(n− 1)(n + 1)2

n2
P 2.

In particular, Definition 4.1 for the CR Paneitz operator agrees with the

definition via (B.1).
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