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Abstract

This paper develops a new methodology that makes use of the factor structure of large
dimensional panels to understand the nature of non-stationarity in the data. We refer to it
as PANIC– a ‘Panel Analysis of Non-stationarity in Idiosyncratic and Common components’.
PANIC consists of univariate and panel tests with a number of novel features. It can detect
whether the nonstationarity is pervasive, or variable-specific, or both. It tests the components
of the data instead of the observed series. Inference is therefore more accurate when the compo-
nents have different orders of integration. PANIC also permits the construction of valid panel
tests even when cross-section correlation invalidates pooling of statistics constructed using the
observed data. The key to PANIC is consistent estimation of the components even when the
regressions are individually spurious. We provide a rigorous theory for estimation and inference.
In Monte Carlo simulations, the tests have very good size and power. PANIC is applied to a
panel of inflation series.
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1 Introduction

Knowledge of whether a series is stationary or non-stationary is important for a wide range of

economic analysis. As such, unit root testing is extensively conducted in empirical work. But

in spite of the development of many elegant theories, the power of univariate unit root tests is

severely constrained in practice by the short span of macroeconomic time series. Panel unit root

tests have since been developed with the goal of increasing power through pooling information

across units. But pooling is valid only if the units are independent, an assumption that is perhaps

unreasonable given that many economic models imply, and the data support, the comovement of

economic variables.

In this paper, we propose a new approach to understanding non-stationarity in the data, both

on a series by series basis, and from the viewpoint of a panel. Rather than treating the cross-

section correlation as a nuisance, we exploit these comovements to develop new univariate statistics

and valid pooled tests for the null hypothesis of non-stationarity. Our tests are applied to two

components of the data, one with the characteristic that it is strongly correlated with many series,

and one with the characteristic that it is largely unit specific. More precisely, we consider a factor

analytic model:

Xit = Dit + λ′iFt + eit

where Dit is a polynomial trend function of order p, Ft is a r × 1 vector of common factors, and

λi is a vector of factor loadings. The series Xit is the sum of a deterministic component Dit, a

common component λ′iFt, and an error eit that is largely idiosyncratic. A factor model with N

variables will have N idiosyncratic components but a small number of common factors.1

A series with a factor structure is non-stationary if one or more of the common factors are non-

stationary, or the idiosyncratic error is non-stationary, or both. Except by assumption, there is

nothing that restricts Ft to be all I(1) or all I(0). There is also nothing that rules out the possibility

that Ft and eit are integrated of different orders. These are not merely cases of theoretical interest,

but also of empirical relevance. As an example, let Xit be real output of country i. It may consist

of a global trend component F1t, a global cyclical component F2t, and an idiosyncratic component

(eit) that may or may not be stationary. As another example, the inflation rate of durable goods

may consist of a component that is common to all prices, and a component that is specific to

durable goods.

It is well known that the sum of two time series can have dynamic properties very different

from the individual series themselves. If one component is I(1) and one is I(0), it could be difficult
1This is a static factor model, and is to be distinguished from the dynamic factor model being analyzed in Forni,

Hallin, Lippi and Reichlin (2000).
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to establish that a unit root exists from observations on Xit alone, especially if the stationary

component is large. Unit root tests on Xit can be expected to be oversized while stationarity

tests will have no power. The issue is documented in Schwert (1989), and formally analyzed in

Pantula (1991), Ng and Perron (2001), among others, in the context of a negative moving-average

component in the first-differenced data.

Instead of testing for the presence of unit roots in Xit, the approach proposed in this paper is

to test the common factors and the idiosyncratic components separately. We refer such a Panel

Analysis of Non-stationarity in the Idiosyncratic and Common components as PANIC. PANIC

allows us to determine if nonstationarity comes from a pervasive or an idiosyncratic source. To

our knowledge, there does not exist a test in the literature for this purpose. PANIC can also

potentially resolve three econometric problems. The first is the size issue relating to summing

series with different orders of integration just mentioned. The second is a consequence of the fact

that the idiosyncratic components in a factor model can only be weakly correlated across i by design.

In contrast, Xit will be strongly correlated across units if the data obey a factor structure. Thus,

pooled tests based upon eit are more likely to satisfy the cross-section independence assumption

required for pooling. The third relates to power, and follows from the fact that pooled tests exploit

cross-section information and are more powerful than univariate unit root tests.

Since the factors and the idiosyncratic components are both unobserved, and our objective is

to test if they have unit roots, the key to our analysis is consistent estimation of these components

irrespective of their stationarity properties. To this end, we propose a robust common-idiosyncratic

(I-C) decomposition of the data using large dimensional panels. That is, datasets in which the

number of observations in the time (T ) and the cross-section (N) dimensions are both large. Loosely

speaking, the large N permits consistent estimation of the common variation whether or not they

are stationary, while a large T enables application of the relevant central limit theorems so that

limiting distributions of the tests can be obtained. Robustness is achieved by a ‘differencing and

re-cummulating’ estimation procedure so that I(1) and I(0) errors can be accommodated. Our

results add to the growing literature on large dimensional factor analysis by showing how consistent

estimates of the factors can be obtained using the method of principal components even without

imposing stationarity on the errors.

Our framework differs from conventional multivariate time series models in which N is small.

In small N analysis of cointegration, common trends and cycles, the estimation methodology being

employed typically depends on whether the variables considered are all I(1) or all I(0).2 Pretesting
2See, for example, King, Plosser, Stock and Watson (1991), Engle and Kozicki (1993), and Gonzalo and Granger

(1995).
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for unit roots is thus necessary. Because N is small, what is extracted is the trend or the cycle

common to just a small number of variables. Not only is the information in many potentially

relevant series left unexploited, consistent estimation of common factors is in fact not possible

when the number of variables is small. In our analysis with N and T large, the common variation

can be extracted without appealing to stationarity assumptions and/or cointegration restrictions.

This makes it possible to decouple the extraction of common trends and cycles from the issue of

testing stationarity.

The rest of the paper is organized as follows. In Section 2, we describe the PANIC procedures

and present asymptotic results for the Dickey-Fuller t test of the unit root hypothesis. As an inter-

mediate result, we establish uniform consistency of the factor estimates even when the individual

regressions are spurious. As this result is important in its own right, we devote Section 3 to the

large sample properties of the factor estimates. Section 4 uses simulations to illustrate the prop-

erties of the factor estimates and the tests in finite samples. PANIC is then applied to a panel of

inflation data. Proofs are given in the Appendix.

2 PANIC

The data Xit are assumed to be generated by

Xit = ci + βit + λ′iFt + eit, t = 1, . . . T, (1)

Fmt = αmFmt−1 + umt m = 1, . . . r (2)

eit = ρieit−1 + εit, i = 1, . . . N. (3)

Factor m is stationary if αm < 1. The idiosyncratic error eit is stationary if ρi < 1. The objective

is to understand the stationarity property of Fmt and eit when these are all unobserved, and for

which we estimate by the method of principal components.

When eit is I(0), the principal components estimators for Ft and λi have been shown to be

consistent when all the factors are I(0) and when some or all of them are I(1). But consistent

estimation of the factors when eit is I(1) has not been considered in the literature. Indeed, when

eit has a unit root, a regression of Xit on Ft is spurious even if Ft was observed, and the estimates

of λi and thus of eit will not be consistent. The validity of PANIC thus hinges on the ability to

obtain estimates of Ft and eit that preserve their orders of integration, both when eit is I(1) and

when it is I(0). We now outline a set of procedures that accomplish this goal. Essentially, the

trick is to apply the method of principal components to the first differenced data. We show in this

section that inference about unit roots is not affected by the fact that Ft and eit are not observed.
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We defer the discussion on the theoretical underpinnings of PANIC and the properties of factor

estimates to Section 3 so as to keep unit root testing the main focus of this section.

We consider two specifications of the deterministic trend function, leading to what will be

referred as the intercept only model and the linear trend model. We assume the number of common

factors (r) is known.3 To simplify the proof, we let εit and ut be serially uncorrelated. This allows

us to consider the t statistic on the first order autoregressive parameter developed in Dickey and

Fuller (1979). More general errors can be permitted, provided they satisfy the assumptions stated

in Section 3. Remarks to this effect will be made below.

2.1 The Intercept Only Case

The factor model in the intercept only case is

Xit = ci + λ′iFt + eit. (4)

We assume E(∆Ft) = 0. This is without loss of generality because if Ft = a + ξt such that

E(∆ξt) = 0, then Xit = ci + λ′ia + λ′iξt + eit. The first differenced model ∆Xit = λ′i∆ξt + ∆eit is

thus observationally equivalent to ∆Xit = λ′i∆Ft + ∆eit. Denote

xit = ∆Xit, ft = ∆Ft, and zit = ∆eit. (5)

Then the model in first-differenced form is:

xit = λ′ift + zit. (6)

The test statistics are constructed as follows:

1. Difference the data and estimate ft and λi from (6) by the method of principal components. To

be precise, let x be the (T − 1)×N data matrix such that the ith column is (xi2, xi3, ..., xiT )′,

i = 1, 2, ..., N . Let f = (f2, f3, ..., fT )′ and Λ = (λ1, ..., λN )′. The principal component

estimator of f , denoted f̂ , is
√

T − 1 times the r eigenvectors corresponding to the first r

largest eigenvalues of the (T − 1) × (T − 1) matrix xx′. The estimated loading matrix is

Λ̂ = x′f̂/(T − 1). Define ẑit = xit − λ̂′if̂t.

2. Given f̂t, define for each m = 1, . . . r,

F̂mt =
t∑

s=2

f̂ms.

3Consistent estimation of r is possible using the method of Bai and Ng (2002) with data in differences. It can be
shown that this will not affect the limiting distribution of the test statistics when the number of factors is estimated.
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Test the null hypothesis that F̂mt has a unit root for each m = 1, . . . r with an intercept

included in the autoregression. Denote this test by DF c
F (m).

3. For each i = 1, . . . N , denote by DF c
e (i) the test for the null hypothesis that there is a unit

root in êit, where êit =
∑t

s=2 ẑit (t = 2, . . . T ). No deterministic term is included in the

autoregressions.

Theorem 1 (the intercept only case): Suppose the data are generated by (4), (2) and (3), where

εit, umt are mean zero processes with finite variances and are iid over t. Suppose Assumptions

A-E stated in Section 3 hold. Let Wum (m = 1, . . . r) and Wεi (i = 1, . . . N) be standard Brownian

motions, and denote their demeaned counterparts by W c
um and W c

εi, respectively.

1. Consider testing the null hypothesis that αm = 1 for m = 1, . . . r. As N,T →∞,

DF c
F (m) ⇒

∫ 1
0 W c

um(s)dWum(s)
(∫ r

0 W c
um(s)2ds

)1/2
.

2. Consider testing the null hypothesis that ρi = 1 for i = 1, . . . N . As N, T →∞,

DF c
e (i) ⇒

∫ 1
0 Wεi(s)dWεi(s)( ∫ 1
0 Wεi(s)2ds

)1/2
.

When the first differenced data ∆Xit contain no deterministic terms, bFt√
T

= H Ft√
T

+op(1), where

H is a full rank matrix. As shown in the Appendix, the op(1) term is uniform in t. Testing for

a unit root in demeaned F̂t is asymptotically the same as testing for a unit root in demeaned Ft.

The DF c
F (m) statistic thus has the same limiting distribution as derived in Fuller (1976) for the

constant only case. The 5% asymptotic critical value is -2.86.

As also shown in the appendix, 1√
T

êit = 1√
T

eit + op(1), where the op(1) term is uniform in

t. This is the underlying reason (though not the only one) that eit can be replaced by êit. Since

no demeaning is performed, the asymptotic distribution DF c
e (i) is the DF unit root test with no

constant. The critical value at the 5% significance level is -1.95.

2.2 The Linear Trend Case: p = 1

Consider now the factor model in the case of a linear trend:

Xit = ci + βit + λ′iFt + eit (7)
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and thus ∆Xit = βi + λ′i∆Ft + ∆eit. Let ∆F = 1
T−1

∑T
t=2 ∆Ft, ∆ei = 1

T−1

∑T
t=2 ∆eit, and ∆Xi =

1
T−1

∑T
t=2 ∆Xit. Then

∆Xit −∆Xi = λ′i(∆Ft −∆F ) + (∆eit −∆ei)

which can be rewritten as

xit = λ′ift + zit. (8)

where

xit = ∆Xit −∆Xi, ft = ∆Ft −∆F, zit = ∆eit −∆ei. (9)

Note that the differenced and demeaned data xit are invariant to ci and βi. As a consequence,

there is no loss of generality to assume E(∆Ft) = 0. For example, if Ft = a + bt + ξt such

that E(∆ξt) = 0, then we can rewrite model (7) with Ft replaced by ξt and ci + βit replaced by

ci + λ′ia + (βi + λ′ib)t.

The tests are constructed as follows:

1. Difference and demean the data. Compute the principal components estimator f̂ as
√

T − 1

times the first r eigenvectors of the matrix xx′, and estimate Λ as Λ̂ = x′f̂/(T − 1). Define

ẑit = xit − λ̂′if̂t.

2. Given f̂t, define for each m = 1, . . . r

F̂mt =
t∑

s=2

f̂ms.

Test the null hypothesis that F̂mt has a unit root around a deterministic trend using the

Dickey-Fuller test with an intercept and a linear trend included in the autoregression. Denote

this test by DF τ
F (m).

3 Given ẑit, define

êit =
t∑

s=2

ẑis.

For each i = 1, . . . N , denote by DF τ
e (i) the test for the null hypothesis that there is a unit

root in êit with no intercept or linear trend included in the autoregression.

Theorem 2 (the linear trend case): Suppose the data are generated by (7), (2), and (3) and the

assumptions of Theorem 1 hold. Let W τ
um and W τ

εi be detrended standard Brownian motions.
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1. Consider testing the null hypothesis that αm = 1 for m = 1, . . . r. Then as N, T →∞,

DF τ
F (m) ⇒

∫ 1
0 W τ

um(s)dWum(s)
(∫ 1

0 W τ
um(s)2ds

)1/2
,

where W τ
um is a demeaned and detrended Brownian motion.

2. Consider testing for each i = 1, . . . N the null hypothesis that ρi = 1. Then as N,T →∞,

DF τ
e (i) ⇒ −1

2

( ∫ 1

0
Vεi(s)2ds

)−1/2

,

where Vεi(s) = Wεi(s)− sWεi(1) is a Brownian bridge.

The limiting distribution of DF τ
F (m) coincides with the Dickey Fuller distribution for the case with

a constant and a linear trend. As shown in the Appendix, the consequence of having to demean

∆Xit is that beit√
T

converges to a Brownian bridge instead of a Brownian motion. The limiting

distribution of the DF statistic is now proportional to the reciprocal of a Brownian bridge. This is

the same distribution as the test considered in Schmidt and Lee (1991), a modified version of the LM

test for the presence of a unit root around a linear trend developed in Schmidt and Phillips (1992).

Remarks:

1. Two desirable features of DF c
e (i) and DF τ

e (i) are worthy of highlighting. First, the limiting

distribution of the tests do not depend on the behavior of the common stochastic trends Ft.

That is to say, the same distributions are obtained whether Ft is I(1) or I(0). Second, the

limiting distributions do not depend on Brownian motions driven by ut, where we recall that

these are the innovations to the common factors. This property is useful for constructing

pooled tests, which will be considered below.

2. If εit and umt are weakly dependent, the ADF test of Said and Dickey (1984) should be used

instead. Theorems 1 and 2 remain valid provided the order of the augmented autoregression,

M , is chosen such that M3/T → 0 as M and T →∞.

3. Asymptotic results are provided here for the DF test. However, PANIC can also be used in

conjunction with other unit root tests. Using the Lemmas provided in the Appendix, the

limiting distributions of any unit roots test can, in principle, be obtained by adapting the

proofs.
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4. A test on F̂t can be constructed without demeaning or detrending. For p = 0, the limiting

distribution is the same except that W c
um is replaced by Wum. For p = 1, the limiting

distribution is related to a Brownian bridge. It has the same form as DF τ
e (i) reported in

Theorem 2, part 2. In unreported simulations, the test performs better with demeaning and

detrending.

5. A test on êit can likewise be constructed by demeaning or detrending êit. If this is done,

the limiting distribution has the same form as DFe(i) in Theorem 1, part 2, but with Wεi(r)

replaced by the demeaned and the detrended Brownian motion, respectively. Overall, the

test performs better without demeaning and detrending of the idiosyncratic errors.

2.3 Pooled Tests

Thus far, we have introduced PANIC as univariate tests on the common factors and the idiosyncratic

components. A common criticism of univariate unit root tests is low power, especially when T is

small. This has generated substantial interest to improve power. A popular method is to pool

information across units, leading to panel unit root tests. Recent surveys of panel unit root tests

can be found in Maddala and Wu (1999) and Baltagi and Kao (2001). The early test developed in

Quah (1994) imposed substantial homogeneity in the cross section dimension. Subsequent tests such

as that of Levin and Lin (1993) and Im, Pesaran and Shin (1997) allow for heterogeneous intercepts

and slopes, while maintaining the assumption of independence across units. This assumption is

restrictive, and if violated, can lead to over-rejections of the null hypothesis. Banerjee, Marcellino

and Osbat (2001) argued against use of panel unit root test because of this potential problem.

O’Connell (1998) provides a GLS solution to this problem, but the approach is theoretically valid

only when N is fixed. When N also tends to infinity, as is the case under consideration, consistent

estimation of the GLS transformation matrix is not a well defined concept since the sample cross-

section covariance matrix will have rank T when N > T even when the population covariance

matrix is rank N .

If cross-section correlation can be represented by common factors, then Theorems 1 and 2 show

that univariate tests based on êit do not depend on Brownian motions driven by the common innova-

tions ut asymptotically. Thus, if eit is independent across i, tests based upon êit are asymptotically

independent across i. This leads to the following.

Theorem 3 Suppose eit is independent across i and consider testing H0 : ρi = 1 ∀i against

H1 : ρi < 1 for some i. Then unit root tests based upon êit can be pooled.

Theorem 3 can be used to obtain pooled tests, such as that developed by Im et al. (1997), provided
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they are based upon êit. A test we consider is the following. Let pc(i) and pτ (i) be the p-values

associated with DF c
e (i) and DF τ

e (i), respectively. Consider the pooled tests P c = −2
∑N

i=1 log pc(i)

and P τ = −2
∑N

i=1 log pτ (i). Then

P c − 2N√
4N

⇒ N(0, 1) and
P τ − 2N√

4N
⇒ N(0, 1).

Under the assumption that eit is independent across i, tests based on êit are independent across

i asymptotically. The p-values are thus independent U[0,1] random variables. This implies that

minus two times the logarithm of the p-value is a χ2 random variable with two degrees of freedom.

The test −2
∑N

i=1 ln p(i) was first proposed in Maddala and Wu (1999) for fixed N . Choi (2001)

extended the analysis to allow N → ∞ by standardization. An implication of Theorem 4 is that

pooling over p values of tests based on the estimated residuals are also asymptotically normal upon

standardization. Pooling on the basis of p values is widely used in meta analysis. It has advantage

of allowing for as much heterogeneity across units as possible. For example, it can be used even

when the panel is non-balanced.

Pooled tests based upon êit can be seen as a panel test of no cointegration, as the null hypothesis

that ρi = 1 for every i holds only if no stationary combination of Xit can be formed. It differs from

other panel cointegration tests in the literature, such as developed in Pedroni (1995), in that our

framework is based on a large N , and the test is applied to êit instead of Xit. While panel unit

root tests based upon Xit is inappropriate if the data admit a factor structure, pooling of tests

based upon êit is asymptotically valid under the more plausible assumption that eit is independent

across i. It should be made clear that univariate tests proposed in Theorems 1 and 2 permit

weak cross-section correlation of the idiosyncratic errors. It is only in developing pooled tests

that independence of the idiosyncratic errors is necessary. The independence assumption can, in

principle, be relaxed by restricting the number of cross-correlated errors to be finite so that as N

increases, the p values are averaged over infinitely many units that are not cross-correlated.

2.4 Cointegration Tests

The proposed unit root test on êit is valid whether Ft is I(1) or I(0). This convenient result holds

whether the polynomial trend function is of order 0 or 1. However, when some or all of the factors

are I(1), a new test can also be obtained as follows. In the intercept only case, define ê1
it as the

estimated residual from the level regression

Xit = ci + λ′iF̂t + e1
it

9



where F̂t is defined in the previous section. In the linear trend case, define ê1
it as the estimated

residual from the regression

Xit = ci + βit + λ′iF̂t + e1
it.

Denote the DF test on ê1 by DF c
e1(i) and DF τ

e1(i), respectively.

Theorem 4 Suppose some r̄ ≤ r of the factors are I(1). Then DF c
e1(i) and DF τ

e1(i) have the same

limiting distributions as the residuals based cointegration test of Phillips and Ouliaris (1990) with r̄

integrated regressors, plus a constant and a time trend in the cointegrating regression, respectively.

When r̄ common factors are assumed to be I(1), testing the null hypothesis that eit is I(1) is

the same as testing the null hypothesis that Xit does not cointegrate with r̄ integrated factors.

The DFe(i) statistic then becomes the residuals based test for no stochastic cointegration with

r̄ regressors. The asymptotic distributions are derived in Phillips and Ouliaris (1990). When an

intercept is in the regression, the critical values for DF c
e1(i) at the 5% level are -3.37 and -3.77 for

r̄ = 1 and 2, respectively. If, in addition, the cointegrating regression has a time trend, the 5%

critical values are -3.73 and -4.07 for r̄ = 1, 2, respectively.

An important difference between tests based on êit and ê1
it is that the limiting distributions of

the former are asymptotically independent across i, but the latter are not. Essentially, I(1) variables

have non-vanishing effects on estimated residuals of a cointegrating regression. In consequence, the

limiting distributions of residuals based cointegration tests are functions functions of the projection

matrix of I(1) variables. Since the I(1) variables in the present context are the common trends, nei-

ther DF c
e1(i) nor DF τ

e1(i) is asymptotically independent across i. More importantly, these statistics

cannot be pooled.

3 Consistency of F̂t

The asymptotic results stated in the previous section require consistent estimation of Ft and eit

when some, none, or all of these components are I(1). In this section, we first state the assumptions

underlying these results. We then discuss the properties of the factor estimates and provide two

convergence results.

3.1 Assumptions

Let M be a generic positive number, not depending on T and N . Let ft and zit be defined by (5).

Assumption A:

1. E‖ft‖4 ≤ M ,
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2. 1
T

∑T
t=1 ftf

′
t

p−→ Σf , a r × r positive definite matrix;

3. E(ft) = 0 and max1≤k≤T
1√
T
‖∑k

t=1 ft‖ = Op(1);

4. 1
T 2

∑T
t,s,u,v=1 |E(fjtfjsfjufj,v)| ≤ M , for j = 1, 2, ..., r.

Assumption B: E‖λi‖4 ≤ M , and 1
N

∑N
i=1 λiλ

′
i

p−→ ΣΛ, a r × r positive definite matrix.

Assumption C:

1. E(zit) = 0, E|zit|8 ≤ M ;

2. E(N−1
∑N

i=1 ziszit) = γN (s, t),
∑T

s=1 |γN (s, t)| ≤ M for all t.

3. E(zitzjt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t, and
∑N

i=1 |τij | ≤ M for all j.

4. E(max1≤k≤T
1√
TN
‖∑k

t=1

∑N
i=1 λizit‖) ≤ M

5. E
∣∣∣N−1/2

∑N
i=1[ziszit − E(ziszit)]

∣∣∣
4
≤ M , for every (t, s);

E
(

max1≤k≤T
1√
NT
|∑k

t=1

∑N
i=1(ziszit −E(ziszit))|

)2
≤ M , for every s.

Assumption D: The idiosyncratic errors eit, the common factors Ft, and the loadings λi are three

mutually independent groups.

Assumption E: For every m = 1, . . . r, E‖Fm0‖ ≤ M , and for every i = 1, . . . N , E‖ei0‖ ≤ M .

These conditions are sufficient for unit root inference to be unaffected by the replacement

of Ft and eit with their principal component estimates. Assumptions A-D have previously been

used to analyze approximate factor models, see, for example, Stock and Watson (1998). However,

Assumptions E, A3 and A4 are new to this paper. Assumption E is an initial condition assumption

made commonly in unit root analysis. A3 is weaker than the requirement of functional central

limit theorem for ft. A4 is a weak serial-correlation condition imposed on the factors expressed

in terms of the fourth moment. A2 together with B imply the existence of r factors. Assumption

C2 allows some weak serial-correlation of zit for every given i. Assumption C3 allows weak cross-

section correlation for every given t. Under covariance stationarity, C3 implies a bound on the

largest eigenvalue of the covariance matrix of eit, making the model an ‘approximate factor model’

in the sense of Chamberlain and Rothschild (1983). For C4, let φNt = 1√
N

∑N
i=1 λizit. The weak

cross-section correlation together with the moment conditions on λi and zit imply E‖φNt‖4 ≤ M

for all t. Thus if zit are independent over t so that φNt are also independent over t, then C4 can

be shown to be true, say by the Doob’s inequality. Of course, independence is not necessary for

C4. The explanation for the second requirement in C5 is similar. Assumptions A and C could also

have been stated in terms of the fundamental innovations ut and εit, but additional Lemmas would

then be required to link them to ft and zit, resulting in repetitive statements.
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3.2 Estimation of Ft

Existing proofs for consistency of the factor estimates assume that the idiosyncratic components are

all I(0). In particular, Bai and Ng (2002) considered estimation of r and showed that the squared

deviation between the estimated factors and the true factors vanish, while Bai (2001a) derived the

asymptotic distributions for the estimated Ft and λi. Both studies assume all variables are I(0),

but we need consistent estimates not just when eit is I(0), but also when it is I(1).

The insight of the present analysis is that, by applying the method of principal components to

the first differenced data, it is possible to obtain consistent estimates of Ft and eit, regardless of

the dynamic properties of Ft and eit. To sketch the idea why this is the case, assume βi = 0 and

consider the factor model in differenced form:

∆Xit = λ′i∆Ft + ∆eit.

Clearly, differencing removes the fixed effect ci. This is desirable because a consistent estimate

of it cannot be obtained when eit is I(1). Now if eit is I(1), ∆eit = zit ≡ εit will be I(0). If εit

has weak cross-section and serial correlation, then provided they satisfy Assumption C, consistent

estimates of ∆Ft can be obtained. If eit is I(0) but satisfy Assumption C, then ∆eit, although

over-differenced, still satisfy those conditions, so consistent estimation of ∆Ft can once again be

shown. We summarize these arguments in the following Lemma.

Lemma 1 Let ft and zit be defined by (5). Consider estimation of (6) by the method of principal

components and suppose Assumptions A to D hold. Then for δNT = min{√N,
√

T}, there exists

an H with rank r such that as N, T →∞,

(a) 1
T

∑T
t=2 ‖f̂t −Hft‖2 = Op(δ−2

NT ),

(b) min{√N, T}(f̂t −Hft) = Op(1), for each given t,

(c) min{√T ,N}(λ̂i −H ′−1λi) = Op(1), for each given i.

Although λi and ft are not directly identifiable, there exists a r × r full rank matrix H such

that f̂t is an estimate of Hft and λ̂i is an estimate of H−1′λi. Result (a) is proved in Bai and

Ng (2002), while (b) and (c) are proved in Bai (2001a). It should be remarked that when eit is I(0),

estimation using the data in level form will give a direct and consistent estimate on Ft. Although

these estimates could be more efficient than the ones based upon first differencing, they are not

consistent when eit is I(1).

In Pesaran and Smith (1995), it was shown that spurious correlations between two I(1) variables

do not arise in cross section regressions estimated with time averaged data under the assumption
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of strictly exogenous regressors, iid errors, and T fixed. Phillips and Moon (1999) showed that an

average long run relation, defined from long-run covariance matrices of a panel of I(1) variables,

can be identified when N and T are both large. Lemma 1 shows that the individual relations

(not just the average) can be consistently estimated under a much wider range of conditions:- the

regressors are unobserved, they can be I(1) or I(0), and the individual regressions may or may not

be spurious.

Although consistent estimation of λi, ft and zit is implied by our previous works, the series we

are interested in testing are F̂t =
∑t

s=2 f̂s and êit =
∑t

s=2 ẑit. Thus, we need to show that given

estimates of ft and zit, F̂t and êit are consistent for Ft and eit, respectively.

Lemma 2 Under the assumptions of Lemma 1,

max
1≤k≤T

1√
T
‖

t∑

s=2

(f̂s −Hfs)‖ = Op(N−1/2) + Op(T−3/4).

Loosely speaking, the lemma says that the cumulative sum of f̂t is uniformly close to the

cumulative sum of ft provided N, T → ∞.4 This result is instrumental in obtaining the limiting

distributions of unit root tests for Ft. It would seem that for testing êit, this result may not be

sufficient since êit also depends on λ̂i. But as seen from the proof in the Appendix, we only require

(λ̂i −H ′−1λi) to be op(1) for unit root tests on êit to yield the same inference as testing eit. But

by Lemma 1c, this holds provided N and T tend to infinity. Thus, the conditions for valid testing

of Ft and eit using F̂t and êit are the same.

The above two Lemmas stated for the intercept only case extends to the linear trend model.

Lemma 3 Suppose ft and zit defined in (5) satisfy Assumptions A-D. Then ft and zit defined

in (9) also satisfy the same conditions. Consider estimating f and Λ from (8) by the method of

principal components. Then Lemma 1 and Lemma 2 still hold.

Uniform convergence of the factor estimates in large panels was proved in Stock and Watson

(1998) under the assumption that N >> T 2 and that Ft and eit are stationary. However, a more

general uniform consistency result can be obtained from Lemma 2. Because F̂t =
∑t

s=2 f̂s and

H
∑t

s=2 ft = H
∑t

s=2 ∆Fs = HFt −HF1, Lemma 2 implies (upon multiplying T 1/2 to each side)

max
1≤k≤T

‖F̂t −HFt + HF1‖ = Op(T 1/2N−1/2) + Op(T−1/4). (10)

According to (10), F̂t is uniformly consistent for HFt (up to a shift factor HF1), provided that

T/N → 0 when N and T go to infinity. This is obtained without knowing whether Ft or eit are I(0)
4The Op(T−3/4) can be replaced by Op(logT/T ) if the moment generating function of ft exists (i.e., if Eeτ‖ft‖ ≤ M

for all t and for some τ > 0).
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or I(1), thus a very strong result. Since a location shift does not change the nonstationary property

of a series, testing the demeaned process F̂t − F̂ is asymptotically the same as testing H(Ft − F ).

Result (10) is remarkable in that the common stochastic trends can be consistently estimated

by the method of principal components, up to a rotation and a shift in level, regardless of the

idiosyncratic errors being I(1) or I(0). This means that even if each cross-section equation is a spu-

rious regression, the common stochastic trends are well defined and can be consistently estimated,

if they exist. This is not possible within the framework of traditional time series analysis, in which

N is fixed.

The result that when N and T are large, the entire vector of common factors can be consistently

estimated under very general conditions is also of practical interest because it allows us to assess

the relative importance of the common and the idiosyncratic components even when neither is

observed. Because of its generality, (10) is stated as a result of independent interest. It should

be made clear that uniform consistency is not necessary for PANIC, and thus we do not require

T/N → 0, though our results will hold under these stronger conditions. For PANIC to be valid,

only Lemmas 1 and 2 are necessary.

Finally, a caveat about the number of non-stationary factors is in order. Because H is of full

rank, each component of HFt (and of F̂t) will be I(1) if each component of Ft is I(1). Similarly,

each component of HFt (and of F̂t) will be I(0) if each component of Ft is I(0). However, if only

r̄ components (0 < r̄ < r) of Ft are I(1), more than r̄ components of HFt could be I(1) since

linear combinations of I(1) variables remain I(1). PANIC tests if each of the r estimated factors is

non-stationary, which amounts to testing if the series formed by each row of HFt is non-stationary.

Thus the number of non-stationary F̂t is an upper bound for the number of non-stationary Ft.

If knowledge of r̄ is essential, methods that detect the number of cointegrating vectors in a small

number of series, such as developed by Stock and Watson (1988) or Nyblom and Harvey (2000), can

be applied to the vector series F̂t. By Lemmas 1 and 2, such tests will also consistently determine

r̄.

4 Monte Carlo Simulations

We begin by using a model with one factor to show that F̂t constructed as
∑t

s=2 f̂t is robust to

different stationarity assumptions about eit, where f̂t is estimated from first differenced data. We

generate Ft as an independent random walk of N(0,1) errors with T=100. This is plotted in Figure

1 (a). Data are generated according to Xit = λiFt + eit, where λi is iid N(1,1). We then construct

F̂t as discussed in Section 2 for the intercept only model. Since we can only identify Ft up to a

location transformation and a scale shift, we consider a rotated estimate obtained as the fitted
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value from the regression

Ft = a + bF̂t + error.

An implication of Lemma 2 is that the rotated F̂t should be an increasingly more precise estimate

of Ft as N increases. On the other hand, estimation using the data in levels will not have this

consistency property.

For the case where eit is I(1), we simulate a random walk driven by iid N(0,1) errors. Figures

1(b), (c) and (d) display the true factor process Ft along with (the rotated) F̂t, estimated both

by first differencing the data, and by applying the method of principal components to the data in

level form, for N=20, 50, 100, respectively. Evidently, F̂t gets closer to Ft as N increase if the data

are differenced. In fact the rotated F̂t is actually close to the true process even when N = 20. On

the other hand, when the method of principal components is applied to levels of the same data, all

the estimated series are far from the true series, showing that estimation using the data in levels is

not consistent when eit is I(1). We next assume the idiosyncratic errors are all I(0) by drawing eit

from an iid N(0, 1) distribution. Figure 2 illustrates that even though the data are over differenced,

the estimates are very precise. In this case, both the level and differenced methods give almost

identical estimates.

Having shown that first differencing the data indeed yield precise estimates of the factors, we

now use simulations to illustrate the finite sample properties of the proposed tests. We simulate

data using Equations (1)-(3). The number of common factors r is set to 1. Data are generated

with λi ∼ N(1, 1), εit ∼ N(0, 1) and ut ∼ N(0, σ2
F ). The following variations are considered:

• σ2
F =10, 1, and .5.

• (ρ, α)={(.5,.8),(.8,.5),(0,.9),(.9,0),(1,0),(1,.5),(1,.8),

(1,.9),(1,.95),(0,1),(.5,1),(.8,1),(.9,1),(.95,1)};

We report results for T=100, and N = 20, 100. The number of replications is 1000. Table 1

presents results for the ADF test applied to Xit, F̂t, êit, and ê1
it. The entries are to be interpreted as

size if (i) Ft is tested and α = 1, or (ii) êit or ê1
it is tested and ρ = 1, or (iii) Xit is tested and ρ = 1

or α = 1. All other entries represent power. The augmented autoregressions have M = 4(T/100)1/4

lags throughout. The column labelled F̂ in Table 1 is the rejection rate of the ADF test applied to

the estimated common factor. The remaining three columns are the average rejection rates, where

the average is taken across N units over 1000 trials. Results for a particular i are similar.

The statistic for testing if Xit has a unit root should have a rejection rate that equals the

nominal size of .05 when α = 1 or ρ = 1. In finite samples, this is true only when ρ = 1 and σF is

small. When σF =10 and α=.5, for example, the ADF test rejects a unit root in Xit with probability
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around .37 in the interecept model, and ..4 in the linear trend model, even though ρ = 1. As noted

earlier, testing for a unit root in Xit when it has components with different degrees of integration

is difficult because of the negative moving average component in ∆Xit.

Turning now to unit root tests on F̂t, the empirical size is close to the nominal size of .05 when

α is 1 and exhibits little size distortion. At other values of α, it reflects power with rejection rates

comparable to other unit root tests that are based on least squares detrending. This suggests that

the error in estimating Ft is small. Thus, even when N=20, Ft can be treated as though it is known.

Indeed, the results for N = 20 and N = 100 are very close except for small α. This supports our

earlier claim that PANIC does not require a very large N . So the proposed approach can be used

for many configurations of the data.

When ρ = 1, tests based on êit or ê1
it have rejection rates close to the nominal size of 5%.

Although the tests have similar sizes, they have different power properties. Consider the power

of the tests at ρ=.9. If α=0, the ADF test using êit rejects the null hypothesis with probability

.46, much higher than the rejection rate of .1 when ê1
it is used. For close alternatives, such as

when α = 1 and .8 < ρ < 1, power is always higher from testing êit than ê1
it. This is because the

limiting distributions of tests for êit coincide with tests that can be given an LM interpretation,

and LM tests have better local power. Although the test based upon ê1
it is more powerful for some

parameter values, testing êit does not require a priori judgement on whether Ft is I(1) or I(0), nor

is it necessary to know how many of the common factors are non-stationary. Both features are

desirable since the problem of testing if eit has a unit root can be decoupled from whether the Fts

have unit roots. However, the more compelling argument for using êit over ê1
it is that tests based

on êit can be pooled.

Results for the pooled tests are reported in Table 2. The p-values required to construct the

pooled tests are obtained as follows. We first simulate the asymptotic distributions reported in

Theorems 1 and 2 by using partial sums of 500 N(0,1) errors to approximate the standard Brownian

motion in each of the 10,000 replications. A look-up table is then constructed to map 300 points

on the asymptotic distributions to the corresponding p values. In particular, 100 points is used to

approximate the upper tail, 100 to approximate the lower tail, and 100 points for the middle part

of the asymptotic distributions.5

The results in Table 2a,b confirm that the standard method of pooling tests on Xit biases the

tests toward rejecting the null hypothesis (see column 1). For example, when ρ = .5 and α = 1,

all N series are non-stationary in view of the common stochastic trend. The standard pooled test
5The p values match up very well Table 3 of MacKinnon (1994), whenever they are available. These look-up tables

are available from the authors.
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should have a rejection rate close to the nominal size. However, the rejection rate is .35. Consider

also ρ = 1 and α = 0. The common factor is iid. The pooled test has a size of .16 of .05 when

σF is small and deteriorates to .96 when σF is large. These results are consistent with the findings

of O’Connell (1998) that cross section correlation leads the standard pooled test to over-reject the

null hypothesis.

In theory, pooling based on ê1
it is invalid. In simulations, this pooled test has better properties

than expected, though it has a distorted size when both the common and the idiosyncratic com-

ponents have unit roots. They are also less powerful when ρ is close to one. On the other hand,

the pooled test based on êit is always very well-behaved even when N is as small as 20. It rejects

the null hypothesis that every eit has a unit root when they are in fact stationary with probability

of almost one. When each of the eit is non-stationary, the rejection rate roughly equals the size of

the test. In view of the much documented size and power problem concerning unit root tests, these

results are striking.

5 Application to Inflation

In this section, we examine whether the common factor and the idiosyncratic components of inflation

are non-stationary. This exercise is interesting in its own right because there is no unique definition

of inflation. For every available price series, an inflation rate can be computed. Yet, in most

economic analysis, the object of interest is not the rate of growth of a particular price series, but

that of the general price level. The growth rate of the general price level is sometimes referred to

as ‘core inflation.’ The common factor in our analysis can be given this interpretation.

There exists a large body of research that attempts to measure core inflation6. In addition to

the price indices used in the calculations, the various measures of core inflation also differ in the

stationarity assumption. Quah and Vahey (1995) used a structural VAR to identify core inflation,

assuming inflation is I(1). Bryan and Cecchetti (1993) extracted core inflation using a state space

framework and assumed inflation rates are stationary. As discussed in Ng and Perron (1997),

inflation data tend to have a negative moving average component, and this makes unit root testing

imprecise. Indeed, empirical testing has failed to come to a consensus as to whether inflation

is stationary. Some studies proceed assuming inflation is stationary, while others assume it is

differenced stationary.7 Here, we provide a formal test of whether core inflation has a unit root

without taking a stand on whether the data have unit roots. In fact, we use the dynamic properties

of core inflation to help understand whether the observed inflation series are stationary.
6For a discussion on this and related issues, see Clark (2001) and Wynne (1999).
7See, for example Ireland (1999) and Stock and Watson (1999). Both rejected a unit root at the 10% level for

some subsample but favored the unit root model in their empirical work.
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We use a panel of 21 monthly price indices published by the Bureau of Labor Statistics contin-

uously over the sample 1967-19978 to construct a panel of monthly inflation. Thus, Xit is inflation,

i = 1, . . . N = 21 and t = 1, . . . T = 371. All tests are performed using the intercept model, i.e.

without a linear trend. The ADF test rejects a unit root in 8 inflation series. The more powerful

DFGLS test of Elliott, Rothenberg and Stock (1996) rejects a unit root in 11 series.9

We then estimate one factor by applying the method of principal components to the standardized

first difference of inflation. The standardization effectively downweighs volatile series in calculating

the principal components. Note that there is no need to demean the differenced data since the mean

of of differenced data is zero by assumption in the intercept model.10 The single factor explains

roughly 10% of the total variation in the data. The last two columns of Tables 3 present estimates

to gauge the relative importance of the common factor. The variance of ∆êit tends to be large

relative to the variance of ∆Xit. Of the 21 series, only 8 have common factors explaining more than

5% of the variation in the series. This suggest that the idiosyncratic components in the inflation

series are large and dominate the common components. This is confirmed by the fact that the

variation of the common component relative to of that of the idiosyncratic component is 10% or

more in only six series. The ADF test for the common factor is -2.79, when the 5% critical value

of -2.86. We cannot reject the null hypothesis that the common factor has a unit root at the 5%

level. All inflation series are non-stationary in view of the presence of a unit root in the common

factor.

We next apply the ADF test to êit. We can reject the unit root hypothesis in 7 series. In 6 of

these case, the unit root null is also rejected when ê1
it is tested. In each of the 7 cases that we reject

a unit root in êit, the DFGLS also rejects a unit root in Xit even though there is a non-stationary

common factor. In the 11 cases when the DFGLS cannot reject a unit root in Xit, the ADF also

cannot reject a unit root in êit. The results are consistent with the presence of a common but small

unit-root component. Direct testing of Xit becomes imprecise when the idiosyncratic component

is stationary and large.
8Clark (2001) compared various measures of core inflation using 36 CPI series, but only 23 of them were available

before 1980. The other two series, CPI and CPI ex-energy, are aggregates which we exclude from the analysis. This
leaves 21 series. The sample ended in 1997 because of a change in the structure of the CPI data.

9The lag lengths selected by the MAIC for the DFGLS are between 8-12 (see Ng and Perron (2001)). The results
reported in Table 3 are all based on 8 lags.

10The panel criterion developed in Bai and Ng (2002) was not used because N is too small for precise estimation
of r.
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6 Conclusion

This paper makes use of the observation that if a panel of data has a factor structure, then testing

for the presence of a unit root in the common and the idiosyncratic terms separately should be

more effective than unit root testing on the observed data. Accordingly, we first consider how

the common factors can be consistently estimated irrespective of the stationarity property of the

idiosyncratic errors. We then consider unit root tests based on the estimated data and show that

inference about unit roots is not affected by the fact that the factors cannot be observed. While

pooling is inappropriate when the observed data are cross-correlated, pooling over tests based on

the idiosyncratic components are more likely to be valid. Simulations show that the proposed tests

have good size and power properties even for panels with only 20 units.

The present analysis can be extended in several ways. The common-idiosyncratic decomposition

enables inferential analysis in general. Thus, in addition to unit root tests, the null hypothesis of

stationarity can also be considered. The deterministic terms in the factor model are estimated

in the present paper by the method of least squares. As such, the unit root tests are implicitly

based on least squares detrending. But as Elliott et al. (1996) showed, unit root tests based on

GLS detrending are more powerful. The tests developed in this paper can potentially be improved

along this dimension. In theory, the machinery developed in this paper can also be used to test the

long memory, ARCH effects, and other time series features in the data. We leave this for future

research.
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Appendix

A: Proof of Lemma 2

For notational simplicity, we assume there are T + 1 observations (t = 0, 1, ..., T ) for this lemma.

The differenced data have T observations so that x is T ×N . Let VNT be the r× r diagonal matrix

of the first r largest eigenvalues of 1
TN xx′ in decreasing order. By the definition of eigenvectors

and eigenvalues, we have 1
TN xx′f̂ = f̂VNT or 1

NT xx′f̂ V −1
NT = f̂ . Let H = V −1

NT (f̂ ′f/T )(Λ′Λ/N) be

a r × r matrix and δNT = min{√N,
√

T}. Then the following is a mathematical identity:

f̂t −Hft = V −1
NT

( 1
T

T∑

s=1

f̂sγN (s, t) +
1
T

T∑

s=1

f̂sζst +
1
T

T∑

s=1

f̂sηst +
1
T

T∑

s=1

f̂sξst

)
, (A.1)

where for zt = (z1t, z2t, ..., zNt)′,

ζst =
z′szt

N
− γN (s, t), ηst = f ′sΛ

′zt/N, ξst = f ′tΛ
′zs/N. (A.2)

Bai (2001a) showed that ‖V −1
NT ‖ = Op(1). Using f̂ ′f̂/T = Ir, together with Assumptions A and B,

‖H‖ = Op(1). Lemma 2 is implied by the following lemma:

Lemma A1 Under Assumptions A-D, we have

(a). T−3/2sup1≤k≤T ‖
∑k

t=1

∑T
s=1 f̂sγN (s, t)‖ = Op( 1√

TδNT
) + Op(T−3/4);

(b). T−3/2sup1≤k≤T ‖
∑k

t=1

∑T
s=1 f̂sζst‖ = Op( 1√

N
);

(c). T−3/2sup1≤k≤T ‖
∑k

t=1

∑T
s=1 f̂sηst‖ = Op( 1√

N
);

(d). T−3/2sup1≤k≤T ‖
∑k

t=1

∑T
s=1 f̂sξst‖ = Op( 1√

NδNT
).

Proof: Consider part (a). By adding and subtracting terms,

k∑

t=1

T∑

s=1

f̂sγN (s, t) =
k∑

t=1

T∑

s=1

(f̂s −Hfs + Hfs)γN (s, t)

=
T∑

s=1

(f̂s −Hfs)
k∑

t=1

γN (s, t) + H
T∑

s=1

fs

k∑

t=1

γN (s, t).

Consider the first term:

‖
T∑

s=1

(f̂s −Hfs)
k∑

t=1

γN (s, t)‖ ≤
( T∑

s=1

‖f̂s −Hfs‖2
)1/2( T∑

s=1

|
k∑

t=1

γN (s, t)|2
)1/2

By Lemma 1(i),
(∑T

s=1 ‖f̂s−Hfs‖2
)1/2

= T 1/2Op(δ−1
NT ). Because |∑k

t=1 γN (s, t)| ≤ M for all k and

s, (
∑T

s=1 |
∑k

t=1 γN (s, t)|2)1/2 ≤ M
√

T . Thus T−3/2‖∑T
s=1(f̂s−Hfs)

∑k
t=1 γN (s, t)‖ = Op( 1√

TδNT
).
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Consider the second term. We use the following fact: let X1, X2, ..., XT be an arbitrary sequence

of random variables. If max1≤k≤T E|Xk|α ≤ M (α > 0), then max1≤k≤T |Xk| = Op(T 1/α). Let

ask =
∑k

t=1 γN (s, t), then E‖T−1/2
∑T

s=1 fsask‖4 ≤ M by Assumptions A and C. This implies that

(with α = 4 and Xk = T−1/2
∑T

s=1 fsask)

T−3/2sup1≤k≤T ‖
T∑

s=1

fsask‖ = Op(T−3/4),

proving (a). Consider part (b).

T−3/2
k∑

t=1

T∑

s=1

f̂sζst = T−1
T∑

s=1

(f̂s −Hfs)
1√
T

k∑

t=1

ζst + HT−1
T∑

s=1

fs
1√
T

k∑

t=1

ζst.

For the first term,

‖T−1
k∑

t=1

T∑

s=1

(f̂s −Hfs)
1√
T

k∑

t=1

ζst‖ ≤
( 1

T

T∑

s=1

‖f̂s −Hfs‖2
)1/2[ 1

T

T∑

s=1

( 1√
T

k∑

t=1

ζst

)2]1/2
.

Furthermore,

1
T

T∑

s=1

( 1√
T

k∑

t=1

ζst

)2
=

1
T

T∑

s=1

[
1√
T

k∑

t=1

(z′szt

N
− γN (s, t)

)]2

=
1
T

T∑

s=1

[
1√
T

k∑

t=1

(z′szt

N
− E(z′szt)

N

)]2

=
1
N

1
T

T∑

s=1

[
1√
NT

k∑

t=1

N∑

i=1

(ziszit −E(ziszit))

]2

= Op(
1
N

),

uniformly in k by Assumption C5. Thus the first term is Op( 1
δNT

)Op( 1√
N

). Next,

T−3/2
T∑

s=1

fs

k∑

t=1

ζst =
1

T
√

N

T∑

s=1

fs
1√
TN

k∑

t=1

N∑

i=1

(ziszit − E(ziszit)) =
1√
NT

T∑

s=1

fsφk,s

where φk,s is implicitly defined in the above expression. C5 implies that E(max1≤k≤T |φk,s|) ≤ M .

Thus E(max1≤k≤T
1√
NT
‖∑T

s=1 fsφk,s‖) ≤ 1√
N

1
T

∑T
s=1 E(‖fs‖max1≤k≤T |φk,s|) = O(N−1/2) be-

cause E(‖fs‖max1≤k≤T |φk,s|) = E‖fs‖ ·E(max1≤k≤T |φk,s|) ≤ M1 (M1 < ∞) by the independence

of fs and the z′its. Thus, uniformly in k,

T−3/2
T∑

s=1

f̂s

k∑

t=1

ζst = Op(
1

δNT
).Op(

1√
N

) + Op(
1√
N

) = Op(
1√
N

).

Consider part (c).

T−3/2
T∑

s=1

f̂sηst = T−1
T∑

s=1

(f̂s −Hfs)
1√
T

k∑

t=1

ηst + HT−1
T∑

s=1

fs
1√
T

k∑

t=1

ηst.
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But T−1
∑T

s=1 fs
1√
T

∑k
t=1 ηst = ( 1

T

∑T
s=1 fsfs

′) 1
N
√

T

∑k
t=1

∑N
i=1 λieit = Op( 1√

N
), uniformly in k by

A(ii) and C4. Next,

‖T−1
T∑

s=1

(f̂s −Hfs)
1√
T

k∑

t=1

ηst‖ ≤
( 1

T

T∑

s=1

‖f̂s −Hfs‖2
)1/2

·
[ 1
T

T∑

s=1

( 1√
T

k∑

t=1

η2
st

)]1/2
.

The first expression is Op(1/δNT ) by Lemma 1. For the second expression,

T−1
T∑

s=1

( 1√
T

k∑

t=1

ηst

)2
=

1
N

1
T

T∑

s=1

(
f ′s

1√
TN

k∑

t=1

N∑

i=1

λieit

)2
= Op(

1
N

),

uniformly in k. Thus, (c) is Op( 1√
N

) + Op( 1√
NδNT

) = Op( 1√
N

).

Finally for part (d),

T−3/2
k∑

t=1

T∑

s=1

f̂sξst = T−3/2
k∑

t=1

T∑

s=1

f̂sf
′
tΛzs/N = T−1

T∑

s=1

(f̂sz
′
sΛ/N)

1√
T

k∑

t=1

ft

It is proved in Bai (2001a) that T−1
∑T

s=1(f̂sz
′
sΛ/N) = Op( 1√

NδNT
) (this can also be proved di-

rectly). By A(iii), 1√
T

∑k
t=1 ft = Op(1) uniformly in k. Thus (d) is equal to Op( 1√

NδNT
) uniformly

in k. The proof of Lemma A1 is complete.

¿From equation (A.1) and Lemma A1

max
1≤k≤T

1√
T
‖

k∑

t=1

(f̂t−Hft)‖ = Op(
1√

TδNT

)+Op(
1

T 3/4
)+Op(

1√
N

)+Op(
1√

NδNT

) = Op(
1√
N

)+Op(
1

T 3/4
)

This proves Lemma 2.

B. Proof of Theorem 1

We first prove part 2 of Theorem 1. The objective is to show the weak convergence

DF c
e (i) =

∑T
t=2 êit−1∆êit(

s2
∑T

t=2 ê2
it−1

)1/2
⇒

1
2(Wεi(1)2 − 1)
( ∫ 1

0 W 2
εidr

)1/2
(B.1)

where s2 = 1
T−1

∑T
t=2(∆êit − âiêit−1)2 and âi is the OLS estimator in the regression of ∆êit on

êit−1.

Because êit is defined as the cumulative sum of ẑit, i.e., êit =
∑t

s=2 ẑit, it follows that ∆êit =

êit − êit−1 = ẑit. Noting

xit = λ′ift + zit = λ′iH
−1Hft + zit,

xit = λ̂′if̂t + ẑit,
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and subtracting the first equation from the second, we obtain

ẑit = zit + λ′iH
−1Hft − λ̂′if̂t

= zit − λ′iH
−1(f̂t −Hft)− (λ̂i −H−1′λi)′f̂t

Because ẑit = ∆êit and zit = ∆eit, we can rewrite the above as

∆êit = ∆eit − λ′iH
−1vt − d′if̂t (B.2)

where vt = f̂t − Hft, and di = λ̂i − H−1′λi. Note that di = Op(max{T−1/2, N−1}) = op(1), as

N, T →∞ by Lemma 1(iii). Lemma 2 implies

sup2≤t≤T ‖
1√
T

t∑

s=2

vs‖ = op(1). (B.3)

Lemma B1 1√
T

êit = 1√
T

eit + op(1), where op(1) is uniform in t ∈ [2, T ], as N,T →∞.

Proof: The cumulative sum of (B.2) leads to (define êi1 = 0)

êit = eit − ei1 − λ′iH
−1

t∑

s=2

vs − d′i
t∑

s=2

f̂s, or

êit√
T

=
eit√
T
− ei1√

T
− λ′iH

−1(
1√
T

t∑

s=2

vs)− d′i
1√
T

t∑

s=2

f̂s

Now ei1√
T

= Op( 1√
T

). The third term is op(1) by (B.3). For the last term,

‖d′i
1√
T

t∑

s=2

f̂s‖ ≤ ‖di‖ · ‖ 1√
T

t∑

s=2

f̂s‖

≤ op(1)‖ 1√
T

t∑

s=2

(f̂s −Hfs)‖+ op(1)‖ 1√
T

t∑

s=2

fs‖ · ‖H‖

= op(1)‖ 1√
T

t∑

s=2

vs‖+ op(1)Op(1) → 0

because 1√
T

∑t
s=2 fs = Op(1) by Assumption A(iii) and ‖ 1√

T

∑t
s=2 vs‖ = op(1) by (B.3). (Note:

the op(1) in this lemma is in fact Op(max{T−1/2, N−1/2}).)

Lemma B2 Assume N, T →∞. Under the null hypothesis of ρi = 1,

(i) 1
T 2

∑T
t=2 ê2

it ⇒ σ2
εi

∫ 1
0 Wεi(r)2dr.

(ii) 1
T

∑T
t=2 êit−1∆êit ⇒ σ2

εi
2 (Wεi(1)2 − 1).

where σ2
εi = E(ε2it).
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Proof: (i) By Lemma B1, for t = [Tr], 1√
T

êit = 1√
T

eit + op(1) ⇒ σεiWi(r). By the continuous

mapping theorem, 1
T 2

∑T
t=2 ê2

it ⇒ σ2
εi

∫ 1
0 Wi(r)2dr. Consider (ii). From the identity ê2

it = (êit−1 +

∆êit)2 = ê2
it−1 + (∆êit)2 + 2êit−1∆êit, we have

1
T

T∑

t=2

êit−1∆êit =
ê2
iT

2T
− ê2

i1

2T
− 1

2T

T∑

t=2

(∆êit)2.

By Lemma B1, 1
T ê2

iT ⇒ σ2
εiW

2
i (1), and 1

T ê2
i1 = 0 for êi1 = 0. From (B.2), ∆êit = ∆eit − ait, where

ait = λ′iH
−1vt + d′i∆F̂t. Thus,

1
T

T∑

t=2

(∆êit)2 =
1
T

T∑

t=2

(∆eit)2 − 2
T

T∑

t=2

(∆eit)ait +
1
T

T∑

t=2

a2
it.

Under the null hypothesis that ρi = 1, ∆eit = εit, and 1
T

∑T
t=2(∆eit)2

p−→σ2
εi. The middle term is

op(1) by the Cauchy-Schwartz inequality and 1
T

∑T
t=2 a2

it = op(1). The latter follows from

a2
it ≤ 2‖λiH

−1‖2‖vt‖2 + 2‖di‖2‖f̂t‖2

1
T

T∑

t=2

a2
it ≤ 2‖λiH

−1‖2 · 1
T

T∑

t=2

‖vt‖2 + 2‖di‖2 1
T

T∑

t=2

‖f̂t‖2

= Op(1)Op(δ−2
NT ) + op(1)Op(1) → 0

by Lemma 1(i) and 1
T

∑T
t=2 ‖f̂t‖2 = Op(1). We obtained (ii) after combining results. Finally, (B.1)

follows from s2 p−→ σ2
εi, Lemma B2, and the continuous mapping theorem.

We next consider part 1 of Theorem 1 ( testing F̂t with Demeaning). For simplicity, we consider

the case of k = 1 and hence H is scalar. The objective is to show

DF c
F =

∑T
t=2(F̂t−1 − F̂ )∆F̂t(

s2
∑T

t=2(F̂t−1 − F̂ )2
)1/2

⇒
∫ 1
0 W c

u(r)dWu(r)
( ∫ 1

0 W c
u(r)2dr

)1/2
. (B.4)

where F̂ = 1
T−1

∑T
t=2 F̂t, s2 = 1

T−1

∑T
t=2(∆F̂t − âF̂t−1)2 with â being the OLS estimator when

regressing ∆F̂t on F̂t−1, and W c
u(r) = Wu(r)− ∫ 1

0 Wu(r)dr is a demeaned Brownian motion.

Lemma B3 (i) 1√
T

F̂t = H 1√
T

Ft + op(1) and (ii) 1√
T

F̂ = 1√
T

HF + op(1)

where op(1) is uniform in t ∈ [2, T ] as N, T →∞.

Proof: Because F̂t =
∑t

s=2 f̂s, we have ∆F̂t = F̂t− F̂t−1 = f̂t. Thus vt = f̂t−Hft = ∆F̂t−H∆Ft,

or ∆F̂t = H∆Ft + vt. The cumulative sum implies (define F̂1 = 0)

F̂t = HFt −HF1 +
t∑

s=2

vs, and (B.5)
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1√
T

F̂t = H
1√
T

Ft −H
1√
T

F1 +
1√
T

t∑

s=2

vs.

The second on the right hand side is Op(T−1/2) and the third term is op(1) uniformly in t by (B.3).

This proves (i). Averaging over (B.5), we obtain F̂ = HF −HF1 + 1
T−1

∑T
t=2

∑t
s=2 vs. Hence,

1√
T

F̂ = H
1√
T

F −H
F1√
T

+
1

(T − 1)

T∑

t=2

(
1√
T

t∑

s=2

vs).

The second term on the right is Op(T−1/2) and the last term is op(1) because it is the average of

( 1√
T

∑t
s=2 vs) thus must be no larger than its maximum, which is op(1) by (B.3).

Lemma B4 For t = [Tr], as N,T →∞, under the null hypothesis that α = 1,

(i) 1√
T

F̂t ⇒ HσuWu(r), where σ2
u = E(u2

t ) > 0.

(ii) 1
T 2

∑T
t=2(F̂t−1 − F̂ )2 ⇒ H2σ2

u

∫ 1
0 W c

u(r)2dr.

Proof: (i) follows from Lemma B3 and T−1/2Ft ⇒ σuWu(r). For (ii), again by Lemma B3,

1√
T

(F̂t − F̂ ) =
1√
T

H(Ft − F ) + op(1) ⇒ Hσu

[
Wu(r)−

∫ 1

0
Wu(r)dr

]
≡ HσuW c

u(r).

This together with the continuous mapping theorem leads to (ii).

Note that H depends on N and T . We simply denote its limit as H again. It is not necessary

to explicitly study the limit of H because the test statistic in (B.4) can be rewritten in terms

of {H−1F̂t} (i.e., a scaling constant does not change the statistic). It is clear that 1√
T

H−1F̂t ⇒
σuWu(r). Other terms follow similarly. This remark also applies to the rest of the analysis.

Lemma B5 Under the null that α = 1, 1
T

∑T
t=2(F̂t−1 − F̂ )∆F̂t ⇒ H2σ2

u

∫ 1
0 W c

u(r)dWu(r).

Proof:
1
T

T∑

t=2

(F̂t−1 − F̂ )∆F̂t =
1
T

T∑

t=2

F̂t−1∆F̂t −
( 1√

T
F̂

)( 1√
T

F̂T

)
(B.6)

(note
∑T

t=2 ∆F̂t = F̂T − F̂1 = F̂T because F̂1 = 0). Consider the first term on the right:

1
T

T∑

t=2

F̂t−1∆F̂t =
F̂ 2

T

2T
− F̂ 2

1

2T
− 1

2T

T∑

t=2

(∆F̂t)2.

By Lemma B4(i), 1
2

1
T F̂ 2

T ⇒ 1
2H2σ2

uWu(1)2, and 1
2T F̂ 2

1 = 0. From ∆F̂t = H∆Ft + vt,

1
T

T∑

t=2

(∆F̂t)2 = H2 1
T

T∑

t=2

(∆Ft)2 + H
1
T

T∑

t=2

(∆Ft)vt +
1
T

T∑

t=2

v2
t

p−→ H2σ2
u (B.7)
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because 1
T

∑T
t=2(∆Ft)2

p−→ σ2
u in view of ∆Ft = ut when α = 1. In addition, 1

T

∑T
t=2 v2

t =

Op(δ−2
NT ) → 0 by Lemma 1(i), and the middle term is also op(1) by the Cauchy-Schwarz inequality.

Thus, the first term on right of (B.6) has a limit H2σ2
u[Wu(1)2 − 1]/2.

Lemma B3 (ii) implies 1√
T

F̂ ⇒ Hσu

∫ 1
0 Wu(r)dr because T−3/2

∑T
t=2 Ft ⇒ σu

∫ 1
0 Wu(r)dr when

Ft is I(1). Lemma B4 (i) implies 1√
T

F̂T ⇒ HσuWu(1). The second term of (B.6) has a limit

H2σ2
uWu(1)

∫ 1
0 Wu(r)dr. Summarizing results:

1
T

T∑

t=2

(F̂t−1 − F̂ )∆F̂t ⇒ H2σ2
u

[
1
2
Wu(1)2 − 1

2
−Wu(1)

∫ 1

0
Wu(r)dr

]
≡ H2σ2

u

∫ 1

0
W c

u(r)dWu(r).

Finally, the weak convergence in (B.4) is implied by s2 p−→ H2σ2
u, Lemma B4(ii), Lemma B5,

and the continuous mapping theorem.

C. Proof of Theorem 2

The model under differencing and then demeaning takes the form xit = λ′ift + zit, where

xit = ∆Xit −∆Xi

ft = ∆Ft −∆F = ∆Ft − FT − F1

T − 1
,

zit = ∆eit −∆ei = ∆eit − eiT − ei1

T − 1
.

From xit = λ̂′if̂t + ẑit, we have

ẑit = zit + λ′ift − λ̂′if̂t

= zit + λiH
−1Hft − λ′iH

−1f̂t + λ′iH
−1f̂t − λ̂′if̂t

= zit − λ′iH
−1(f̂t −Hft)− (λ̂i −H−1′λi)′f̂t

≡ ∆eit −∆ei − λ′iH
−1vt − d′if̂t

where vt = f̂t −Hft and di = λ̂i −H−1′λi. Cumulative sum gives

êit =
t∑

s=2

ẑis = eit − ei1 − eiT − ei1

T − 1
(t− 1)− λ′iH

−1
t∑

s=2

vs − di

t∑

s=2

f̂s (C.1)

By Lemma 3 in the main text,

max
2≤t≤T

1√
T
‖

t∑

s=2

vs‖ = op(1),
1
T

T∑

t=2

‖vt‖2 = Op(δ−2
NT ). (C.2)

Lemma C1 Under ρi = 1, for t = [Tr], as N, T →∞, 1√
T

êit ⇒
[
Wεi(r)−rWεi(1)

]
σεi ≡ Vεi(r)σεi.

26



Proof: From (C.1),

êit√
T

=
eit√
T
− (

eiT√
T

)
(t− 1)
T − 1

− ei1√
T

[
1− t− 1

T − 1

]
− λ′iH

−1(
1√
T

t∑

s=2

vs)− di√
T

t∑

s=2

f̂s.

By the invariance principle, 1√
T

eit ⇒ Wεi(r)σεi, and eiT√
T

t−1
T−1 ⇒ rWεi(1)σεi. Furthermore, ei1√

T
→ 0.

By (C.2), ‖λ′iH−1 1√
T

∑t
s=2 vs‖ = op(1). Next ‖d′i 1√

T

∑t
s=2 f̂s‖ ≤ ‖di‖·‖ 1√

T

∑t
s=2 f̂t‖, which is op(1)

uniformly in t. To see this, ‖di‖ = op(1) by Lemma 1(iii). Also,

1√
T

t∑

s=2

f̂s =
1√
T

t∑

s=2

(f̂s −Hfs + Hfs) =
1√
T

t∑

s=2

vs + H
1√
T

t∑

s=2

fs

= op(1) +
1√
T

t∑

s=2

(∆Fs −∆F )

= op(1) +
Ft − F1√

T
−∆F

(
t− 1√

T

)

= op(1) + Op(1)−
(

FT − F1

T − 1

)
t− 1√

T
= Op(1)

because (FT − F1)/(T − 1)1/2 = Op(1) and t/T = O(1) uniformly in t.

Lemma C2 Under ρi = 1, 1
T

∑T
t=2(∆êit)2

p−→σ2
εi, as N, T →∞.

Proof: By definition, ∆êit = êit − êit−1 = ẑit. But

ẑit = ∆eit −∆ei − λ′iH
−1vt − d′if̂t ≡ ∆eit − ait,

where ait = ∆ei + λ′iH
−1vt + dif̂t. Thus,

1
T

T∑

t=2

(∆êit)2 =
1
T

T∑

t=2

(∆eit)2 − 2
T

T∑

t=2

(∆eit)ait +
1
T

T∑

t=2

a2
it. (C.3)

But a2
it ≤ 4(∆ei)2 + 4‖λiH

−1‖2 · ‖vt‖2 + 4‖d′if̂t‖2. Thus,

1
T

T∑

t=2

a2
it ≤ 4(∆ei)2 + 4‖λiH

−1‖2 1
T

T∑

t=2

‖vt‖2 + 4‖di‖2 1
T

T∑

t=2

‖f̂t‖2

= 4
(

eiT − ei1

T − 1

)2

+ Op(δ−2
NT ) + op(1)

1
T

T∑

t=2

‖f̂t‖2

= Op(
1
T

) + Op(δ−2
NT ) + op(1)Op(1) → 0.

since 1
T

∑T
t=2 ‖f̂t‖2 = Op(1). The second term of (C.3) is op(1) by the Cauchy-Schwarz inequality,

and the first term converges in probability to σ2
εi, proving Lemma C2.
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The DF statistic is

DF τ
e (i) =

T−1
∑T

t=2 êit−1∆êit(
s2T−2

∑T
t=2 ê2

it−1

)1/2
,

where s2 = T−1
∑T

t=2(∆êit − âiêit−1)2, which can be shown to converge to σ2
εi. For the numerator,

1
T

T∑

t=2

êit−1∆êit =
1

2T
(êiT )2 − 1

2T
ê2
i1 −

1
2T

T∑

t=2

(∆êit)2

Now 1
T ê2

iT ⇒ σ2
εiV

2
εi(1) = 0 by Lemma C1, and 1

T ê2
i1 = 0. Together with Lemma C2,

1
T

T∑

t=2

êit−1∆êit ⇒ −σ2
εi

2
.

The denominator T−1
∑T

t=2 ê2
it−1 ⇒ σ2

εi

∫ 1
0 Viε(r)2dr by Lemma C1. Collecting results,

DF τ
e (i) ⇒ −1

2

( ∫ 1

0
Viε(r)

)−1/2

.

We next consider part 1 of Theorem 2 (Testing F̂t with demeaning and detrending). For

simplicity, we consider the case of k = 1 so that H is a scalar. From f̂t = Hft + vt,

F̂t =
t∑

s=2

f̂s = H
t∑

s=2

fs +
t∑

s=2

vs = H
t∑

s=2

(∆Fs −∆F ) +
t∑

s=2

vs

= H

[
Ft − F1 − FT − F1

T − 1
(t− 1)

]
+ Vt, (C.4)

where Vt =
∑t

s=2 vs. For a sequence yt, let yτ
t denote the residual from regressing {yt} on [1, t]

(t = 2, ..., T ). That is, yτ
t is the demeaned and detrended series. Then from (C.4),

F̂ τ
t = HF τ

t + V τ
t (C.5)

[clearly, demeaning and detrending will remove F1 + FT−F1
T−1 (t− 1)]. The DF statistic for the series

F̂t with demeaning and detrending is numerically equal to (see, e.g., Hayashi (2000), page 608)

DF τ
F =

T−1
∑T

t=2 F̂ τ
t−1∆F̂t√

s2T−2
∑T

t=2(F̂
τ
t−1)2

, (C.6)

where s2 = 1
T−2

∑T
t=2(∆F̂t− â− b̂t− ĉF̂t−1)2 with (â, b̂, ĉ) being the OLS estimatea when regressing

∆F̂t on [1, t, F̂t−1]. It is easy to show that s2 p−→H2σ2
u.

Lemma C3 max2≤t≤T
1√
T
|V τ

t | = op(1).
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Proof: This simply follows from 1√
T
|Vt| = 1√

T
|∑t

s=2 vs| = op(1) uniformly in t. To see this, let

V = (V2, V3, . . . VT )′, V τ = (V τ
2 , V τ

3 , . . . V τ
T )′, and let Z = (Z2, Z3, . . . ZT )′, where Zt = (1, t). Then

V τ = MzV , where Mz = I − Z(Z ′Z)−1Z ′. Then, it is easy to show that V τ
t can be written as

V τ
t = Vt + aT

1
T

T∑

j=2

Vj + bT (t/T )
1
T 2

T∑

j=2

jVj

where aT and bT are bounded numbers. It follows that

1√
T

V τ
t =

1√
T

Vt + aT
1

T 3/2

T∑

j=2

Vj + bT (t/T )
1

T 5/2

T∑

j=2

jVj .

However, | 1
T 3/2

∑T
j=2 Vj | ≤ maxt

1√
T
|Vt| = op(1), by equation (C.2). Similarly, 1

T 5/2 |
∑T

j=2 jVj | ≤
maxt

1√
T
|Vt| = op(1), proving the lemma.

Lemma C4 As N, T →∞,

(i) 1√
T

F̂ τ
t = H 1√

T
F τ

t + op(1) ⇒ HσuW τ
u (r)

(ii) T−2
∑T

t=2(F̂
τ
t−1)

2 = H2T−2
∑T

t=2(F
τ
t−1)

2 + op(1) ⇒ H2σ2
u

∫ 1
0 W τ

u (r)2dr.

Proof: (i) follows from (C.5), Lemma C3, and 1√
T

F τ
t ⇒ σuW τ

u (r). The equality in (ii) follows from

(C.5) and Lemma C3. The weak convergence in (ii) follows from the continuous mapping theorem

and (i).

Lemma C5 1
T

∑T
t=2 F̂ τ

t−1∆F̂t ⇒ H2σ2
u

∫ 1
0 W τ

u (r)dWu(r)

Proof: First note that
1
T

T∑

t=2

F̂ τ
t−1∆F̂t =

1
T

T∑

t=2

F̂ τ
t−1∆F̂ τ

t (C.7)

where ∆F̂ τ
t = F̂ τ

t − F̂ τ
t−1. To see this, write F̂ τ

t = F̂t − â − b̂t for some â and b̂. This is possible

because F̂ τ
t is the projection residual of F̂t. Thus, ∆F̂ τ

t = ∆F̂t − b̂. Equation (C.7) is proved by

noting
∑T

t=2 F̂ τ
t−1 = 0 (normal equation). Next use the identity

1
T

T∑

t=2

F̂ τ
t−1∆F̂ τ

t =
1

2T
(F̂ τ

T )2 − 1
2T

(F̂ τ
1 )2 − 1

2T

T∑

t=2

(∆F̂ τ
t )2 (C.8)

By Lemma C4, 1
2T (F̂ τ

T )2 ⇒ 1
2H2σ2

uW τ
u (1)2 and 1

2T (F̂ τ
1 )2 ⇒ 1

2H2σ2
uW τ

u (0)2. Next, from ∆F̂ τ
t =

∆F̂t − b̂ and b̂ = op(1) (the slope coefficient has this property), we have 1
T

∑T
t=2(∆F̂ τ

t )2 =
1
T

∑T
t=2(∆F̂t)2 + op(1)

p−→ H2σ2
u, see (B.7) for an identical proof. In summary,

1
T

T∑

t=2

F̂ τ
t−1∆F̂t ⇒ 1

2
H2σ2

u[W τ
u (1)2 −W τ

u (0)2 − 1] = H2σ2
u

∫ 1

0
W τ

u (r)dWu(r).

This proves Lemma C5. Finally, the limiting distribution of (C.6), as stated in Theorem 2, is a

consequence of Lemma C4, Lemma C5, and the continuous mapping theorem.
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Table 1a: Rejection rates for the null hypothesis of a unit root, p = 0, k = 1
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X F̂ ê ê1 X F̂ ê e1 X F̂ ê ê1

100 20 1.00 0.00 0.28 0.96 0.05 0.02 0.08 0.52 0.06 0.02 0.07 0.29 0.06 0.02
100 20 1.00 0.50 0.37 0.93 0.05 0.02 0.11 0.66 0.06 0.02 0.09 0.47 0.06 0.02
100 20 1.00 0.80 0.30 0.56 0.05 0.02 0.13 0.49 0.06 0.03 0.10 0.40 0.05 0.03
100 20 1.00 0.90 0.16 0.24 0.06 0.03 0.10 0.24 0.06 0.03 0.09 0.21 0.05 0.03
100 20 1.00 0.95 0.11 0.15 0.06 0.04 0.08 0.13 0.05 0.04 0.08 0.12 0.06 0.04
100 20 0.00 1.00 0.10 0.08 0.44 0.98 0.16 0.07 0.43 0.98 0.19 0.06 0.43 0.98
100 20 0.50 1.00 0.10 0.06 0.58 0.86 0.18 0.06 0.58 0.86 0.23 0.07 0.58 0.86
100 20 0.80 1.00 0.08 0.05 0.59 0.41 0.17 0.07 0.58 0.41 0.21 0.07 0.57 0.42
100 20 0.90 1.00 0.08 0.06 0.43 0.17 0.12 0.06 0.43 0.18 0.14 0.06 0.44 0.18
100 20 0.95 1.00 0.07 0.06 0.25 0.09 0.09 0.07 0.25 0.09 0.10 0.07 0.25 0.09
100 20 1.00 1.00 0.06 0.05 0.06 0.05 0.06 0.07 0.06 0.05 0.07 0.07 0.06 0.05
100 20 0.50 0.80 0.66 0.60 0.68 0.83 0.75 0.62 0.67 0.83 0.79 0.59 0.67 0.83
100 20 0.80 0.50 0.85 0.94 0.64 0.31 0.73 0.94 0.64 0.32 0.69 0.93 0.64 0.32
100 20 0.00 0.90 0.33 0.28 0.57 0.98 0.42 0.28 0.57 0.98 0.47 0.27 0.57 0.98
100 20 0.90 0.00 0.66 1.00 0.46 0.10 0.35 0.93 0.47 0.10 0.31 0.82 0.46 0.11
100 100 1.00 0.00 0.28 0.99 0.06 0.02 0.08 0.90 0.06 0.02 0.07 0.77 0.05 0.02
100 100 1.00 0.50 0.36 0.96 0.05 0.02 0.11 0.90 0.05 0.02 0.09 0.84 0.06 0.02
100 100 1.00 0.80 0.29 0.57 0.05 0.02 0.13 0.54 0.06 0.02 0.10 0.53 0.06 0.02
100 100 1.00 0.90 0.18 0.26 0.05 0.03 0.11 0.26 0.06 0.03 0.09 0.26 0.06 0.03
100 100 1.00 0.95 0.10 0.13 0.05 0.04 0.09 0.13 0.06 0.04 0.08 0.14 0.06 0.04
100 100 0.00 1.00 0.10 0.07 0.43 0.98 0.15 0.05 0.44 0.98 0.19 0.06 0.44 0.98
100 100 0.50 1.00 0.10 0.07 0.58 0.86 0.17 0.05 0.58 0.86 0.22 0.06 0.58 0.86
100 100 0.80 1.00 0.09 0.06 0.59 0.41 0.16 0.07 0.58 0.42 0.20 0.06 0.59 0.42
100 100 0.90 1.00 0.08 0.06 0.43 0.18 0.12 0.06 0.43 0.18 0.15 0.07 0.43 0.18
100 100 0.95 1.00 0.08 0.07 0.25 0.09 0.08 0.05 0.25 0.09 0.09 0.08 0.25 0.09
100 100 1.00 1.00 0.07 0.07 0.06 0.05 0.07 0.07 0.06 0.05 0.07 0.06 0.06 0.05
100 100 0.50 0.80 0.66 0.60 0.67 0.84 0.75 0.60 0.67 0.83 0.80 0.62 0.68 0.83
100 100 0.80 0.50 0.86 0.95 0.64 0.32 0.73 0.95 0.64 0.32 0.69 0.95 0.64 0.32
100 100 0.00 0.90 0.33 0.28 0.57 0.98 0.44 0.29 0.57 0.98 0.45 0.24 0.57 0.98
100 100 0.90 0.00 0.65 0.99 0.47 0.10 0.35 0.99 0.46 0.10 0.31 0.98 0.46 0.10
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Table 1b: Rejection rates for the null hypothesis of a unit root, p = 1, k = 1
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X F̂ ê ê1 X F̂ ê e1 X F̂ ê ê1

100 20 1.00 0.00 0.33 0.95 0.05 0.02 0.10 0.63 0.06 0.03 0.08 0.41 0.05 0.03
100 20 1.00 0.50 0.40 0.82 0.05 0.02 0.14 0.66 0.05 0.03 0.10 0.51 0.06 0.03
100 20 1.00 0.80 0.25 0.38 0.05 0.03 0.14 0.39 0.05 0.03 0.12 0.33 0.06 0.04
100 20 1.00 0.90 0.13 0.15 0.05 0.04 0.10 0.17 0.05 0.04 0.09 0.14 0.05 0.04
100 20 1.00 0.95 0.10 0.11 0.05 0.05 0.08 0.10 0.05 0.05 0.08 0.10 0.05 0.05
100 20 0.00 1.00 0.10 0.07 0.35 0.94 0.17 0.07 0.34 0.94 0.20 0.06 0.34 0.94
100 20 0.50 1.00 0.11 0.07 0.48 0.75 0.19 0.06 0.48 0.74 0.25 0.07 0.48 0.74
100 20 0.80 1.00 0.10 0.07 0.36 0.30 0.15 0.07 0.36 0.30 0.18 0.08 0.37 0.30
100 20 0.90 1.00 0.08 0.07 0.20 0.14 0.11 0.08 0.20 0.13 0.12 0.07 0.20 0.13
100 20 0.95 1.00 0.08 0.08 0.10 0.08 0.09 0.09 0.10 0.08 0.09 0.07 0.10 0.08
100 20 1.00 1.00 0.08 0.08 0.05 0.05 0.07 0.07 0.05 0.05 0.07 0.08 0.05 0.05
100 20 0.50 0.80 0.47 0.41 0.53 0.71 0.56 0.41 0.52 0.72 0.59 0.39 0.53 0.71
100 20 0.80 0.50 0.69 0.82 0.38 0.23 0.53 0.80 0.38 0.23 0.48 0.79 0.38 0.23
100 20 0.00 0.90 0.22 0.17 0.42 0.94 0.32 0.18 0.41 0.94 0.36 0.19 0.40 0.94
100 20 0.90 0.00 0.55 0.97 0.21 0.08 0.23 0.82 0.20 0.09 0.20 0.68 0.20 0.08
100 100 1.00 0.00 0.33 0.97 0.05 0.02 0.10 0.91 0.05 0.02 0.08 0.85 0.05 0.02
100 100 1.00 0.50 0.39 0.84 0.05 0.02 0.14 0.82 0.05 0.03 0.10 0.76 0.05 0.03
100 100 1.00 0.80 0.25 0.39 0.05 0.03 0.14 0.40 0.05 0.03 0.11 0.36 0.05 0.03
100 100 1.00 0.90 0.14 0.17 0.05 0.04 0.11 0.18 0.05 0.04 0.09 0.17 0.05 0.04
100 100 1.00 0.95 0.09 0.10 0.05 0.05 0.09 0.11 0.05 0.05 0.08 0.10 0.05 0.05
100 100 0.00 1.00 0.10 0.07 0.35 0.94 0.18 0.08 0.35 0.94 0.21 0.06 0.35 0.94
100 100 0.50 1.00 0.11 0.07 0.48 0.74 0.19 0.06 0.48 0.74 0.24 0.06 0.47 0.74
100 100 0.80 1.00 0.10 0.07 0.37 0.30 0.15 0.07 0.36 0.30 0.18 0.07 0.37 0.31
100 100 0.90 1.00 0.08 0.07 0.20 0.13 0.11 0.07 0.20 0.13 0.12 0.08 0.20 0.13
100 100 0.95 1.00 0.08 0.06 0.10 0.08 0.09 0.08 0.10 0.08 0.09 0.07 0.10 0.08
100 100 1.00 1.00 0.07 0.08 0.05 0.05 0.07 0.06 0.05 0.05 0.07 0.06 0.05 0.05
100 100 0.50 0.80 0.46 0.40 0.53 0.71 0.56 0.40 0.53 0.71 0.61 0.42 0.53 0.71
100 100 0.80 0.50 0.70 0.83 0.38 0.23 0.53 0.83 0.38 0.23 0.49 0.83 0.39 0.23
100 100 0.00 0.90 0.22 0.17 0.41 0.94 0.32 0.19 0.41 0.94 0.36 0.17 0.41 0.94
100 100 0.90 0.00 0.54 0.96 0.20 0.08 0.24 0.95 0.20 0.08 0.20 0.93 0.20 0.08
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Table 2a: Pooled Tests: Rejection rates for the null hypothesis of a unit root , p = 0, k = 1
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X ê ê1 X ê ê1 X ê ê1

100 20 1.00 0.00 0.96 0.06 0.00 0.25 0.07 0.01 0.16 0.07 0.02
100 20 1.00 0.50 0.97 0.07 0.00 0.46 0.07 0.02 0.29 0.06 0.03
100 20 1.00 0.80 0.90 0.06 0.01 0.58 0.07 0.03 0.42 0.06 0.04
100 20 1.00 0.90 0.69 0.07 0.04 0.45 0.07 0.04 0.34 0.07 0.04
100 20 1.00 0.95 0.49 0.09 0.08 0.35 0.07 0.06 0.30 0.07 0.09
100 20 0.00 1.00 0.36 1.00 1.00 0.51 0.99 1.00 0.60 0.99 1.00
100 20 0.50 1.00 0.35 1.00 1.00 0.56 1.00 1.00 0.69 1.00 1.00
100 20 0.80 1.00 0.36 1.00 1.00 0.59 1.00 1.00 0.67 1.00 1.00
100 20 0.90 1.00 0.36 1.00 0.96 0.48 1.00 0.96 0.61 1.00 0.96
100 20 0.95 1.00 0.31 1.00 0.50 0.40 1.00 0.51 0.47 1.00 0.50
100 20 1.00 1.00 0.27 0.07 0.15 0.24 0.07 0.15 0.19 0.07 0.16
100 20 0.50 0.80 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 20 0.00 0.90 0.83 1.00 1.00 0.94 1.00 1.00 0.97 1.00 1.00
100 20 0.90 0.00 1.00 1.00 0.68 1.00 1.00 0.72 1.00 1.00 0.70
100 100 1.00 0.00 1.00 0.07 0.00 0.57 0.06 0.00 0.35 0.07 0.00
100 100 1.00 0.50 1.00 0.06 0.00 0.83 0.07 0.00 0.63 0.07 0.00
100 100 1.00 0.80 0.96 0.05 0.01 0.88 0.07 0.01 0.77 0.07 0.02
100 100 1.00 0.90 0.82 0.05 0.05 0.75 0.06 0.07 0.67 0.07 0.09
100 100 1.00 0.95 0.57 0.06 0.13 0.59 0.08 0.13 0.54 0.06 0.13
100 100 0.00 1.00 0.41 1.00 1.00 0.60 1.00 1.00 0.69 1.00 1.00
100 100 0.50 1.00 0.41 1.00 1.00 0.66 1.00 1.00 0.75 1.00 1.00
100 100 0.80 1.00 0.41 1.00 1.00 0.64 1.00 1.00 0.77 1.00 1.00
100 100 0.90 1.00 0.40 1.00 1.00 0.59 1.00 1.00 0.73 1.00 1.00
100 100 0.95 1.00 0.38 1.00 0.86 0.50 1.00 0.86 0.59 1.00 0.85
100 100 1.00 1.00 0.36 0.06 0.30 0.39 0.05 0.30 0.36 0.07 0.30
100 100 0.50 0.80 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 100 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 100 0.00 0.90 0.89 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
100 100 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 2b: Pooled Tests: Rejection rates for the null hypothesis of a unit root , p = 1, k = 1
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X ê ê1 X ê ê1 X ê ê1

100 20 1.00 0.00 0.97 0.07 0.00 0.36 0.09 0.00 0.26 0.08 0.01
100 20 1.00 0.50 0.96 0.07 0.00 0.62 0.06 0.01 0.40 0.07 0.01
100 20 1.00 0.80 0.78 0.07 0.01 0.64 0.06 0.02 0.50 0.08 0.03
100 20 1.00 0.90 0.53 0.07 0.04 0.47 0.07 0.04 0.38 0.07 0.04
100 20 1.00 0.95 0.42 0.08 0.07 0.33 0.06 0.06 0.31 0.08 0.08
100 20 0.00 1.00 0.35 0.99 1.00 0.54 0.99 1.00 0.65 0.99 1.00
100 20 0.50 1.00 0.37 1.00 1.00 0.58 1.00 1.00 0.74 1.00 1.00
100 20 0.80 1.00 0.38 1.00 1.00 0.58 1.00 1.00 0.68 1.00 1.00
100 20 0.90 1.00 0.34 0.99 0.79 0.47 0.98 0.78 0.57 0.98 0.80
100 20 0.95 1.00 0.31 0.60 0.32 0.40 0.62 0.33 0.39 0.60 0.30
100 20 1.00 1.00 0.32 0.07 0.12 0.29 0.07 0.10 0.26 0.09 0.11
100 20 0.50 0.80 0.92 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
100 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
100 20 0.00 0.90 0.70 1.00 1.00 0.85 1.00 1.00 0.93 1.00 1.00
100 20 0.90 0.00 1.00 0.98 0.38 0.98 0.98 0.40 0.97 0.98 0.38
100 100 1.00 0.00 0.99 0.07 0.00 0.68 0.07 0.00 0.49 0.07 0.00
100 100 1.00 0.50 0.99 0.08 0.00 0.89 0.07 0.00 0.78 0.07 0.00
100 100 1.00 0.80 0.86 0.06 0.01 0.85 0.07 0.01 0.79 0.07 0.01
100 100 1.00 0.90 0.68 0.07 0.06 0.68 0.06 0.07 0.68 0.07 0.06
100 100 1.00 0.95 0.48 0.07 0.14 0.54 0.07 0.14 0.54 0.06 0.13
100 100 0.00 1.00 0.43 1.00 1.00 0.65 1.00 1.00 0.76 1.00 1.00
100 100 0.50 1.00 0.47 1.00 1.00 0.71 1.00 1.00 0.81 1.00 1.00
100 100 0.80 1.00 0.47 1.00 1.00 0.67 1.00 1.00 0.82 1.00 1.00
100 100 0.90 1.00 0.41 1.00 1.00 0.61 1.00 0.99 0.71 1.00 1.00
100 100 0.95 1.00 0.38 0.99 0.63 0.54 0.99 0.63 0.59 1.00 0.64
100 100 1.00 1.00 0.38 0.06 0.22 0.43 0.07 0.21 0.42 0.07 0.21
100 100 0.50 0.80 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 100 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
100 100 0.00 0.90 0.75 1.00 1.00 0.93 1.00 1.00 0.98 1.00 1.00
100 100 0.90 0.00 1.00 1.00 0.88 1.00 1.00 0.88 1.00 1.00 0.88
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Table 3: Results for Inflation

DFGLS ADF ADF

series X ê ê1 var(c∆e)
var(∆X)

σ(bλ′i bFt)
σ(be)

1 meats −3.373+ −6.267+ −3.092+ −7.174+ 0.857 0.406
2 fruits −1.335 −4.018+ −1.305 −4.077+ 0.995 0.088
3 usedcars −2.059+ −4.163+ −1.801 −4.178+ 0.994 0.063
4 schbooks −1.640 −2.529 −1.533 −2.449 0.997 0.078
5 othfdhome −3.324+ −4.225+ −2.815+ −5.224+ 0.958 0.117
6 gaselec −1.487 −1.887 −1.426 −1.989 0.991 0.089
7 fmaleapp −1.117 −3.612+ −1.547 −3.440+ 0.711 0.735
8 newveh −1.743 −2.664 −1.742 −2.677 0.966 0.172
9 hskpsupp −1.981+ −2.758 −1.708 −3.224 0.987 0.089
10 persedsvs −1.076 −2.354 −0.933 −2.147 0.887 0.389
11 footwear −2.144+ −2.860+ −3.169+ −3.898+ 0.731 0.743
12 alcohol −3.018+ −3.679+ −3.020+ −3.847+ 0.964 0.186
13 shelter −2.171+ −2.679 −2.307+ −2.776 0.983 0.111
14 maleapp −2.494+ −3.421+ −3.675+ −4.607+ 0.673 0.825
15 etaingds −2.442+ −3.062 −2.799+ −3.495+ 0.998 0.049
16 furnishings −1.761 −2.110 −1.553 −2.749 0.920 0.289
17 appsvs −1.421 −1.573 −1.086 −1.536 0.976 0.121
18 automaint −1.830 −1.948 −1.763 −2.352 0.980 0.109
19 medgds −0.923 −2.113 −0.673 −2.110 0.934 0.166
20 medsvs −1.996+ −2.182 −1.407 −2.329 0.994 0.064
21 fdnothome −1.615 −2.277 −1.413 −2.049 0.904 0.217

5% CV -1.91 -2.82 -1.91 -3.31
10% CV -1.60 -2.52 -1.60 -3.02

The ADF is based on Said and Dickey (1984) with 4 lags.
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Figure 1: True and Estimated Ft when eit is I(1)
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Figure 2: True and Estimated Ft when eit is I(0)


