
A Paraconsistent Logic Programming Approach for Querying Inconsistent
Knowledge Bases

Sandra de Amo
Universidade Federal de Uberlândia

Uberlândia-MG-Brazil
deamo@ufu.br

Mônica S. Pais
Centro Federal de Educação Tecnológica - CEFET

Urutaí-GO-Brazil
monica@lcc.ufu.br

Abstract

When integrating data coming from multiple different
sources we are faced with the possibility of incon-
sistency in databases. A paraconsistent approach for
knowledge base integration allows keeping inconsistent
information and reasoning in its presence. In this paper,
we use a paraconsistent logic (LFI1 ) as the underly-
ing logic for the specification of P-Datalog, a deductive
query language for databases containing inconsistent in-
formation. We present a declarative semantics which
captures the desired meaning of a recursive query exe-
cuted over a database containing inconsistent facts and
whose rules allow infering information from inconsis-
tent premises. We also present a bottom-up evaluation
method for P-Datalog programs based on an alternating
fixpoint operator.

Introduction
The treatment of inconsistencies arising from the integra-
tion of multiple sources has been a topic increasingly stu-
died in the past years and has become an important field
of research in databases. Two basic approaches have been
followed in solving the inconsistency problem in know-
ledge bases : belief revision (Kifer and Lozinskii 1992;
Subrahmanian 1994) and paraconsistent logic (Blair and
Subrahmanian 1989). The goal of the first approach is to
make an inconsistent theory consistent, either by revising it
or by representing it by a consistent semantics. So, the main
concern of this approach is to avoid contradictions. On the
other hand, the paraconsistent approach allows reasoning in
the presence of inconsistency, and contradictory information
can be derived or introduced without trivialization.

In this paper, we introduce P-Datalog, a logic program-
ming language for querying databases containing inconsis-
tencies. Our approch is paraconsistent, so inconsistencies
are not rejected. Our choice was motivated by the assump-
tion that, in most situations inconsistent information can be
useful, unavoidable and even desirable. Thus, discarding in-
consistent information implieslosing information.

P-Datalog is a language which allows infering facts from
a knowledge baseK obtained by integrating local consistent
sources, which may be contradictory with respect to each

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

other. The new facts inferred fromK are related to the facts
which would be inferred in each individual source integra-
tingK. If an inferred factA is true in the global knowledge
base (the integrated one), then it would be locally inferred as
true inall individual sources. If it is globallycontroversial
then it would be locally inferred as true insomeindividual
sources and as false in others. If it is globallyfalse, then it
would be locally inferred as false inall individual sources.

The syntax of P-Datalog slightly differs from Datalog¬

syntax (Abiteboul, Vianu, and Hull 1995). As in Datalog¬,
P-Datalog programs are set of rules where negation may ap-
pear in the body but not in the head of rules. P-Datalog pro-
grams may also include rules with the truth-valuei in their
bodies. In fact, the main difference between P-Datalog and
Datalog¬ concerns their semantics. In the classical context
of Datalog¬, the rules are first-order formulas (Horn clauses
with (possibly) negated litterals in the body). The answers to
a Datalog¬ query constitute a set of facts where each fact has
an associated truth-valuet (true), f (false) oru (unknown).
In our approach, the rules in a P-Datalog program are for-
mulas of aparaconsistent logicLFI1 . This logic was orig-
inally introduced in (Carnielli, Marcos, and de Amo 2000;
Carnielli and Marcos 2001; de Amo, Carnielli, and Marcos
2002) as a logical framework to model knowledge base in-
tegration. An answer to a P-Datalog query is a set of facts,
where each fact has an associated truth-value which can bet
(true),f (false),u (unknown) ori (inconsistent).

In order to define the 4-valued semantics of a P-Datalog
query, we take advantage of the natural 3-valued semantics
of the paraconsistent logicLFI1 (where the truth-values are
t, f andi). In doing so, we follow the idea used to defining
the well-founded semantics of Datalog¬ programs. In this
classical setting, 2-valued first-order logic models are “in-
creased” with a third truth-valueu. In our setting, 3-valued
LFI1 models are increased with theunknownu truth-value.

The following example gives an idea of the issues treated
in this paper:

Example 1 (Motivation) Suppose we have the following
rule in a dishonest public contest for hiring civil servants:
“if there is some evidencethat the candidate is supported
by an influential person which is not a civil servant himself
and if the candidate has no debts towards the income tax
services then there is some evidence that this candidate will
have the job.” The intuitive meaning behind the expression



there is some evidenceis that this information is supported
by at leastone source, even though some sources may affirm
the contrary.

We can translate the above story in the following P-
Datalog programPjob:

job(x)←∼owe(x), supportedby(x,y),∼job(y)

In the paraconsistent logicLFI1 , an atomic formulaR(~x)
is verified if its truth-value ist or i (in a paraconsistent ap-
proach, inconsistencies are not rejected). So, in thePjob

program, literalssupportedby(x,y)(in the clause body) and
job(x) (in the clause head) represent information that is true
or controvertial. On the other hand, the literals∼ owe(x)and
∼ job(y) representsurenegative information: all sources of
information affirm the fact thatx has no records in the in-
come tax services files concerning debts and thaty is not a
civil servant. Let us suppose that we have the following facts
stored in the integrated knowledge base:

I = {◦ supportedby(charles,joseph),
◦ supportedby(joseph,charles),
◦ supportedby(paul,james),
• supportedby(john,kevin),
◦ supportedby(james,kevin),
• owe(james)}

The symbols◦ and• attached to each fact in the know-
ledge base mean that the fact issureandcontroversial, res-
pectively. We notice that the facts stored in the knowledge
base must be explicitly declared as sure or controversials
(by attaching these symbols◦ and•). Following the closed-
world assumption, facts that are not in the knowledge base
are considered false.

We now show a 4-valued modelJ of Pjob which includes
the facts of the knowledge baseI , that is,J agrees withI
on the values ofoweandsupportedbyatoms. This 4-valued
modelJ contains the factsjob(x) which correspond to the
answer to the query “For which people is there some evi-
dence that they will get the job ”? As we will show later
(see Example 5), this modelJ is the well-founded semantics
of Pjob on inputI . The values of thejob atoms in the derived
knowledge baseJ are the following:

surely true job(paul) t
controversial job(john) i
surely false job(kevin), job(james) f
unknown job(charles), job(joseph) u

This model asserts that Jamessurely does not get the job
because there is some evidence that he owes to the taxation
office, and from this fact we can infer that Paulsurely gets
the job. Indeed, Paul does not owe any tax return and he is
supported by James who is not a civil servant. It also can
be deduced that Kevindefinitely does not succeed in getting
the job, because nobody supports him. In John’s case, he
does not owe the taxation office but it is controversial that
he is supported by Kevin, who is not a public servant him-
self. Thus, it iscontroversial that John gets the job. Notice
that in this case, acontroversial information was inferred.
On the other hand, it is unknown that Charles and Joseph
succeed in the public contest. They fulfill almost all the

requirements: they do not have debts, they have the sup-
port of an influential person but they depend on each other:
Charles supports Joseph and Joseph supports Charles. The
only chance for Charles getting the job is if Joseph (his only
support) does not get it. And vice-versa, the only chance for
Joseph getting the job is if Charles (his only support) does
not get it. Therefore it is not possible to infer which one will
get the job: either Charles or Joseph. This means that this
information isunknown: we cannot inferthe existence or
nonexistence of any source supporting it.

So, the answer to our query :“For which people is there
some evidence that they will get the job ”?is Paul and
John. Besides, we know that Paul surely gets the job, but in
John’s case, we only can affirm that it is controvertial that
he will get the job. That means: (1) From the point of view
of sources inK+ (those affirming that Johnis supported by
Kevin), John gets the job, (2) From the point of view of
sources inK− (those affirming that Johnis not supported
by Kevin), John does not get the job. So, in the integrated
knowledge baseK, this derived information is controversial.

Differently from some approaches treating paraconsistent
query languages (Pereira and Alferes 1992; Sakama 1992;
Blair and Subrahmanian 1989; Subrahmanian 1994), our
well-founded semantics is a natural extension of the well-
founded semantics for Datalog¬ programs (Przymusinski
1990). In this paper, we also present a bottom-up evaluation
procedure for computing the well-founded semantics based
on the alternating fixpoint computation introduced in (Van
Gelder 1989).

The paper is organized as follows: Firstly, we briefly des-
cribe the basic notions of the logicLFI1 , then we introduce
P-Datalog programs and generalize the notion of database
instance to allow the storage of inconsistent information in
our knowledge bases. Next, we describe the well-founded
semantics of a P-Datalog program. Finally, we present a
bottom-up method for evaluating P-Datalog programs and
briefly discuss its implementation. Due to lack of space, the
proofs of the results in this paper are omitted.

LFI1 : A 3-valued Paraconsistent Logic
In this section we briefly describe the syntax and semantics
of LFI1 (Logic of Formal Inconsistency). A detailed pre-
sentation can be found in (Carnielli, Marcos, and de Amo
2000). The semantics of a P-Datalog program is based on
the semantics ofLFI1 . Even if P-Datalog programs consti-
tute a small fragment of the set ofLFI1 formulas (we only
consider Prolog-like Horn clauses), inference in P-Datalog
is based on the paraconsistent framework ofLFI1 .

Let R be a finite signature without functional symbols and
Var a set of variables symbols. We assume that formulas of
LFI1 are defined in the usual way, as in the classical first-
order logic setting, with the addition of a new symbol• (read
“it is inconsistent”). So, a formula ofLFI1 is defined induc-
tively by the following statements (and only by them) :
• If R is a predicate symbol of arityk and x1, ..., xk are

constants or variables, thenR(x1, ..., xk) andx1 = x2 are
atomic formulas or atoms. The former is called arelational
atom and the latter anequalityatom.



• If F,G are formulas andx is a variable thenF ∨ G, ¬F ,
∀xF , ∃xF and•F are formulas.
A sentenceis a formula without free variables. Afact is a

relational atom without free variables. We denote byF the
set of facts.

Definition 1 Let R be a finite signature. Aninterpretation
overR is an applicationδ : F → { f (false),t (true),i (incon-
sistent)}.

An interpretation of facts can be extended to the propo-
sitional sentences in a natural way by using the connec-
tive matrices described in the tables below. The connec-
tive ∧ is derived from the connectives¬, ∨ : A ∧ B =
¬(¬A ∨ ¬B) and the connective→ is derived from¬,∨, •
: A→ B ≡ ¬(A ∨ •A) ∨B.

∨ t i f ¬ •
t t t t t f f
i t i i i i t
f t i f f t f

∧ t i f → t i f
t t i f t t i f
i i i f i t i f
f f f f f t t t

The extension ofδ to the quantified sentences is obtained
by means of the concept ofdistribution quantifiers. Basi-
cally, this concept translates our basic intuition that an uni-
versal quantifier should work as a kind of unbounded con-
junction and an existential quantifier as an unbounded dis-
junction. Due to lack of space, we do not present this exten-
sion here. For more details, see (Carnielli, Marcos, and de
Amo 2000). In fact, the formulas we will deal with in the
next sections are Horn clauses, which are interpreted over a
finite Herbrand Universe. So, the universal quantifiers ap-
pearing in the clauses can be viewed as a bounded conjunc-
tion.

We denote byDom the Herbrand Universe ofR (the cons-
tant symbols ofR). In fact, we are supposing that the uni-
verse domain of any interpretationδ is Dom (thus,δ inter-
prets the constant symbols by themselves). Avaluation is
an applicationv : Var → Dom.

Definition 2 Let F (x1, ..., xn) be a formula of LFI1
with free variables x1,. . .,xn, v a valuation and
δ an interpretation. We say that(δ, v) satisfies
F (x1, ..., xn) (denoted by(δ, v) |= F (x1, ..., xn)) iff
δ(F [v(x1), ..., v(xn)/x1, ..., xn]) is t or i. If (δ,v) |= F for
each valuationv, we say thatδ is a modelof F (denoted
δ |= F ). We also say thatF is verifiedor satisfiedby δ.

The Query Language P-Datalog
In this section we use the logical formalismLFI1 to gene-
ralize the notion of database instance to allow the storage of
inconsistent information in our databases. We also introduce
the query language P-Datalog which is designed to query
databases containing inconsistent information. We assume
that the reader is familiar with traditional database termino-
logy (Abiteboul, Vianu, and Hull 1995). In what follows, we
denote byR(~u) the formulaR(u1, ..., uk), whereu1, ..., uk

are variables and we denote byR(~a) the factR(a1, ..., ak),
wherea1, ..., ak are constants (k = arity of R).

Definition 3 (Paraconsistent Databases)Let R be a
database schema, i.e., a set of relation names (or predicate
names). A3-valued instanceover R (or a paraconsistent
database) is an interpretationI such that for each R∈ R
the setIR = {~a : I (R(~a)) = t or I (R(~a)) = i} is finite. So,
an instance overR can be viewed as a finite set of facts
over R, having truth-valuest or i. The facts which are not
in the instanceI have truth-valuef. A fact R(~a) such that
I (R(~a)) = i is intended to becontroversial, i.e. there may be
evidence in favor of R(~a) and also evidence against R(~a).
On the other hand, ifI (R(~a)) = t, R(~a) is intended to be a
safe information.

P-Datalog is an extension of Datalog¬ (Abiteboul, Vianu,
and Hull 1995). This well-known deductive query language
uses the classical first order logic as its underlying logic, and
a Datalog¬ query applies over a classical database instance,
i.e. a finite first-order interpretation. Rather than classi-
cal first-order logic, P-Datalog uses the paraconsistent logic
LFI1 as its underlying logic, and P-Datalog queries apply
over paraconsistent databases. P-Datalog programs are first-
order Horn clauses as in Datalog¬ programs, i.e. first-order
clauses with positive and negative literals in their bodies.
Negation in P-Datalog (as well as in Datalog¬) is understood
asnegation by default. We will denote this negation by the
symbol∼. The negation¬ used inLFI1 is theweak nega-
tion. The relationship between these two negations is given
by: ∼ A = ¬A ∧ ¬ • A and¬A =∼ A ∨ •A. The intuitive
meaning of default and weak negations is the following: (1)
the ground formula∼ R(~a) is verified by a paraconsistent
databaseI if the fact R(~a) is not in I (i.e., R(~a) is surely
false); (2) the ground formula¬R(~a) is verified byI if the
fact R(~a) is in I as controversial or if it is not inI (i.e., the
only thing we can affirm is thatR(~a) is not surely true).

Definition 4 (P-Datalog Programs) A P-Datalogprogram
is a finite set of rulesL ← L1, ..., Ln, whereL is a literal
of the formR(~u), andLi are literals of the form:R(~u) or
∼ R(~u). R is a relation name and~u is a free tuple of appro-
priate arity. The literalL is called theheadof the rule. The
literalsL1, ..., Ln are called thebody. One requires also that
each variable occurring in the head of the rule must occur in
at least one of the free tuples in the body.

We denote bysch(P ) the set of relations (predicates) ap-
pearing inP , by adom(P ) the set of constants appearing in
P and byB(P ) all facts of the formR(~a) whereR ∈ sch(P )
and~a is a tuple of constants inadom(P ) (the Herbrand
Base of P). The set of relations which appear in the head of
rules are called theintensional relationsand is denoted by
idb(P ). The set of those appearing only in the body of rules
are calledextensional relationsand is denoted byedb(P ).
In fact, the setedb(P ) contains only the relationsR where
R(~a) is a fact inI .

Definition 5 (P-Datalog Query) A P-Datalog query is a
pair (P ,Q(u1, ..., un)) whereP is a P-Datalog program,Q∈
idb(P ) andu1, ..., un are variables or constants inadom(P )
(n is thearity of the relationQ).



Example 2 (Running Example) Let us consider the same
situation presented in Example 1. The rulePjob and
the 3-valued instanceI described in that example consti-
tutes a P-Datalog programP where sch(P ) ={support-
edby, job, owe}, adom(P ) = {charles, john, james, joseph,
paul, kevin} and B(P ) = {owe(charles), owe(joseph), sup-
portedby(charles,joseph), supportedby(joseph,charles), ...}.
The intensional and extensional schemas areedb(P ) = {sup-
portedby, owe}, idb(P ) = { job}. The pair (Pjob,job(x)) is a
P-Datalog query (“For which people there is some evidence
that they will get the job ”?). The pair (Pjob,job(Kevin))
corresponds to the boolean query “Is there some evidence
that Kevin may get the job” ?

Answering P-Datalog Queries
In this section we introduce the well-founded semantics
for P-Datalog programs. The well-founded semantics of a
P-Datalog programP is designed to capture the natural se-
mantics of queries (P,Q(u1, ..., un)) whereQ ∈ idb(P ),
that is, what we expect to be their answers. Our ap-
proach is a natural extension of the well-founded seman-
tics for Datalog¬ (Przymusinski 1990). Our definition of a
P-Datalog query makes use of4-valued instances, in which
facts may assume one of the four truth-values in the setVal
= { true(t), false(f), inconsistent(i) unknown(u)}. We assume
that the reader is familiar with the notions of lattices, lattice
operators, monotonicity and continuity, fixpoints, etc. For
details, see (Lloyd 1993).

4-valued Models
Let us consider the complete lattice (Val, 6), wheref 6 u 6
i 6 t.

Definition 6 Let P be a P-Datalog program. A4-valued
instanceI oversch(P ) is an applicationI : B(P ) −→ { t, f,
u, i}.

The answer of a programP is a special 4-valued instance
which corresponds to the well-founded semantics ofP . The
main goal of this section is to define this particular instance.

There is a natural ordering4 among 4-valued instances
over sch(P ), defined by: I 4 J iff for each A ∈ B(P ),
I(A) 6 J(A).

The set of 4-valued instances of a P-Datalog programP
is denoted by 4-InstP . It is easy to verify that (4-InstP , 4)
constitutes a complete lattice. We denote by> themaximal
4-valued instance (where all facts have truth-valuet) and by
⊥ the minimal 4-valued instance (where all facts have truth-
valuef).

We also represent a 4-valued instance by listing the
positive, inconsistent and negative facts, and omitting the
unknown ones.

Example 3 (4-valued instance)Let J be a 4-valued ins-
tance, whereJ(p)=t, J(q)=t, J(r)=u andJ(s)=f. J can be
written asJ = {◦p, ◦q,∼ s}. Let J′ = {◦p, ◦q, •s}. Then
J 4 J′.

We extend the 3-valued connective matrices ofLFI1 , to
the following 4-valued matrices:

∼ ∨ t i u f
t f t t t t t
i f i t i i i
u u u t i u u
f t f t i u f

∧ t i u f → t i u f
t t i u f t t f f f
i i i u f i t i f f
u u u u f u t t t f
f f f f f f t t t t

It is important to note the difference between the first line
in the matrix of the→ connective above and the same line of
its counterpart inLFI1 : In P-Datalog, the truth-value oft→
i is f and noti as inLFI1 . Indeed, in P-Datalog we cannot
derive a controversial fact from a surely true one.

If F is the body of a P-Datalog rule andJ is a 4-valued
instance, we denote byJ(F ) the truth-value associated to
F according to the matrices for the connectives given above.

Definition 7 Let P be a P-Datalog program. Aninstanti-
ated rule of P is a rule where all variables are replaced
by constants inadom(P ). We denote byground(P ) the
set of instantiated rules ofP . A 4-valued instanceJ over
sch(P ) satisfiesa boolean combinationα of atoms inB(P )
iff J(α) ∈ { t, i}. A 4-valued modelof P is a 4-valued ins-
tanceJ oversch(P ) satisfying each rule inground(P ), i.e.,
the truth-value of each rule inground(P ) is t or i. So,J is
a model of theLFI1 formulas corresponding to the rules of
P (see definition 2). A 4-valued model M isminimal iff for
all M ′ ⊂M , M ′ is not a model.

Extended P-Datalog programs
The well-founded semantics is based on the notion of stable
models. Stable models are usually defined as fixpoint of an
immediate consequence operator. Following the same idea
underlying the definition of 3-stable models in (Przymusin-
ski 1990), we introduce the notion ofextended P-Datalog
programs. We will see that for such programs we can define
an immediate consequence operator which is monotonic and
so, has a unique least fixpoint.

Definition 8 An extended P-Datalog programis a
P-Datalog program where (1) negative facts∼A do not
appear in the body of rules and (2) truth-valuest, f, u andi
may occur as literals in the body of rules.

Next we define theimmediate consequence operator 4-
TP associated to an extended programP .

Definition 9 Let P be an extended P-Datalog program. The
immediate consequence operator 4-TP associated toP is a
mapping 4-TP : 4-InstP → 4-InstP defined as follows.
Let J be a 4-valued instance andA ∈ B(P ), then

4-TP (J)(A) =

{
max{J(Fk)} if there are rulesA← Fk

in ground(P), 0 6 k 6 n.
f otherwise



The following lemma says that the immediate conse-
quence operator for extended programs have a least fixpoint.

Lemma 1 Let P be an extended P-Datalog program. Then
4-TP is monotonic and the sequence {4-T i

P (⊥)} i>0 is in-
creasing and converges to the least fixpoint of 4-TP . Be-
sides,P has a unique 4-valued minimal model that equals
the least fixpoint of 4-Tp (denoted byP (⊥)).

4-stable Models
According to (Przymusinski 1990), the semantics of a
Datalog¬ programP is anappropriate3-valued modelI of
P . We extend this idea to P-Datalog programs and intro-
duce the 4-stable Models, a class ofspecialmodels. The
semantics of a P-Datalog query will be the intersection of
all 4-stable models.

Let P be a P-Datalog program andI a paraconsistent
database (3-valued) instance. We denote byPI the program
obtained fromP by adding toP unit clausesA ← for each
A such thatI (A) = t, and a clauseA ← i for eachA such
that I (A) = i. From now on, we suppose that our programs
include these clauses corresponding to the input facts ofI .
Thus, as mentioned in the introduction, P-Datalog programs
may include rules with the truth-valuei in their bodies.

Let I be a 4-valued instance oversch(P ). Thepositivized
ground versionof P according toI (denotedpg(P, I)), is
the P-Datalog program obtained fromground(P ) by replac-
ing each negative literal∼A by I (∼A) (i.e, by its respective
truth value:t, f, u, i). So,pg(P, I) is an extended P-Datalog
program, i.e., a program without negation. By lemma 1,
the least fixpointpg(P, I)(⊥) of its immediate consequence
operator exists. It contains all facts that are inferred fromP
andI, by assuming the values for the negative premises as
given byI.

We denotepg(P, I)(⊥) by conseqP (I), i.e. conseqP (I)
is the least fixpoint of the extended P-Datalog program
pg(P, I).

Definition 10 Let P be a P-Datalog program. A 4-valued
instance I over sch(P ) is a 4-stable modelof P iff
conseqP (I) = I.

The following example illustrates the notion of 4-stable
model:

Example 4 (4-stable model)Consider the P-Datalog pro-
gramPjob given in the example 1 and the input instanceJ:

surely true t supportedby(charles,joseph),
supportedby(joseph,charles),
supportedby(paul,james),
supportedby(james,kevin),job(paul)

surely false f job(james), job(kevin)
controversial i supportedby(john,kevin), job(john),

owe(james)
unknown u job(charles), job(joseph)

Let us check thatJ is a 4-stable model ofPjob. For this,
we have to computeconseq(J) and show thatconseq(J) =
J. The programP ′ = pg(P,J) is

job(charles)← t,supportedby(charles,joseph), u
job(joseph)← t,supportedby(joseph,charles), u
. . .
supportedby(paul,james)←
supportedby(charles,joseph)←
supportedby(john,kevin)← i
. . .

The minimal 4-valued model ofP ′ is obtained by iterating
4-TP (⊥) up to a fixpoint. The first execution of 4-TP yields
4-T 1

P ′(⊥) = {∼ job(charles), ∼ job(joseph), ∼ job(paul),
∼ job(john), ∼ job(james), ∼ job(kevin)}. We can verify
that 4-T 2

P ′(⊥)= 4-T 3
P ′(⊥) = {◦ job(paul), • job(john), ∼

job(james), ∼ job(kevin)}. Thus conseqP (J) = J and so,
J is a 4-stable modelof P . We notice that the instanceJ
coincides withI for the atomssupportedby andowe.

Well-founded Semantics
P-Datalog programs generally may have several 4-stable
models, and each P-Datalog program has at least one
4-stable model (see theorem 4). Then it is reasonable to say
that the desired answer to a P-Datalog query consists of the
positive, inconsistentand negative facts belonging toall
4-stable models of the program.

Definition 11 Let P be a P-Datalog program. Thewell-
founded semanticsof P is a 4-valued instance consisting of
the positive, inconsistent and negative facts belonging to all
4-stable models ofP . This semantics is denoted byP 4wf .

Bottom-up Evaluation of P-Datalog Queries
The previous description of the well-founded semantics, al-
though effective, is inefficient. It involves checking all pos-
sible 4-valued instances of a program, determining which
are 4-stable models, and then taking their intersection.

A much simpler method is based on analternating
fixpoint computation (Van Gelder 1989), that converges
to the well-founded semantics. The idea of the method
is as follows. We define an alternating sequence{Ii}i>0

of 4-valued instances that are underestimates and over-
estimates of the facts known in every 4-stable model of
P . The sequence is defined as follows:I0 = ⊥ and
Ii+1 = conseqP (Ii), for i > 0.

Theorem 1 The operatorconseqP is antimonotonic. That
is, if I 4 J thenconseqP (J) 4 conseqP (I).

>From this theorem, we can easily see that:

(*) I0 4 I2 4 I4 4 · · · 4 I2i 4 I2i+2 4 . . .
· · · 4 I2i+1 4 I2i−1 4 · · · 4 I5 4 I3 4 I1

Thus the even subsequence is increasing and the odd one
is decreasing. Because there are finitely many 4-valued ins-
tances relatively to a given programP , each of these se-
quences becomes constant at some point:I2k0 = I2k0+2 =
... I2k0+4 = andI2j0+1 = I2j0+3 = I2j0+5 = ..., for some
k0 > 0 and somej0 > 0.



Let I∗ be the least upper boundof the increasing se-
quence:I∗ = lub{I2i}i>0, and letI∗ be thegreatest lower
bound of the decreasing sequence:I∗ = glb{I2i+1}i>0.
From (* ), it follows thatI∗ 4 I∗.

Theorem 2 Let I be a 4-valued instance of a P-Datalog pro-
gram. ThenconseqP (I∗) = I∗ andconseqP (I∗) = I∗.

>From the 4-valued instancesI∗ andI∗ we can define the
4-valued instanceI∗∗ which coincides with the well-founded
semantics of a P-Datalog program, as we will see in
Theorem 4.

Definition 12 Let I∗∗ be a 4-valued instance of a P-Datalog
programP , consisting of the facts known in bothI∗ andI∗,
that is:

I∗∗(A) =


t I∗(A) = I∗(A)=t
i I∗(A) = I∗(A)=i
f I∗(A) = I∗(A)=f
u otherwise

Theorem 3 Let I be a 4-valued instance of a P-Datalog pro-
gramP . ThenI∗ 4 I∗∗ 4 I∗.

The fixpoint construction yields the well-founded seman-
tics for P-Datalog programs. The following theorem is the
main result of this paper. It shows that each P-Datalog pro-
gram has at least one 4-stable model (I∗∗) and that the well-
founded semantics coincides withI∗∗.

Theorem 4 For each P-Datalog programP :
� I∗∗ is a 4-stable model ofP .
� P 4wf = I∗∗.

We illustrate this computation in our running example:

Example 5 (I∗∗ computation) Consider again the program
Pjob and the database instanceI of the running example 1.
Note that forI0 the value of all facts isf, and for eachj > 1,
Ij agrees with the inputI on the predicatessupportedbyand
owe. Therefore we only show the inferredjob-facts:
I0 = {∼ job(charles),∼ job(james),∼ job(john),

∼ job(joseph),∼ job(kevin),∼ job(paul)}.
I1 = {◦ job(charles), ◦ job(james), • job(john),

◦ job(joseph),∼ job(kevin), ◦ job(paul)}.
I2 = {∼ job(charles),∼ job(james), • job(john),

∼ job(joseph),∼ job(kevin),∼ job(paul)}.
I3 = {◦ job(charles),∼ job(james), • job(john),

◦ job(joseph),∼ job(kevin), ◦ job(paul)}
I4 = {∼ job(charles),∼ job(james), • job(john),

∼ job(joseph),∼ job(kevin), ◦ job(paul)}.
I5 = {◦ job(charles),∼ job(james), • job(john),

◦ job(joseph),∼ job(kevin), ◦ job(paul)}
I6 = {∼ job(charles),∼ job(james), • job(john),

∼ job(joseph),∼ job(kevin), ◦ job(paul)}.
I∗ = I6 andI∗ = I5. ThusI∗∗ = {∼ job(james), • job(john),
∼ job(kevin), ◦ job(paul)}. This is exactly the natural an-
swer forPjob we have informally discussed in example 1.

Implementation Issues
We have decided to implement the P-Datalog prover as a
separate system and further to integrate it in a relational
database system. For now, the P-Datalog prover is a helpful
tool for validating the well-founded semantics we have pro-
posed for P-Datalog programs. It has been implemented in
Objective Caml (Leroy 2002). The OCaml compiler gene-
rates code whose executing time is comparable to aC/C++

code, and it includes libraries for several platforms. Those
characteristics and also the functional programming quali-
ties allowed us to focus on the difficulties of our application
and to develop a preliminary succinct solution.

Acknowledgments
Mônica S.Pais was supported by an individual grant from
CAPES-Brazil.

References
Abiteboul, S.; Vianu, V.; and Hull, R. 1995.Foundations
of Databases. Addison-Wesley.
Blair, H., and Subrahmanian, V. 1989. Paraconsistent logic
programming.Theoretical Computer Science135–154.
Carnielli, W. A., and Marcos, J. 2001. A taxonomy of
C-systems. InProceedings of the II World Congress on
Paraconsistency (WCP2000), 1–94.
Carnielli, W. A.; Marcos, J.; and de Amo, S. 2000. For-
mal inconsistency and evolutionary databases.Logic and
Logical Philosophy8:115–152.
de Amo, S.; Carnielli, W. A.; and Marcos, J. 2002. A
logical framework for integration inconsistent information
in multiple databases.FOIKS 2002, LNCS2284:67–84.
Kifer, M., and Lozinskii, E. 1992. A logic for reasoning
with inconsistency.Journal of Automated Reasoning179–
215.
Leroy, X. 2002. The objective caml system - release 3.06.
Documentation and user´s manual.
Lloyd, J. 1993. Foundations of Logic Programming.
Springer-Verlag.
Pereira, L. M., and Alferes, J. J. 1992. Well founded se-
mantics for logic programs with explicit negation. InEu-
ropean Conference on Artificial Intelligence, 102–106.
Przymusinski, T. C. 1990. Well-founded semantics co-
incides with three-valued stable semantics.Fundamentae
Informaticae, XIII445–463.
Sakama, C. 1992. Extended well-founded semantics for
paraconsistent logic programs. InProceedings of the In-
ternational Conference on Fifth Generation Computer Sys-
tems, 592–599.
Subrahmanian, V. S. 1994. Amalgamating knowledge
bases.ACM Transaction on Database Systems19(2):291–
331.
Van Gelder, A. 1989. The alternating fixpoint of logic
programs with negation. InProceedings of the eighth
ACM Symposium on Principles of Database Systems-ACM
PODS’89, 1–10.


