Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1989

A Paradigm for Concurrency Control in Heterogeneous Distributed
Database Systems

Weimin Du

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
89-894

Du, Weimin and Elmagarmid, Ahmed K., "A Paradigm for Concurrency Control in Heterogeneous
Distributed Database Systems" (1989). Department of Computer Science Technical Reports. Paper 761.
https://docs.lib.purdue.edu/cstech/761

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PARADIGM FOR CONCURRENCY CONTROL
IN HETEROGENEOUS DISTRBUTED DATABASE SYSTEMS

Weimin Du
Ahmed K. Elmagarmid

Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

CSD TR #3894

A Paradigm for Concurrency Control
in
Heterogeneous Distributed Database Systems®

Weimin Du and Ahmed K. Elmagarmid
Computer Sciences Department
Purdue University
West Lafayette, IN 47907
(317) 494-1998
ahmed@es.purdue.edu

YThis work is supported by a PYT award [rom NSF under grant IRI-8857952
and grants from AT&T Foundation, Tektronix and Mobil Oil.

Abstract

A heterogeneous distributed database system (HDDBS) is a system which
integrates pre-existing databases to support global applications accessing
more than one database. This paper outlines possible approaches to con-
currency control in HDDBSs. The top-down approach emerges as a viable
paradigm for ensuring the proper concurrent execution of global fransac-
tions jn an HDDBS. The primary contributions of this paper are the general
schemes for local concurrency control with pre-specified global serialization
orders. Two approaches are outlined. The first is intended for performance
enhancement but violates design autonomy, while the second does not vi-
olate local autonomy at the cost of generality (it does not apply to all
local concurrency control protocols). This study is intended as a guiding
light through the maze of concurrency control in this new environment and

enormous work remains to be done.

1 Introduction

In a database system, several users may read and update information con-
currently. Undesirable situations may arise if the operations of various user
transactions are improperly interleaved. Concurrency control is an activ-
ity that coordinates concurrently executed operations so that they interfere
with each other in an acceptable fashion.

Recently, much attention has been focused on the integration of dis-
tributed and autonomous databases. Such an integration results in hetero-
geneous distributed database systems (HDDBSs). One of the main goals
of HDDBSs is to support uniform updates across element databases. A
key step in achieving this goal is global concurrency control, which has
been widely studied for years {GL84] [GP86] [LS86] [AGS87] [Vid87] [BS88]
[I"H88] [Pugs].

The problem of concurrency control in HDDBS environments is basically
different from that in homogeneous distributed database environments, due
to autonomy requirements of local databases. The global concurrency con-
trol strategies developed in homogeneous distributed database environments
do not work well in HDDBS environments. In addition, most efforts devoted
to generalize the classical concurrency control strategies for HDDBSs are not
successful. For example, most proposed concurrency control protocols for
HDDBSs either violate local autonomy or do not maintain global serializ-
ability with the exception of [BS88] (see [DELQO89)).

A possible way of doing concurrency control in HDDDBSs is to employ un-
conventional paradigms. One of such paradigms is the value date approach
[LT88]. In this paper, we study another unconventional paradigm, top-
down approach. In this approach, a global concurrency controller (GCC)
is allowed to determine the serialization order of global transactions before
submitting them to local sites. This global serialization order is then en-
forced at all local sites. The paradigm is urconventional in the sense that
local concurrency controllers (LCCs) have to control the local executions
with pre-specified serialization orders. In this paper, we focus on various
methods of performing local concurrency control with pre-specified global
serialization orders. ‘

A general discussion of global concurrency control in HDDBSs and the
top-down approach is given in Section 2. In section 2, we also outline two
general ways of implementing the top-down approach. The first, discussed

in section 3, is intended for high flexibility and performance, at the cost
of local autonoemy. The second, on the other hand, achieves the global
serialization order by controlling the submission of global subtransactions
and is discussed in section 4. In section 5, we briefly compare the above two
techriques in terms of performance, concurrency degree, local autonomy,
and consistency. Finally, some concluding remarks are given in Section 6.

2 Global Concurrency Control in HDDBSs

2.1 Background

A heterogeneous distributed database system is a collection of autonomous
but related databases, joined togetler to support global applications. Each
element database (also called a local database system, or LDBS) is controlled
by a local database management system (LDBMS). A global database man-
agement system (GDBMS) is built on top of these LDBMSs to coordinate
executions at local sites. One of the goals of HDDBSs is to provide a uni-
form access to pre-existing local databases by hiding both the heterogeneity
and the antonomy of these LDBSs.

An HDDBS is different from a homogeneous distributed database system
in that LDBSs are autonomous. Their having local autonomy means that the
LDBSs were designed and implemented independently. It defines the right
of an LDBS to make its own decisions about data models and t{ransaction
management algorithms, communication with other LDBSs or GDBMS, and
the execution of transactions at its site [EV87} [GK8S].

In an HDDBS, there are two types of transactions. A local transaction
runs on a local site and accesses only local data items. A global transaction,
on the other hand, accesses more than one local database. When a global
transaction is submitted to an HDDBS, it is decomposed into a set of sub-
transactions that run at various sites where the referenced data items reside.
For a global transaction, it is generally assumed that there is at most one
subtransaction at each site [GP86). At each LDBS, there is an LCC which
controls the execution of local transactions and global subtransactions at
that site. We assume that these local executions are all serializable. It is
the responsibility of the GCC to ensure that the global database consistency
is preserved.

Local autonomy has significant effects on global concurrency control in
HDDBSs. To maintain global database consistency, a GCC has to detect
and resolve all conflicts among global operations. To do this, the GCC
needs information about local executions. This information, however, is
usually very difficult (if not impossible) to obtain due to local autonomy.
An LDBS might not have the information needed by the GCC. Even if it
has the information, communication autonomy may prevent the GCC from
accessing it. Finally, even with the desired information, the GCC still might
not be able to resolve the undesired conflicts because of execution autonomy.

Serializability has been generally used as the correctness criterion in HD-
DBSs [BS88]. However, it is very difficult to maintain global serializability in
HDDBSs. The difficulty results primarily from the local aufonomy, as well
as the incompatibility between serialization and execution orders of global
transactions (see [DELOS89}).

In summary, global concurrency control in HDDBSs is difficult. It is
particularly difficult to maintain global serializability in these environments,
One way of overcoming the difliculties is to use special concurrency control
paradigms such as top-down approach of concurrency control (see below).

2.2 The Top-down Approach of Concurrency Control

As we have mentioned, the task of a GCC is to coordinate executions at
local sites in such a way that global database consistency is preserved. One
way to achieve this is to use a bottom-up strategy. In other words, the
serialization order of global transactions is first determined by LCCs. It is
the GCC’s responsibility to detect and resolve the incompatibilities among
local executions. In the bottom-up approach of concurrency control, global
subtransactions are usually submitted to LCCs freely and LCCs are also
free to execute them in any way they wish. This is the most natural way
ol doing concurrency control in an autonomous system such as an HDDBS.
Some proposals based on this approach can be found in [BS88], [EH88],
ILEMSS], [Pu88].

A second alternative and the one we shall study in this paper is a top-
down approach. In this approach, a GCC determines a global serialization
order of global transactions before submitting them to local sites. This
order is enforced at all local sites by either LCCs, or the GCC, or both.
This approach is unconventional because only those local executions with

the specific serialization order are accepted.

The top-down approach of concurrency control has ar important prop-
erty, i-e., the serializability of global executions. This is because all local
executions are serializable and global iransactions are serialized in the same
way at all local sites. There are two basic steps in a top-down approach of
concurrency control: {1) determining the serialization order of global trans-
actions at global level, and (2) achieving the order at local level.

The solution to the first step is quite simple: the GCC can determine the
serialization order for global transactions. In order to get good performance,
the GCC should choose the order which can be easily achieved at local sites.
Intuitively, this order can be estimated according to the order in which global
subtransactions are submitted to local sites. We shall not, however, go to
details of the problem in this paper.

The solution to the second step is, however, much more complex because
most concurrency control protocols do not guarantee any specific serializa-
tion order. As we mentioned in [DELOS89], the problem of local concurrency
control with a specific serialization order is generally very hard and might
even be impossible in some cases. The following are two possible solutions
to the problem.

e For those HDDBSs which have less restrictive autonomy requirements,
local schedulers can be modified in such a way that they guarantee not
only the serializability of local executions, but also the specific global
serialization order.

» For those HDDBSs whose local schedulers can not be modified, co-
ordinators may be built on top of LCCs to control the submission of
global subtransactions so that the given global serialization order is
achieved.

The above two approaches are suitable for different applications. In the
next two sections, we shall further discuss the feasibility and implementation
details of the two approaches respectively.

2.3 Related Works

The idea of determining serialization orders at the global level and then en-
forcing them locally is not new in HDDBSs. It was first proposed in [GP86]

as one of the conditions under which different local concurrency control
mechanisms can be used by the GCC to provide global concurrency control
for an HDDBS. The authors of [GP86] realized the necessity of achieving the
same serialization order at all local sites. However, it seemed that they did
not realize the difficulty of doing this. For example, they believed that if two
global subtransactions (belonging to two global transactions respectively)
do not share any data, then their serialization order is trivially achieved.
This, however, is not true. Local transacltions may introduce indirect con-
flicts between global transactions even if they do not conflict directly (see
[DELOS89]).

Based on the idea presented in [GP86], Vidyasankar proposed anon-two-
phase locking protocol for global concurrency control [Vid87). His protocol
applies to HDDBSs in which LDBSs are interconnected to form a rooted
tree. It decomposes a global transaction hierarchically according to the
tree structure. The decomposed subtransactions are submitted to local sites
atomically. In other words, no subtransactions of another global transaction
will be submitted to local sites until the subtransactions of the previous
global transaction have all been submitted. As in [GP86], Vidyasankar did
not realize the difficulty involved in achieving the serialization order at local
sites. In fact, he did not even mention how to achieve the global serialization
order at local sites.

Another problem with Vidyasankar’s protocol is that it does not take
into account the indirect conflicts between global transactions. Therefore,
this protocol does not always guarantee global serializability. Another ex-
cellent paper based on this approach is [A GS87], which has been reviewed
in [DELOS89].

3 Modifying Local Schedulers

The first approach to local concurrency control with pre-determined serial-
ization order is characterized by modifying local schedulers. Is the idea of
modifying local schedulers feasible? Why is it appropriate? How are various
local schedulers actually modified? These are the questions we iry to answer
in this section.

(4]

3.1 Why Modifying Local Schedulers

The main purpose of modifying local schedulers is to guarantee that the
serialization order determined by the GCC is ensured at local level. By
modifying local schedulers, concurrency control can be done flexibly and,
therefore, efficiently. However, the approach is not without problems. The
possible objections to the idea of modifying local schedulers might be: (1)
it violates local autonomy, and (2} it contradicts the notion that all serial-
izable executions are equivalent. In this subsection, we defend the idea by
discussing the two problems in detail.

Before the argument about the first violation, let us investigate how the
local autonomy is violated. Local autonomy is generally explained in terms
of design, communication, and execution. The design autonomy states that
the design decisions of LDBSs such as data models and transaction manage-
ment protocols are made independently. The modification oflocal schedulers
violates design autonomy because it involves changing these design decisions.
Two kinds of design decisions, those of transaction management protocols
and transaction processing performance are generally eflected.

The violation of local autonomy might be tolerated for the following
reasons. Iirst, the requirements of autonomy vary in HDDBS environments.
While some have very strong requirements of autonomy, many do not. In
other words, most HDDBSs tolerate certain changes of design decisions.
Recall that LDBSs are integrated because they are related and wish to
cooperate in some way. Therefore, they are usually willing to and sometimes
have to compromise some design decisions in order to be integrated into an
HDDBS.

The second reason is that local schedulers could be modified in a way
that the effects on local users (transactions) are negligible. Recall that the
purpose of medifying local schedulers is to ensure that they schedule global
subtransactions in the serialization order determined at global level. This
usually does not conflict with the basic design decisions made by LDBS de-
signers, such as concurrency control strategy. Only minor implementation
details are changed. For example, an LCC based on two-phase locking strat-
egy could be modified such that the two-phase locking rule is not violated
(see the next subsection). In addition, such modifications do not necessarily
imply bad performance for local transactions. In many modified local sched-
ulers, local transactions are processed in a similar way as in the original local

schedulers. This is possible because in many concurrency control strategies,
the serialization order of global subtransactions are determined by the way
they, not local transactions, are processed. For example, in a two-phase
locking based local scheduler, the serialization order of a subtransaction is
totally determined by its lock point.

Another objection to modifying local schedulers is the rejection of some
serializable executions. In an ordinary database environment, no specific
serialization order is required. The reasons for doing this are (1) it provides a
higher degree of concurrency, (2) a specific serialization order does not differ
from others in terms of concurrency control, and (3) there is no authority
that specifies the serialization order.

In an HDDBS environment, however, the situation is quite different.
First, the GCC can determine the global serialization order. This is neces-
sary because the GCC must guarantee that a global serialization order is
achieved and jt is much easier for the GCC to do this before global subtrans-
actions are submitied. It is also possible because it is the GCC that is really
in charge of the serializability of global executions. Second, by specifying a
global serialization order, LCCs at different sites can reach the agreement,
i.e., the serializability of global execution, more easily. Finally, although
local concurrency suffers from pre-specifying global serialization order, it is
not as bad as it appears. As we lave mentioned, the GCC generally chooses
the order based on the order in which global subtransactions are submit-
ted. In most cases, this order is compatible with the orders determined
by LCCs. In cases where they are not compatible, the orders determined
by LCCs at different sites are usually not compatible, either. As a matter
of fact, by pre-specifying a global serialization order, many nonserializable
global executions are prevented from occurring at global level.

In summary, the idea of modilying local schedulers violates design auton-
omy. This violation, however, is tolerable in many HDDBS environments.
The idea also contradicts the notion of equal acceptance of serializable exe-
cutions. But from the practice point of view, the idea is acceptable because
it implies potentially better performance and simpler concurrency control.

3.2 How to Modify Local Schedulers: Case Studies

In this subsection, we detail the idea of modifying local schedulers. The
discussion is given in the scope of the {following three protocols: two phase

locking, timestamp ordering, and serialization graph testing (see [BHGS7]).
Due to space limitations, we are unable to discuss other interesting protocols.
We believe that it is generally possible to modify any concurrency control
protocol so that a specific serialization order can be ensured. However, the
actual modification and its benefit varies from one protocol to another.

The modifications in this subsection are guided by the following princi-
ples:

1. The effects on local transactions should be minimal.
2. The effects on the performance of local executions should be minimal.

3. It should also be simple.

In Addition, we assume that local schedulers can distinguish between
local and global operations.

Two-Phase Locking

Two-phase locking (2PL) is the most widely used and probably the sim-
plest concurrency control strategy. In a system using locking, a lock is
associated with each data item, and only one transaction can hold the lock
at a time. A transaction uses two phase locking if all of its lock acquisi-
tions precede all of its Jock releases. In other words, once the transaction
has released a lock, it may not acquire any other locks. It has been shown
that execution serializability is ensured in a system which verifies that all
transactions use two phase locking.

To coordinate the executions of global subtransactions, a data structure,
called order stamp, is associated with each data item to record the serial-
ization order of the last global subtransaction that has accessed the data
item either directly or indirectly. We say that a global transaction indi-
rectly accesses a data item if this data item has later been accessed by a
local transaction which has previously accessed arother data item accessed
by the global transaction. When a global transaction iry to access a data
item, its serialization order is compared with the order stamp associated
with the data item. The access is permitted (i.e., the lock is granted) only
if the serialization order of the global transaction is greater than the order
stamp of the data item. In other words, the global serialization order is

achieved by only allowing global subtransactions access a data item in the
order determined at global level.

The following is such a modification of the basic two-phase locking pro-
tocol.

1. When the scheduler receives a local operation p;[z] from the transac-

tion manager (TM), it tests if p;[z] conflicts with another operation
g;[z] which already has the lock. If so, it delays p;[z]. If not, then
the scheduler grants the lock to pi[z], and then sends p;[z] to the data
manager (DM).
FEach time a local transaction gets a lock, the order stamp of that data
item is updated. The value to be set is the highest serialization order
of global transactions (if any) that have previously accessed a common
data item as the local transaction does.

2. When it receives a global operation p;[z] from the global transaction
manager (GTM), the scheduler tests if p;[z] conflicts with another
operation which already has the lock. If not, the scheduler grants the
lock to p;[z], and sends p;[z] to the DM when the serialization order of
T; is greater than the order stamp associated with z. The associated
order stamp of z is accordingly updated to the serialization order of
T:. Otherwise, T; has to be aborted.

If pi[z] does conflict with another operation g;[z], the scheduler delays
pilz] if g;[z] is a local operation, If, on the other hand, ¢;[z} is a global
operation, p:[z] will be rejected, forcing the global transaction T} to
abort {f the global transaction T} precedes T in the global serialization
order. I T; precedes T}, then T; will be forced to abort and p;[z] takes
over the lock.

3. Global operations waiting for a lock are queued based on the global
serialization order.

4. Once the scheduler has granted a lock for T}, it may not release that
lock until the DM acknowledges that it has processed the operation
that set the lock.

5. Once the scheduler has released a lock for a transaction, it may not
subsequently grant any more locks to that transaction (on any data
item).

Since all transactions (both local and global) follow two-phase locking
rule (rule 5), the modified protocol, M2PL, generates serializable executions
only. The global serialization order is also ensured because global subtrans-
actions can only access (either directly or indirectly) a data item in that
order. Let us, now informally analyze it with respect to the above three
principles.

First, M2PL is similar to 2PL except in cases 2 and 3, where conflicts

among global operations are resolved. The change does not effect local op-
erations a lot! Second, and the most important, the performance of the two
protocols is almost the same as far as local transactions are concerned. No
local operation will be delayed and no local transaction will be forced to
abort because of the incompatibility between the local and global serializa-
tion order. Finally, although M2PL is more complicated than 2PL, it is still
simple enough to be practically implemented.

Great benefit can be obtained by modifying 2PL schedulers. TFirst, a
kigher degree of concurrency is possible. For example, if two global trans-
actions do not access any common data item, all concurrent executions are
possible in M2PL schedulers. In the bhottom-up approach, e.g., the protocol
proposed in [Pu88], the only possible executions are those in which the order
of the two transactions’ lock points is compatible with the global serializa-
tion order. Second, it also provides better performance. Only those global
iransactions whose commitmeni actually causes the nonserializability of the
global execution will be aborted.

Timestamp Ordering

In a timestamp ordering (TSO) scheduler, the TM assigns a unique
timestamp, ts(Z};), for each transaction, T;. A TSO scheduler orders con-
flicting operations according to their timestamps.

TSO rule: If p;[z] and gj[z] are conilicting operations, then the
DM processes p;[z] before g;[z] if ¢s(T}) < ts(T}).

This rule can be modified as follows.

Modified TSO rule: If either of the conflicting operations p;[z]
and g;[z] is a local operation, then the DM processes p;[z] before

10

gjl=] if £a(T:) < ts(Tj).

else (in this case, both p;[z] and g;[z] are global operations)
DM processes p;[z] before g;{z} if ¢s(T;) < ts(T;) and T; pre-
cedes T; in the global serialization order, aborts either T; or T}
otherwise.

Like in the TSO rule, all conflicting operations are ordered according to
their timestamps in the modilied TSO rule. In addition, the else part of
the modified TSO rule guarantees that the conflicting global operations are
scheduled in an order compatible with both the global serialization order
and their timestamp order.

One problem with the modified TSO rule is that one of conflicting global
transactions has to be aborted if their serialization order is incompatible with
their timestamp order. This is obviously undesired in applications where
conflicts among global operations are not rare. To reduce unnecessary abor-
tions in these environments, the timestamp order of global subtransactions
at local level should be compatible with the global serialization order as
much as possible. One way ol doing this is to submit global transactions to
local sites according to the global serialization order. In this case, however,
the modified TSO rule works in the same way as the TSO rule does. In other
words, the global serialization order can be equally achieved by controlling
the submission of global subtransactions in these environments. Therefore,
a TSO based local scheduler should be modified only in those environments
where conflicts among global operations are rare. In these environments,
incompatibilities among TSO order and serialization order do not usually
imply abortion of global transactions.

Serialization Graph Testing

A serijalization graph testing (SGT) scheduler is the most general sched-
uler in the sense that it can generate all conflict serializable executions. An
SGT scheduler maintains the serialization graph (SG) of the history that
represents the local execution it controls. It attains serializable executions
by ensuring that the SG always remains acyclic.

The following is a modified basic SGT protocol (MSGT).

When an MSGT scheduler receives an operation p;[z] from
the TM, it first adds a node for T; to its SG if one does not already

11

exist. It then adds edges from T; to T; for every previously
scheduled operation g;[z] that conflicts with p;[z]. If pi[z] is a
global operation, then it adds an edge from T to T; for every
global transaction 7} that precedes T} in the global serialization
order.

1. If the resulting SG contains a cycle, the scheduler rejects
pi[z] and deletes T; from the SG and all edges incident upon
T;.

2. If the resulting SG is still acyclic, the scheduler accepts p;[z]
and sends it to the DM.

Since the SG is acyclic, the local execution is serializable. In addition,
this local serialization order is compatible with the global serialization order.
Therefore, the global execution is serializable.

Unlike the 2PL and TSO schedulers, it is usually difficult to achieve a
specific serialization order in an SGT scheduler without modifying it. The
reason is that it is very difficult to derive the serialization order of local
executions at the global level. For example, it might be impossible for the
GCC to find out whether two global transactions indirectly conflict with
each other, even after they have both completed (see [DELO89]). For those
IIDDBSs in which some LDBSs use SGT schedulers, the top-down approach
with local schedulers being modified is a feasible way (if not the only way)
to maintain global serializability.

In summary, the modification of local schedulers is generally possible for
any concurrency control protocols. Some protocols (e.g., two phase locking)
are more suitable for modification in the sense that significant benefit can
be obtained, while others (e.g., timestamp ordering) are not. Tor some
protocols (e.g., serialization graph testing), modification is the only way for
a local scheduler to achieve a specific serialization order.

4 Enforcing the Global Serialization Order

In an HDDBS in which the modification of local schedulers is not acceptable,
it is still possible to apply the top-down approach to concurrency control.
The idea is to coordinate local executions by controlling the submission of
global subtransactions. As we mentioned in [DELQ89], it is impossible, in

12

general, to enforce global serializability by using this strategy. For most
practical concurrency control protocols, however, it is possible. In this sec-
tion, we discuss the ways of enforcing global serialization order on those
protocols in which it is possible. We also discuss how to deal with protocols
in which it is not possible.

4.1 Ensuring Global Serializability

To ensure global serializability, LCCs have to satisfy certain conditions. One
sufficient condition is that the LCC should schedule transactions in such a
way that, for each transaction, the serialization order is determined by an
event occurring in its life time. We call this particular event the serialization
event.

Many existing concurrency control protocols satisly this condition. In
2PL, the serialization order of each transaction is determined by its lock
poini. In TSO, transactions are serialized according to their time stamps
(for more on these orders the reader is referred to [Pu88]). Value date based
protacols [LT88] also satisfly this condition. The serialization event of a
transaction is simply its value date. All these events occur in the life time
of the related transactions.

For those HDDBSs in which all LCCs satisfy this condition, the global
serializability can be easily ensured using the top-down approach.

1. The GCC defermines the global serialization order for each global
transaction before submitting it to local sites.

2. At each local site, global subtransactions are submitted to the LCC
according to the global serialization order.

3. A global subtransaction will not be submitted to an LCC until the pre-
viously submitted global subtransaction reaches its serialization event.

To guarantee that global subtransactions are submitted to L.CCs prop-
erly, a coordinator is built on the top of each LCC. The coordinator receives
and buffers global subtransactions from the GCC and then submits them to
the LCC at proper time.

TSO gives a good example of illustrating the idea. Recall that a TSO
scheduler serializes transactions according to their timestamps. It is the co-

13

ordinator’s responsibility to guarantee that global subtransactions get their
timestamps in the order pre-determined at global level. Generally, a times-
tamp is assigned to a transaction at the beginring of its life time. Therefore,
what the coordinator needs to do is to submit one global subtransaction at
a time to the LCC according to the global serialization order. Once the first
has been accepted by the LCC (i.e., a timestamp has been assigned), the
next (if any) is submitted.

Global serialization order can be achieved in 2PL schedulers in the same
way except that the second subtransaction should not be submitted to the
LCC until the first reaches its lock point.

Although global serializability can be achieved in both 2PL and TSO
schedulers, the performance may be quite different. Generally speaking, the
sooner the serialization event occurs in the life time of a transaction, the
higher degree of concurrency could be expected. Therefore, a high degree
of concurrency can be obtained in TSO schedulers. This is because that
global subtransactions could interleave considerably. In 2PL schedulers,
however, only arelatively low degree of concurrency can be obtained. Global
subtransactions are almost executed sequentially.

4.2 Ensuring Global Quasi Serializability

There are schedulers that do not satisfy the condition we gave in the pre-
vious subsection. Ior example, it is impossible to enforce a specific serial-
ization order at a site which uses an SGT scheduler. For those HDDBSs in
which global serializability cannot be maintaired, it might still be possible
to apply the top-down approach without modifying local schedulers. In this
subsection, we briefly discuss how and under what conditions this can be
done.

The basic idea is that, instead of trying to maintain the global serial-
izability, we relax the correctness criterion. Although not appropriate in
general, the relaxed criteria should be appropriate in some environments.
The criterion that we shall use in this subsection is quasi serializability
[DE89). Quasi serializability theory was introduced in heterogeneous dis-
tributed database environments with certain restrictions. A global execu-
tion is quasi serializable if it is equivalent to an execution in which all the
global transactions are executed sequentially in the same order at all local
sites.

14

The quasi serializability of global executions can be maintained in the
top-down way as we did for serializability in the previous subsection. The
following protocol is a direct generalization of that for serializability. It
could be used to achieve global quasi serializability for those HDDBSS in
which global serializability cannot be maintained.

1. A GCC determines an order for global transactions. This order is
submitted, along with the global subtransactions, to the local sites.

2. At each local site, the coordinator will submit the global subtransac-
tions according to this global order.

3. The global subtransactions are submitted to the LCC one at a time.
The second subtransaction will not be submitted until the first has
completed.

A quasi serializable execution might not preserve the consistency of a
global database unless the databases meet certain resirictions. The following
is a set of restrictions which are sufficient to guarantee the consistency of
HDDBSs.

1. No data integrity constraint on data items across LDBSs.

2. No value dependency between subtransactions of the same global trans-

action 1.

A correctness proof of quasi serializable histories can be found in {DESS].
Following is an example illustrating how transaction consistency of the global
database is preserved.

Example 4.1 Consider an HDDBS consisting of two LDBSs, D; and
Dy, where data items a and b are at Dy, and ¢, d and ¢ are at D;. The
following global transactions are submitted to the HDDBS:

G : wy, (e)ry, (d) G2 : 74, (b)rg,(€)wy, (€)
Let L; and L, be some local transactions submitted at Dy, and D,,
respectively:

Ly : vy (@)wyy () Ly : wyy (d)r, (e)

1A less restrictive condition for value dependency can be fourd in [ED89).

15

Let H; and H, be local histories at D; and D,, respectively:
Hy : wy, (@), (a)wr, (B)rg, (b)
Ha 1 rgy{c)wy, (d)rg, (d)wy, (€)7s, (¢)

Let H = {H;, Hz}. Then H is quasi serializable.

Suppose there is no value dependency between the two subtransactions
of transaction Gz, the value of data item e written by G2 at D, is not related
to the value of data item b read by G; at D;. Therefore, the value of data
item e read by local transaction Ly at D, is not related to the value of
data item b written by local transaction L; at D;. In other words, there
is no relation between L; and L; (they do not influerce each other). The
global transactions also interfere with each other properly because they are
executed sequentially. Therefore, the transaction consistency of the global
database is preserved. O

5 Discussion

The main purpose of a scheduler is to output correct schedules. Other goals
include a high degree of concurrency, good performance, as well as a high
degree of autonomy in the case of HDDBSs. In this section, we compare the
two strategies of doing concurrency control in top-down approach, as well
as the bottom-up approach with respect to these issues.

Concurrency

Concurrency is one of the most important measures of the performance
of a scheduler. Informally, the concurrency of a scheduler S, denoted C'(5),
is defined as the set of schedules that can be generated by this scheduler.
In an HDDBS, a global schedule is composed of several local schedules.
The concurrency of the GCC is, therefore, determined by the concurrencies
of local schedulers. Given an HDDBS which consists of = LDBSs whose
concurrencies are C(51), C(52), ..., C(Sn) respectively, the concurrency of
the HDDBS is bounded by the subset of C(S1) X C(82) X ... x C(55) whose
members are globally serializable, where X stands for Cartesian product. In
the following, we shall use SC(5) to denote this serializable subset.

The top-down approach of concurrency control is unable to provide the
maximum global concurrency, i.e., SC{5). Since the serialization order has

16

been determined at global level, only those local schedules which are compat-
ible with the order are possible. For an IDDBS who performs concurrency
control by modifying local schedulers, the concurrency of the global sched-
uler is just the subset of SC(S) whose members are compatible with the
pre-determined global serialization order. For example, the schedules out-
put by amodified 2PL schedulers are those that can be output by the original
scheduler and compatible with the pre-determined serialization order.

For global schedulers which coordinate local executions by controlling
the submission of subtransactions, their concurrency degrees vary according
to the concurrency control protocols local schedulers use. Usually, they are
low. The reason is that global schedulers have to serialize global subtrans-
actions according to their local serialization events. For most concurrency
control protocols, the serialization events lie in the rear part or out of the life
time of transactions (TSQO is an exception). For a global scheduler based on
TSO local schedulers, the concurrency degree is high. For global schedulers
based on other kinds of local schedulers, e.g., 2PL, the global subtransac-
tions are executed almost sequentially. These global subtransactions can
still interleave with local transactions. The overall concurrency degree is
therefore not very bad.

The bottom-up approach of concurrency control is generally good at
providing high degrees of concurrency. Since global subtransactions are
submitted to LCCs without any control or restriction, all combinations of
local schedules are possible as long as they are globally serializable. Theo-
retically, the concurrency of a bottom-up scheduler could be any subset of
SC(5). In practice, however, it is much less. The reason is that it is very
hard for the GCC to test whether a global execution is serializable, due to
local autonomy.

Oiher Performance Issues

Besides concurrency, many other issues effect the overall performance
of a scheduler. Top-down approach of concurrency control usually provides
better performance than bottom-up approach from the points of view of
these issues, as explained below.

The first issue that effect the overall performance of a scheduler is dead-
lock. Unlike in bottom-up approach of concurrency control, there is no
global deadlock in top-down approach of concurrency control. Since the
serialization order of global iransactions has been determined before their

17

submission to local sites, local schedulers (or coordinators) always serialize
them consistently. A global transaction only waijt for locks held by those
global transactions that precede it in the global serialization order. The
situation described in [GP86] will never occur.

In an HDDBS, if global concurrency control is performed top-down by
controlling the submission of global subtransactions, local deadlocks are also
reduced. An obvious observation is that no local deadlock involving more
than one global transaclion is possible. A global subtransaction will not get
any lock until the previous global subtransaction reaches its lock point.

Another Important issue is the abortion of transactions, especially global
transactions. In top-down approach of concurrency control, there are fewer
global transactions aborted. This is because no global transaction will be
aborted because of the inconsistency of local executions. In bottom-up ap-
proach of concurrency control, however, local schedulers at different sites
may serialize global subtransactions differently, resulting unnecessary abor-
tions. Let us, for example, consider an HDDBS consisting of ten LDBSs.
Suppose that a bottom-up approach of concurrency control is employed. In
the case where two global transactions arrive the GCC at almost the same
time, the possibility that the two global transactions are serialized in the
same way at all ten local sites is obviously very low. In other words, it is
very likely that one of them has to be aborted. We believe that the abortion
of global transactions for the inconsistency among local executions is one of
the most important issues that effect the performance of a scheduler.

The idea of performing top-down concurrency control by controlling the
submission of global subtransactions as presented in this paper is attractive
because coordinators are located at local sites. As a result, communication
delay is significantly reduced. The local coordinator will submit the next
subtransaction immediately after the previous one passes its serialization
event. No communication with the GCC is needed.

Autonomy and Correctness criteria

Autonomy is a very important issue in HDDBS. There is no big dif-
ference between top-down and bottom-up approaches as far as autonomy
is concerned. Both approaches can be implemented in a way that local
autonomy is not violated (e.g., local schedulers are not modified).

In the top-down approach, the idea of controlling the submission of global

18

subtransactions is obviously preferred if the modification of local schedulers
is not allowed. The problem is that it is gererally impossible to maintain
global serializability, although it is possible in most practical environments.
It is, however, possible to maintain quasi serializability in this case, as we
have mentioned before. If, on the other hand, the modification of lacal
schedulers is allowed, it is definitely a better idea to do so. In this case,
not only global serializability can be maintained generally, but also a high
degree of concurrency can be obtained.

¢

The above discussion is summerized in the following table.

Top-down Bottom-up
Modifying LCC | Controlling Submission
Performance | good good bad
Concurrency | good bad (good for TSO) good
Autonomy bad good X
Correctness | SR QST SR/QSR

where SR and QSR stand for serializability and quasi serializability, re-
spectively. The ”x” in the table means that the evaluation depends on the
implementation {e.g., whether local schedulers are modified).

6 Conclusion

In this paper, we have presented a framework for designing concurrency con-
trol protocols using top-down approach in two distinctive ways. The first is
characterized by the modification of local schedulers and the second control-
ling the submission of global subtransactions to LCCs. We ltave illustrated
the viability of the first approach by outlining the modifications needed for
the 2PL, TSO and SGT strategies. In addition, we gave some justifications
on the feasibility and applicability of this method. For those who insist on a
high degree of antonomy, we have outlined how global database consistency
can be maintained without violating autonomy.

This paper is motivated by the difficulties of doing global concurrency
control in traditional ways. We believe that the requirements for local au-
tonomy, performance, and consistency are very different in various HDDBS
environments. The ways of doing global corcurrency control we presented
in this paper can apply to certain environments.

19

Due to the space limitation and the lack of a proper evaluation model, we
are unable to give a thorough and quantitative analysis for the approaches we
have presented. We recognize the need for more work on many related issues
and each of them are currently being studied in the InterBase project. Qur
comments regarding performance and deadlock in the paper are judgement
calls that need to be confirmed and shall be the topic of future reports.

References

[AGS87]

[BHGS7)

[BS88]

[DESY]

[DELOS9]

[ED8Y]

[EH88]

R. Alonso, H. Garcia-Molina, and K. Salem. Concurrency control
and recovery for global procedures in federated database systems.
In JIEEE Date Engineering Bulletin, pages 5-11, September 1987.

P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Databases Systems. Addison-Wesley
Publishing Co., 1987.

Y. Breitbart and A. Silberschatz. Multibdatabase update issues.
In Proceeding of the International Conference on Management of
Data, pages 135-142, June 1988.

W. Du and A. Elmagarmid. Quasi serializability: a correctness
criterion for global concurrency control in interbase. In Proceed-
ings of the Inlernational Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 1989,

W. Du, A. Elmagarmid, Y. Leu, and 5. Ostermann. Effects of
autonomy on global concurrency control ir heterogeneous dis-
tributed database systems. In Proceedings of the Second Inter-
national Conference on Data and Knowledge Systems for Man-
ufacluring and Engineering, Gaithersburg, MD, October 1989.

A. Elmagarmid and W. Du. Supporting Value Dependency for
Nested Transactions in InterBase. Technical Report CSD-TR-
885, Purdue University, May 1989.

A. Elmagarmid and A. Helal. Supporting updates in heteroge-
neous distributed database systems. In Proceedings of the Inier-
national Conference on Data Engineering, pages 564-569, 1988.

20

[EV87]

[GKs8)

[GL8§4]

[GP36]

[LEMSS]

[1.586]

[LT88]

[Pu88]

[Vid87]

F. Eliassen and J. Veijalainen. Language support for muti-

database transactions in a cooperative, autonomous environ-
ment. In TENCON ‘87, IEELE Regional Conference, Seoul, 1987.

H. Garcia-Molina and B. Kogan. Node autonomy in distributed
systems. In Proceedings of the First Inlernational Symposium
on Dalabase in Parallel and Distributed Systems, pages 158166,
1988.

V. Gligor and G. Luckenbaugh. Interconnecting heterogeneous
data base management systems. IEEE Computer, 17(1):33-43,
January 1984.

V. Gligor aud R. Popescu-Zeletin. Transaction management in
distributed leterogeneous database management systems. In-
formtion Systems, 11(4):287-297, 1986.

Y. Leu, A. Elmagarmid, and D. Mannai. A transection manage-
ment facility for InterBase. Technical Report TR-88-064, Com-
puter Engineering program, Pennsyvania State University, May
1988.

T. Logar and A. Sheth. Concurrency Conirol Issues in Hetero-
geneous Disiributed Database Management Systems. Technical
Report, Honeywell Computer Sciences Center, June 1986.

W. Litwin and H. Tirmri. Flexible concurrency control using
value dates, IEEE Distributed Processing Technical Committee
Newsletter, 10(2):42-49, November 1988.

C. Pu. Superdatabases for composition of heterogeneous
databases. In Proceeding of the International Conference on
Data Engineering, pages 548-555, February 1988.

I{. Vidyasankar. Non-two phase locking protocols for global con-
currency conirol in distributed heterogeneous database systems.
In CIPS Edmonton, 1987.

21

	A Paradigm for Concurrency Control in Heterogeneous Distributed Database Systems
	Report Number:
	

	tmp.1307986960.pdf.d_7RO

