
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

A Paradigm for Concurrency Control in Heterogeneous Distributed A Paradigm for Concurrency Control in Heterogeneous Distributed

Database Systems Database Systems

Weimin Du

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
89-894

Du, Weimin and Elmagarmid, Ahmed K., "A Paradigm for Concurrency Control in Heterogeneous
Distributed Database Systems" (1989). Department of Computer Science Technical Reports. Paper 761.
https://docs.lib.purdue.edu/cstech/761

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PARADIGM FOR CONCURRENCY CONTROL
IN HETEROGENEOUS DISTRBUTED DATABASE SYSTEMS

Weimin Du
Ahmed K. Elmagarmid

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #894

A PARADIGM FOR CONCURRENCY CONTROL
IN HETEROGENEOUS DISTRBUTED DATABASE SYSTEMS

Weimin Du
Ahmed K. Elmagarmid

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #894

A Paradigm for Concurrency Control

Heterogeneous Distributed Database Systems1

Weimin Du and Mimed I<. Elmagarmid
Computer Sciences Department

Purclue University
West Lafayet te, IN 47907

(317) 494-1998
ahmed8cs.purdue.edu

'This work is supported by a PYI award horn NSF under grant IRI-8857952
and grants from AT&T Foundalion, Tektronix and Mobil Oil.

A Paradigm for Concurrency Control.
In

Heterogeneous Distributed Database Systems!

Weimin Du and Ahmed K. Elmagarmid
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

(317) 494-1998
ahmed@cs.purdue.edu

IThis work is supported by a PYI award from NSF under grant IRl-8857952
and grants from AT&T Foundation, Tektronix and Mobil Oil.

Abstract

A heterogeneous distributed database system (HDDBS) is a system which

integrates pre-existing databases to support global applications accessing

more than one database. This paper outlines possible approaches to con-

curency control in 1LI)DBSs. The top-down approach emerges as a viable

paradigm for ensuring the proper concurrent execution of global transac-

tions ia an HDDBS. The primary contributions of this paper are the general

schemes for local concurrency control wit11 pre-specified global serialization

orders. Two approaches are outlined. The first is intended for performance

enhancement but violates design autonomy, wbib the second does not vi-

olate local autonomy at the cost of generality (it does not apply to all

local concurrency control protocols). This study is intended as a guiding

light through the maze of concurrency control in this new environment and

enormous work remains to be doae.

Abstract

A heterogeneous distributed database system (HDDBS) is a system which

integrates pre-existing databases to support global applications accessing

more than one database. This paper outlines possible approaches to con

currency control in HDDBSs. The top-down approach emerges as a viable

paradigm for ensuring the proper concurrent execution of global transac

tions in an HDDBS. The primary contributions of this paper are the general

schemes for local concurrency control with pre-spedfied global serialization

orders. Two approaches are outlined. TIle first is intended for performance

enhancement but violates design autonomy, while the second does not vi

olate local autonomy at the cost of generality (it does not apply to all

local concurrency control protocols). This study is intended as a guiding

light througb the maze of concurrency control in tltis new environment and

enormous work remains to be done.

1 Introduction

In a database system, several users may read and update information con-
currently. Undesirable situations may arise if the operations of various user
transactions are improperly interleaved. Concurrency control is an activ-
ity that coordinates concurrently executed operations so that they interfere
with each other in an acceptable fashion.

Recently, much attention has been focused on the integration of dis-
trj buted and autonomous databases. Such an integration results in hetero-
geneous distributed database systems (HDDBSs). One of the main goals
of HDDBSs is to support uniform updates across elemeut databases. A
key step in achieving this goal is global coxlcurrency control, which has
been widely studied for years [GL84] [GP86] [LS86] [AGS87] [Vid87] [BS88]
[Ell 881 [Pu88].

The problem of concurrency control in IIDDBS environme~ts is basically
different from that in honlogeneous distributed database environments, due
t o autonomy requirements of local databases. The global concurrency con-
trol strategies developed in homogeneous distributed database enviroments
do not work well in HDDBS environments. In addition, most efforts devoted
t o generalize the classical concurrency control strategies for HDDBSs are not
successful. For example, most proposed concurrency control protocols for
HDDBSs either violate local autonomy or do not maintain global serializ-
ability with the exception of [BS88] (see [DEL089]).

A possible way of doing concurrency control in HDDBSs is to employ un-
conventional paradigms. One of such paradigms is the value date approach
[LT88]. In this paper, we study another unconventional paradigm, top-
down approach. In this approach, a global concurrency controller (GCC)
is allowed to determine the serialization order of global transactions before
submitting them to local sites. This global serialization order je then en-
forced at dl local sites. The paradigm is unconventional in the sellse that
local concurrency &ntrollers (LCCs) have to control the local executions
with pre-specified serialization orders. In this paper, we focus on various
metIiods of performing local concurrency control with pre-specified global
serialization orders.

A generd discussion of global concurrency control in HDDBSs and the
top-down approach is given in Section 2. In section 2, we also outline two
general ways of implementing the top-down approach. The f is t , discussed

1 Introduction

In a database system, several users may read and update information con
currently. Undesirable situations may arise if the operations of various user
transactions are lmproperly interleaved. Concurrency control is an activ
ity that coordinates concurrently execllted operations so that they interfere
with each other in an acceptable fashion.

Recently, much attention has been focused on the integration of dis
tributed and autonomous databases. Such an integration results in hetero
geneous distributed database systems (HDDBSs). One of the main goals
of HDDBSs is to sllpport uniform updates acrosS element databases. A
key step in achieving this goal is global concurrency control, which has
been widely studied for years [GL84] [GP86] [LS86] [AGS87] [Vid87J [BS88]
rEHSB] [PuS8].

The problem of concurren.cy control in HDDBS environments is basically
different from that in homogeneolls distributed database environments, due
to autonomy requiremen.ts of local databases. The global concurrency con·
trol strategies developed in homogeneous distributed database environments
do not work well in HDDBS environments. In addition, most efforts devoted
to generalize the classical concurrency control strategies for HDDBSs are not
sllccessful. For example, most proposed concurrency control protocols for
HDDBSs eith.er violate local autonomy or do 110t majntain global serializ
ability with the exception of [BS8S] (see [DEL089]).

A possible wa.y of doing concurrency control in HDDBSs is to employ un
conventional paradigms. One of such paradigms is the value date approa.ch
[LT88]. In this pa.per, we study another unconventional paradigm, top
down approach. In this approach, a. global. concurrency controller (GeC)
is allowed to determine the serialization order of global transactions before
submitting them to local sites. This global serialization order is then en
forced at all local sites. The paradigm is unconventional in tIle sense that
local concurrency ~ntroJlers (Lees) !lave to control the local executions
with pre-speciiied seriaJization orders. In this paper, we focus on various
methods of performing Iota! concurrency control with pre-specified global.
serialization orders.

A general discussion of global concurrency control in HDDBSs and tile
top-down approach is given in Section 2. In section 2, we also outline two
general ways of implementing the top-down approach. The first, discussed

1

in section 3, is intended for high flexibility and performance, at the cost
of local autonomy. The second, on the other hand, achieves the global
serialization order by controlling the submission of global subtransactions
and is discussed in sectiorl4. In section 5, we briefly compare the above two
techniques in terms of performance, concurrency degree, local autonomy,
and consistency. Finally, some coucluding remarks are given in Section 6.

2 Global Concurrency Control in HDDBSs

2.1 Background

A heterogeneous distributed database system is a collection of autonomous
but related databases, joined together to support global applications. Each
element database (also called a local database system, or LDBS) is controlled
by a local database mauagelneut system (LDBMS). A globd database man-
agement system (GDBMS) is built on top of these LDBMSs to coordinate
executions at local sites. One of the goals of lIDDBSs is to provide a uni-
form access to pre-existing Iocal databases by hidhg both the heterogeneity
and the autonomy of these LDBSs.

An HDDBS is different from a homogeneous distributed database system
in that LDBSs are autonomous. Their having local autonomy means that the
LDBSs were designed and implemented independently. It defines the right
of an LDBS to make its own decisions about data models and transaction
management algorithms, communication wj th other LDBSs or GDBMS, and
the execution of transactions at its site [EV87] [GK88].

In an HDDBS, there are two types of transactions. A local transaction
runs on a local site and accesses only local data i terns. A global transadion,
on the other hand, accesses more than one local database. When a global
transaction is submitted to a11 HDDBS, it is decomposed into a set of sub-
transactions that run at various sites where the referenced dataitems reside.
For a globd transaction, it is generally assumed that there is at most one
subtransaction at each site [GP86]. At each LDBS, there is an LCC which
controls the execution 01 local transactions and global subtransactions at
that site. We assume that these local executions are aJ serializable. It is
the responsibility of the GCC to ensure that the global database consistency
is preserved.

in section 3~ is intended for high flexibility and performance, at the cost
of local autonomy. The secolld~ on the other hand t achieves the global
serialization order by controlling the submission of global subtransactions
and is discussed in seetion4. In section 5, we briefly compare the above two
techniques in terms of pedormance, concurrency degree, local autonomy~

and consistency. Finally, some concluding remarks are given in Section 6.

2 Global Concurrency Control in HDDBSs

2.1 Background

A heterogeneous distributed database system is a collection of autonomous
but related databases, joined together to support global applications. Ea<:h
element database (also called a local database system, or LDBS) is controlled
by a local database management system (LDBMS). A global database man
agement system (GDBMS) is built on top of these LDBMSs to coordinate
executions at local. sites. One of the goals of IIDDBSs is to provide a. uni
form access to pre-existing local databases by hiding both the heterogeneity
and the autonomy of these LDBSs.

An HDDBS is dHferent from a homogeneous distributed database system
in that LDBSs are autonomous. Their having local a.utonomy means that the
LDBSs were designed and implemented independently. It defines the right
of an LDBS to make its own decisions about data models and transaction
management algorithms~ communication with oth.er LDBSs or GDBMS, and
the execution of transactions at its site [EV87] [GK88].

In an HDDBS, there are two types of transactions. A local transaction
runs on a local site and accesses only local data items. A global transaction,
on the other hand, accesses more than one local database. When a. global
transaction is submitted to an HDDBS, it is decomposed into a set of sub
transactions that run at various sites where the referenced data items reside.
For a global transaction, it is generally assumed that there Is at most one
subtransaction at each site [GP86]. At each LDBS, there is an Lee which
controls the execution of local transactions and global subtransactions at
tha.t site. We assume that these local executions are aU serializable. It is
the responsibility of the GCC to ensure that the global database consistency
is preserved.

2

Local autonomy has significalt effects on global concurrency control in
HDDBSs. To maintain global database consistency, a GCC has to detect
and resolve all conflicts among global operations. To do this, the GCC
needs information about local executions. This information, however, is
usually very difficult (if not impossible) to obtain due to local autonomy.
An LDBS might not have the information needed by the GCC. Even if it
has the information, communication autonomy may prevent the GCC fiom
accessing it. Finally, even with the desired information, the GCC still might
not be able to resolve the undesired conflicts because 01 execution autonomy.

Serializability has been generally used as the correctness criterion in HD-
DBSs [BS88]. However, it is very djficult to maintain global serializability in
IlDDBSs. The difficulty results primarily from the local autonomy, as well
as the incompatibility between serializatiou and execution orders of global
transactions (see [DELOSS]).

In summary, global concurrency control in HDDBSs is difficult. It is
particularly difficult to maintain global scrjalizability in these environments.
One way of overcoming the dificulkies is to use special concurrency control
paradigms such as top- down approach of concurrency control (see below).

2.2 The Top-down Approach of Coi~currency ControI

As me have mentioned, the task of a GCC is to coordinate executions at
local sites in such a way that global database co~~sisteficy is preserved. One
way to achieve this is to use a bottom-up strategy. In other words, the
serialization order of global transactions is first determined by LCCs. It is
the GCC's responsjbility to detect and resolve the incompatibilities among
local executions. In the bottom-up approach of concurrency control, global
subtransactions are usually submitted to LCCs freely and LCCs are also
free to execute them in any way they wish. This is the most natural way
01 doing concurrency control in an autonomous system such as an HDDBS.
Some proposals based on tliis approach can be found in [BS88], [EH88],
[LEM88], [Pu88].

A second alternative and the one we shill study in this paper is a top-
down approach. In this approactl, a GCC determines a global serialization
order of global transactious before submitting them to local sites. This
order is enforced at all local sites by either LCCs, or the GCC, or both.
This approach is unconventional because only those local executions with

Local autonomy has significant effects on global concurrency control in
HDDBSs. To maintain global database consistency, a GCe has to detect
and resolve all conflicts among global operations. To do tills, the GCe
needs information about local executions. This information, however, is
usually very difficult (if not impossible) to obtain due to local autonomy.
An LDBS might not have the information needed by the GCe. Even if it
has the information, communication autonomy ma.y prevent the GCe from
accessing it. Finally, even with the desired information, the GCC still might
not be able to resolve the undesired conflicts because of execution autonomy.

Serializability has been generally used as tbe correctness criterion in HD·
DBSs [BS88]. However, it is very difficult to maintain global serializabllity in
HDDBSs. The difficulty results primarily from the local autonomy, as well
as the incompatibility between serialization and execution orders of global
transactions (see [DEL089]).

In summary, global concurrency control in HDDBSs is difficult. It is
particularly difficult to maintain global serializability in these environments.
One way of overcoming the difficulties is to use special concurrency control
paradigms such as top-down approach of concurrency control (see below).

2.2 The Top-down Approach of Concurrency Control

As we have mentioned, the task of a GeC is to coorclinate executions at
local sites in such a way that global database consistency is preserved. One
way to achieve this is to use a. bottom-up strategy. In other words, the
serialization order of global transactions is first determined by Lees. It is
the GCC's responsibility to detect and resolve the incompatibilities among
local executions. In the bottom-up approach of concurrency control, global
subtransactions are usually submitted to LCCs freely and LCCs are also
free to execute them in any way they wish. Tllis is the most natural wa.y
of doing concurrency controlln an autonomous system such as an HDDBS.
Some proposals based on this approach can be found in [BS88], [EH88),
[LEM88], [PuSS].

A second alternative and the one we shall study in this paper is a top
down approach. In this approach, a GeC determines a global serialization
order of global transactions before submitting them to local sites. This
order is enforced at all local sites by either LeCs, or the Gee, or both.
This approach is unconventional because only those local executions with

3

the specific serialization order are accepted.

The top-down approach of concurrency control has art important prop-
erty, i.e., the serializability of global executions. This is because all local
executions are serializable and global transactions are serialized in the same
way at all local sites. There are two basic steps in a top-down approach of
concurrency control: (1) determining the serialization order 01 global trans-
actions at global leveI, and (2) achieving the order at local level.

The solution to the first step is quite simple: the GCC can determine the
serialization order for global transactions. In order to get good performance,
the GCC should choose the order which can be easily achieved at local sites.
Intuitively, this order can be estimated according to the order in which global
subtransactions are submitted to local sites. We shall not, however, go to
details of the problem in this paper.

The solution to the second step is, however, mucll more complex because
most concurrency control protocols do not guarantee any specific serializa-
tion order. As we mentioned in [DEL089], the problem of' local concurrency
control with a specific serialization order is generally very hard and might
even be impossjble in some cases. The following are two possible solutions
to the problem.

For those HDDBSs ~vliicll have less restrictive autonomy requirements,
local sclredulers can be modified in such a way that they guarantee not
only the serializability of local executions, but also the specific global
serialization order.

For those HDDBSs whose local sclledulers can not be modified, co-
ordinators may be built on top of LCCs to control the submission of
global subtransactions so that the given global serialization order is
achieved.

The above two zpproaches are suitable for different applications. In the
next two sections, we shall furtller discuss the feasibility and implementation
det aiIs of' the two approaches respectively.

2.3 Related Works

Tlie idea of determining serialization orders at the global level and then en-
forcing them locdy is not new izi HDDBSs. It was first proposed in [GP86]

the specific serializa.tion order are accepted.

The top-down approach of concurrency control has an important prop
erty, i.e., the serializability of glol>al executions. This is because all local
executions are serializable and global transactions are serialized in the same
way at all local sites. There are two basic steps in a top-down approach of
concurrency control: (1) determining the serialization order of global trans
actions at global level, and (2) achieving the order at local level.

The solution to the first step is quite simple: the Gee can determine the
serialization order for global transactions. In order to get good performance,
the GeC should choose the order which can be easily achieved at loca! sites.
Intuitively, this order can be estimated according to the order in which global
subtransactions are submitted to local sites. We shall not t however, go to
details of th.e problem in this paper.

The solution to the second step iS I however, much more complex because
most concurrency control protocols do not guarantee any specific serializa
tion order. As we mentioned in [DEL089], the problem ofloca!. concurrency
control with a specific serialization order is generally very hard and might
even be impossible in some cases. The following are two possible solutions
to the problem.

• For those HDDBSs wllich have less restrictive autonomy requirements,
local schedulers can be modified in such a way that they guarantee not
only the serializability of local executions, but also the specific global
serialization order.

• For those HDDBSs whose local schedulers can not be modified, co
ordinators may be built on top of LeCs to control the submission of
global. subtransactions so tha.t the given global serialization order is
achieved.

The above two approaches are suitable for different applications. In the
next two sections, we shall further discuss the feasibility and implementation
details of the two approaches respedively.

2.3 Related Works

Tlle idea of determining serialization orders at the global level and then en
forcing them locally is not new ill HDDBSs. It was first proposed in [GP86]

4

as one of the conditions under which different local concurrency control
mechanisms can be used by the GCC to provide global concurrency control
for an HDDBS. The authors of [GP8G] realized the necessity oiachieving the
same serialization order at aJl local sites. However, it seemed that they did
not realize the difficulty of doing this. f i r example, they believed that if two
global subtransactions (belonging to two global transactions respectively)
do not share any data, then their serialization order is trivially achieved.
This, however, is not true. Local transactions may introduce indirect con-
flicts between global tra~lsactions even if they do not conflict directly (see
[DEL089]).

Based on the idea presented in [GP86], Vidyasadcar proposed anon-two-
phase locking protocol for global concurrency control [Vid87]. His protocol
applies to HDDBSs in which LDBSs are interconnected to form a rooted
tree. It decomposes a global transaction hierarchically according to the
tree structure. The decomposed subtransactions are submitted to local sites
atomically. In other words, no subtransactions of another global transaction
will be submitted to local sites until the subtransactions or the previous
global transaction have all been submitted. As in [GP86], Vidyasankar did
not realize the difficulty involved in achievhg the serialization order at local
sites. In fact, he did not even mention how to achieve the global serialization
order at local sites.

Another problem with Vidyasankar's protocol is that it does not take
into account the indirect conflicts between global transactions. Therefore,
this protocol does not always guarantee global serializabjlity. Another ex-
cellent paper based on this approach is [AGS87], which bas been reviewed
in [DELOSQ].

3 Modifying Local Schedulers

The first approach to local concurrency control with pre-determined serial-
ization order is characterized by modifying local schedulers. Is the idea of
modi~ ing local schedulers feasible? Why is it appropriate? Iiow are various
local sd~edulers actually modified? These are the questions we try to answer
in this section.

as one of the conditions under which different local concurrency control
mechanisms can be used by the Gee to provide global concurrency control
for an HDDBS. The authors of [GP8G] realized the necessity of achieving the
same serialization order at aJllocai. sites. However, it seemed that they did
not realize the difficulty of doing this. For example, they believed that iftwo
global subtransactiolls (belonging to two global transactIons respectively)
do not share any data, t.hen t.heir serialization order is trivially achieved.
This, however, is not true. Local transactions may introduce indirect con
flicts between global transactions even if they do not conflict directly (see
[DEL089]).

Ba.o;ed on the idea presented in [GP86], Vidyasallkar proposed anon-two
phase locking protocol for global concurrency control [Vid87]. His protocol
applies to HDDBSs in which LDBSs are interconnected to form a. rooted
tree. It decomposes a global transaction hierarchically according to the
tree structure. The decomposed subtransactions are submitted to local sites
atomically. In other words. no subtransactions of another global transaction
will be submitted to local sites until the sub transactions of tIte previous
global transaction have all been submitted. As in [GP86]t Vidyasankar did
not realize the difficulty involved in achieving the serialization order at local
sites. In fact, he did not even mention how to achieve the global serialization
order at local sites.

Another problem with Vidyasankar's protocol is that it does not take
into account the indirect conflicts between global transactions. Therefore,
this protocol does not always guarantee global 5erializabHity. Another ex
cellent paper based on this approach is [AGS87J, which has been reviewed
in [DEL089].

3 Modifying Local Schedulers

The first approach to local concurrency control with pre-determined serial
ization order is characterized by modifying local schedulers. Is the idea of
modifying local schedulers feasible? Why is it appropriate? How are various
local schedulers actually modified? These are the questions we try to answer
in this section.

5

3.1 Why Modifying Local Schedulers

The main purpose 01 modifying local schedulers is to guarantee that the
serialization order determined by the GCC is ensured at local level. By
modifying local schedulers, coilcurrency control can be done flexibly and,
therefore, efficiently. However, the approach is not without problems. The
possible objections to the idea of modifying local scl~edulers might be: (1)
it violates local autonomy, and (2) it contradicts the notion that dl serial-
izable executions are equivalent. In this subsection, we defend the idea by
discussing the two problems in detail.

Before the argument about the first violation, let us investigate how the
local autonomy is violated. Local autonomy is generally explained in terms
of design, communication, and execution. The desigu autonomy states that
the design decisions of LDBSs such as data models and transaction manage-
ment protocols are made independently. The modification oflocal sclledulers
violates design autonomy because it iuvolves changing these design decisions.
Two kinds of design decisions, those of transaction management protocols
and transaction processiug perlormance are generally effected.

The violation of local autonomy might be tolerated for the following
reasons. First, the requirements of autonomy vary in HDDBS environments.
While some have very strong requirements 01 autonomy, many do not. In
other words, most HDDBSs tolerate certain changes of design decisions.
Recall that LDBSs are integrated because they are related and wish to
cooperate in some way. Therefore, they are usually willing to and sometimes
have to compromise some design decisions in order to be integrated into an
HDDBS.

The second reason is that bcal schedulers could be modified in a way
that the effects on local users (transactions) are negligible. Recall that the
purpose of modifying local schedulers is to ensure that they schedule global
subtransactions in the serialization order determined at global level. This
usually does not conflict with the basic design decisions made by LDBS de-
signers, such as concurrency control strategy. Only minor implementation
details are changed. For example, an LCC based on two-phase locking strat-
egy could be modified such that the two-phase locking rule is not violated
(see the next subsection). In addition, such modifications do not necessarily
imply bad peribrman ce for local transactions. II~ many modified local sched-
uler~, local transactions are processed in a similar way as in the original local

3.1 Why Modifying Local Schedulers

The main purpose of modifying local schedulers is to guarantee that the
serialization order determined by the GeC is ensured at local. level. By
modifying local schedulers, concurrency control can be done ftexibly and,
therefore, efficiently. However, the approach is not without problems. The
possible objections to the idea. of mod1fying local schedulers might be: (1)
it violates local autonomy, and (2) it contradicts tIle notion that all serial
izable executions are equivalent. In this subsection, we defend the idea by
discussing the two problems in detail.

Before the argument about the first violation, let us investigate how the
local autonomy is violated. Local autonomy is generally explained in terms
of design, communication, and execution. The design autonomy states that
the design decisions of LDBSs such as data models and transaction manage
ment protocols are made independently. The modification onoca! sc1ledulers
violates design autonomy because it involves changing these design decisions.
Two kinds of design decisions, those of transaction management protocols
and transaction processing performance are generally effected.

The violation of local autonomy might be tolerated for the following
reasons. First. the requirements of autonomy vary in HDDBS environments.
While some llave very strong requirements of autonomy, many do not. In
other words, most HDDBSs tolerate certain changes of design decisions.
Recall that LDBSs are integrated because they are related and wish to
cooperate in some way. Therefore, they are usually willing to and sometimes
have to compromise some design decisions in order to be integrated into an
HDDBS.

The second reason is that local schedulers could be modified in a way
that the effects on local users (transactions) are negligible. Recall that the
purpose of modifying local schedulers is to ensure that they schedule global
subtransactions in the serialization order determined at global leveL This
usually does not conflict with the ba.5ic design decisions made by LDBS de
signers, such as concurrency control strategy. Only minor implementation
details are changed. For example, an LCe based on two-phase locking strat
egy could be modified such that the two-phase locking rule is not violated
(see the next subsection). In addition, such modifications do not necessarily
imply bad. performan ce for local transactions. In many modified local sched
ulers, local transactions are processed in a. similar way as in the original local

6

schedulers. This is possible because in many concurrency control strategies,
the serialization order of global sub transac tions are determined by the way
they, not local transactions, are processed. For example, in a two-phase
locking based local scheduler, the serialization order of a subtransaction is
totally determined by its lock point.

Another objection to ~nodifying local sdledulers js the rejection of some
serializable executions. In an ordinary database environment, no specific
serialization order is required. The reasons for dohg this are (1) it provides a
higher degree of concurrency, (2) a specific serialization order does not differ
fiom others in terms of concurrency control, and (3) there is no authority
that specifies the serialization order.

In an HDDBS environment, however, the situation is quite different.
First, the GCC can determine the global serialization order. This is neces-
sary because the GCC must guarantee that a global serialization order is
achieved and it is much easier ior the GCC to do this betore global subtrans-
actions are submitted. It is dso possible because it js the GCC that is r e d y
in charge of the serializability of global executions. Second, by specifying a
global serialization order, LCCs at different sites can reach the agreement,
i-e., the serializability of global execution, more easily. Finally, although
local concurrency suffers from pre-specifying globd serialization order, it i s
not as bad as it appears. As we have mentioned, the GCC generally chooses
the order based on the order in which global subtransactions are submit-
ted. In most cases, this order is compatible with the orders determined
by LCCs. In cases where they are not compatible, the orders determined
by LCCs at different sites are usually not compatible, either. As a matter
of fact, by pre-specifying a global serialization order, many nonserializable
global executions are prevented iron1 occurring at global level.

In summary, the idea of modifying local schedulers violates desjgn auton-
omy. This violation, however, is tolerable in many HDDBS environments.
The idea also contradicts the no tion 01 equal acceptance of serializable exe-
cutions. But from the practice point of view, the idea is acceptable because
it implies potentially better performance and simpler concurrency control.

3.2 How t o Modify Local Schedulers: Case Studies

In this subsection, we detail the idea of modifying local schedulers. The
discussion is given in tlre scope of tlie following three protocols: two phase

schedulers. This is possible because ill many concurrency control strategie6 t

the serialization order of global subtransactions are determined by the way
they, not local transactions, are processed. For example, in a two-phase
locking based local scheduler, the serialization order of a subtransaction is
totally determined by its lock point.

Another objection to modifying local. schedulers is the rejection of some
serializable executions. In an ordinary database environment, no specific
serialization order is required. The reasons for doing this are (1) it provide6 a
higher degree of concurrency, (2) a specific serialization order does not differ
from others in terms of concurrency control, and (3) there is no authority
that specifies the serializa.tion order.

In an HDDBS environment, however, the situation is quite different.
First, the GCC can determine the global serialization order. This is neces
sary because the GCC must guarantee that a global serialization order is
achieved and it is much easier for the GCe to do this before global subtrans
actions are submitted. It is also possible because it is tlle Gee that is really
in charge of the serializability of global executions. Second. by specifying a
global serialization order, LCCs at different sites can. reach the agreement,
i.e., the serializabllity of global execution, more easily. Finally, although
local concurrency suffers from pre-specifying global serialization order, it i5
not as bad as it appears. As we ha.ve mentioned, the GCe generally chooses
the order based on the order in whicll global subtra.nsactioRs are submit
ted. In most c~es, this order is compatible with the orders determined
by LeCs. In cases where they are not compatible, the orders determined
by LCCs at different sites a.re usually not compatible, either. As a matter
of fact, by pre-specifying a global serialization order, many nonseriaJizable
global executions are prevented from occurring at global level.

In summary, the idea. ofmodifying local schedulers violates design auton
omy. This viola.tion, however, is tolerable in many HDDBS environments.
The idea also contradicts the notion of equal. acceptance of serializable exe
cutions. But from the practice point of view, the idea is acceptable because
it implies potentially better performance and simpler concurrency control.

3.2 How to Modify Local Schedulers: Case Studies

In this subsection, We detail the idea of modifying local schedulers. The
discussion is given in the scope of the following three protocols: two ph~

7

locking, timestamp ordering, and serialization graph testing (see [BHG87]).
Due to space limitations, we are unable to discuss other interesting protocols.
We believe that it is generaUy possible to modify any concurrency control
protocol so that a specific serialization order can be ensured. However, the
actual modification and its benefit varies from one protocol to another.

The modifications in this subsection are guided by the following princi-
ples;

1. The effects on local transactions sllould be minimal.

2. The effects on the performance o i local executions should be minimal.

3. It should also be simple.

In Addition, we assume that local schedulers can distinguish between
local and global operations.

Two-Phase Locking

Two-phase locking (2PL) is the most widely used and probably the sjm-
plest concurrency control strategy. In a system using locking, a lock is
associated with each data item, and ody one transaction can hold the lock
at a time. A transaction uses two phase locking if all of its lock acquisi-
tions precede all of its lock releases. In other words, once the transaction
has released a lock, it may not acquire any other locks. It has been shown
that execution seridizability is ensured in a system which verifies that all
transactions use two phase locking.

To coordinate the executions of global subtransactions, a data structure,
called order stamp, is associated with each data item to record the serial-
ization order of the last global subtransactio~l that has accessed the data
item either directly or indirectly. We say that a global transaction in&-
rectly accesses a data item if this data iten1 has later been accessed by a
local transaction which has previously accessed another data item accessed
by the global transaction. When a global transaction try to access a data
item, its serialization order is compared with the order stamp associated
with the data item. The access is permitted (i-e., the lock is granted) only
if the serialization order of the global transaction is greater than the order
stamp of the data item. In other words, the global serialization order is

locking, timestamp ordering, and serialization graph testing (see [BHG87]).
Due to space limitations, we are unable to discuss other interesting protocols.
We believe that it is generally possible to modify any concurrency control
protocol so that a specific serialization order can be ensured. However, the
actual modification and its benefit varies from one protocol to another.

The modifications in this subsection are gulded by the following princi
ples;

1. The effects on local transactions should be minimal.

2. The effects on tIle performance of local executions should be minimal.

3. It should also be simple.

In Addition, we assume that local schedulers can distinguish between
local and global operations.

Two-Phase Locking

Two-phase locking (2PL) is the most widely used and probably the sim
plest concurrency control strategy. In a system using locking, a lock is
associated with each data item, and only one transaction can hold the lock
at a. time. A transactjon uses two phase locking if aU of its lock acquisi
tions precede all of its lock releases. In other words, once the transaction
has released a lock, it may not acquire any other locks. It has been shown
that execution serlalizabillty is ensured in a system which verifies that all
transactions use two phase locking.

To coordinate the executions ofglobal subtransactions, a data structure,
called order stamp, is lUisociated with each data item to record the serial·
ization order of the last global subtransaction that has accessed the data
item either directly or indirectly. We say tllat a global transaction incli
rectlyaccesses a data item if this data item has later been accessed by a
local transaction which has previously accessed another data item accessed
by the global transaction. When a. global transaction try to access a data
item, its serialization order is compared with the order stamp associated
with the da.ta item. The access is permitted (I.e., the lock is granted) only
if the serlallzatjon order of the global transaction is greater than the order
stamp of the data item. In other words, the global serialization order is

8

achieved by only allowing global subtransactions access a data item in the
order determined at global level.

The following is such a modification of the basic two-phase locking pro-
tocol.

1. When the scheduler receives a local operation pi[x] fiom the trmsac-
tion manager (TM), it tests if pi[x] conflicts with another operation
qj [x] which already has the lock. If so, it delays p;[x]. If not, then
the scheduler grants the lock to pi [XI, and then sends pi[x] to the data
manager (DM).

Each time a local transaction gets a lock, the order stamp of that data
item is updated. The value to be set is the highest serializatjon order
of global transactions (iT any) that have previously accessed a common
data item as the local trmsaction does.

2. When it receives a global operatio11 p;[x] :]om the global transaction
manager (GTM), the scheduler tests if pi [XI conflicts with another
operation which already has the lock. If not, the scheduler grants the
lock to pi [z] , and sends pi [x] to the DM when the serialization order of
Ti is greater than the order stamp associated with s. The associated
order stamp of x is accordingly updated to the serialization order of
Ti . Otherwise, Ti has to be aborted.

If pi[z] does conflict with another operation qj[x], the scheduler delays
 pi[^] if qj [x] is a local operation, If, on the other hand, qj[xj is aglobd
operation, pi[%] will be rejected, forcing the global transaction to
abort if the global transaction Tj precedes Ti in the global serialization
order. Ifz precedes Tj, then Ti will be forced to abort and p;[x] takes
over the lock.

3. Global operations waiting for a lock are queued based on the global
serialization order.

4. Once the scheduler has granted a lock for Ti, it may not release that
lock until the DM acknowledges that it has processed the operation
that set the lock.

5. Once the scheduler has released a lock for a transaction, it may not
subsequently grant any more locks to that transaction (on any data
i tern).

achieved by only allowing global subtransactions access a. data item in the
order determined at global level.

The following is such a modification of the basic two-phase locking pro
tocol.

1. When the scheduler receives a local operation Vi[X] from the transac
tion manager (TM), it tests if Pi [X] conflicts with another operation
qj[x] which already has the lock. If so, it delays Vi[X]. If not, then
the scheduler grants the lock: to Pi [x] , and then sends Vi[X] to the data
manager (DM).

Each time a local transaction gets a lock, the order stamp of that data
item is updated. The value to be set is the highest serialization order
of global transactions (if any) that bave previously accessed a common
data item as the local transaction does.

2. When it receives a global operation Pi[X] from the global transaction
manager (GTM), the scheduler tests if pdx] conflicts with another
operation whicll already has the lock. If not, the scheduler grants the
lock to p;[x] , and sends Pi [x] to the DM when the serialization order of
Ti is greater than the order stamp associated with x. The associated
order stamp of x is accordingly updated to the serialization order of
Ti. Otherwise, T; has to be aborted.

If Pi[~] does conflict with another operation qj[x), the scheduler delays
Pi [x] if qj[x] is a local operation, If, on the other hand, q;[x] is a global
operation, Pi[X] will be rejected, forcing tile global transaction T; to
abort if the global transaction Tj precedes Ti in the global serialization
order. IfTi precedes Ti' then Tj will be forced to abort and Pi [x] takes
over the lock.

3. Global operations waiting for a lock are queued ba.sed on the global
serialization order.

4. Once the scheduler has granted a lock for Ti' it may not release that
lock until the DM acknowledges that it has processed the operation
that set the lock.

5. Once the scheduler has released a. lock for a transaction, it may not
subsequently grant any more locks to that transaction (on any da.ta
item).

9

Since all transactions (both local and global) follow twephase locking
rule (rule 5), the modified protocol, M2PL, generates serialjzable executions
only. The global serialization order is also ensured because global subtrans-
actions can only access (either directly or indirectly) a data item in that
order. Let us, now informally analyze it with respect to the above three
principles.

First, M2PL is sirnilat to 2PL except in cases 2 and 3, where conflicts
among global operations are resolved. The cl~ange doxs not effect local op-
erations a lot! Second, and the most important, the perrormance o i the two
protocols is almost the same as far as local transactions are concerned. No
local operation will be delayed and no local transaction will be forced to
abort because of the inco~npatibility between the local and global serializa-
tion order. Fiually, although M2PL is more complicated than 2PL, it is still
simple enough to be practically implemented.

Great benefit can be obtained by modifying 2PL schedulers. First, a
higher degree of concurrency is possible. For example, if two global trans-
actions do not access any common data item, all concurrent executions are
possible in M2PL schedulers. h the bot tom-up approach, e.g., the protocol
proposed in [Pu88], the only possible executions are those in which the order
01 the two transactions' lock points is compatible with the global serializ*
tion order. Second, it also provides better performance. Only those global
transactions whose commitment actually causes the nonserializabjlity of the
global execution will be aborted.

Timestamp Ordering

In a timestamp ordering (TSO) scheduler, tlie TM assigns a unique
timestamp, ts(z), for each transaction, x. A TSO scheduler orders con-
flicting operations accordi~ig to their timestamps.

TSO rule: If [x] and qj [x] are coliflicting operatiol~s, then the
DM processes ~ [s] before qj[x] if ts(x) < ts(Tj)-

This rule can be modified as foliows.

Modified TSO rule: If either of the conflicting operations pi[x]
and qj[x] is a local operation, then the DM processes P ~ [x] before

Since all transactions (both local and global) follow two-phase locking
tule (rule 5), the modified protocol, M2PL, generates serializable executions
only. The global serialization order is also ensured because global subtrans
actions can only access (either directly or indirectly) a data item in that
order. Let us, now informally a.nalyze it with respect to the above three
principles.

First, M2PL is similar to 2PL except in cases 2 and 3, where conflicts
among global operations are resolved. The cllange does not effect local 0D_- _
erations a lot! Second, and the most important, the performance of the two
protocols is almost the same as far as local transactions are concerned. No
local operation will be delayed and no local transaction will be forced to
abort because of the incompatibility between the local and global serializa-
tion order. Finally, although M2PL is more complicated than 2PL, it is still
simple enough to be practically implemented.

Great benefit can be obtained by modifying 2PL schedulers. First, a
higher degree of concurrency is possible. For example, if two global trans
actions do not access any common data item, all concurrent executions are
possible in M2PL schedulers. In the bottom~up approach, e.g., the protocol
proposed in [Pu88], the only possible executions are those.in which the order
of the two transactions' lock points is compatible with the global serializa
tion order. Second, it also provides better performance. Only those global
transactions whose commitment actually causes the nonserializability of the
global execution will be aborted.

Timestamp Ordering

In a. timestamp ordering (TSO) scheduler, the 'I'M assigns a. unique
timestamp, ts(7i), for each transaction, 11. A TSO scheduler orders con
.fiieting operations according to tlleir timestamps.

TSO rule: If IJ;[X] and qj[x] are conflicting operations, then the
DM processes Pi[X] before qj[x] if ts(Tj) < ts(Tj).

This rule can be modified as follows.

Modified TSO rule: If eit1ler of tile conflicting operations Pi[X]
and qj[x] is a local operation, then the DM processes Pi[:&] before

10

q j [x] if ta(T;) < t3(Tj)-
else (in this case, both pi [XI and qj[x] are global operations)

DM processes yi[x] before qj[x] if ts(z) < ts(Xj) and T; pre-
cedes Tj in the global serialization order, aborts either or Tj
otherwise.

Like in the TSO rule, all conflicting operatio~is are ordered according to
their timestamps in the modilied TSO rule. In addition, the eke part of
the modified TSO rule guarantees that the conflicting global operations are
scheduled in an order compatible with both the globd serialization order
and their timestamp order.

One problem with the modified TSO rule is that one oi conflicting global
transactions has to be aborted iitheir serialization order isincompatible with
their timestamp order. This i s obviously undesired in applications where
conilicts among global operations are not rare. To reduce unnecessary abor-
tions in these environments, the timestamp order of global subtransactions
at local level should be compatible with the global serialization order as
much as possible. One way of doing this is to submit global transactions to
local sites according to the global serialization order. In this case, however,
the modified TSO r d e works in the same way as the TSO rule does. In other
words, the global serialization order can be equally achieved by controlling
the submission of global subtransactions in these environments. Therefore,
a TSO based local scheduler sllould be modified only in those environments
where conflicts among global operations are rare. In these environments,
incompatibilities among TSO order a id serialization order do not usually
imply abortion of global transactions.

Serialization Graph Testing

A serialization graph testing (SGT) scheduler is the most general sched-
uler in the sense that it can generate a l l conflict serializable executions. An
SGT scheduler maintains the serialization graph (SG) o i the bistory that
represents the local executio~l it controls. It attains serializable executions
by ensuring that the SG always remains acyclic.

The following is a modified basic SGT protocol (MSGT).

When an MSGT scheduler receives an operation pi[x] from
the TM, it first adds a node for Ti to its SG if one does not already

qj[X] if t8(Ti) < ts(Tj).
else (in this case, both Pi[X] and qj[x] are global operations)

DM processes Pi[X] before qj[x] if ts(Td < ts(Tj) and Ti pre
cedes T; in the global serialization order, aborts either 1i or Tj
otherwise.

Like in the TSO rule, all conflicting operations are ordered according to
their timestamps in the modified TSO rule. In addition, the else part of
the modified TSO rule guarantees that the conflicting global operations are
scheduled in an order compatible with both the global serialization order
and their timestamp order.

One problem with the modified TSO rule is that one of conflicting global
transactions has to be aborted iftheir serialization order Is incompatible with
their timestamp order. This is obviously undesired in applications where
conflicts among global operations are not rare. To reduce unnecessary abor
tions in these environments, the timestamp order of global. 8ubtransactions
at local level should be compatible with the global serialization order Wi

much as possible. One way of doing this is to submit global transactIons to
local. sites according to the global serialization order. In this case, however.
the modified TSO rule works in the same way as the TSO rule does. In other
words, the global serialization order can be equa.lly achieved by controlling
the submission of global sub transactions in these environments. Therefore~

a TSO based local scheduler should be modified only in those environments
where conflicts among global operations are rare. In these environments,
incompatibilities among TSO order and serialization order do not usually
imply abortion of global transactions.

Serialization Graph Testing

A serialization graph testing (SGT) scheduler is the most general sched
uler in the sense that it can generate all conflict serializable executions. An
SGT scheduler maintains the serialization graph (SG) of the history that
represents the local execution it controls. It attains serializable executions
by ensuring that the SG always remains acyclic.

The following is a modified basic SGT protocol (MSGT).

When an MSGT scheduler receives an operation Pi[X] from
the TM, it first adds a node for Tj to its SG ifone does not already

11

exist. It then adds edges horn Tj to T; for every previously
scheduled operalion qj[x] that conflicts with pi[^]. If p;[xJ is a
global operation, then it adds an edge from Tj to Ti for every
global transaction Tj that precedes Ti in the global serialization
order.

I. If the resulting SG contains a cycle, the scheduler rejects
gi[x] and deletes Z from the SG and all edges incident upon

2. If the resulting S G is still acyclic, the scheduler accepts pi[x]
and sends it to the DM.

Since the SG is acyclic, the local execution is serializable. In addition,
this local serialization order is compatible with the global serialization order.
Therefore, the global execution is serializable.

Unlike the 2PL and TSO schedulers, it is usually difficult to achieve a
specific serialization order in an SGT scheduler without modifying it. The
reason is that it is very difficult to derive the serialization order of local
executions at the global level. For example, it mjght be impossible for the
GCC to find out whether twa global transactions indirectly conflict with
each other, even after they have both completed (see [DEL089]). For those
IfDDBSs in which some LDBSs use SGT schedulers, the top-down approach
with local schedulers being modified is a feasible way (if not the only way)
to maintain global serializability.

In summary, the modification of local schedulers is generally possible for
m y concurrency control protocols. Some protocols (e.g ., two phase locking)
are more suitable for modification in the sense that significant bellefit can
be obtained, while others (e.g., timestamp ordering) are not. For some
protocols (e.g., serialization graph testing), rnodificatiol~ is the only way for
a local scheduler to achieve a specific serialization order.

4 Enforcing the Global Serialization Order

In an HDDBS in which the modification of local schedulers is not acceptable,
it is still possible to apply the top-down approach to concunency control.
The idea is to coordii~ate local executions by controlling the submission of
global subtransactions. As we mentioned in [DEL089], it is impossible, in

exist. It then adds edges from Tj to Ti for every previously
scheduled operation q;[x] that conflicts Witll pi[X], If Pi [X] is a.
global operation t then it adds an edge from Tj to Ti for every
global transaction Tj that precedes TI in the global serialization
order.

1. If the resulting SG contains a. cycle, the scheduler rejects
Pi [xl and deletes n from the SG and all edges incident upon
Ti.

2. If the resulting SG IS still acyclic, the scheduler accepts pi[X]
and sends it to the DM.

Since the SG is acyclic, the local execution is serializable. In addition,
this local serialization order is compatible with the global8eriali~ationorder.
Therefore~ the global execution is serializable.

Unlike the 2PL and TSO schedulers, it is usually difficult to achieve a
specific serialization order in an SGT scheduler without modifying it. The
reason is that it is very difficult to derive the serialization order of local
executions at the global level. For example, it might be impossible for the
Gee to find out whether two global transactions indirectly conflict with
each other, even after they have both completed (see [DEL089]). For those
HDDBSs in which some LDBSs use SGT schedulers, the top-down approacll
with local. schedulers being modified is a feasible way (if not the only way)
to maintain global serializability.

In summary, the modification of local schedulers is generally possible for
any concurrency control protocols. Some protocols (e.g., two phase locking)
are more suitable for modification in the sense tIlat significant benefit can
be obtained, while others (e.g., timestamp ordering) are not. For some
protocols (e.g., serialization graph testing), modification is the only way for
a local scheduler to achieve a. specific seriaJi~ation order.

4 Enforcing the Global Serialization Order

In an HDDBS in which the modification of local schedulers IS not acceptable,
it is still possible to apply the top-down approach to concurrency control.
The idea is to coordinate local executions by controlling the submission of
global subtransactions. As we mentioned in [DEL089], it is impossible, in

12

general, to enforce global serialiaability by using this strategy. For most
practical concurrency control protocols, however, it is possible. In this sec-
tion, we discuss the ways 01 enforcing global serialization order on those
protocols in which it is possible. We also discuss how to deal with protocols
in which it is not possible.

4.1 Ensuring GIo bal Serializability

To ensure gIobal serializabili ty, LCCs have to satisfy certain collditions. One
sufficient condition is that the LCC should schedule transactions in such a
way that, ior each transaction, the serialization order is determined by an
event occurring in its lire time. We call this particular event the serialization
event .

Many existing concurrency control protocols satisfy this condition. In
2PL, the serialization order 01 each transaction is determined by its lock
point. In TSO, transactions are serialized according to their time stamps
(for more on these orders the reader is referred to [Pu88]). Value date based
protocols [LT88] also satisfy this condition. The serialization event of a
transaction is simply its value date. All these events occur in the l ib time
of the related transactions.

For those HDDBSs in which all LCCs satisij. this condition, the global
serializability can be easily ensured using the top-down approach.

1. The GCC determines the global serialization order for each global
transaction before submitting i t to local sites.

2. At each local site, global subtransactions are submitted to the LCC
according to the global serialization order.

3. A global subtra~saction will not be submitted to an LCC until the pre-
viously submitted glob a1 subtransaction reaches its seridjzation event.

To guarantee that global subtransactions are submitted to LCCs prop
erly, a coordinator is built on the top of each LCC. The coordinator receives
and buffers global subtransactions from the GCC and then submits them to
the LCC at proper time.

TSO gives a good example of illustrating the idea. Ilecail that a TSO
scheduler serializes transactions according to their timest amps. It is the co-

general. to enforce global serializability by using this strategy. For most
practical concurrency control protocols, however, it is possible. In this sec
tion, we discuss the ways of enforcing global serialization order on those
protocols in which it is possible. We also discuss llow to deal with protocols
in which it is not possible.

4.1 Ensuring Global Sel"ializability

To ensure global seria.lizability, LCCs have to satisfy certain conditions. One
sufficient condition is that the LCe should schedule transa.ctions ill such a
wa.y that, for each transaction, the serialization order is determined by an
event occurring in its life time. We call this particular event the seriaJization
event.

Many existing concurrency control protocols satisfy this condition. In
2PL, the serialization order of each transaction is determined by its lock
point. In TSO, transactions are serialized according to their time stamps
(for more on these orders the reader is referred to [PuSS]). Value date based
protocols [LT88] also satisfy this condition. The serializa.tion event of a
transa.etion is simply its value date. All these events occur in the life time
of the related transactions.

For those HDDBSs in which all Lees satisfy tllis condition, the global
serializability can be easily ensured using the top-down approach.

1. The GCC determines the global serialization order for each global
transaction before submitting it to local sites.

2. At each local site, global sllbtransactions are submitted to the Lee
according to the global serialization order.

3. A global subtrallsaction will not be submitted to an LCC until the pre
viously submitted global subtransaction reaches its serialization event.

To guarantee that global sllbtransactiolls are submitted to LCGs prop
erly, a coordinator is built on the top of each Lee. The coordinator receives
and buffers global subtransactions from the GeC and tllen submits them to
the Lee at proper time.

TSO gives a. good example of illustrating the idea. Recall that a TSO
scheduler serializes transactions according to their timestamps. It is the co~

13

ordinator's responsibility to guarantee that global subtransactions get their
timestamps in the order pre-determined at global level. Generally, a times-
tamp is assigned to a transaction at the beginning of its life time. Therefore,
what the coordinator needs to do is to submit one global subtransaction at
a time to the LCC according to the global serialization order. Once the first
has been accepted by the LCC (i.e., a timestamp has been assigned), the
next (if any) is submitted.

Global serialization order can be achieved in 2PL schedulers in the same
way except that the second subtransaction should not be submitted to the
LCC until the fist reaches its lock point.

Although global serializability can be achieved in both 2PL and TSO
schedulers, the performance may be quite different . Generdy speaking, the
sooner the serialization event occurs in the life time of a transaction, the
higher degree of concurrency could be expected. Therefore, a high degree
of concurrency can be obtained in TSO sdledulers. This is because that
global subtransactions could interleave cousiderably. In 2PL schedulers,
however, only a relatively low degree of concurrency can be obtained. Global
subtransactions are almost executed sequentially.

4.2 Ensuring Global Quasi Serializability

There are schedulers that do not satisfy the condition we gave in the pre-
vious subsection. For example, it is impossible to enforce a specific serial-
ization order at a site which uses an SGT sdieduler . For those HRDBSs in
which global serializability cannot be maintained, it might still be possible
to apply the top-down approach without modifying local schedulers. In this
subsection, we briefly discuss how and under what conclitions this can be
done.

The basic idea is that, instead of trying to maintain the global serid-
izability, we relax the correctness criterion. Although not appropriate in
general, the relaxed criteria sllould be appropriate in some environments.
The criterion that we shall use in this subsection is quasi serializability
[DESS]. Quasi serializabifty theory was introduced in heterogeneous dis-
tributed database environments with certain restrictions. A global execu-
tion is quasi serializable if it is equivalent to an execution in which all the
global transactions are executed sequetltidly in the same order at dl local
sites.

ordinator's responsibility to guarantee that global subtransactions get their
timestamps in the order pre-determined at global level. Generally, a times
tamp is assigned to a transaction at the beginning of its life time. Therefore,
what the coordinator needs to do is to submit one global subtra.ns3,ction at
a time to tIle LCC according to the global serialization order. Once the first
has been accepted by the LeC (i.e., a timestamp has been assigned), the
next (if any) is submitted.

Global serialization order can be achieved in 2PL schedulers in the same
way except that tlle second subtransaction should not be submitted to the
LCe until the first reaches its lock point.

Although global serializahility can be achieved in both 2PL and TSO
schedulers, the performance may be quite different. Generally speaking, the
sooner the serialization event occurs in the life time of a transaction, the
lligher degree of concurrency could be expected. Therefore I a high degree
of concurrency can be obtained in TSO sdledulers. This is because that
global subtransactions could interleave cOllsiderably. In 2PL schedulers,
however, only a. relatively low degree of concurrency can be obtained. Global
subtransactions are almost executed sequentially.

4.2 Ensuring Global Quasi Serializability

There are schedulers that do not satisfy the condition we gave in the pre
vious subsection. For example, it is impossible to enforce a specific serial
ization order at a site which uses an. SGT scheduler. For those HDDBSs in
which global seriaUzability cannot be maintained, it might still be possible
to apply the top-down approach without modifying local schedulers. In this
subsection, we briefly discuss how and under what conditions this can be
done.

The basic idea is that, instead of trying to maintain the global serial
izability, we relax the correctness criterion. Although not appropriate in
general, the relaxed criteria should be appropriate in some environments.
The criterion that we sllaU use in this subsection is quasi serializabllity
[DE89]. Quasi serializability theory was introduced in heterogeneous dis
tributed database environments with certain restrictions. A global execu
tion is quasi serializable if it is equivalent to aJ1 execution in which all the
global transactions are executed sequentially in the same order at all local
sites.

14

The quasi serializability of global executions can be maintained in the
top-down way as we did Tor serializability in the previous subsection. The
following protocol is a direct generalization of that for serializability. It
could be used to achieve global quasi serializability for those HDDBSS in
which global serializabili ty cannot be maint ahled.

1. A GCC determines at1 order for global transactions. This order is
submitted, along with the global sub transactions, to the local sites.

2. At each local site, the coordinator will submit the global subtransac-
tions according to this global order.

3. The global subtransactions are submitted to the LCC one at a time.
The second subtransaction w i l l not be submitted until the first has
completed.

A quasi serjalizable execution might not preserve the consistency of a
global database unless the databases meet certain restrictions. The following
is a set of restrictions which are sufficient to guarantee the consistency of
IIDDBSs.

1. No data integrity constraint on data items across LDBSs.

2. No value dependency between subtransactions of the same global trans-
action '.

A correctness proof of quasi seridizable histories caa be found in [DE89].
Following is an example illustrathg how transaction consistency of the global
database is preserved.

Example 4.1 Consider an IIDDBS consisting oT two LDBSs, Dl and
D2, where data items a and b are at Dl, and c, d and e are at Dz. The
following global transactions are submitted to the IIDDBS:

GI : Will (4 ~ 9 l (d) Gi : ~ r n (b)r,*(c)w, (4
Let Ll and L2 be some local transactions submitted at Dl and D2,

respectively:

L1 : T ~ I (a) ~ , (6) Lz : wz (d) ~ t ~ (e)

'A less reslrictivc conditioi~ for value dependency cm be bund in pD89].

The quasi serializabiUty of global execu tions can be maintained in the
top-down way as we dld for serializability in the previous subsection. The
following protocol is a direct generalization of tbat for serializability. It
could be used to achieve global quasi serializability for those HDDBSS in
which global serializability cannot be maintained.

1. A Gee determines an order for global transactions. This order is
5ubndtted) along with the global suMransactions t to the local sites.

2. At each local site, the coordinator will submit the global subtransac
tions according to this global order.

3. The global subtransactions are submitted to the Lee one at a time.
The second subtransaction will not be submitted until the first has
completed.

A quasi serializable execution might not preserve tIle consistency of a
global database unless the databases meet certain restrictions. The following
is a set of restrictions wlIich are sufficient to guarantee the consistency of
HDDBSs.

1. No data integrity constraint on data items across LDBSs.

2. No value dependency between subtransactions of the same global trans·
action 1.

A correctness proof of quasi serializable histories can be found in {DE89].
Following is an example illustrati.ng how transaction consistency of tile global
database is preserved.

Example 4.1 Consider an HDDBS consisting of two LDBSs t D1 and
D21 where da.ta items a and b are at D1 t and c, d and e are at Dz. The
following global transactions are submitted to the HDDBS:

Gl : w91 (a)ry1 (d) G2 : T92 (b)r92 (c)w.92 (e)

Let L1 and Lz be some local transactions submitted at D1 and DZ1
respectively:

1A less restrict.ive condition for value dependency can be found in [BD89].

15

Let A1 and Hz be local histories at Dl and D2, respectively:

HI : ~ 9 , (a)rl ,(4wll (b I ~ g 2 (b)

A2 : Tg2 (~ 1 ~ 1 2 (4 ~ 9 , (dlwgz (e) ~ l * (4
Let H = {H1,A2). The11 H is quasi serializable.

Suppose there is no value dependency between the two sub transactions
of transaction Gz, the value of data item e written by Gz a t .D2 is not related
to the value of data item b read by G2 at Dl. Therefore, the value of data
item e read by local transaction Lz at D2 is not related to the vdue of
data item b written by local transaction Ll at Dl. In other words, there
is no relation between L1 and L2 (they do not influence each other). The
global transactions also interfere with each other properly because they are
executed sequentially. Therefore, the transaction consistency of the global
database is preserved.

5 Discussion

The main purpose of a scheduler is to output correct schedules. Other goal8
include a high degree of concurrency, good performance, as well as a high
degree of autonomy in the case oZHDDBSs. In this section, we compare the
two strategies of doing concurrelicy control in top-down approach, as well
as the bottom-up approach with respect to these issues.

Concurrency

Concurrency is one of the most important measures of the performance
of a scheduler. Iniormally, the concurrency of a scheduler S, denoted C(S),
is defined as the set of schedules that can be generated by this scheduler.
In a11 HDDBS, a global schedule is composed of several local schedules.
The concurrency of the GCC is, thererore, determined by the concurrencies
of locd schedulers. Given an HDDBS which consists o i n LDBSs whose
concurrencies axe C(Sl), C(Sz), .-., C(S,,) respectively, the concurrency of
the HDDBS is bounded by the subset of C(Sl) x C(S2) x ... x C(S,) wllose
members are globally serializable, where x stands for Cartesian product. In
the following, we shdl use SC(S) to denote this serializable subset.

The top-down approach of concurrency control is unable to provide the
maximum global con currency, i-e., SC(S). Since the serialization order has

Let HI and Hz be local histories at D1 and D2, respectively:

HI : wgl(a)r/I(a)wh(b)rg~(b)

H2 : Tg2 (C)W/2 (d)rg1 (d)wg~(e)T12 (e)

Let H,= {Htl H2 }. TheIl H is quasi serializable.

Suppose there is no value dependency between tIle two sub transactions
of transaction G21 the value of data item e written by G2 at Dz is not rela.ted
to the value of data item b read by G2 at Dt. Therefore, the value of data
item e read by local transaction L2 at D2 is not related to the value of
data. item b written by local transaction L 1 at D I . In other words, there
is no relation between L 1 and L2 (they do not infiuence each other). The
global transactions also interfere with each other properly because they are
executed sequentially. Therefore, the transaction consistency of the global
database is preserved. 0

5 Discussion

The main purpose of a scheduler is to output correct schedules. Other goals
include a high degree of concurrency, good performance, as well as a. high
degree of autonomy in the case of HDDBSs. In this section, we compare the
two strategies of domg concurrency control in top-down approach, as well
as the bottom-up approach with respect to tllese issues.

Concurrency

Concurrency is one of the most important measures of the performance
of a. scheduler. Informally, the concurrency of a. scheduler S, denoted C(S),
is defined as the set of schedules that can be generated by this scheduler.
In a.n HDDBS, a. global schedule is composed of several local schedules.
The concurrency of the GCe is, therefore, determined by the conclU"rencies
of local schedulers. Given an HDDBS which consists of n LDBSs whose
concurrencies are C(Sl), C(Sz), ..•, C(Sn) respectively, the concurrency of
the HDDBS is bounded by the subset of C(Sl) X C(S2) X ... X C(Sn) whose
members are globally serializable, where x stands for Cartesian product. In
the following, we shall use SC(S) to denote this serializa.ble subset.

The top-down approach of concurrency control is unable to provide the
maximum global concurrency, i.e., SC(S). Since the serialization order has

16

been determined at global level, only those local sclledules which are compat-
ible with the order are possible. For an UDDBS who performs concurrency
control by modifying local schedulers, the concurrency of the global sched-
uler is just the subset of SC(S) whose members are compatible with the
pre-determined global serialization order. For example, the scl~edules out-
put by a modified 2PL schedulers are those that can be output by the original
scheduler and compatible with the pre-determined serialization order.

For global scl~edulers which coorclinate local executions by controlling
the submission of subtransactions, their concurrency degrees vary according
to the con currency conlrol protocols lo c d schedulers use. Usually, they are
low. The reason is that global schedulers have to serialize global subtrans-
actions according to their local serialization events. f i r most concurrency
control protocols, the serialization events lie in the rear part or out of the life
time of transactions (TSO is an exception). For a global scheduler based on
TSO local schedulers, the concurrency degree is high. For global schedulers
based on other kinds of local schedulers, e.g., ZPL, the global subtransac-
tions are executed almost sequentially. These global subtransactions can
still interleave with local transactions. The overall concurrency degree is
therefore not very bad.

The bottom-up approach of concurrency control is generaUy good at
providing high degrees of concurrency. Since global subtransactions are
submitted to LCCs without any control. or restriction, all combinations of
local schedules are possible as long as they are globalIy serializable. Thee
retically, the concurrency of a bot tom-up scheduler could be any subset of
SC(S). In practice, however, it i s much less. The reason is that it is very
hard lor the GCC to test whether a global execution is serializable, due to
local autonomy.

Other Performance Issues

Besides concurrency, many other issues effect the overall performance
of a scheduler. Topdown approach of concurrency control usually provides
better performance than bottom-up approach from the points of view of
these issues, as explained below.

The f i s t issue that effect the overall performauce of a scheduler is dead-
lock. Unlike in bottom-up approach of concurrellcy control, there is no
global deadlock i11 top-down approach of concurrency control. Since the
serialization order of global trausactio~rs has been determined before their

been determined at global level, only those local schedules which are compat
ible with the order are possible. For an HDDBS who performs concurrency
control by modifying local schedulers, the concurrency of ~he global sched
uler is just the subset of SC(S) whose members are compatible with tIle
pre-determined global serialization order. For example, the schedules out
put by a modified 2PL schedulers are those that can be output by the original
scheduler and compatible with the pre-determined serialization order.

For global schedulers which coordinate local executions by controlling
the submission of 8ubtransactions, their concurrency degrees vary according
to the concurrency conLrol protocols local schedulers use. Usually, they are
low. TIle reason is that global schedulers have to serialize global subtrans
actions according to their local serialization events. For most concurrency
control protocols, the serialization events lie in the rear part or out of the life
time of transa.ctions (TSO is an exception). For a global scheduler based on
TSO local schedulers, the concurrency degree is high. For global schedulers
based on other kinds of local schedulers, e.g., 2PL, the global subtransac
tions are executed almost sequentially. These global subtransa.ctions can
still interlea.ve with local transactions. The overall concurrency degree is
therefore not very bad.

The bottom-up approach of concurrency control is generally good at
providing high degrees of concurrency_ Since global subtr3Jlsactions are
submitted to LCes without any control or restriction, all combinations of
local schedules are possible as long as they are globally serializable. Their
retically, the conCllrrency of a bottom-up scheduler could be any subset of
SeeS). In practice, however, it is much less. The reason is that it is very
hard for the GeC to test whether a global execution is serializable, due to
local antonomy.

Other Performance Issues

Besides concurrency, many atller issues effect the overaJl performance
of a scheduler. Top-down approach of concurrency control usually provides
better performance than bottom-up approach from the points of view of
these issues, as eXplained below.

The first issue that effect the overall performance of a scheduler is dead
lock. Unlike in bottom-up approach of concur.rency control, there is no
global deadlock ill top-down approach of concurrency control. Since the
serialization order of global transactions has been determined before their

17

submission to local sites, locaI schedulers (or coordinators) always serialize
them consistently. A global transaction only wait for locks held by those
global transactions that precede it in the global serialization order. The
situation described in [GP86] will never occur.

In an IIDDDS, if global concurrency control is perlormed top-down by
controlling the submission 01 global subtransac tions, local deadocks are also
reduced. An obvious observation is that no local deadlock involving more
than one global transaclion is possible. A global subtransaction wiU not get
any lock until the previous global subtransaction reaches its lock point.

Another important issue is the abortion of transactions, especially global
transactions. In top-down approach of concurrency control, there are fewer
global transactions aborted. This is because no global transaction will b e
aborted because of the inconsistency of local executions. In bottom-up ap-
proach of concurrency control, however, local schedulers a t different sites
may serialize global sub transactions differently, resulting unnecessary abor-
tions. Let us, for example, consider an HDDBS consisting of ten LDBSs.
Suppose that a bottom-up approach of concurrency control is employed. In
the case where two global transactions arrive the GCC at almost the same
time, the possibility that the two global transactions are serialized in the
same way a t all ten local sites is obviously very low. Ln other words, i t is
very likely that one of them has to be aborted. We believe that the abortion
of global transactions for the inconsistency among local executions is one of
the most important issues that effect the performance of a scheduler.

The idea of performing top-down concurrency control by controlling the
submission of global subtransactions as presented in this paper is attractive
because coordinators are located at local sites. As a result, communication
delay is significantly reduced. The local coordinator will submit the next
sub transaction immediately dter the previous one passes its serialization
event. No communicatjon with the GCC is needed.

Autonomy and Correctness criteria

Autonomy is a very important issue in HDDBS. There is no big dif-
ference between top-down and bottom-up approaches as far as autonomy
is concerned. Both approaches can be implemented in a way that local
autonomy is not violated (e.g., local schedulers are not modified).

In the top-down approach, the idea of controlling the submission of global

submission to local sites, local schedulers (or coordinators) alwa.ys serialize
them consistently. A global transaction only waH for locks held by those
global transactions that precede it in the global serialization order. The
situation described in [GP86] will never occur.

In an HDDDS. if global concurrency control is performed top-down by
controlling the submission of global subtransactions.local deadlocks are also
reduced. An obvious observation is that no local deadlock involving more
than one global transaction is possible. A global subtransaction will not get
any lock until the previous global subtransacUon reaches its lock point.

Another important issue is the abortion of transactions, especially global
transactions. In top-down approach of concurrency control, there are fewer
global transactions aborted. This is because no global transaction will be
aborted because of the inconsistency of local executions. In bottom-up ap
proach of concurrency control, however, local schedulers at different sites
may serialize global sub transactions differently, resulting unnecessary abor
tions. Let us, for example, consider an HDDBS consisting of ten LDBSs.
Suppose that a bottom-up approach of concurrency control IS employed. In
the case where two global transactions arrive the Gee at almost tile same
time, the possibility that the two global transactions are serialized in the
same way at all ten local sites is obviously very low. In other words, it is
very likely that one of them has to be aborted. We believe that the abortion
of global tIansactions for the inconsistency among local executions is one of
the most important issues that effect the p(!rformance of a sch.eduler.

The idea of performing top-down concurrency control by controlling the
submission of global subtransa.ctions as presented in this paper is attractive
because coordinators are located at local sites. As a result, communication
delay is significantly reduced. The local coordinator will submit the next
subtransaction immediately after the previous one passes its serialization
event. No communication with the Gee is needed.

A utonomy and Correctness criteria

Autonomy is a very important issue in HDDBS. There is no big dif
ference between top-down and bottom.up approaches as far as autonomy
is concerned. Both approaches can be implemented in a way that local
autonomy is not violated (e.g., local schedulers are not modified).

In the top-down approach, the idea of controlting the submission of global

18

subtransactions is obviously preferred if the modification of local schedulers
is not allowed. The problem is that; it is generally impossible to maintain
global serializability, although it is possible in most practical environments.
It is, however, possible t o maintain quasi serializability in this case, as we
have mentioned before. If, on the other hand, the modification of local
schedulers is allowed, it is dehitely a better idea to do so. In this case,
not only global serializability can be maintained generally, but also a high
degree of concurrency can be obtained.

The above discussion is summerized in the following table.

where SR and QSR stand for serializability and quasi serializability, re-
spectively. The "XI' in the table means that the evaluation depends on the
implementation (e.g., whether local sclledulers are modifred).

Performance
' Concurrency
Autonomy
Correctness

6 Conclusion

In this paper, we have presented a framework for designing concurrency con-
trol protocols using topmdown approach in two distinctive ways. The fist is
characterized by the modification of local scl~edulers and the second control-
ling the submission of global su btransactious to LCCs. We have illustrated
the viability of the first approacll by outlining the modifications needed br
the 2PL, TSO and SGT strategies. In addition, we gave some justifications
on the feasibility and applicability o i this method. For those who insist on a
high degree of autonomy, we have outlined how global database consistency
can be maintained without violating autonomy.

This paper is motivated by the difficulties of doing global concurrency
control in traditional ways. We believe that the requirements for local au-
tonomy, perlormance, and consistency are very different in various HDDBS
environments. The ways of doing global concurrency control we presented
in this paper c a ~ apply to certain environmeuts.

Bot tom-up

bad

good -
x
SR/QSR

Top-down
Modifying LCC
good
good
bad
SR

Controlling Submission
good
bad(goodforTS0)
good
QsR

subtransactions is obviously preferred if the modification of local schedulers
is not allowed. The problem is that it is generally impossible to maintain
global sedalizability, although it is possible in most practical environments.
It is, however, possible to maintain quasi serializability in this case, as we
ha.ve mentioned before. If, on the other hand, the modification of local
schedulers is allowed, it is defmitely a better idea to do so. In this case,
not only global serializability can be maintained generally, but also a high
degree of concurrency can be obtained.

The above discussion is summerized in the following table.

Top-down Bottom-up
Modifying Lee Controlling Submission

Performance good good bad
Concurrency good bad (good for TSO) good
Autonomy bad good x
Correctness SR QSR SR/QSR

where Sft and QSR stan d for serializability and quasi serializability, re
spectively. The "Xli in the table means that the evaluation depends on the
implementation (e.g., whether local schedulers are modifxed).

6 Conclusion

In this paper, we have presented a framework for designing concurrency con
trol protocols using top· clown approach in two distinctive ways. The first is
characterized by the modification of local schedulers and the second control·
ling the sllbmission of global su btransadiolls to Lees. We have illustrated
the viability of the first approach by outlining the modifications needed for
the 2PL, TSO and SGT strategies. In addition, We gave some justifications
on the feasibility and applicability of this method. For those who insist on a
high degree of a.utonomy, we have outlined llOW global database consistency
can be maintained without violating autonomy.

This paper is motivated by the difficulties of doing global concurrency
controliu traditional ways. We believe that the requirements for local au
tonomy, performance, and consistency are very different in various HDDBS
environments. The ways of doing global concurrency control we presented
in this paper can, apply to certain environments.

19

Due to the space limitation and the lack of a proper evaluation model, we
are unable to give a thorough and quantitative analysis for the approaches we
have presented. We recognize the need for more work on many related issues
and each of them are currently being studied in the InterBase project. Our
comments regarding performance and deadlock in the paper are judgement
calls that need t o be confirmed and shall be the topic of future reports.

References

[AGS87] R. Alonso, H. GarciaMolina, and I<. Salem. Concurrency control
and recovery for global procedures in federated database systems.
In IBBE Data Engineering Bulletin, pages 5-1 1, September 1987.

[BHG87] P. Bernstein, V. Hadzilacos, and N . Goodman. Concurrency
Control and Recoverr~ in Data bases Systems. Addison-Wesley
Publishing Co., 1987.

[BS88] Y. Breitbart and A. Silberschatz. Multibdatabase update issues.
In Proceeding of the Internaiional Conference on Afanagemeni of
Data, pages 135-142, June 1988.

[DEH9] W. Du and A. Elmagarmid. Quasi serializability: a correctness
criterion for global concurrency control in interbase. In Proceed-
ings of the Inlernaiional Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 1989.

[DEL089] W. Du, A. Elmagarmid, Y. Leu, and S. Ostermann. Effects of
autonomy on global concurrency control in heterogeneous dis-
tributed database systems. In Proceedings of the Second Inter-
national Conjerence on Data and IInowledge Systems for Man-
ufacturing and Engineering, Gai thersburg, M D , October 2989.

[ED891 A. Elmagarmid and W . Du. Supporting Value Dependency for
Nested Trunsaclions in InlerBase. Teclu1ica.l Report CSD-TR-
885, Purdue University, May 1989.

[BH88] A. Elmagarmid and A. Helal. Supporting updates in heteroge-
neous distributed database systems. In Proceedings of the Inier-
national Conference on Data Engineei~lg, pages 5G4-569, 1988.

Due to the space limitation and the lack of a proper evaluation model, we
are unable to give a thorough and quantitative analysis for the approaches we
have presented. We recognize the need for more work on many related issues
and each of them are currently being studied in the InterBase project. Our
comments regarding performance and deadlock in the paper are judgement
calls that need to be confirmed and shall be the topic of future reports.

References

[AGS87] R. Alonso, H. Garcia-Molina, and IC Salem. Concurrency control
and recovery for global procedures in federated database systems.
In IEEE Data Engineering Bulletin, pages 5-11, September 1987.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Databases Systems. Addison-Wesley
Publishing Co" 1987.

[BS88] Y. Breitbart and A. Silberschatz. Multibdatabase update issues.
In Proceeding vf the International Conference on Management of
Data, pages 135-142, June 1988.

[DE89] W. Du and A. Ehnagarmicl.. Quasi serializability: a correctness
criterion for global concurrency control in interbase. In Proceed
ings of tile International Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 1989.

[DEL089] W. Du, A. Elmagarmid, Y. Leu, and S. Ostermann. Effects of
autonomy on global concurrency control in heterogeneous dis
tributed database systems. In Proceexlings of the Second Inter
national Conference vn Data and I(nowledge Systems for Man
ufacturing and Engineering, Gaith.ersburg, MD, October 1989.

{ED89] A. Elmagarmid and W. Du. Supporting Value Dependency for
Nested T7"ansactions in InterBase. Technical Report CSD-TR
885, Purdue University, May 1989.

[EH88] A. Elmagarmid and A. Belal. Supporting updates in heteroge
neous distributed database systems. In Proceedings of the Inter
national Conference on Data Engineering, pages 564-569, 1988.

20

F. Eliassen and 3. Veijalainen. Language support for muti-
database transactions in a cooperative, autonomous environ-
ment. In TENCON '87, IEEE Regional Conference, Seoul, 1987.

H. Garcia-Molina and B. Kogan. Node autonomy in distributed
systems. In Proceedings of the First Inlernational Symposium
on Database in Parallel and Distributed Systems, pages 158-166,
1988.

V. Gligor and G. Luckenbaugh. Intercon~lecting heterogeneous
data base management systems. IBBE Computer, 17(1):33-43,
January 1984.

V. Gligor aud R. Popescu-Zeletin. Transaction management in
distributed heterogeneous database management systems. Iia-
formtion Systems, 11(4):287-297, 1986.

Y. Leu, A. Elmagarmid, and D. Mannai. A transaction manage-
ment facility for InterBase. Tecliuical Iteport TR-88-064, Com-
puter Engineering program, Pellnsyvania State University, May
1988.

T. Logar and A. Sheth . Concurrency Control Issues in Hetero-
geneous Dislributed Database Management Systetns. Technical
Report, Honeywell Computer Sciences Center, June 1986.

W. Litwin and H. Tirri. Flexible concurrency control using
value dates. IEflE Distributed Processing Technical Committee
Newsletter, 10(2):42-49, November 1988.

C. Pu. Superdat abases for composition of heterogeneous
databases. In Proceeding of the Intenaiional Conference on
Data Engineering, pages 548-555, February 1988.

IC. Vidyasankar . Non-two phase locking protocols for global con.
currency control in distributed heterogeneous database systems.
In ClPS Edmonton, 1987.

[EV87] F. Eliassen and J. Veijalainen. Language support for muti
database transactions in a cooperative, autonomous environ·
ment. In TENCON ~87, IEEE Regional Conference, Seoul, 1987.

[GK88] H. Garcia-Molina and B. Kogan. Node autonomy in distributed
systems. In Proceedings of the First International Symposium
on Database in Parallel and Distribu.ted Systems, pages 158-166,
1988.

[GL84] V. Gligor and G. Luckenbaugh. Interconnecting heterogeneous
data base management systems. IEEE Computer, 17(1):33-43,
January 1984.

(GP86] V. GUgor and R. Popescu-Zeletin. Transaction management in
distributed heterogeneous database management systems. In
formtion Systems, 11(4):287-297, 1986.

[LEM88] Y. Leu, A. Elmagarmid, and D. MannaL A transaction manage
ment facility for [nierBase. Technical Report TR-88-064, Com
puter Engineering program, Pennsyvania State University, May
1988.

[LS86] T. Logar and A. Shetll. ConcuJ'rency Control Issues in Hetero
geneous Distributed Database Management Systems. Technical
Report, Honeywell Computer Sciences Cen.ter, June 1986.

[LT88] W. Litwin and H. Tirri. Flexible concurrency control using
value dates. IEEE Distributed Processing Technical Committee
Newsletter, 10(2):42-49, November 1988.

[Pu8S] C. Pu. Superdatabases for composition of heterogeneous
databases. In Proceeding of the International Conference on
Data Engineering, pages 548-555, February 1988.

[Vid87] IC. Vidyasankar. Non-two phase locking protocols for global con·
currency control in distributed heterogeneous database systems.
In ClPS Edmonton, 1987.

21

	A Paradigm for Concurrency Control in Heterogeneous Distributed Database Systems
	Report Number:
	

	tmp.1307986960.pdf.d_7RO

