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Abstract

We consider difference equations in balanced, i.i.d. environments which are not
necessary elliptic. In this setting we prove a parabolic Harnack inequality (PHI)
for non-negative solutions to the discrete heat equation satisfying a (rather mild)
growth condition, and we identify the optimal Harnack constant for the PHI. We
show by way of an example that a growth condition is necessary and that our
growth condition is sharp. Along the way we also prove a parabolic oscillation
inequality and a (weak) quantitative homogenization result, which we believe to be
of independent interest.

1. Introduction

1.1. Background

Consider the non-divergence form operator

(La f )(x) �
d∑

i, j=1
ai j (x)

d2 f

dxidx j
(x), ( f, x) ∈ C2(Rd)× R

d , (1.1)

where a = (ai j )di, j=1 is a measurable function from R
d into the set of symmetric

positive definite matrices which is uniformly elliptic, that is there is a constant
0 < λ � 1 such that

λ‖y‖2 �
d∑

i, j=1
ai j (x)yi y j � 1

λ
‖y‖2, (x, y) ∈ R

d × R
d .

For an open domain D in R
d+1 a function u : D → R is called caloric if it

solves the (backward) heat equation d
dt u = −Lau. In a seminal paper, Krylov
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and Safonov [13] proved a parabolic Harnack inequality (PHI) for non-negative
caloric functions from [0, R2] × BR(0) to R.

More precisely, they proved the existence of a positive constant C = C(λ)

such that, for any radius R > 0 and every (non-negative) caloric function u on
[0, R2] × BR(0), it holds that

max
Q+

u � C min
Q−

u, (PHI)

where Q− � [0, 1
4 R

2] × BR/2(0) and Q+ � [ 12 R2, 3
4 R

2] × BR/2(0). The PHI has
many important applications such as a priori estimates in parabolic Hölder spaces
(see [13]) or Hölder regularity results (see [21]). PHIs for discrete uniformly elliptic
heat equations can be found in [14,20], see also [15] for its elliptic (that is time
independent) counterpart. A version for uniformly elliptic equations with time-
dependent coefficients is given in [8].

Remarkably, the constant in the PHI of Krylov and Safonov does not depend
on the regularity of the coefficient a but only on the ellipticity constant λ. It is not
hard to see that as λ goes to zero, the constant goes to infinity, and in particular the
proof method of [13] is not helpful in settings that are not uniformly elliptic.

More recently, there is a growing interest in PHIs for settings which are not
necessarily uniformly elliptic. We mention the paper [12], where heat equations
arising from random walks on percolation clusters (RWPC) are studied, and the
articles [1,3,7], where the PHI is proved for equations related to the random con-
ductance model (RCM). In these works the PHI was used to prove a local limit
theorem for the corresponding stochastic processes.

In contrast to (1.1), the equations associated to RWPC and RCM are in diver-
gence form, that is reversible. Discrete equations in non-divergence form appear in
the context of random walks in balanced random environment (RWBRE). An ellip-
tic Harnack inequality (EHI) for such equations in fully non-elliptic environments
has recently been proved in [5]. To the best of our knowledge, this result is the first
of its kind for such a degenerate framework.

1.2. Purpose of the current article

Our main result is Theorem 2.6, below, which is a PHI for random difference
equations associated to non-elliptic random walks in balanced i.i.d. random envi-
ronments, which is the setting from [5]. More precisely, we prove the PHI for all
non-negative caloric functions which satisfy a certain exponential growth condi-
tion (see discussion in Section 1.3 below) and we show by example that it can fail
without it. As the EHI holds in full generality, our result points to an interesting
difference between parabolic and elliptic frameworks. To the best of our knowledge,
a comparable phenomenon has not been reported before. The Harnack constant in
our PHI is optimal in the sense that it can be taken arbitrarily close to its counter-
part in the PHI of the limiting Brownian motion from the corresponding invariance
principle proven in [6].
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1.3. The growth condition

As alluded to above, in Theorem 2.6 the PHI is only proven for non-negative
caloric functions f : BR(0)× [0, R2] → R satisfying the growth condition (2.1),
which roughly states that

max f � eR
2−ξ

min f,

for ξ arbitrarily small. We also find a counter example to the PHI satisfying

max f = eR
2
min f,

showing that the growth condition (2.1) is sharp. We wish to make a few remarks
regarding this growth condition.

Remark 1.1. Our growth condition is quite mild. In particular, in most applications
(for example for local limit theorems) all functions that are considered are such that
the maximum to minimum ratio grows like a power of R, which easily satisfies our
growth condition.

Remark 1.2. To the best of our knowledge, our paper is the first time that a PHI is
proven under such a growth condition. We believe however that this phenomenon,
namely that a mild growth condition guarantees an otherwise false PHI, exists in a
large variety of models which are not uniformly elliptic. In particular, we believe
that for random conductances models which are elliptic but not uniformly elliptic,
and where the conductances have a thick enough tail around zero (see, for example
[4]), a similar phenomenon can hold.

1.4. Proof strategy

We now comment on the proof of our PHI. The basic strategy is borrowed
from Fabes and Stroock [10] and their proof for the continuous uniformly elliptic
case. In general, our Fabes–Stroock argument relies on two central ingredients
which are of independent interest: A parabolic oscillation inequality and a parabolic
quantitative homogenization estimate. The former is used for the iterative scheme
in the Fabes–Stroock argument and the latter yields estimates for the exit measure
of the randomwalker, whichwe use roughly the sameway Fabes and Stroock [10]
used heat kernel estimates. In contrast to the setting of Fabes and Stroock, ourmodel
lacks connectivity in the sense that the movement of the randomwalker is restricted
by holes in the environment. In addition, we have to deal with local degeneracies,
as the positive transition probabilities in the random environments might not be
bounded away from zero. To control the sizes of the holes in the environments we
use percolation estimates which use the i.i.d. structure. Due to our parabolic setting
the speed of the random walker is a major issue. The growth condition ensures
that the random walker reaches certain parts of the environments fast enough. The
Fabes–Stroock method was also used in [5] to establish the EHI. In contrast to our
setting, the issue of speed plays no role in [5], which also explains why the EHI
holds in full generality.
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1.5. Possible future research directions

Before we turn to the main body of this paper, let us comment on follow up
questions which are left for future research. It is interesting to compare our result
to those for the RCM. In [1,7] it was shown that the PHI holds under certain
moment assumptions on the conductances, which are violated in degenerate cases.
Our result suggests that also for the RCM the PHI might hold when restricted to
a suitable class of functions. Conversely, the results from [1,7] suggest that a full
PHI might hold for elliptic RWBRE under suitable moment assumptions on the
ellipticity constant. We think our PHI is a first step into the direction of a local limit
theorem for non-elliptic RWBRE. At this point we stress that our PHI cannot be
used directly to solve this question as in [1], because the method there relies on
a PHI for adjoint equations. In the reversible (self-adjoint) framework from [1] it
is clear that the PHI also applies to adjoint equations, but in our non-symmetric
setting this is not the case.

The article is structured as follows: in Section 2 we introduce our setting and
state our main results. The proofs are given in the remaining sections, whose struc-
ture is explained at the end of Section 2.

2. Framework and Main Results

2.1. The framework

Let d � 2 and let {ei : i = 1, . . . , d} be the unit vectors in Z
d . We set ed+i �

−ei for i = 1, . . . , d and define M to be the space of all probability measures
on {ei : i = 1, . . . , 2d} endowed with the topology of convergence in distribution.
Moreover, we define the product space

� �
∏

Zd

M

and its Borel σ -field F � B(�). An element ω ∈ � is called environment. Let P
be an i.i.d. Borel probability measure on �, that is

P �
⊗

Zd

ν for some ν ∈M.

We denote the space of all paths Z+ → Z
d , equipped with the product topology,

by D and the coordinate process by X = (Xn)n∈Z+ , that is Xn(α) = α(n) for
(α, n) ∈ D × Z+. For every ω ∈ � and x ∈ Z

d let Px
ω be the (unique) Borel

probability measure on D which turns X into a time-homogeneous Markov chain
with initial value x and transition kernel ω, that is

Px
ω(X0 = x) = 1, Px

ω(Xn = y + ek |Xn−1 = y) = ω(y, ek),

z ∈ Z
d , k = 1, . . . , 2d.
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Fig. 1. An illustration of Example 2.2 restricted to a small box

The coordinate process X is typically referred to as the walk and the law Px
ω is

called the quenched law of the walk. An environment ω ∈ � is called balanced if
for all z ∈ Z

d and k = 1, . . . , d

ω(z, ek) = ω(z,−ek).
The set of balanced environments is denoted by B. For n ∈ Z+ we set Fn �
σ(Xm,m ∈ [n]), where [n] � {0, . . . , n}. In what follows, all terms such as
martingale, stopping time, etc., refer to (Fn)n∈Z+ as filtration.

Remark 2.1. The Markov property of the walk yields an intuitive characterization
for balanced environments. Namely, X is a Px

ω -martingale for all x ∈ Z
d if and

only if ω ∈ B.

We say that ω ∈ � is genuinely d-dimensional if for every k = 1, . . . , 2d
there exists a z ∈ Z

d such that ω(z, ek) > 0. We denote the set of all genuinely
d-dimensional environments by G.

Example 2.2. An example for an environment measure P with P(B ∩ G) = 1 is
the following:

P

(
ω ∈ � : ω(0, ei ) = ω(0,−ei ) = 1

2

)
= 1

d
, i = 1, . . . , d.

In this case the environment chooses uniformly at random one of the±ei directions,
see Fig. 1.

For a finite set S ⊂ Z
d and N ∈ Z+ we say that a function u : S×[N+1] → R

is ω-caloric on S × [N ] if for every (x,m) ∈ S × [N ]

u(x,m) = Ex
ω

[
u(X1, 1+ m)

] =
2d∑

k=1
ω(x, ek)u(x + ek, 1+ m).
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The following simple observation provides a probabilistic interpretation for the
definition of a caloric function:

Lemma 2.3. Let ω ∈ B and u : S × [N + 1] → R. Set

τm � inf(n ∈ Z+ : (Xn, n + m) �∈ S × [N ]), m ∈ [N ].
The following are equivalent:

(a) u is ω-caloric.
(b) For all (x,m) ∈ S × [N ] the process (u(Xn∧τm , n ∧ τm + m))n∈Z+ is a Px

ω -
martingale.

Proof. The implication (b)⇒ (a) follows from the fact that martingales have con-
stant expectation and Px

ω -a.s. τm � 1. For the converse implication, assume that
(a) holds and let n ∈ Z+. The Markov property of the walk yields that Px

ω -a.s. on
{n < τm} = {n + 1 � τm} ∈ Fn

Ex
ω

[
u(X(n+1)∧τm , (n + 1) ∧ τm + m)

∣∣Fn
] = Ex

ω

[
u(Xn+1, n + 1+ m)

∣∣Fn
]

= EXn
ω

[
u(X1, n + 1+ m)

]

= u(Xn, n + m).

Since on {τm � n} there is nothing to show, we conclude that (b) holds. 
�
Finally, let us end this sectionwith technical notation: For x=(x1, . . . , xd)∈Rd ,

define the usual norms

‖x‖1 �
d∑

k=1
|xk |, ‖x‖2 �

(
d∑

k=1
x2k

) 1
2

, ‖x‖∞ � max
k=1,...,d |xk |.

For R > 0 and y ∈ R
d , let

BR(y) �
{
x ∈ R

d : ‖x − y‖2 < R
}
, BR � BR ∩ Z

d .

We also write BR � BR(0) and BR � BR(0). For a set G ⊂ Z
d , we define its

discrete boundary by

∂G �
{
x ∈ Z

d\G : ∃y ∈ G, ‖x − y‖∞ = 1
}
.

Furthermore, we set

OR �
{
x ∈ BR : ‖x − y‖∞ = 1⇒ y ∈ BR

}
.

In case R > 1, OR is the biggest subset of BR such that OR � OR ∪ ∂OR = BR .
For a space-time point x̂ = (x, t) ∈ R

d×R+,we define the continuous and discrete
parabolic cylinder with radius R > 0 and center x̂ by

KR(x̂) � BR(x)× [t, t + R2) ⊂ R
d × R+, KR(x̂) � KR(x̂) ∩ (Zd × Z+).
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We also set KR � KR(0), KR � KR(0) and

∂ p
KR �

(
∂BR × (0, R2]) ∪ (BR × {R2}),

∂ pKR �
(
∂BR × [�R2�]) ∪ (BR × {�R2�}),

and KR � KR ∪ ∂ p
KR, K R � KR ∪ ∂ pKR . Here, ∂BR refers to the boundary of

BR in Rd . We also define

QR � OR × [�R2� − 1], ∂ pQR �
(
∂OR × [�R2�]) ∪ (OR × {�R2�}).

Moreover, we set

K−R �
(
BR × (0, R2)

) ∩ (Zd × Z+
)
, K+R �

(
BR × (2R2, 3R3)

) ∩ (Zd × Z+
)
.

To capture parities, we define

�o/e(G) �
{
(x, t) ∈ G : ‖x‖1 + t is odd/even

}
, G ⊆ R

d × Z+.

Convention. Without explicitly mentioning it, all constants might depend on the
measure P and the dimension d. Moreover, constants might change from line to
line. We denote a generic positive constant by c.

2.2. Main results

Throughout this chapter, we impose the following:

Standing Assumption 2.4. P(B ∩G) = 1.

We recall the following invariance principle from [6]:

Theorem 2.5. [6, Theorem 1.1] The quenched invariance principle holds with a
deterministic diagonal covariance matrix A, that is for P-a.a. ω ∈ � as N →∞
the law of the continuous Rd-valued process

1√
N
X�t N� + t N − �t N�√

N

(
X�t N�+1 − X�t N�

)
, t ∈ R+,

under Px
ω converges weakly (on C(R+,Rd) endowed with the local uniform topol-

ogy) to the law of a Brownian motion with covariance A starting at x.

For a ∈ (
√
3, 2], let Ha ∈ (0,∞) be the following Harnack constant for Brow-

nian motion: For every non-negative solution u to the (backward) heat equation

du

dt
+ 1

2

d∑

i, j=1
Ai j

d2u

dxidx j
= 0

in KaR it holds that

sup
BR×(2R2,3R2)

u � Ha inf
BR×(0,R2)

u,

see [19, Theorem 1]. The following parabolic Harnack inequality (PHI) is ourmain
result.
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Fig. 2. An example for the necessity of the growth condition

Theorem 2.6. Fix ε ∈ (0, 2−√3), ξ ∈ (0, 1
5 ) andw > 1. There are two constants

R∗, δ > 0 such that for all R � R∗ there exists a set G ∈ F such that P(G) �
1−e−Rδ

and for everyω ∈ G, p ∈ {o, e} and every non-negativeω-caloric function
u on K 2R satisfying

max
�p(K 2R)

u � wR2−ξ

min
�p(K 2R)

u, (2.1)

it holds that

max
�p(K+R )

u � (1+ 3ε)H2−ε

(1− ε)2
min

�p(K−R )

u. (2.2)

Example 2.7. In the following we provide an example which shows that in non
degenerate settings the PHI cannot hold in full generality without a certain growth
condition. Let us consider the setting of Example 2.2 with d = 2. More precisely,
take the environment given by Fig. 2. The red part in Fig. 2 is called the sink. It is
easy to see that once the walk has reached the sink, it cannot exit it. Consequently,
by its recursive definition, the values of a caloric function on the sink are not
influenced by the values outside of it. For contradiction, assume that the PHI holds
for all caloric functions u, that is there exists a constant C > 0 independent of u
and R such that

max
�p(K+R )

u � C min
�p(K+R )

u.
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Denote the points in the green box in Fig. 2 by x1 and x2. Fix R large enough such
that 2R

2
> C and take a non-negative caloric function u on the cylinder with radius

2R which takes the value one on the sink and

u(x1, 4R
2) ≡ u(x2, 4R

2) � 23R
2
.

Such a caloric function can be defined by recursion.We stress that u does not satisfy
the growth condition (2.1). Using the recursive definition, we note that

max
�p(K+R )

u � 2R
2
,

and the PHI implies

2R
2 � C min

�p(K−R )

u � C,

which is a contradiction. We conclude that the PHI does not hold for u.

Remark 2.8. (i) The Harnack constant in Theorem 2.6 is optimal in the sense
that it can be taken arbitrarily close to H2.

(ii) In uniformly elliptic settings the growth condition (2.1) is not needed, see
[14,20].

(iii) Typically PHIs are formulated for forward equations. The time substitution
t �→ 4R2−t transforms the PHI for backward equations into a PHI for forward
equations.

(iv) As the following simple example illustrates, it is necessary to compare cylin-
ders of the same parity. Let u be a solution to the (backward) heat equation
for the one-dimensional simple random walk in KR with terminal condition

f (x, t) =
{
1, |x | + t odd,

0, |x | + t even.

The recursive definition of a caloric function shows that u = f,which implies

max
K+

u = 1, min
K−

u = 0.

Clearly, (2.2) does not hold when �p(K+R ) and �p(K−R ) are replaced by K+R
and K−R , respectively. An alternative strategy to deal with the parity issue is
to formulate the PHI for

û(x, n) � u(x, n + 1)+ u(x, n)

instead of u. This has been done in [12] for random walks on percolation
clusters.
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The proof of Theorem 2.6 is given in Section 6. It borrows arguments by Fabes
and Stroock [10]. A version of the Fabes–Stroock argument has also been used in
[5] to prove an elliptic Harnack inequality (EHI) under Standing Assumption 2.4.
Some ideas in the proof of Theorem 2.6 are borrowed from [5].

Harnack inequalities are important tools in the study of path properties of
RWRE. As explained in the introduction, we think that Theorem 2.6 might be
the first step in direction of a local limit theorem. The EHI from [5] can for instance
be used to prove transience of the RWBRE for d � 3 in genuinely d-dimensional
environments. Since this result seems to be new,we provide a statement and a proof,
which is similar to those of [22, Theorem 3.3.22] and given in “Appendix A”.

Theorem 2.9. When d � 3, the RWRE is transient for P-a.a. environments.

One key tool for the proof of Theorem 2.6 is the following oscillation inequality,
which can be seen as a parabolic version of [5, Theorem 4.1].

Theorem 2.10. There are constants R′, δ > 0, ζ > 1 and γ ∈ (0, 1) such that for
every R � R′ there exists a set G ∈ F such that P(G) � 1− e−Rδ

, and for every
ω ∈ G and every ω-caloric function u on K ζ R it holds that

osc
�p(KR)

u � γ osc
�p(Kζ R)

u, p ∈ {o, e},

where

osc
G

u � max
G

u −min
G

u, G ⊂ Z
d × Z+ finite.

The proof of Theorem 2.10 is based on the explicit construction of a coupling.
Let us sketch the idea: Suppose that X̂ and Ŷ are coupled space–time walks in a
fixed environment ω ∈ B such that the probability that X̂ and Ŷ leave a subcylinder
of Kζ R in the same point is bounded from below by a uniform constant 1− γ > 0.
Denote the corresponding hitting times of the boundary by T and S, respectively.
Then, if X̂ starts, say, at x̂ ∈ �p(KR) and Ŷ starts, say, at ŷ ∈ �p(KR), the optional
stopping theorem yields for every ω-caloric function u that

u(x̂)− u(ŷ) = E
[
u(X̂T )− u(ŶS)

]

= E
[
(u(X̂T )− u(ŶS))I{X̂T �=ŶS}

]

� osc
�p(Kζ R)

u P(X̂T �= ŶS)

� γ osc
�p(Kζ R)

u.

This implies the oscillation inequality.
Another key tool for the proof of Theorem 2.6 is the following quantitative

homogenization estimate: Let F : K1 → R be a continuous function of class C2,3

on K1 such that

dF

dt
+ 1

2

d∑

i, j=1
Ai j

d2F

dxidx j
= 0 on K1. (2.3)
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The existence of F is classical. We define FR : KR → R by

FR(x, t) � F
(
x
R , t

R2

)
, (x, t) ∈ KR .

For u : QR → R, we define

(Lωu)(y, s) �
2d∑

i=1
ω(y, ei )u(y + ei , 1+ s)− u(y, s), (y, s) ∈ QR .

For ω ∈ �, let Gω : QR → R be such that
{
LωGω = 0, on QR,

Gω = FR, on ∂ pQR .

It is easy to see that Gω exists in a unique manner: Indeed, first set Gω = FR

on ∂ pQR and then use LωGω = 0 on QR to define Gω recursively. The follow-
ing quantitative estimate is a parabolic version of [5, Theorem 1.4]. Quantitative
homogenization results for non-linear equations are given in [2].

Theorem 2.11. For all ε ∈ (0, 1) there exist R0 = R0(ε) � 1
ε2

,C1 = C1(F) > 0,
C2 = C2(ε) > 0, C3 = C3(ε) > 0 and δ > 0 such that for all R � R0 we have

P

({
ω ∈ � : sup

QR

|FR − Gω| � ε C1

})
� 1− C2e

−C3Rδ

.

The main tool in the proof of Theorem 2.11 is a new parabolic Aleksandrov–
Bakelman–Pucci maximum principle, see Theorem 3.1 below.

The remaining article is organized as follows: In Section 3 we prove the quan-
titative estimate (Theorem 2.11), in Section 4 we provided estimates on the exit
probabilities from a cylinder through a part of the boundary, in Section 5 we prove
the oscillation inequality (Theorem 2.10), in Section 6 we prove the PHI (Theo-
rem 2.6) and finally in “Appendix A” we prove transience for d � 3.

3. Proof of the Quantitative Estimate: Theorem 2.11

3.1. A parabolic maximum principle

In this section we provide a parabolic version of the Aleksandrov–Bakelman–
Pucci (ABP) maximum principle [6, Theorem 3.1]. For the uniform elliptic setting
related results are given in [14,20]. We need further notation: For k ∈ Z+, set

∂kOR �
{
x �∈ OR : ∃y∈OR , ‖x − y‖∞ � k

}
,

∂k QR �
(
∂kOR × [�R2� + k]) ∪ (OR × {�R2�, . . . , �R2� + k}),

Qk
R � QR ∪ ∂k QR .
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Fix a function u : Qk
R → R and define, for (y, s) ∈ QR ,

Iu(y, s) �
{
p ∈ R

d : u(y, s)− u(x, t) � 〈p, y − x〉 ∀ (x, t) ∈ Qk
R with t > s

}
,

�u �
{
(y, s) ∈ QR : Iu(y, s) �= ∅

}
.

Let α(n) be the coordinate that changes between Xn−1 and Xn and define

T � inf(n ∈ Z+ : {α(1), . . . , α(n)} = {1, . . . , d}), T (k) � T ∧ k. (3.1)

The next theorem will be an important tool at several steps in the proof of Theo-
rem 2.6.

Theorem 3.1. There exists an Ro > 0 such that for all R � Ro, 0 < k < R and
all ω ∈ B the following implication holds: If u � 0 on ∂k QR and for all z ∈ OR

Pz
ω(T > k) < e−(log R)3, (3.2)

then

sup
QR

u � cR
d

d+1

⎛

⎝
∑

(y,s)∈�u

∣∣Ey
ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s + 1)
∣∣d+1

⎞

⎠

1
d+1

.

(3.3)

This ABPmaximum principle follows by combining arguments from the proofs
of [6, Theorem 3.1] and [9, Theorem 2.2]. For completeness, we give a proof in
“Appendix B”.

3.2. Proof of Theorem 2.11

We start with some general comments:

1. We fix ε > 0, n0 ∈ N, K > 0 and α ∈ (0, 1
2 ). Here, ε is as in the statement of

the theorem and α = α(ε) is a free parameter, which we choose small enough
in the end of the proof. First, we determine K = K (d, P), then α = α(ε),
n0 = n0(ε) and R0 = R0(ε).

2. We denote by c any constant which only depends on the dimension d, the
function F : K1 → R and the environment measure P . The constant might
change from line to line.

3. We simplify the notation and write G instead of Gω. Moreover, we set

k = k(R) � �√R�.
The idea is to control

H � FR − G
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with the ABP maximum principle given by Theorem 3.1. By definition of FR and
G, we see that

{
LωH = LωFR, on QR,

H = 0, on ∂ pQR .

As H is only defined on QR instead of Qk
R we cannot apply Theorem 3.1 directly.

To overcome this problem, we consider an extension h of H . Set R∗ � R +√dk
and let H ′ : K R∗ → R be a solution to

{
LωH ′ = (LωFR)IQR , on KR∗ ,

H ′ = 0, on ∂ pKR∗ .

Lemma 3.2. (i) maxQR |H − H ′| � max∂ pQR |H ′|.
(ii) max∂k QR

|H ′| � c√
R
.

Proof. (i). Fix (y, s) ∈ QR , set ρ � inf(t ∈ Z+ : (Xt , s + t) ∈ ∂ pQR) and note
thatLω(H−H ′) = 0 on QR . Thus, we deduce from the optional stopping theorem
that

|H(y, s)− H ′(y, s)| = ∣∣Ey
ω

[
H(Xρ, s + ρ)− H ′(Xρ, s + ρ)

]∣∣

= ∣∣Ey
ω

[
H ′(Xρ, s + ρ)

]∣∣
� max

∂ pQR
|H ′|.

Thus, (i) follows.
(ii). By Taylor’s theorem, we obtain for all (y, s), (x, t) ∈ QR

FR(y, s)− FR(x, t) = 1
R

〈∇F( xR , t
R2

)
, y − x

〉+ 1
2R2

〈
y − x,∇2F

( x
R , t

R2

)
(y − x)

〉

+ 1
R2

dF
dt

( x
R , t

R2

)
(s − t)

+ ρt
s |s − t |2 + ρs

y‖y − x‖32,
(3.4)

where ρs
y is bounded by c

R3 and ρt
s is bounded by c

R4 . Thus, for all (x, t) ∈ QR

∣∣(LωFR)(x, t)
∣∣ = ∣∣Ex

ω

[
FR(X1, 1+ t)

]− FR(x, t)
∣∣ � c

R2 . (3.5)

We set

τ � inf(t ∈ Z+ : (Xt , s + t) ∈ ∂ pKR∗), ρ � inf(t ∈ Z+ : Xt ∈ ∂BR∗).

As (‖Xn‖22− n)n∈Z+ is a Px
ω -martingale, the optional stopping theorem yields that

max
x∈∂k OR

Ex
ω

[
ρ
] = max

x∈∂k OR

(
Ex

ω

[‖Xρ‖22
]− ‖x‖22

)
� cRk. (3.6)
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Fix (y, s) ∈ ∂k QR . The optional stopping theorem also yields that

H ′(y, s) = Ey
ω

[
H ′(Xτ , s + τ)

]− Ey
ω

[
τ−1∑

t=0
LωH

′(Xt , s + t)

]

= −Ey
ω

[
τ−1∑

t=0
LωFR(Xt , s + t)IQR (Xt , s + t)

]
.

(3.7)

If s � �R2�, we have H ′(y, s) = 0 and if s < �R2�, then y ∈ ∂kOR and we
deduce from (3.5), (3.6) and (3.7) that

∣∣H ′(y, s)
∣∣ � c

R2 E
y
ω

[
τ
]

� c
R2 E

y
ω

[
ρ
]

� cRk
R2 = c√

R
.

The proof is complete. 
�
Next, we add a quadratic penalty term to the function H ′. Define

h(y, s) � H ′(y, s)+ c′ε
R2 ‖y‖22, (y, s) ∈ K R∗ .

We will determine the constant c′ = c′(F) > 0 in Lemma 3.3 below.
To apply Theorem 3.1 to h, we have to control the upper contact set of h and

the ω-Laplacian of h. In the next lemma we show that c′ can be chosen such that
only a few points are in the upper contact set. To formulate the lemma, we need
more notation: Recall that we fixed a constant n0 = n0(ε). Set

(M (n0)
ω (x))i j � 1

n0
Ex

ω

[(
X (i)
n0 − x (i)

) (
X ( j)
n0 − x ( j)

)]
, 1 � i, j � d,

where X (k)
n0 and x (k) denote the kth coordinate of Xn0 and x . Moreover, set

An0(x) �
{
ω ∈ � : ‖M (n0)

ω (x)− A‖ < ε
}
,

where ‖ · ‖ denotes the trace norm, that is ‖M‖ � tr(
√
MM∗). Here, A is the

limiting covariance matrix as given by Theorem 2.5. Finally, set

Jn0(R) �
{
x̂ ∈ QR : d(x̂, ∂ pQR) > n0

}
, d ≡ distance function.

We are in the position to formulate the lemma announced above.

Lemma 3.3. The constant c′ can be chosen such that the following holds: Let

R >
√
n0
ε
∨ n0. If (x, t) ∈ Jn0(R) and ω ∈ An0(x), then (x, t) �∈ �h.

Proof. Take R >
√
n0
ε
∨ n0, (x, t) ∈ Jn0(R) and ω ∈ An0(x). Recalling (3.4) and

using that the walk X is a Px
ω -martingale, we obtain

Ex
ω

[
FR(Xn0 , t + n0)

]− FR(x, t)

= 1
2R2 E

x
ω

[〈
Xn0 − x,∇2F

(
x
R , t

R2

)
(Xn0 − x)

〉]
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+ n0
R2

dF
dt

(
x
R , t

R2

)
+ ρt

t+n0n
2
0 + Ex

ω

[
ρs
Xn0
‖Xn0 − x‖32

]
.

Since ω ∈ An0(x), we have

Ex
ω

[〈
Xn0 − x,∇2F

(
x
R , t

R2

)
(Xn0 − x)

〉]
= n0tr

(
∇2F

(
x
R , t

R2

)
M (n0)

ω (x)
)

� cn0ε + n0tr
(
A∇2F

(
x
R , t

R2

))
.

Using that dF
dt + 1

2 tr(A∇2F) = 0, we obtain

∣∣Ex
ω

[
FR(Xn0 , t + n0)

]− FR(x, t)
∣∣ � n0cε

2R2 + n0
R2

(
1
2 tr
(
A∇2F

(
x
R , t

R2

))
+ dF

dt

(
x
R , t

R2

))

+ ρt
t+n0n

2
0 + Ex

ω

[
ρs
Xn0
‖Xn0 − x‖32

]

= cn0ε
2R2 + ρt

t+n0n
2
0 + Ex

ω

[
ρs
Xn0
‖Xn0 − x‖32

]

� cn0ε
2R2 + cn20

R4 + c
R3 E

x
ω

[‖Xn0 − x‖32
]
.

We deduce from the Burkholder–Davis–Gundy inequality that Ex
ω

[‖Xn0 − x‖32
]

�
cn

3
2
0 . In summary, we have

∣∣Eω
x

[
FR(Xn0 , t + n0)

]− FR(x, t)
∣∣ � n0ε

R2

( c
2 + c

( n0
εR2 + c

√
n0

εR

))
� c n0ε

R2 � c′ n0ε
2R2 .

As Lω(H ′ − FR) = 0 on QR , we have

Ex
ω

[
H ′(Xn0 , t + n0)

]− H ′(x, t) = Ex
ω

[
FR(Xn0 , t + n0)

]− FR(x, t).

We obtain

Ex
ω

[
h(Xn0 , t + n0)

]− h(x, t)

= Ex
ω

[
FR(Xn0 , t + n0)

]− FR(x, t)+ c′ ε
R2 E

x
ω

[‖Xn0‖22 − ‖x‖22
]

= Ex
ω

[
FR(Xn0 , t + n0)

]− FR(x, t)+ c′ n0ε
R2

� −c′ n0ε
2R2 + c′ n0ε

R2 = c′ n0ε
2R2 > 0.

Using this inequality and the fact that martingales have constant expectation, we
obtain for all p ∈ R

d

Ex
ω

[
h(Xn0 , t + n0)+ 〈p, x − Xn0〉

]− h(x, t) > 0.

Thus, for all p ∈ R
d , there exists a y in the Px

ω -support of Xn0 such that

〈p, x − y〉 > h(x, t)− h(y, t + n0).

We conclude that (x, t) �∈ �h . The proof is complete. 
�
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Lemma 3.3 suggests that we should restrict our attention to environments which
are in An0(x) for many x ∈ OR . Motivated by this observation, we define

A(1) = A(1)
R (α) �

⎧
⎨

⎩ω ∈ � : 1

|BR |
∑

x∈BR

I{ω∈An0 (x)} > 1− 2α

⎫
⎬

⎭ ,

where α = α(ε) is one of the free constants fixed in the beginning of the proof.
Next, we control the ω-Laplacian of h:

(Lωh)(y, s) � Ey
ω

[
h(XT (k) , s + 1+ T (k))

]− h(y, s + 1), (y, s) ∈ KR,

where T (k) = T ∧ k is the stopping time defined in (3.1).

Lemma 3.4. For all (x, s) ∈ KR

∣∣(Lωh)(x, s)
∣∣ � cEx

ω[T ]
R2 .

Proof. Taylor’s theorem yields that |(LωFR)(x, t)| � c
R2 for all (x, t) ∈ KR . For

f (x) = ‖x‖22, note that (Lω f )(x, t) = Ex
ω

[‖X1‖22
] − ‖x‖22 = 1. Consequently,

we obtain that

|Lωh| = |(LωFR)IQR + c′ ε
R2 | � c

R2 .

We deduce from the optional stopping theorem that

∣∣(Lωh)(x, s)
∣∣ =

∣∣∣∣∣∣
Ex

ω

⎡

⎣
T (k)−1∑

t=0
(Lωh)(Xt , s + 1+ t)

⎤

⎦

∣∣∣∣∣∣
� Ex

ω[T ] cR2 .

This completes the proof. 
�
Lemma 3.4 shows that the ω-Laplacian of h can be controlled via x �→ Ex

ω[T ].
Motivated by this observation, we define

A(2)
R �

⎧
⎨

⎩ω ∈ � : 1

|BR |
∑

x∈BR

∣∣Ex
ω[T ]

∣∣d+2 � K

⎫
⎬

⎭ ,

where K is one of the constants we fixed in the beginning.
As a last step before we apply Theorem 3.1, we introduce the following:

A(3)
R �

{
ω ∈ � : Px

ω(T > k) < e−(log R)3 for all x ∈ OR

}
,

which is in conjunction with the statement of Theorem 3.1.
We are in the position to complete the proof of Theorem 2.11. Take ω ∈ A(1) ∩

A(2) ∩ A(3) and let R be such that Ro ∨ n0
α
∨
√
n0
ε
∨ n0 � R, where Ro is as in

Theorem 3.1. Note that

λ\(BR\BR−n0) = c

∫ R

R−n0
rd−1dr � cn0R

d−1.
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As ω ∈ A(1)
R , we have for s < �R2� − n0

1

|BR |
∑

x∈BR

I{(x,s) �∈Jn0 (R) or ω �∈An0 (x)} � cn0
R + 2α � (c+ 2)α = cα. (3.8)

Moreover, because ω ∈ A(2)
R , we deduce from Lemma 3.4 that

1

|BR |
∑

y∈BR

∣∣(Lωh)(y, s)
∣∣d+2 � c

R2(d+2)
1

|BR |
∑

y∈BR

∣∣Ey
ω[T ]

∣∣d+2 � cK
R2(d+2) ,

(3.9)

and

1

|BR |
∑

x∈BR

∣∣(Lωh)(y, s)
∣∣d+1 � c

R2(d+1)
1

|BR |
∑

y∈BR

∣∣Ey
ω[T ]

∣∣d+2 � cK
R2(d+1) .

(3.10)

Furthermore, Lemma 3.2 yields that

max
∂k QR

h � max
∂k QR

H ′ + c′ε (R+k)2
R2 � c

(
1√
R
+ ε
)

. (3.11)

Because ω ∈ A(3)
R , we can apply Theorem 3.1 and obtain that

max
QR

h − max
∂k QR

h � cR
d

d+1

⎛

⎝
∑

(y,s)∈�h

∣∣(Lωh)(y, s)
∣∣d+1

⎞

⎠

1
d+1

. (3.12)

Using Lemma 3.3, we obtain

(3.12) = cR
2d
d+1

⎛

⎝ 1

|BR |
∑

(y,s)∈�h

I{(x,s) �∈Jn0 (R) or ω �∈An0 (x)}
∣∣(Lωh)(y, s)

∣∣d+1
⎞

⎠

1
d+1

� cR
2d
d+1

⎛

⎝ 1

|BR |
∑

(y,s)∈KR

I{(x,s) �∈Jn0 (R) or ω �∈An0 (x)}
∣∣(Lωh)(y, s)

∣∣d+1
⎞

⎠

1
d+1

.

Using Hölder’s inequality, (3.8), (3.9) and (3.10), we further obtain that

(3.12) � cR
2d
d+1

⎛

⎜⎝
R2−n0−1∑

s=0

⎡

⎣ 1

|BR |
∑

x∈BR

I{(x,s) �∈Jn0 (R) or ω �∈An0 (x)}

⎤

⎦

1
d+2

⎡

⎣ 1

|BR |
∑

y∈BR

∣∣(Lωh)(y, s)
∣∣d+2

⎤

⎦

d+1
d+2
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+
R2−1∑

s=R2−n0

1

|BR |
∑

x∈BR

∣∣(Lωh)(y, s)
∣∣d+1

⎞

⎠

1
d+1

� cR
2d
d+1
(
R2[cα

] 1
d+2 [cK

] d+1
d+2 R−2(d+1) + n0cK R−2(d+1)

) 1
d+1

� c
(
α

1
d+2 K

d+1
d+2 + αK

) 1
d+1

.

Combining this bound with Lemma 3.2 and (3.11) shows that

max
QR

H � max
QR

H ′ + c√
R

� max
QR

h + c√
R

� c
(
α

1
d+2 K

d+1
d+2 + αK

) 1
d+1 + c

( 1√
R
+ ε
)+ c√

R

= c
(
α

1
d+2 K

d+1
d+2 + αK

) 1
d+1 + cε + c√

R
.

Replacing the roles of FR with G yields that

max
QR
|H | � c

(
α

1
d+2 K

d+1
d+2 + αK

) 1
d+1 + cε + c√

R
.

To complete the proof we determine the constants. First, we choose K according
to the following lemma:

Lemma 3.5. [5, Lemma 2.3] One can choose K such that the following holds:
There exists an constant δ such that

P
(
A(2)
R

)
> 1− Ke−Rδ

.

Next, we choose α = α(ε) such that (α
1

d+2 + α)
1

d+1 � ε. Then,

max
QR
|H | � cε + c√

R
.

We choose n0 = n0(ε) according to the following lemma:

Lemma 3.6. [5, Lemma2.1]There exists an n0 = n0(ε)and constants c = c(n0) >

0 and C = C(n0) > 0 such that

P
(
A(1)
R ∩ A(3)

R

)
> 1− Ce−cR

1
7
.

Now, we choose R0 = R0(ε) � Ro ∨ n0
α
∨ 1

ε2
∨
√
n0
ε
∨ n0, where Ro is as in

Theorem 3.1. In summary, for all R � R0 and ω ∈ A(1)
R ∩ A(2)

R ∩ A(3)
R we have

maxQR |H | � cε, and P
(
A(1)
R ∩ A(2)

R ∩ A(3)
R

)
� 1 − C(ε)e−c(ε)Rδ

. The proof of
Theorem 2.11 is complete. 
�
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4. An Estimate for the Exit Measure

Take a Borel set A ⊆ ∂K1 whose boundary has zero measure, that is

meas
({x ∈ ∂K1 : d(x,A) = 0 = d(x, ∂ p

K1\A)}) = 0, d ≡ distance function,
(4.1)

and define for (x, t) ∈ Z
d × Z+

RA(x, t) �
{
(y, s) ∈ ∂ pKR(x, t) : ( y−x

‖y−x‖2∨R , s−t
�R2�

) ∈ A
}
. (4.2)

We also set RA � RA(0). Furthermore, set

τs � inf(t ∈ R+ : (Xt , t + s) �∈ K1), s ∈ [0, 1]
ρs � inf(t ∈ Z+ : (Xt , t + s) �∈ KR), s ∈ [�R2�],

χ(x, s) � Px
BM((Xτs , τs + s) ∈ A), (x, s) ∈ K1,

χR(x, s) � χ
( x
R , s

R2 ), (x, s) ∈ KR,

�R(x, s) � Px
ω((Xρs , ρs + s) ∈ RA), (x, s) ∈ K R .

(4.3)

Here, Px
BM denotes the law of a Brownian motion with covariance matrix A and

starting value x .

Corollary 4.1. For every ε > 0 and θ ∈ (0, 1) there exist Ro = Ro(A, ε, θ) >

0, c1 = c1(A, ε, θ), c2 = c2(A, ε, θ) and δ > 0 such that for all R � Ro

P

({
ω ∈ � : sup

KθR

|χR −�R | � ε

})
� 1− c1e

−c2Rδ

.

Proof. Step 1: Fix a small number γ > 0 and define

A
+
γ �

{
x ∈ ∂ p

K1 : d(x,A) � γ
}
,

A
−
γ �

{
x ∈ A : d(x, ∂ p

K1\A) � γ
}
.

Note that

A
−
2γ ⊆ A

−
γ ⊆ A ⊆ A

+
γ ⊆ A

+
2γ .

Let f (1), f (2) : ∂ p
K1→ [0, 1] be sufficiently smooth functions such that

f (1) =
{
1, on A

−
γ ,

0, on ∂ p
K1\A−2γ ,

f (2) =
{
1, on A

+
γ ,

0, on ∂ p
K1\A+2γ .

For k = 1, 2, let J (k) : K1→ R be a solution to the boundary value problem
{

1
2

∑d
i, j=1 Ai j

d2 J (k)

dxidx j
+ dJ (k)

dt = 0, on K1,

J (k) = f (k), on ∂ p
K1.
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The optional stopping theorem yields that

J (k)(x, s) = Ex
BM[ f (k)(Xτs , τs + s)], (x, s) ∈ K1, k = 1, 2. (4.4)

Next, we set

F (k)
R+1(x, t) � J (k)( x

R+1 ,
t

(R+1)2
)
, (x, t) ∈ QR+1.

Note that
⋂

γ>0

A
+
2γ = {x ∈ ∂ p

K1 : d(x,A) = 0},

which implies that
⋂

γ>0 A
+
2γ \A ⊆ ∂A. Thus, due to (4.1) and (4.4), we obtain

that

max
(x,t)∈Kθ(R+1)

(F (2)
R+1(x, t)− χR+1(x, t))

� max
(x,t)∈Kθ

Px
BM((Xτt , τt + t) ∈ A

+
2γ \A)→ 0 as γ ↘ 0.

Next, note that
⋃

γ>0

A
−
γ = A ∩ {x ∈ ∂ p

K1 : d(x, ∂ p
K1\A) > 0},

which implies that A\⋃γ>0 A
−
γ ⊆ ∂A. Due to (4.1) and (4.4), we obtain

max
(x,t)∈Kθ(R+1)

(χR+1(x, t)− F (1)
R+1(x, t))

� max
(x,t)∈Kθ

Px
BM((Xτt , τt + t) ∈ A\A−γ )→ 0 as γ ↘ 0.

Consequently, there exists a γ = γ (ε, θ) > 0 such that the following holds:

F (2)
R+1 − ε � χR+1 � F (1)

R+1 + ε on Kθ(R+1). (4.5)

Take this γ . Note that the function χ is uniformly continuous on Kθ , as it is
continuous on K1. Thus, assuming that Ro is large enough, we have

max
KθR
|χR − χR+1| � ε.

Now, it follows from (4.5) that

F (2)
R+1 − 2ε � χR � F (1)

R+1 + 2ε on KθR . (4.6)

Step 2: For P-a.a. ω ∈ � and k = 1, 2, we define G(k)
R+1 : KR → R+ as solutions

to the following boundary value problem:
{
LωG

(k)
R+1 = 0, on QR+1,

G(k)
R+1 = F (k)

R+1, on ∂ pQR+1.
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For k = 1, 2, let C (k)
1 = C (k)

1 (J (k)) = C (k)
1 (A, ε, θ) > 0 be the constant from

Theorem 2.11 and set

ε̂ � ε

C (1)
1 ∨ C (2)

2

.

Using Theorem 2.11with ε̂ instead of ε yields that there exists a setG = G(A, ε, θ,

R) ∈ F such that, after eventually enlarging Ro, for all ω ∈ G, all R � Ro and
k = 1, 2,

max
QR+1

∣∣∣F (k)
R+1 − G(k)

R+1
∣∣∣ � C (k)ε̂ � ε. (4.7)

Step 3: In this step we show that

G(1)
R+1 − 2ε � �R � G(2)

R+1 + 2ε on KR . (4.8)

For (x, t) ∈ ∂KR\RA, we obtain for sufficiently large Ro that F
(1)
R+1(x, t) < ε. To

see this, recall that J (1) = 0 on ∂ p
K1\A and note that for (x, t) ∈ ∂KR\RA

F (1)
R+1(x, t) =

∣∣∣J (1)
(

x
R+1 ,

t
(R+1)2

)
− J (1)

(
x

‖x‖2∨R , t
�R2�

)∣∣∣ .

Since

∥∥∥ x
R+1 − x

‖x‖2∨R
∥∥∥
2
∨
∣∣∣ t
(R+1)2 − t

�R2�
∣∣∣
1
2 �

(
1− R

R+1
)
∨
(
1− �R2�

(R+1)2
) 1

2

→ 0 as R→∞,

the uniformcontinuity of J (1) onK1 yields the claim. In the samemanner, eventually
enlarging Ro again, we obtain 1− F (2)

R+1(x, t) � ε for (x, t) ∈ RA. In summary,

F (1)
R+1 − ε � IRA � F (2)

R+1 + ε on ∂KR .

Together with (4.7), we conclude that on ∂KR

G(1)
R+1 − 2ε � IRA � G(2)

R+1 + 2ε.

Using once again the optional stopping theorem yields (4.8).
Step 4: Due to (4.6) and (4.8), we obtain that on KθR

G(1)
R+1 − F (1)

R+1 − 4ε � � − χR � G(2)
R+1 − F (2)

R+1 + 4ε.

Finally, with (4.7), we conclude that on KθR

|� − χR | � 4ε +
∣∣∣G(1)

R+1 − F (1)
R+1
∣∣∣+
∣∣∣G(2)

R+1 − F (2)
R+1
∣∣∣ � 6ε.

The proof is complete. 
�
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5. Proof of the Oscillation Inequality: Theorem 2.10

5.1. An oscillation inequality on a small scale

The main result of this section is the following oscillation inequality on a small
scale:

Proposition 5.1. There exist constants α > 0, c ∈ N such that for all R � 1 there
is a constant C ∈ (0, 1) and a set G ∈ F with P(G) � 1− cR3de−Rα

such that for
all ω ∈ G, p ∈ {o, e} and every ω-caloric function u : K (c+3)R → R the following
oscillation inequality holds:

osc
�p(KR)

u � C osc
�p(K(c+3)R)

u. (5.1)

Proof. To prove this result we need input from [5]: For x, y ∈ Z
d wewrite x

ω−→ y
in case

Px
ω(∃n∈N : Xn = y) > 0.

We call a set A ⊆ Z
d to be strongly connected with respect to ω ∈ � if x

ω−→ y
for every x, y ∈ A. Moreover, we call a set A ⊆ Z

d to be a sink with respect to
ω ∈ � if it is strongly connected with respect to ω and for every x ∈ A and y �∈ A

Px
ω(∃n∈N : Xn = y) = 0.

In other words, a sink is a strongly connected set from which the walk cannot
escape. Due to [5, Proposition 1.13], for P-a.a. ω ∈ � there exists a unique sink
Cω.

We now turn to the main proof of Proposition 5.1. Fix two parameters c ∈ N

and ξ > 0 and a radius R � 1, and define

E = E(R) �
{
ω ∈ � : ∀k=1,...,d � ∃z∈B(c+3)R ω(z, ek) ∈ (0, ξ)

}
,

H = H(R) �
{
ω ∈ � : ∀z∈BR � ∃x∈Zd such that z

ω−→ x, x �∈ Cω, ‖x − z‖∞ = �R�
}
,

S = S(R) �
{
ω ∈ � : ∀x,y∈Cω∩B2R distω(x, y) � cR

}
.

Providing an intuition, we have the following:

– If ω ∈ E , the walk in ω is elliptic in Cω ∩ B(c+3)R .
– If ω ∈ H, when starting in BR the worst case is that the walk in ω is in a hole
of the sink Cω with radius �R�.

– If ω ∈ S, all points in Cω ∩ B2R can be reached by a walk in ω in at least �cR�
steps.

We set G = G(R) � E ∩ S ∩ H and take ξ = ξ(R) small enough such that
P(Ec) � R3de−Rα

. Due to [5, Proposition 3.1], there exists a constant α > 0
(only depending on the dimension) such that P(Hc) � cRde−Rα

. Moreover, due
to [5, Proposition 3.2], we can choose c (depending only on P) in the definition of
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the set S (and the statement of the proposition) such that P(Sc) � cR3de−Rα
. In

summary, we have

P(G) = 1− P(Gc) � 1− P(Ec)− P(Hc)− P(Sc) � 1− cR3de−Rα

.

It is left to show that the oscillation inequality (5.1) holds P-almost everywhere
on G. Let ω ∈ G ∩ B and fix (x, t), (y, s) ∈ �p(KR). Furthermore, let (Zn)n∈N
and (Yn)n∈N be independent walks in ω such that Z0 = x and Y0 = y. With
abuse of notation, we denote the underlying probability measure by Pω. Let u be
an ω-caloric function on K (c+3)R . Denote

τ � inf(n ∈ Z+ : (Zn, n + t) �∈ K(c+3)R),

ρ � inf(n ∈ Z+ : (Yn, n + s) �∈ K(c+3)R).

Then,

u(x, t)− u(y, s) = Eω

[
u(Zτ , τ + t)− u(Yρ, ρ + s)

]

= Eω

[(
u(Zτ , τ + t)− u(Yρ, ρ + s)

)
I{(Zτ ,τ+t) �=(Yρ,ρ+s)}

]

� osc
�p(K(c+3)R)

u Pω((Zτ , τ + t) �= (Yρ, ρ + s)).

The oscillation inequality follows in case there exists a constant C = C(R) > 0
such that

Pω((Zτ , τ + t) = (Yρ, ρ + s)) � C. (5.2)

Case 1: x, y ∈ Cω. As ω ∈ E ∩ S, we can guide the space–time walks to meet at
some point and afterwards to proceed together. Thus,

ξ2(c+3)2R2 � Pω((Zτ , τ + t) = (Yρ, ρ + s)).

Case 2: x �∈ Cω or y �∈ Cω. In this case we first bring the walks into the sink. Since
ω ∈ H, the worst case is that the initial points x, y are in a hole of the sink of
radius �R�. Furthermore, using ω ∈ B, the walk can step in direction of the sink
with probability at least 1

2d . Consequently, again guiding the walks and using that
ω ∈ E ∩ S, we obtain that

(2d)−2(c+3)2R2
ξ2(c+3)2R2 � Pω((Zτ , τ + t) = (Yρ, ρ + s)).

Hence, (5.2) holds withC ≡ (2d)−2(c+3)2R2
ξ2(c+3)2R2

> 0. The proof is complete.

�

The following is an application of Proposition 5.1:

Corollary 5.2. There exist constants α > 0, c ∈ N such that for all R � 1 there is a
constant C = C(R) ∈ (0, 1) and a set G = G(R) ∈ F with P(G) � 1−cR3de−Rα

such that for all ω ∈ G, p ∈ {o, e}
max

A⊆∂ pK(c+3)R
osc

�p(KR)
pω(A) � C,

where

ρt � inf(n ∈ Z+ : (Xn, n + t) �∈ K(c+3)R), p(x,t)
ω (A) � Px

ω((Xρt , ρt + t) ∈ A).
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Proof. The Markov property of the walk in the environment ω yields that pω(A)

is ω-caloric in K(c+3)R and consequently, Proposition 5.1 implies the claim. 
�

5.2. Multi-scale structure

Let Ro, M, K , N , εo > 0 be parameters which we will determine later. The
constant M will be taken large (at least 10, say) and N , K ∈ N.

Furthermore, let {A1, . . . ,AN } be a covering of ∂K1 intersecting only in their
boundaries, which are supposed to have no measure, that is

meas ({x ∈ ∂ p
K1 : d(x,Ai ) = d(x, ∂ p

K1\Ai ) = 0}) = 0.

Moreover, we assume that

∀i=1,...,N ∃ẑi ∈ ∂ p
K1 : Ai ⊂ K 1

4M2
(ẑi ). (5.3)

In the following we will denote space–time points by x̂, ŷ, ẑ, etc. For R � 1, j ∈
{1, . . . , N }, ẑ ∈ Z

d × Z+ and s ∈ R+, we define

ρ ẑ,R
s � inf(t ∈ Z+ : (Xt , t + s) �∈ KR(ẑ)),

τ ẑ,R
s � inf(t ∈ R+ : (Xt , t + s) �∈ KR(ẑ)),

and

p(x,t),ẑ,R
ω ( j) � Px

ω((X
ρ
ẑ,R
t

, ρ
ẑ,R
t + t) ∈ RA j (ẑ)),

p
(x,t),ẑ,R
BM ( j) � Px

BM((X
τ
ẑ,R
t

, τ
ẑ,R
t + t) ∈ RA j (ẑ)),

where RA j (x, t) �
{
(y, s) ∈ ∂ p

KR(x, t) : ( y−xR , s−t
R2

) ∈ A j
}
and RA j (ẑ) as in

(4.2).

Definition 5.3. Let c ∈ N and C = C(Ro) ∈ (0, 1) be as in Corollary 5.2.

(i) For R � Ro we say that the cylinder KR(ẑ) is ω-good, if

max
p=o,emax

(∥∥∥px̂,ẑ,(c+3)Ro
ω − pŷ,ẑ,(c+3)Ro

ω

∥∥∥
tv
: x̂, ŷ ∈ �p(KR(ẑ))

)
� C,

where ‖ · ‖tv denotes the total variation distance.
(ii) For R > Ro we say that the cylinder KR(ẑ) is ω-good, if for all x̂ ∈ KR(ẑ)

∥∥∥px̂,ẑ,MR
ω − px̂,ẑ,MR

BM

∥∥∥
tv

< εo.

The next lemma shows that in case Ro is large the probability for a cylinder to
be good is high. The lemma follows from Corollaries 4.1 and 5.2.

Lemma 5.4. There exist constants R∗ = R∗(A1, . . . ,AN , εo, M) � 1 and δ > 0
such that whenever Ro � R∗

P
({

ω ∈ � : KR(ẑ) is ω -good
})

� 1− e−Rδ

for all R � 1. (5.4)
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In the following, let δ be as in Lemma 5.4. Our next step is to set up amulti-scale
structure. Define

Rk � RKk

o for k ∈ Z+,

and take a constant

ν <
δ

K
.

Definition 5.5. (i) A cylinder of radius R2
o is called ω-admissible, if all sub-

cylinders of radius Ro are ω-good.
(ii) For k ∈ N a cylinder of radius R2

k is called ω-admissible, if
– Every sub-cylinder of radius > Rk−1 is ω-good.
– There are at most Rν

k non-ω-admissible sub-cylinders of radius R2
k−1.

Lemma 5.6. There exists a constant R∗ = R∗(A1, . . . ,AN , εo, M) � 1 such that
for Ro � R∗ the following holds: For all (ẑ, k) ∈ Z

d × Z+ × Z+

P
({

ω ∈ � : KR2
k
(ẑ) isω -admissible

})
� 1− e−R

ν/2
k .

Proof. We use induction. For k = 0 the claim follows fromLemma 5.4 and a union
bound. For the induction step, assume that the claim holds for k ∈ Z+. Denote

A �
{
ω ∈ � : in KR2

k
(ẑ) there exists a sub-cylinder

of radius > Rk−1 which is notω-good
}
,

B �
{
ω ∈ � : in KR2

k
(ẑ) there are more than Rν

k

non-ω-admissible sub-cylinders of radius R2
k−1
}
.

Due toLemma5.4, each sub-cylinderwith radius> Rk−1 is badwith probability
less than e−R

δ
k−1 � e−Rν

k .Thus, due to a union bound,we obtain for Ro large enough
that

P(A) � 1
2e
−Rν/2

k .

We denote by A(x̂, R) the set of all ω ∈ � such that KR(x̂) is ω-admissible. To
estimate P(B), we partition the cylinder KR2

k
in ρ � polynomial of Rk subsets

{U1, . . . ,Uρ} such that A(x̂, R2
k−1) and A(ŷ, R2

k−1) are independent for all x̂, ŷ ∈
Ui , i = 1, . . . , ρ. For i = 1, . . . , ρ, we have

Zi �
∑

x̂∈Ui

(
1− IA(x̂,R2

k−1)
) ∼ bin(|Ui |, 1− P(A(0, R2

k−1)) �st bin(|Ui |, e−R
ν/2
k−1),

where �st denotes the usual stochastic order. Note the following:



924 Noam Berger & David Criens

Lemma 5.7. For n ∈ N, let S1, . . . , Sn be i.i.d. Bernoulli random variables with
parameter p ∈ (0, 1). Then, for all k ∈ [n]

P(S1 + · · · + Sn � k) � (np)k .

Proof. We use induction over k ∈ [n]. For k = 0 the claim is obvious. Assume the
claim holds for 0 � k < n. Then,

P(S1 + · · · + Sn � k + 1) = P(S1 + · · · + Sn � k + 1, ∃m�n : Sm = 1)

�
n∑

m=1
P(S1 + · · · + Sn − Sm � k, Sm = 1)

=
n∑

m=1
P(S1 + · · · + Sn−1 � k)P(Sm = 1)

�
n∑

m=1
P(S1 + · · · + Sn � k)p

�
n∑

m=1
(np)k p = (np)k+1.

The proof is complete. 
�
Using Lemma 5.7 and Chebyshev’s inequality, we obtain that

P(B) �
ρ∑

i=1
P(Zi > ρ−1Rν

k ) � ρ(2Rk)
2(d+2)ρ−1Rν

k e−ρ−1Rν
k R

ν/2
k−1

= ρeρ−1Rν
k (log(2Rk)2(d+2)−Rν/2

k−1) � 1
2e
−Rν/2

k ,

provided Ro is sufficiently large. We conclude that P(A∪ B) � e−R
ν/2
k . The proof

is complete. 
�

5.3. The coupling

We use the notation from Section 5.2.

5.3.1. Definition In this section we define a coupling, which success will prove
the oscillation inequality. We define the coupling via a (random) sequence

{
x̂ (m), ŷ(m), ẑ(m), R(m),Y (m), Z (m) : m ∈ Z+

}
.

The starting point is a so-called basic coupling: For x̂ ∈ Z
d × Z+, R � 1, ŷ =

(ŷ1, ŷ2), ẑ = (ẑ1, ẑ2) ∈ KR(x̂), let q(x̂,R,ŷ,ẑ)
ω be a Borel probability measure on the

product space (Zd × Z+)× (Zd × Z+)× D(Z+,Zd)× D(Z+,Zd) such that the
generic element (Ẑ1, Ẑ2, X1, X2) is sampled as follows:



A PHI for Difference Equations in RE 925

– If R > Ro, then X1 and X2 are two walks inω starting at ŷ1 and ẑ1 respectively,
such that the probability of (X1

n, ŷ2 + n)n∈Z+ and (X2
n, ẑ2 + n)n∈Z+ leaving

KMR(x̂) in the same element of {RMA1(x̂), . . . , RMAN (x̂)} is maximized.
Moreover, Ẑ1 and Ẑ2 are the points where (X1

n, ŷ2 + n)n∈Z+ and (X2
n, ẑ2 +

n)n∈Z+ leave KMR(x̂).
– If R � Ro, then X1 and X2 are two walks inω starting at ŷ1 and ẑ1 respectively,

such that the probability of (X1
n, ŷ2 + n)n∈Z+ and (X2

n, ẑ2 + n)n∈Z+ leaving
K(c+3)Ro(x̂) in the same point is maximized. Moreover, Ẑ1 and Ẑ2 are the
points where (X1

n, ŷ2 + n)n∈Z+ and (X2
n, ẑ2 + n)n∈Z+ leave K(c+3)Ro(x̂).

Before we turn to the main coupling, let us explain that on good cylinders there is a
reasonable probability that the walks leave a cylinder in the same region or point.

Lemma 5.8. Take x̂ ∈ Z
d × Z+, R � 1 and ŷ, ẑ ∈ KR(x̂) of the same parity and

assume that ω ∈ � is such that KR(x̂) is ω-good.

(i) There exist two constant c1, c2 > 0 only depending on the dimension d and the
covariance matrix A such that in case R > Ro

q(x̂,R,ŷ,ẑ)
ω

(∃v̂ ∈ ∂ pKRM (x̂) : Ẑ1, Ẑ2 ∈ KRM−1(v̂)
)

> 1− c1M
−c2 − 2εo.

(ii) If R � Ro, then

q(x̂,R,ŷ,ẑ)
ω

(
Ẑ1 = Ẑ2) > 1− C,

where C ∈ (0, 1) is as in the definition of the good cylinder, see Corollary 5.2.

Proof. (i). The proof is based on the relation of oscillation, total variation and
couplings: In view of [16, Proposition 4.7, Remark 4.8] and of assumption (5.3), it
suffices to show that

‖pŷ,x̂,MR
ω − pẑ,x̂,MR

ω ‖tv � c1M
−c2 + 2εo.

Take k ∈ {1, . . . , N }. Since KR(x̂) is ω-good, we have
∣∣∣pŷ,x̂,MR

ω (k)− pẑ,x̂,MR
ω (k)

∣∣∣ �
∣∣∣pŷ,x̂,MR

ω (k)− p
ŷ,x̂,MR
BM (k)

∣∣∣+
∣∣∣pẑ,x̂,MR

ω (k)− p
ẑ,x̂,MR
BM (k)

∣∣∣

+
∣∣∣pŷ,x̂,MR
BM (k)− p

ẑ,x̂,MR
BM (k)

∣∣∣

� 2εo +
∣∣∣pŷ,x̂,MR
BM (k)− p

ẑ,x̂,MR
BM (k)

∣∣∣ . (5.5)

Furthermore, because v̂ �→ u(v̂) � pv̂,x̂,MR
BM solves the (backward) heat equation

d
dt u+ 1

2 tr(A∇2u) = 0 onKMR(x̂), [17, Theorem 6.28] yields the existence of two
constants c1, c2 > 0 such that

∣∣∣pŷ,x̂,MR
BM (k)− pẑ,x̂,MR

BM (k)
∣∣∣ � c1M

−c1 .

Together with (5.5), we conclude (i).
(ii). This follows from [16, Proposition 4.7, Remark 4.8] and the definition of

a good cylinder. 
�
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We can (and will) take M and εo such that

1− c1M
−c2 − 2εo � 2

3 . (5.6)

In other words, on good cylinders the coupling is successful (in some sense) with
a reasonable probability.

From now on we fix R > Ro, ω ∈ � and two points ŷ, ẑ ∈ KR of the same
parity. The following are the initial values:

– R(0) � R.
– x̂ (0) � (0, 0).
– sample (ŷ(0), ẑ(0),Y (0), Z (0)) according to q0,R,ŷ,ẑ

ω .

Now, we proceed inductively. Namely, once the mth element of the sequence is
fixed, we generate the (m + 1)th element as follows: Set R(m) and x̂ (m) according
to the following rule:

– Case 1: R(m−1) > Ro. If there exists a point v̂ in the boundary of the cylin-
der KMR(m−1) (x̂ (m−1)) such that ŷ(m−1), ẑ(m−1) ∈ KM−1R(m−1) (v̂), set R(m) ≡
M−1R(m−1) and x̂ (m) ≡ v̂. Otherwise, take R(m) ≡ MR(m−1) and x̂ (m) ≡
x̂ (m−1).

– Case 2: R(m−1) � Ro. We set R(m) ≡ (c + 3)Ro and x̂ (m) ≡ x̂ (m−1).

Then, sample (ŷ(m), ẑ(m),Y (m), Z (m)) according to q(x̂ (m),R(m),ŷ(m−1),ẑ(m−1))
ω . Finally,

let Y and Z be the walks in ω that are obtained from Y (m) and Z (m) by pasting. To
simplify our notation, we denote the probability measure underlying the coupling
by Q.

5.3.2. A technical lemma Fix k ∈ Z+, x̂ ∈ Z
d × Z+ and let Rk < R � Rk+1.

Further, define two stopping times:

T � inf
(
m ∈ N : R(m) � Rk

)
,

S � inf
(
m ∈ N : R(m) � R2

k+1 or x̂ (m) �∈ KR2
k+1/2

(x̂)
)

.

Remark 5.9. If ω ∈ A(x̂, R2
k+1), then till T ∧ S the coupling only sees ω-good

cylinders.

Lemma 5.10. (i) There exist constants θ, c > 0 such that if ω ∈ A(x̂, R2
k+1),

then

Q(S < T ) � cR−θK
k .

(ii) If Rk+1M−1 � R there exist constants ρ, c > 0 such that if ω ∈ A(x̂, R2
k+1),

then for all ẑ ∈ KR2
k+1

(x̂)

Q(x̂ (T ) ∈ KRk (ẑ)) � cR−ρK
k .
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Proof. (i). Note that

Q(S < T ) = Q

({
max
m<T

R(m) � R2
k+1 or ∃m<T : x̂ (m) �∈ KR2

k+1/2
(x̂)

}
∩ {S < T }

)

� Q

(
max

m<S∧T R(m) � R2
k+1
)
+Q

(
∃m<S∧T : x̂ (m) �∈ KR2

k+1/2
(x̂)
)

.

(5.7)

In view of Remark 5.9, [5, Lemma 4.10] yields that

Q

(
max

m<S∧T R(m) � R2
k+1
)

� 2−
K log(Rk )

log(M) ≡ R−θ ′K
k with θ ′ � log(2)

log(M)
.

To control the second term in (5.7), we first consider the process

Lm � log(R(m))− log(R)

log(M)
, m � S ∧ T .

Note that (Lm)m�S∧T has step size one and that it steps down with a probability

larger than 2
3 , see Lemma 5.8, Remark 5.9 and (5.6). Consequently, (Lm)m�S∧T

is stochastically dominated by a biased random walk which steps down with
probability 2

3 . This means that there exists a sequence of i.i.d. random variables
ξ1, ξ2 − ξ1, . . . such that Q(ξ1 = 1) = 1 − Q(ξ1 = −1) = 1

3 and Q-a.s. on
{m � S ∧ T }

Lm+1 − Lm � ξm+1 − ξm . (5.8)

Lemma 5.11.

EQ
[
S ∧ T

]
� 3

⌈
log(R)− log(Rk)

log(M)

⌉
.

Proof. We set

τa � inf(m ∈ N : ξm � −a), a ∈ Z+.

It is well-known that EQ[τa] = 3a,which follows from the fact that (ξm+ m
3 )m∈Z+

is a martingale and the optional stopping theorem. Now, set

a �
⌈
log(R)− log(Rk)

log(M)

⌉
,

and note that Q-a.s. S ∧ T = S ∧ T ∧ τa � τa . The claim follows. 
�
Next, set

B �
{

max
m<S∧T R(m) < R3/2

k+1
}

.

Using again [5, Lemma 4.10] yields that

Q(Bc) � R−θ ′K/2
k .
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Denote x̂ (m) = (x (m), t (m)) and x̂ = (x, t). By Lemma 5.11 and Chebyshev’s
inequality, we obtain

Q
(∃m<S∧T : ‖x (m) − x‖2 � R2

k+1/2, B
)

� 2

R2
k+1

EQ

[
∑

n<S∧T
‖x (n) − x (n−1)‖2IB

]

� 2

R2
k+1

EQ

[
∑

n<S∧T
2MR(n−1)

IB

]

� c

R1/2
k+1

EQ
[
S ∧ T

]

� c

R1/2
k+1

log(Rk+1)
log(M)

� cR−K/8
k .

Similarly, we obtain that

Q
(∃m<S∧T : |t (m) − t | � R4

k+1/4, B
)

� cR−K/8
k .

In summary, we have

Q
(∃m<S∧T : x̂ (m) �∈ KR2

k+1/2
(x̂)
)

� cR−θK
k ,

for some suitable θ > 0. We proved part (i).
(ii). Using (i) we see that

Q(x̂ (T ) ∈ KRk (ẑ)) � Q(S < T )+Q(x̂ (T ) ∈ KRk (ẑ), T � S)

� cR−θK
k +Q(x̂ (T ) ∈ KRk (ẑ), T � S).

It remains to control the second term.
Let (ξk)k∈Z+ be as in the proof of part (i). For m ∈ Z+ we set

R(m) �
{

ξm+1 − ξm = −1,
∞∑

k=m+2
Mξk−ξm+1 < 1

}
.

We obtain that on R(m) ∩ {m + 2 � T � S}

‖x (T ) − x (m+1)‖2 �
T∑

k=m+2
‖x (k) − x (k−1)‖2 �

T∑

k=m+2
2MR(k−1)

� 2MR(m+1) + 2MR(m+1)
∞∑

k=m+2
Mξk−ξm+1

� 4MR(m+1) = 4R(m),

and similarly, |t (T ) − t (m+1)| 12 � 2R(m). Thus, on R(m) ∩ {m + 2 � T �
S, x̂ (T ) ∈ KRk (ẑ)} we have ‖ẑ1 − x (m+1)‖2 � 2Rk + 4R(m) � 6R(m), and
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|ẑ1− t (m+1)| 12 � 3R(m),which happens with probability bounded from above by a
constant p = p(εo, M) < 1, because (x (m+1), t (m+1)) ∈ (x (m), t (m))+ ∂ pKMR(m)

and the definition of a good cylinder. Next, we need the following large deviation
estimate:

Lemma 5.12. There exist constants κ, v > 0 such that for all n ∈ N

Q

(
1

n

n∑

k=1
IR(k) � κ

)
� e−vn .

Proof. We call m ∈ N a renewal, if

{
ξm > ξn, n > m,

ξm < ξn, n < m.

For k ∈ N, let τk be the kth renewal and note that ξτi+2 − ξτk+1 � −(i − k + 1) =
k − i − 1 for every i � k. Consequently, we see that

∞∑

i=τk+2
Mξi−ξτk+1 = M−ξτk+1

∞∑

i=k

τi+1+1∑

j=τi+2
Mξ j

� M−ξτk+1
∞∑

i=k
(τi+1 − τi )M

ξτi+2 �
∑

i=k
(τi+1 − τi )M

k−i−1.

This shows that the eventR(τk) happens in case (τi+1 − τi )Mk−i−1 < 2k−i−1 for
all i � k. Now, the proof concludes identical to the proof of [5, Claim 4.12]. 
�

Let

ZN �
N∑

k=1
IR(k), N ∈ N.

Note that

T �
⌈
K log(Rk)

2 log(M)

⌉
≡ n + 2,

because R(m) � R
Mm and R � Rk+1M−1. Now, we obtain that

Q(x̂ (T ) ∈ KRk (ẑ), T � S) � Q(Zn � κn)+Q(x̂ (T ) ∈ KRk (ẑ), T � S, Zn > κn)

� R
− v

4 log(M)
K

k + R
log(p)κ
4 log(M)

K

k .

The claim of (ii) follows. 
�
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5.3.3. Success of the coupling Let k � max(n ∈ N : R > Rn) and define the
following sets:

A1 �
k⋂

i=0
A(x̂ (T (i)), R2

i ), A2 �
k⋂

i=0

{
T (i) � S(i)},

where T (k+1) � 0 and

T (i) � inf
(
m � T (i+1) : R(m) � Ri

)
,

S(i) � inf
(
m � T (i+1) : R(m) � R2

i+1 or x̂ (m) �∈ KR2
i+1/2

(x̂ (T (i+1)))
)

,

and

A3 �
{
(Zτ , τ + ẑ1) = (Yρ, ρ + ŷ1)

}
,

A4 �
{{

(Zn∧τ , n ∧ τ + ẑ1), (Yn∧ρ, n ∧ ρ + ŷ1) : n ∈ Z+
} ⊂ K(c+6)MR

}
,

where

τ � ẑ(T
(0))

1 + inf
(
m ∈ Z+ : (Z (T (0))

m ,m + ẑ(T
(0))

1 ) �∈ K(c+3)Ro(x̂
(T (0)))

)
,

ρ � ŷ(T (0))
1 + inf

(
m ∈ Z+ : (Y (T (0))

m ,m + ŷ(T (0))
1 ) �∈ K(c+3)Ro(x̂

(T (0)))
)

.

Moreover, set

A �
4⋂

i=1
Ai .

We define A(0, R2) to be the set of all environments ω ∈ � for which every
sub-cylinder of KR2 with radius R2

k is ω-admissible and every sub-cylinder with
radius > Rk is ω-good.

Lemma 5.13. If δ < ρK there exist two constants R′ ∈ N and ζ > 0 such that if
Ro � R′ and ω ∈ A(0, R2), then

Q(A) � ζ.

Proof. Using Lemma 5.10 and the definition of admissibility, we conclude the
existence of a constant κ > 0 such that

Q

(
A
(
x̂ (T (n)), R2

n

)c ∣∣
k+1⋂

i=n
A
(
x̂ (T (i)), R2

i

))
� cR−κ

n , n ∈ [k],

where with abuse of notation x̂ (0) ≡ 0 and Rk+1 ≡ R. Using the elementary
inequality:

n∏

i=1
(1− ai ) � 1−

n∑

i=1
ai , ai ∈ (0, 1),
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we obtain that

Q

(
k⋂

i=0
A
(
x̂ (T (i)), R2

i

))
� 1−

k∑

i=0
cR−κ

i � 1−
∞∑

i=0
cR−κ

i = 1−
∞∑

i=0
R−κKi

o .

Choosing Ro large enough, we get

Q

(
k⋂

i=0
A
(
x̂ T

(i)
, R2

i

))
� 1− ε,

for a fixed ε ∈ (0, 1). Using Lemma 5.10 (i), we also obtain that

Q(A2) � 1− c
∞∑

i=0
R−θK
i � 1− ε,

provided Ro is large enough. Let

R �
{ ∞∑

i=1
Mξi < 1

}
.

We note that Q(R) > 0, see Lemma 5.12. Let x̂ = (x, t) and note that on A1 ∩
A2 ∩R

‖x (T (0)) − x‖2 � ‖x (1) − x‖2 +
T (0)∑

i=2
‖x (i) − x (i−1)‖2 � 2MR +

T (0)∑

i=2
2MR(i−1)

� 2MR + 2MR
∞∑

i=1
Mξi � 4MR.

Similarly, we see that |t (T (0))− t | � 4M2R2 on A1∩ A2∩R. Hence,Q(A1∩ A2∩
A4) � Q(A1∩A2∩R).Due to Lemma 5.8, we also haveQ(A3|A1∩A2∩A4) � C.

Finally, we conclude thatQ(A) � C(Q(R)−2ε).Taking ε small enough completes
the proof. 
�

5.4. Proof of Theorem 2.10

Let (Zn)n∈Z+ and (Yn)n∈Z+ be the coupled processes as defined in Section 5.3.1
and let τ and ρ be as in Section 5.3.3. Takeω ∈ A(0, R2) and let u : K(c+6)MR → R

be ω-caloric. Now, we have

u(ẑ)− u(ŷ) � Q((Zτ , τ + ẑ1) �= (Yρ, ρ + ŷ1)) osc
�p(K(c+6)MR)

u

� (1− ζ ) osc
�p(K(c+6)MR)

u,

where ζ > 0 is as in Lemma 5.13 and p is the parity of ẑ and ŷ. In view of
Lemma 5.6, this proves Theorem 2.10. 
�
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6. Proof of the PHI: Theorem 2.6

6.1. Some notation

In the following, fix a parity p ∈ {o, e}. Take ν ∈ (0, 1) and N ∈ N, and let
{A1, . . . ,AN } be a covering of ∂ p

K1 and let {C1, . . . ,CN } ⊂ ∂ p
K1. Further, we

suppose that

max
i=1,...,N diam(Ai ) � ν

4 .

We assume that the boundary of each Ai and Ci has zero measure.
Let ζ > 1 and γ ∈ (0, 1) be as in Theorem 2.10 and let Ox̂,R be the set of all

ω ∈ � such that the oscillation inequality

osc
�p(KR(x̂))

u � γ osc
�p(Kζ R(x̂))

u

holds for all ω-caloric functions u on K ζ R(x̂).
For i = 1, . . . , N , define χx̂,R,i and �x̂,R,i as in (4.3) with A replaced by Ai

and KR replaced by KR(x̂). Moreover, set α � 2− ε and

Ux̂,R �
{
ω ∈ � : ∀ŷ∈KR(x̂)∀i=1,...,N |�x̂,αR,i (ŷ)− χx̂,αR,i (ŷ)|

χx̂,αR,i (ŷ)
� ε

}
.

The ω-dependence in the above definition stems from �.
For i = 1, . . . , N , define χ∗x̂,R,i and �∗x̂,R,i as in (4.3) with A replaced by Ci

and KR replaced by KR(x̂). Fix a θ1, . . . , θN > 1 and δ∗ ∈ (0, 1), and set

U∗x̂,R �
{
ω ∈ � : ∀ŷ∈KR(x̂)∀i=1,...,N |�∗x̂,θi R,i (ŷ)− χ∗x̂,θi R,i (ŷ)| � δ∗

}
.

Let κ ∈ (0, 1
2d ). Define the map J̃ : �→ �, J̃ (ω) � ω̃ as follows: For x ∈ Z

d

and i = 1, . . . , 2d, set

ω̃(x, ei ) �
{
0, ω(x, ei ) < κ,

ω(x, ei )+ M
N , ω(x, ei ) � κ,

where N �
∑2d

i=1 I{ω(x,ei )�κ} and M �
∑2d

i=1 ω(x, ei )I{ω(x,ei )<κ}.
Next, take δ ∈ (ξ, 1

5 ), where ξ ∈ (0, 1
5 ) is as in the statement of Theorem 2.6,

and define

JR �
{
ω ∈ � : ∀y∈B2R � ∃z∈Zd such that y

ω̃−→ z, z �∈ Cω̃, ‖z − x‖∞ = �Rξ �
}

,

IR �
{
ω ∈ � : ∀y∈B2R all self-avoiding paths in ω with length �oRξ/4�

and starting value y have visited Cω̃

}
,

SR �
{
ω ∈ � : ∀x,y∈Cω̃∩B3Rδ

distω̃(x, y) � cRδ
}

,

where c, o > 0 are constants determined in the following lemmata. The proof of
the next lemma is given in Section 6.3 below.
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Lemma 6.1. If κ is small enough, o > 0 can be chosen such that there are constants
R′ > 0, c1, c2 > 0 and ζ > 0 such that for all R � R′

P(IR) � 1− c1e
−c2Rζ

.

Finally, define

ZR �
⋂

ŷ∈KR

⋂

r∈(Rδ,R]

[Oŷ,r ∩ Uŷ,r ∩ U∗ŷ,r
]⋂JR

⋂
IR

⋂
SR .

Lemma 6.2. If κ is small enough, c > 0 can be chosen such that there are constants
R′ > 0, c1, c2 > 0 and ζ > 0 such that for all R � R′

P(ZR) � 1− c1e
c2Rζ

.

Proof. If κ is small enough the probability measure P ◦ J̃−1 is balanced and gen-
uinely d-dimensional. Thus, the claim follows from Theorem 2.10, Corollary 4.1,
[5, Propositions 3.1 and 3.2] and Lemma 6.1 with a union bound. 
�

From now on, wewill assume that R � R′ and thatω ∈ ZR∩B. It might be that
we enlarge R′ even further. Under these assumptions we will prove the parabolic
Harnack inequality, which completes the proof of Theorem 2.6.

6.2. The proof

Let u be a non-negativeω-caloric function satisfying the growth condition (2.1)
in Theorem 2.6. For contradiction, assume that x̂∗ ∈ �p(K+R ) and ŷ∗ ∈ �p(K−R )

satisfy

u(x̂∗) � (1+ 3ε)H2−εu(ŷ∗)
(1− ε)2

, H ≡ H2−ε = Hα. (6.1)

Furthermore, let K+(2−ε/2)R be the discrete version of B(2−ε/2)R × (2R2, (2 −
ε/2)2R2) and let K++2R be the discrete version of B2R × (1.5R2, 4R2).

The proof of Theorem 2.6 is based on the following three lemmata:

Lemma 6.3. There exists a constant M � 1 such that every subcylinder of K++2R
with radius Rδ contains a point ẑ of the same parity as x̂∗ such that

u(ẑ) � Mu(ŷ∗).

Moreover, there exists a subcylinder of K+(2−ε/2)R with radius Rδ which contains a
point x̂ of the same parity as x̂∗ such that

u(x̂) � Mu(ŷ∗)2cR
1−δ
2

.

From now on let x̂ = (x, t) be as in Lemma 6.3.
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Lemma 6.4. For every ẑ ∈ Cω̃ × Z+ ∩ K+(2−ε/2)R with the same parity as x̂∗ it
holds that

u(ẑ) � Mu(ŷ∗)κ−2R2δ
.

Noting that (1− δ)/2 > 2
5 and 2δ < 2

5 , we see that x̂ �∈ Cω̃ × Z+. Let

T � inf(n ∈ Z+ : (Xn, n + t) �∈ K2R or Xn ∈ Cω̃). (6.2)

Lemma 6.5. Px
ω(XT �∈ Cω̃) � w−R2−ξ

.

Next, we put these pieces together. The optional stopping theorem and Lem-
mata 6.4 and 6.5 yield that

u(x̂) = Ex
ω

[
u(XT , T + t)I{XT∈Cω̃}

]+ Ex
ω

[
u(XT , T + t)|XT �∈ Cω̃

]
Px

ω(XT �∈ Cω̃)

� Mu(ŷ∗)κ−2R2δ + Ex
ω

[
u(XT , T + t)|XT �∈ Cω̃

]
w−R2−ξ

.

Now, rearranging and using Lemma 6.3 shows that

Ex
ω

[
u(XT , T + t)|XT �∈ Cω̃

]
� Mu(y∗)

(
2cR

1−δ
2 − κ−2R2δ )

wR2−ξ

.

Since 2cR
1−δ
2 − κ−2R2δ

> 1 for large enough R, we obtained a contradiction to the
growth assumption (2.1). Except for the proofs of Lemmata 6.3, 6.4 and 6.5, which
are given in the next subsection, the proof of Theorem 2.6 is complete. 
�

6.3. Proof of Lemma 6.1

For z ∈ Z
d and n ∈ N we write

Cn(z) � [−n, n]d + (2n + 1)z.

Adapting terminology from [5], we call Cn(z) to be ω-good, if C2n(z) contains a
unique sink and for every x ∈ Cn(z) any self-avoiding path in ω of length � n/10
reaches the unique sink in Cn(z), cf. [5, Lemma 3.6].

Fix a small ε > 0. Then, by [5, Lemma 3.6] there exists an N ∈ N such that

P
({

ω ∈ � : CN (z) isω-good
})

� 1− ε

2
.

Next, take the parameter κ ∈ (0, 1
2d ) in the definition of J̃ small enough such that

P
({

ω ∈ � : ∃i=k,...,2d ω(0, ek) < κ
})

� ε

2|C2N (0)| .

Let Czω be a sink in Q2N (z) with respect to the environment ω. In case there are
several sinks, take one in an arbitrary manner. Now, we have

P
({

ω ∈ � : Czω = Czω̃
})

� P
({

ω ∈ � : ∀y∈C2N (z)∀k=1,...,2d ω(y, ek) � κ
})
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� 1− |C2N (z)|P({ω ∈ � : ∃k=1,...,2d ω(0, ek) < κ
})

� 1− ε

2
.

We say that C2N (z) is very ω-good, if it is ω-good and Czω = Czω̃. Now, define the{0, 1}-valued random variables

Gz(ω) � I{C2N (z) is veryω-good}, z ∈ Z
d ,

and note that

P(Gz = 1) � 1− ε.

As the environment measure P is an i.i.d. measure, the random variables Gz and
Gy are independent whenever ‖x − y‖∞ � 2. Consequently, we can apply [18,
Theorem 0.0] and conclude that in case we have chosen ε small enough from the
beginning, the family (Gz)z∈Zd stochastically dominates supercritical Bernoulli
site percolation. With abuse of notation, this means that the percolation process
and (Gz)z∈Zd can be realized on the same probability space such that a.s.

I{z ∈ D} � Gz, z ∈ Z
d ,

whereD is the (a.s. unique) infinite cluster of the supercritical percolation process.
Thus, we note that a.s.

⋃

z∈D
Czω ⊆ Czω̃.

Denote by Az the connected component of z in Z
d\D. In case z ∈ D we have

Az = ∅. Furthermore, set

K z
ω �

{
|Az ∪ ∂Az |, z �∈ D,

1, z ∈ D.

Of course, the ω-dependence stems from D.

Lemma 6.6. For a.a. ω every self-avoiding path in ω with length |C2N (0)|K z
ω + 1

and starting value z ∈ Z
d must have visited Cω̃.

Proof. Note that every self-avoiding path in ω with length |C2N (0)|K z
ω + 1 and

starting value z has visited a point y such that

y �∈
⋃

u∈Az∪∂Az

CN (u).

Consequently, the path has crossed a cube CN (u) with u ∈ ∂Az . As ∂Az ⊂ D, for
a.a. ω ∈ � we have Gu(ω) = 1 and the definition of very ω-good implies that the
path must have visited Cω̃. 
�

The following lemma follows from [11, Theorem 8, Remark 10]:

Lemma 6.7. There exists an α > 0 such that for all k ∈ N

P(|Az | � k) � ce−kα

.
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Now, for o � 2|C2N (0)| and large enough R, Lemmata 6.6 and 6.7 yield that

P(IR) � P(IR,∀z∈B2R |Az| < �Rξ/4�)
= P(∀z∈B2R |Az | < �Rξ/4�)
� 1− c|B2R |e−�Rξ/4�α .

This bound completes the proof of Lemma 6.1. 
�

6.3.1. Proof of Lemma 6.3 The proof is based on an iterative scheme in the spirit
of an argument by Fabes and Stroock [10]. Let (rn)n∈Z+ be a sequence of radii
defined as follows:

r0 � R, r1 � εR

8α
, rn � r1

n2
.

Note that

∞∑

n=0
αrn = αR + εR

8

∞∑

n=1

1

n2
� αR + εR

4
<
(
2− ε

2

)
R,

and that

∞∑

n=0
α2r2n = α2R2 + ε2R2

64

∞∑

n=1

1

n4
<
(
2− ε

2

)2
R2.

Set X � max(n ∈ N : rn > Rδ) and note that

r1
n2

> Rδ ⇔
√

ε

8α
R

1−δ
2 > n ⇒ X �

⌊√
ε

8α
R

1−δ
2

⌋
. (6.3)

Next, we construct two sequences (x̂n)n∈[X] and (ŷn)n∈[X] of points in K(2−ε/2)R

with the same parity as x̂∗. As initial points we take x̂0 � x̂∗ and ŷ0 � ŷ∗.
Before we explain mathematically how x̂n+1 and ŷn+1 are chosen once x̂n and

ŷn are known, we describe the idea in an informal manner, see also Fig. 3.
The initial step is to show the existence of a subset αRAk (red in Fig. 3) of

∂ pKαR with the two properties that it can be reached by the space–time walk
starting at x̂0 and that maxαRAk u and maxαRAk u/minαRAk u are reasonably large
compared to u(x̂0) and u(x̂0)/u(ŷ0), respectively. The oscillation inequality shows
the existence of a cylinder Ku (blue in Fig. 3) containing αRAk in which the ratio
maxKu u/maxαRAk u is reasonably large. Using these properties, we obtain that

max
Ku

u $ max
αRAk

u $ u(x̂0),

where b $ a means that b is in some sense larger than a. We now take x̂1 to be
the point in Ku (with the correct parity) where u attains its maximum. The next
step then is to chose ŷ1 and to iterate. Before we comment on how ŷ1 is chosen,
let us stress that the sequence (x̂n)n∈[X] grows fast and the terminal point x̂X will
have the properties as described in the second part of Lemma 6.3. Since we want
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K2R K−

K+

∂pKαR

∂pK∗

ŷ0

x̂0

x̂1

ŷ1

time

space

Fig. 3. An illustration of the first step in the iteration procedure

to iterate, the point ŷ1 should be an element of a shifted version of Ku , say Kl

(magenta in Fig. 3). Suppose that θk RCk (green in Fig. 3) is a subset of Kl and part
of the boundary of a cylinder K ∗. We will chose θk andCk such that the space–time
walk starting at ŷ0 has a reasonable probability of exiting K ∗ through θk RCk . Then,
we take ŷ1 to be the point in θk RCk (with the correct parity) where u attains its
minimum. We proceed the iteration up to time X.

We now make this precise. The first step is based on the definition of Uẑn ,rn .
Due the Harnack inequality for Brownian motion, we have

χẑn ,αrn ,i (x̂n) � Hχẑn ,αrn ,i (ŷn).

Using ω ∈ Uẑn ,rn , we obtain

�ẑn ,αrn ,i (x̂n)

χẑn ,αrn ,i (x̂n)
= 1+ �ẑn ,αrn ,i (x̂n)− χẑn ,αrn ,i (x̂n)

χẑn ,αrn ,i (x̂n)
� 1+ ε.

Similarly, we see that �ẑn ,αrn ,i (ŷn) � (1− ε)χẑn ,αrn ,i (ŷn). Therefore, we obtain

�ẑn ,αrn ,i (x̂n) � (1+ ε)χẑn ,αrn ,i (x̂n)

� H(1+ ε)χẑn ,αrn ,i (ŷn)

�
(1+ ε)H�ẑn ,αrn ,i (ŷn)

1− ε
.

(6.4)

In the following we use the short notation An,k � �p(αrn Ak(ẑn)).
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Lemma 6.8. There exists a k ∈ {1, . . . , N } such that

max
An,k

u >
εu(x̂n)

1+ 3ε
, max

An,k
u >

(1− ε)minAn,k u

(1+ 3ε)H

u(x̂n)

u(ŷn)
.

Proof. We denote

� �
{
k ∈ {1, . . . , N } : max

An,k
u >

εu(x̂n)

1+ 3ε

}
.

Note that

∑

k �∈�
max
Ak,n

u �zn ,αrn ,k(x̂n) � ε

1+ 3ε

∑

k �∈�
u(x̂n)�zn ,αrn ,k(x̂n) � εu(x̂n)

1+ 3ε
. (6.5)

This yields that

∑

k∈�
max
An,k

u �zn ,αrn ,k(x̂n) =
N∑

k=1
max
An,k

u �zn ,αrn ,k(x̂n)−
∑

k �∈�
max
An,k

u �zn ,αrn ,k(x̂n)

� 1+ 2ε

1+ 3ε
u(x̂n).

Since the last term is positive, we conclude that � �= ∅.
For contradiction, assume that for all k ∈ �

max
An,k

u �
(1− ε)minAn,k u

(1+ 3ε)H

u(x̂n)

u(ŷn)
. (6.6)

Using the optional stopping theorem, (6.4), (6.5) and (6.6) yields that

u(x̂n) �
∑

k∈�
max
An,k

u �zn ,αrn ,k(x̂n)+
∑

k �∈�
max
An,k

u �zn ,αrn ,k(x̂n)

�
∑

k∈�
max
Ak,n

u �zn ,αrn ,k(x̂n)+
εu(x̂n)

1+ 3ε

�
∑

k∈�

(1− ε)minAn,k u

(1+ 3ε)H

u(x̂n)

u(ŷn)
�zn ,αrn ,k(x̂n)+

εu(x̂n)

1+ 3ε

� (1+ ε)u(x̂n)

(1+ 3ε)u(ŷn)

∑

k∈�
min
An,k

u �zn ,αrn ,k(ŷn)+
εu(x̂n)

1+ 3ε

� (1+ 2ε)u(x̂n)

1+ 3ε
.

This is a contradiction. The proof is complete. 
�
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Let k ∈ {1, . . . , N } be as in Lemma 6.8 and take ẑn+1 ∈ K2R such that

An,k ⊆ Kανrn (ẑn+1).

Due to Lemma 6.8, we have

(1− ε)u(x̂n)

(1+ 3ε)Hu(ŷn)
�

max�p(Kανrn (ẑn+1)) u

min�p(Kανrn (ẑn+1)) u
. (6.7)

Now, we explain how ν has to be chosen. Namely, take ν such that

ν · α · ζ log(t)
− log(γ ) � inf

i∈Z+

(
ri+1
ri

)
,

where t > 1 is a constant we determine later. With this choice of ν we can apply
the oscillation inequality and obtain that

osc
�p(Krn+1 (ẑn+1))

u � t osc
�p(Kανrn (ẑn+1))

u. (6.8)

Using (6.7) and (6.8), we further obtain that

max�p(Krn+1 (ẑn+1)) u

maxAn,k u
=

min�p(Krn+1 (ẑn+1)) u

maxAn,k u
+

osc�p(Krn+1 (ẑn+1)) u

maxAn,k u

�
t osc�p(Kανrn (ẑn+1)) u

max�p(Kανrn (ẑn+1)) u

= t ·
(
1− min�p(Kανrn (ẑn+1)) u

max�p(Kανrn (ẑn+1)) u

)

� t ·
(
1− (1+ 3ε)Hu(ŷn)

(1− ε)u(x̂n)

)
.

(6.9)

Let x̂n+1 be the point where u attains its maximum on �p(Krn+1(ẑn+1)).
Next, we explain how ŷn+1 and t are chosen. At this point we also explain how

{C1, . . . ,CN }, θ1, . . . , θN and δ∗ are chosen. Take Ck and θk such that there is a
cylinder Kθkrn (û) with ŷn ∈ Kθkrn (û) and θkrnCk(û) ⊂ Krn+1(ẑn+1)− (0, 2r2n+1),
see Fig. 3. Here, θkrnCk(û) is defined in the same manner as for {A1, . . . ,AN }.
Recalling that ω ∈ U∗û,θkrn

, we can take δ∗ small enough such that there exists a

uniform constant m > 1 such that �∗û,θkrn ,k
(ŷn) � m−1. Then, take ŷn+1 to be

the point in �p(θkrnCk(û)) where u attains its minimum. The optional stopping
theorem yields that

u(ŷn) � u(ŷn+1)
m

. (6.10)

We now impose an assumption on t:

t � 2m(1+ 3ε)

ε2
. (6.11)
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Using Lemma 6.8 and (6.9), we obtain that

u(x̂n+1) � t

(
1− (1+ 3ε)Hu(ŷn)

(1− ε)u(x̂n)

)
max
An,k

u

� tε

1+ 3ε

(
1− (1+ 3ε)Hu(ŷn)

(1− ε)u(x̂n)

)
u(x̂n).

(6.12)

Lemma 6.9. For n ∈ [X− 1] we have

1− (1+ 3ε)Hu(ŷn+1)
(1− ε)u(x̂n+1)

� ε

(
⇔ u(x̂n+1) � (1+ 3ε)Hu(ŷn+1)

(1− ε)2

)
.

Proof. We use induction. For n = 0 the claim follows from (6.1). Suppose that the
claim holds for n ∈ [X− 2]. Together with (6.10), the induction hypothesis yields
that

(1+ 3ε)Hu(ŷn+1)
(1− ε)2m

� (1+ 3ε)Hu(ŷn)

(1− ε)2
� u(x̂n).

Using this bound, (6.12) and the induction hypothesis again, we obtain that

u(x̂n+1) � tε2u(x̂n)

1+ 3ε
� tε2Hu(ŷn+1)

(1− ε)2m
.

The assumption (6.11) implies the claim. 
�

Now, (6.11), (6.12) and Lemma 6.9 yield that

u(x̂n+1) � tε2

1+ 3ε
u(x̂n) � 2mu(x̂n).

Inductively, we see that

u(x̂X) � 2XmXu(x̂0)

and (6.3) completes the proof of the second claim in Lemma 6.3 with M = mX.
To see that the first claim holds, note that

u(ŷK ) � mXu(ŷ0) = mXu(ŷ∗).

Thus, the first claim follows from the argument we used to generate (yn)n∈[X]. The
proof is complete. 
�
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6.4. Proof of Lemma 6.4

By the first part of Lemma 6.3 there exists a point ŷ of the same parity as x̂∗
such that its space coordinate is in B2R and at most at distance Rδ from those of
ẑ, the time coordinate of ŷ is at least at distance R2δ and at most at distance 2R2δ

from those of ẑ, and u(ŷ) � Mu(ŷ∗). We now distinguish two cases.
First, if ŷ ∈ Cω̃ we use ω ∈ SR and the optional stopping theorem to obtain

that u(ŷ) � u(ẑ)κ2R2δ
, provided R is large enough. This yields the claim.

Second, if ŷ �∈ Cω̃ we guide the walk into Cω̃. Since ω ∈ JR , the worst case is
that ŷ is in a hole of Cω̃ of radius �Rξ �. As ω ∈ B, with probability at least 1

2d the
walk inω goes a step in direction of the boundary of the hole. Thus, with probability
at least (2d)−d�Rξ � the walk is in Cω̃. Recalling that ξ < δ and that κ < 1

2d , the
claim follows as before. 
�

6.5. Proof of Lemma 6.5

Recall that ω ∈ IR . Thus, to be at time T not in Cω̃, the walk may not leave
the ball Bo

√
dRξ/4(x) ≡ BcRξ/4(x) before it leaves the cylinder K2R , which is

necessarily via its time boundary when R is large enough. In other words, we have
{
XT �∈ Cω̃

} ⊆ {S > εR2},

where

S � inf(n ∈ Z+ : Xn �∈ BcRξ/4(x)).

Set o � �R2−ξ �. We show by induction that for n = 1, . . . , o

sup
(
Py

ω(S > n�εRξ �) : y ∈ BcRξ/4(x)
)

� w−2n . (6.13)

For the induction base note that for all y ∈ BcRξ/4(x)

Py
ω(S > �εRξ �) � Ey

ω[S]
�εRξ � � cR−ξ/2 < w−2,

in case R is large enough. For the induction step assume that (6.13) holds for
n ∈ {1, . . . , o−1}. TheMarkovproperty of thewalk yields that for all y ∈ BcRξ/4(x)

Py
ω(S > (n + 1)�εRξ �) = Py

ω(S > (n + 1)�εRξ �, S > �εRξ �)
= Ey

ω

[
PX (�εRξ �)

ω (S > n�εRξ �)I{S>�εRξ �}
]

� w−2n P y
ω(S > �εRξ �)

� w−2(n+1).

Using (6.13) with n = o yields that

Px
ω(S > εR2) � Px

ω(S > o�εRξ �) � w−R2−ξ

.

The lemma is proven. 
�
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Appendix A: Proof of Theorem 2.9

The proof is similar to those of [22, Theorem 3.3.22]. The only differences are that instead of
the EHI [22, Lemma 3.3.8] one has to use [5, Theorem1.6] and that instead of [22, Eq. 3.3.23]
one can use the martingale property of the walk and the optional stopping theorem, see also
the proof of [11, Theorem 2 (i)].
We give some details: Let R0 � 1 be a large constant and set Ri � Ri

0 and

Bi (z) �
{
x ∈ Z

d : ‖x − z‖∞ < Ri
}
, i ∈ Z+.

We shall also write Bi � Bi (0). Set

τi � inf(n ∈ Z+ : Xn �∈ Bi ), i ∈ Z+.

Due to [5, Theorem 1.6], provided R0 is large enough, there exist constants γ, δ > 0 and a
set Gi ∈ F such that for every ω ∈ Gi , every z ∈ ∂Bi and every x ∈ Bi−1, it holds that

max
y∈Bi−1(z)

Ey
ω

[
# visits of x before τi+2

]
� γ min

y∈Bi−1(z)
Ey

ω

[
# visits of x before τi+2

]
,

and

P(Gi ) � 1− e−Rδ
i−1 .

Let (θ x )x∈Zd be the canonical shifts on �, that is (θ xω)(y, e) = ω(x + y, e). We obtain for
every ω ∈ Gi and all z ∈ ∂Bi that

∑

x∈Bi−1
Ez

θ xω

[
# visits of 0 before τi+1

]
�

∑

x∈Bi−1
max

y∈Bi−1(z)
Ey

ω

[
# visits of x before τi+2

]

�
∑

x∈Bi−1
γ min

y∈Bi−1(z)
Ey

ω

[
# visits of x before τi+2

]

� γ Ez
ω

[
# visits of Bi−1 before τi+2

]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A PHI for Difference Equations in RE 943

� γ Ez
ω

[
τi+2

]

� γ cR2
i+2.

Using the shift invariance of P and the strong Markov property of the walk yields that
∫

E0
ω

[
# visits of 0 in (τi , τi+1]

]
P(dω)

= 1

|Bi−1|
∫ ∑

y∈Bi−1
E0

θ yω

[
# visits of 0 in (τi , τi+1]

]
P(dω)

� 1

|Bi−1|
∫

Gi

∑

y∈Bi−1
E0

θ yω

[
E
Xτi
θ yω

[
# visits of 0 before τi+1

]]
P(dω)+ cR2

i+1P(Gc
i )

� c
(
R2−d
i + R2

i+1e−R
δ
i
)
.

Recalling that d � 3 and summing over i shows that
∫

E0
ω

[
# visits of 0

]
P(dω) <∞,

which implies that the walk is transient for P-a.a. environments. 
�

Appendix B: Proof of Theorem 3.1

We borrow ideas from the proofs of [6, Theorem 3.1] and [9, Theorem 2.2]. Define

M � sup
QR

u, � �
{
(y, s) ∈ R

d+1 : (2+√d)R‖y‖2 < s < M
2

}
.

W.l.o.g. we assume that M > 0. Note that

λ\(�) =
∫ M

2

0

(∫

Rd
I{‖x‖2< s

2R }dx
)
ds = c

∫ M
2

0

sdds

Rd
= cMd+1

Rd
,

where λ\ denotes the Lebesgue measure. Consequently, we have

M = cR
d

d+1 λ\(�)
1

d+1 .

In other words, (3.3) follows once we show that

λ\(�) � c
∑

(y,s)∈�u

∣∣Ey
ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s + 1)
∣∣d+1. (B.1)

The proofs of the following lemmata are postponed till the proof of Theorem 3.1 is complete.

Lemma B.1. We have

λ\(�) �
∑

(y,s)∈�u

(u(y, s)− u(y, s + 1))λ\(I (y, s)).

(Note that u(y, s)− u(y, s + 1) � 0 whenever (y, s) ∈ �u.)
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Lemma B.2. There exists an Ro > 0 such that whenever R � Ro for all (y, s) ∈ �u

λ\(I (y, s)) � 4d
(
Ey

ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s)
)d
+.

Set

� �
{
(y, s) ∈ �u : Ey

ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s) > 0
}
.

Using Lemmata B.1 and B.2 and the arithmetic–geometric mean inequality, we obtain for
all R � Ro

λ\(�) � c
∑

(y,s)∈�
(u(y, s)− u(y, s + 1))

(
Ey

ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s)
)d

� c
∑

(y,s)∈�

(
u(y, s)− u(y, s + 1)+ dE y

ω

[
u(XT (k) , s + 1+ T (k))

]− du(y, s)
)d+1

� c
∑

(y,s)∈�

(
Ey

ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s + 1)
)d+1

� c
∑

(y,s)∈�u

∣∣Ey
ω

[
u(XT (k) , s + 1+ T (k))

]− u(y, s + 1)
∣∣d+1.

The claim of Theorem 3.1 follows. 
�
It remains to prove the Lemmata B.1 and B.2.

Proof of Lemma B.1. We borrow arguments from the proof of [9, Theorem 2.2]. Set

χ(y, s) �
{
(p, q − 〈y, p〉) : p ∈ Iu(y, s) and q ∈ [u(y, s + 1), u(y, s)]} ⊂ R

d+1.

The key observation is the following inclusion:

� ⊆ χ(�u) �
⋃

(y,s)∈�u

χ(y, s). (B.2)

Let us accept (B.2) for amoment. Then, using that themap (y, z) �→ (y, z−〈β, y〉) preserves
volume, because it has determinant one, we obtain

λ\(�) � λ\(χ(�u)) �
∑

(y,s)∈�u

(u(y, s)− u(y, s + 1))λ\(Iu(y, s)),

which is the claim.
It remains to prove (B.2). Let (y, s) ∈ � and define

φ(x, t) � u(x, t)− 〈y, x〉 − s, (x, t) ∈ Qk
R .

Let (y0, s0) ∈ QR be such that u(y0, s0) = M . Recalling the definition of �, we see that
φ(y0, s0) > 0 and that φ(x, t) < 0 for all (x, t) ∈ Qk

R with u(x, t) � 0. Let

Nx � max(t : (x, t) ∈ Qk
R and φ(x, t) � 0), max(∅) � −∞.

Note that s0 � Ny0 � s1 � max(Nx : x ∈ OR∪∂k OR) = max(Nx : x ∈ OR) � �R2�−1.
Let y1 be such that s1 = Ny1 , and note that (y1, s1) ∈ QR . For all (x, t) ∈ Qk

R with
t > s1 we have φ(x, t) < 0, which yields that u(x, t)− 〈y, x〉 < s � u(y1, s1)− 〈y, y1〉,
because φ(y1, s1) � 0. This implies that y ∈ Iu(y1, s1). By definition of s1, we have
φ(y1, s1+1) < 0, and hence u(y1, s1+1) < 〈y, y1〉+ s. We conclude that u(y1, s1+1) <
〈y, y1〉 + s � u(y1, s1), which finally implies (y, s) ∈ χ(y1, s1) and thus (B.2) holds. 
�
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Proof of Lemma B.2. We borrow the idea of the proof of [6, Lemma 3.4]. Fix (y, s) ∈ QR .
For i = 1, . . . , d, define

ui � inf(n ∈ Z+ : α(n) = i).

Furthermore, we define the following events:

A(+)
i �

{
Xui − Xui−1 = ei , ui � k

}
,

A(−)
i �

{
Xui − Xui−1 = −ei , ui � k

}
.

Let W be a random variable independent of the walk, which takes the values ±1 with
probability 1

2 . Finally, define

B(+)
i � A(+)

i ∪ ({W = +1} ∩ {ui > k}),
B(−)
i � A(−)

i ∪ ({W = −1} ∩ {ui > k}).

Wenote that B(+)
i and B(+)

i are disjoint and that the union is Py
ω -full. Thus, due to symmetry,

we have

Py
ω(B(+)

i ) = Py
ω(B(−)

i ) = 1
2 .

As ω ∈ B, the walk X is a Py
ω -martingale and Ey

ω[XT (k) ] = y follows from the optional
stopping theorem. In summary, we obtain

Ey
ω

[
XT (k) |B(+)

i

] = 2Ey
ω

[
XT (k)IB(+)

i

]

= 2
(
Ey

ω

[
XT (k)

]− Ey
ω

[
XT (k)IB(−)

i

])

= 2y − Ey
ω

[
XT (k) |B(−)

i

]
.

Hence, we have

Oi � Ey
ω

[
XT (k) |B(+)

i

]− y = y − Ey
ω

[
XT (k) |B(−)

i

]
.

Take β ∈ Iu(y, s). Using the definition of Iu(y, s), we obtain

〈β,Oi 〉 =
∑

x∈OR∪∂k OR

〈β, x − y〉Py
ω(XT (k) = x |B(+)

i )

=
∑

(x,t)∈QR∪∂k QR

〈β, x − y〉Py
ω(XT (k) = x, T (k) = t − s − 1|B(+)

i )

�
∑

(x,t)∈QR∪∂k QR

(u(x, t)− u(y, s))Py
ω(XT (k) = x, T (k) = t − s − 1|B(+)

i )

= Ey
ω

[
u(XT (k) , s + 1+ T (k))|B(+)

i

]− u(y, s).

Similarly, we see that

〈β,−Oi 〉 � Ey
ω

[
u(XT (k) , s + 1+ T (k))|B(−)

i

]− u(y, s).

Consequently, 〈β,Oi 〉 lies in an interval which length is bounded by 2L , where

L � u(y, s)− Ey
ω

[
u(XT (k) , s + 1+ T (k))

]
.
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Notice that L is non-negative by the existence of β. We conclude that

λ\(Iu(y, s)) � λ\
({
z ∈ R

d : ∀i=1,...,d
〈
z,Oi

〉 ∈ [0, 2L]}).
Note that

λ\
({
z ∈ R

d : ∀i=1,...,d
〈
z,Oi

〉 ∈ [0, 2L]}) = (2L)d |det (M)|,
where M = (O1 · · · Od

)
. Due to Hadamard’s determinant inequality, we have

|det(M)| �
d∏

i=1

∥∥Oi
∥∥.

For large enough R, we deduce from [6, Claim 3.5] that
∥∥ei −Oi

∥∥ < exp
(− (log R)2

)
.

Consequently, by the triangle inequality, we have

|det(M)| � (1+ exp
(− (log R)2

))d
.

Now, the claim of the lemma follows. 
�
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