
A Paradigm for Decentralized Process Modeling

and its Realization in the

Oz Environment

Israel Z� Ben�Shaul

CUCS�������

Submitted in partial ful�llment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences	

Columbia University

����

c� Israel Z	 Ben�Shaul ����

ALL RIGHTS RESERVED

ABSTRACT

A Paradigm for Decentralized Process Modeling

and its Realization in the

Oz Environment

Israel Z	 Ben�Shaul

This dissertation investigates decentralization of software processes and Process Cen�

tered Environments
PCEs�� and addresses a wide range of issues concerned with supporting

interoperability and collaboration among autonomous and heterogeneous processes� both in

their de�nition and in their execution in possibly physically dispersed PCEs	

Decentralization is addressed at three distinct levels of abstraction	 The �rst pro�

poses a generic conceptual model that is both language� and PCE�independent	 The second

level explores the realization of the model in a speci�c PCE� Oz� and its rule�based pro�

cess modeling language	 The third level addresses architectural issues in interconnecting

autonomous PCEs as a basis for process interoperability	

Two key concerns guide this research	 The �rst is maximizing local autonomy� so as

not to force a priori any global constraints on the de�nition and execution of local processes�

unless explicitly and voluntarily speci�ed by a particular process instance	 The second con�

cern is tailorability� dynamicity and �ne�grained control over the degree of interoperability	

The essence of the interoperability model lies in two abstraction mechanisms

Treaty and Summit
 for inter�process de�nition and execution� respectively	 Treaties

enable to specify shared sub�processes while retaining the privacy of local sub�processes	

To promote autonomy� Treaties are established by explicit and active participation of the

involved processes	 To promote �ne granularity� Treaties are de�ned pairwise between two

collaborating processes and formed over a possibly small sub�process unit� although multi�

site Treaties over large shared sub�processes can be constructed� if desired	 Finally� Treaties

are superimposed on top of pre�existing instantiated processes� enabling their dynamic and

incremental establishment and supporting a decentralized bottom�up approach	

Summits are the execution counterparts of Treaties	 They support �global� execution

of shared sub�processes involving artifacts and�or users from multiple sites� as well as local

execution of private sub�processes	 Summits successively alternate between shared and

private execution modes� where the former is used for synchronous execution of shared

activities� and the latter for autonomous execution of any private subtasks emanating from

the shared activities as de�ned in the local processes	

Contents

Table of Contents i

List of Figures v

List of Tables vii

� Introduction �
�	� Process Modeling �
�	� Why Decentralization �
�	� A Motivating Example �
�	� Research Focus ��

�	�	� Decentralization vs	 Distribution ��
�	�	� Process� Language and System Heterogeneity � � � � � � � � � � � � � ��
�	�	� Bottom�up vs	 Top�down ��
�	�	� Inter�Process Collaboration vs	 Intra�Process Coordination � � � � � ��
�	�	� Logical and Physical Decentralization � � � � � � � � � � � � � � � � � ��

�	� Requirements ��
�	� Thesis Organization ��

�	�	� Chapter �� Previous and Related Work � � � � � � � � � � � � � � � � ��
�	�	� Chapter �� The Formal Decentralized Model � � � � � � � � � � � � � ��
�	�	� Chapter �� Realization in Oz ��
�	�	� Chapter �� Oz Architecture ��
�	�	� Chapter �� The ISPW Example� Validation and Methodology Issues ��
�	�	� Chapter �� Summary� Evaluation� and Future Work � � � � � � � � � ��

� Previous and related work ��
�	� PCEs ��
�	� Marvel� The Predecessor PCE ��

�	�	� Data Model ��
�	�	� Process Modeling ��
�	�	� Process Enactment ��
�	�	� Synchronization and Coordination Modeling � � � � � � � � � � � � � � ��
�	�	� Process and Schema Evolution ��
�	�	� Access Control ��

i

�	�	� Marvel �	� Architecture ��
�	� Other Domains ��

�	�	� Heterogeneous Distributed Data Bases
HDDBs� � � � � � � � � � � � ��
�	�	� Heterogeneous Processing ��
�	�	� Computer Support for Collaborative Work
CSCW� � � � � � � � � � ��
�	�	� Summary ��

� The Formal Decentralized Model ��

�	� De�nitions ��
�	�	� PCEs� Process Models� and Environments � � � � � � � � � � � � � � � ��
�	�	� A Generic Process Context Hierarchy � � � � � � � � � � � � � � � � � ��
�	�	� A Multi�User� Single�Process Environment � � � � � � � � � � � � � � � ��
�	�	� A Multi�Process Environment ��

�	� De�ning Process Interoperability� the Treaty � � � � � � � � � � � � � � � � � ��
�	�	� Motivation and Requirements ��
�	�	� Alternatives� Design Choices� and Justi�cations � � � � � � � � � � � � ��
�	�	� The Treaty ��
�	�	� De�ning Common Sub�Schemas ��
�	�	� Sharing Data Instances ��
�	�	� Independent Local Evolutions ��
�	�	� Inter�process Consistency ��

�	� Enacting Process Interoperability� the Summit � � � � � � � � � � � � � � � � ��
�	�	� Alternatives� Design Choices� and Justi�cations � � � � � � � � � � � � ��
�	�	� The Summit ��

�	� The Motivating Example Revisited ��
�	� Application of the Model ��

�	�	� Rule�Based PMLs ��
�	�	� Petri�Nets ��
�	�	� Grammar�Based PMLs ��
�	�	� APPL�A ��
�	�	� Summary ��

�	� Groupware Tools and Delegation in Summits � � � � � � � � � � � � � � � � � ��
�	� Extensions and Alternatives to the Summit Model � � � � � � � � � � � � � � ��

�	�	� Summit Branching Policy ��
�	�	� Local Derivation of Summits ��
�	�	� Multiple Global Environments ��

� Realization of the Decentralized Model in Oz ��
�	� Operational Overview of Oz ��
�	� Oz Objectbase ��

�	�	� Cross�Site Links ��
�	� Modeling Process Interoperability in Oz ��

�	�	� De�ning Common Sub�Processes� the Treaty � � � � � � � � � � � � � ��
�	�	� Local Evolutions and Dynamic Veri�cation � � � � � � � � � � � � � � ���
�	�	� Common Sub�Schema ���

ii

�	�	� Exporting Data Instances ���
�	�	� Preserving Process Consistency ���

�	� Multi�Process Enactment in Oz ���
�	�	� Direct Remote Interaction ���
�	�	� Built�in Multi�SubEnv Operations ���
�	�	� The Summit Model in Oz ���
�	�	� A Composite Summit Example ���
�	�	� Transactional Semantics of Summit ���

�	� Modeling and Enactment of Delegation and Multi�user Tools � � � � � � � � ���
�	�	� Modeling and Enacting Delegation ���
�	�	� Modeling and Enactment of Synchronous Multi�User Tools � � � � � ���

�	� Implementation Status ���

� Architectural Support for Decentralization in Oz ��	

�	� Architectural Overview ���
�	�	� The Oz Environment Server ���
�	�	� The Oz Client ���
�	�	� Connection Server ���
�	�	� Summit from the Architecture Standpoint � � � � � � � � � � � � � � � ���

�	� Communication Infrastructure ���
�	�	� Approach ���
�	�	� The Oz Connection Database ���
�	�	� The Communication Protocol ���
�	�	� Decentralized Naming Schemes ���

�	� A Process for Site Con�guration ���
�	�	� Con�guration Facilities ���
�	�	� Summary ���

�	� Context Switching in Summit ���
�	�	� The Problem ���
�	�	� The Solution ���

�	� The Remote Object Cache ���
�	�	� The Problems ���
�	�	� The Solution ���
�	�	� Results and Summary ���

�	� Oz Over the Internet ���
�	�	� No Shared File System ���
�	�	� Security Firewalls ���

�	� Implementation Status ���

	 The ISPW Example
 Validation and Methodology Issues ���
�	� Overview of the Scenario ���
�	� Solution in Oz ���

�	�	� The Product ���
�	�	� The QA Process ���
�	�	� The Coding Process ���

iii

�	�	� The Design Process ���
�	�	� Treaty De�nitions ���
�	�	� Statistics and Summary of Solution � � � � � � � � � � � � � � � � � � ���

�	� Methodology Issues ���
�	�	� Approach to Modeling ���

� Summary� Evaluation� and Future Work ���
�	� Evaluation ���
�	� Future Directions ���

�	�	� Modeling of Decentralized Systems ���
�	�	� Wide Area Modeling ���
�	�	� User Modeling� Groupware and Process � � � � � � � � � � � � � � � � ���
�	�	� System and Language Heterogeneity � � � � � � � � � � � � � � � � � � ���

Bibliography ���

A Con
guration Process Sources ���

A	� Registration Strategy ���
A	� A Sample Oz Envelope ���

B The ISPW�� Problem
 De
nition and Solution in Oz ���

B	� The ISPW�� Example ���
B	�	� Sub�scenarios ���

B	� Solution in Oz ���
B	�	� The Schema ���
B	�	� The QA Process ���
B	�	� The CODING Process ���
B	�	� The DESIGN Process ���
B	�	� Selected Envelopes ���

Index ���

iv

List of Figures

�	� A Motivating Example �

�	� Several Classes from C�Marvel ��
�	� Example Rule from C�Marvel ��
�	� Class de�nitions for protections ��
�	� Marvel �	� Architecture ��

�	� A Generic Single�Process Environment ��
�	� Change Sub�Process ��
�	� A Decentralized Environment ��
�	� Enactment of Motivating Example ��
�	� Another Enactment of Motivating Example � � � � � � � � � � � � � � � � � � ��
�	� Comparison of PMLs ��
�	� Example Multi�Process Petri�net ��
�	� Summits in Ada ��

�	� An Oz Environment ��
�	� Oz Environment with one open remote site � � � � � � � � � � � � � � � � � � ��
�	� Load Interface in Oz ��
�	� Import and Export Interfaces in Oz ���
�	� Integration of Imported Rules ���
�	� The Import Algorithm in Oz ���
�	� The Treaty Interface in Oz ���
�	� Evolution Timestamp Example ���
�	� Run�time Treaty Veri�cation Algorithm ���
�	�� Compile Rule ���
�	�� Two De�nitions of class CFILE ���
�	�� Multi�edit rule ���
�	�� Execution Trace of Summit Example ���
�	�� Oz Animation of Summit Example
a� ���
�	�� Oz Animation of Summit Example
b� ���
�	�� Delegation Example ���

�	� Oz Architecture ���

v

�	� Refresh Policy in Oz ���
�	� The built�in class SUB ENV ���
�	� Connection Database ���
�	� Connection Database with remote connection to SubEnv� � � � � � � � � � � ���
�	� server�to�server communication ���
�	� A Communication Deadlock Example ���
�	� The Extended Busy�wait�service Algorithm � � � � � � � � � � � � � � � � � � ���

�	� Process Design for ISPW�� Example Scenario � � � � � � � � � � � � � � � � � ���
�	� notify bug Rule ���
�	� The QA Objectbase ���
�	� The QA Objectbase with New Test Runs ���
�	� Rule Animation of the Testing Task ���
�	� The Analyze Summit Task ���
�	� The Review Summit Task ���
�	� Conference Rule ���

vi

List of Tables

�	� Delegation Types ���

�	� Context Switch Summary ���
�	� Performance comparison with and without cache � � � � � � � � � � � � � � � ���

�	� Treaties in the ISPW Process ���
�	� Summary of Lines of Code for the ISPW problem � � � � � � � � � � � � � � � ���

vii

To my dear parents� Rivka and Simcha Ben�Shaul� for their support� devotion� and love�

viii

Acknowledgements

First and foremost� I would like to thank my advisor Gail Kaiser� for her continuous

guidance and support� for conveying to me the essence of research� for teaching me how to

write research papers through her always comprehensive reviews� and for convincing me to

enroll in the PhD program	 I would also like to thank my other committee members John

Kender� K	 Narayanaswamy
Swamy�� Lee Osterweil and Ken Ross	 In particular� I thank

Lee for his insightful critique of my thesis� and Swamy for his continuous contributions

through formal and informal discussions over the past three years	

Special thanks to George Heineman� my colleague� o�ce mate and friend throughout

my PhD studies� for the endless discussions� long programming nights� and for reviewing

the entire dissertation	 Many thanks to Peter Skopp� for his numerous contributions to the

communication infrastructure and to the overall system�level aspects of Oz	 Thanks to the

following past and present project students whom I had the pleasure to work with over

the years� Steve Linde� who implemented Treaties� Yong Su� who extended the client with

multi�site support� Hsin Liu� for her implementation of the cache manager� John Hinsdale�

for his numerous contributions to the Marvel project that were used in Oz� including schema

evolution� ad�hoc query processor� and feasibility study of PCTE� Will Marrero� for his work

on process evolution� Moshe Shapiro for his work on access control� and Tony Bunter for his

work on query evaluation	 Other students who contributed to the Oz project include Shelly

Tsellepis who worked on �le transfer� Andrew Lih who worked on connectivity through

secure sites� Andrew Tong� who implemented the CMarvel process that was used for the

development of Oz� and Jack Yang� for his work on the ISPW demo	

Last but not least� I would like to thank my dear wife� Tamar� for her continuous

support� encouragement and endurance through di�cult times� and my daughter Mika� for

giving me wonderful moments of joy	

ix

�

�

Introduction

Software Engineering
SE� is aimed at constructing cost�e�ective and high�quality

large�scale software	 As such� it is concerned with methodologies� tools� and frameworks

that can assist groups of developers throughout the lifecycle of a software product	

Software Development Environments
SDEs� is a sub��eld within SE that is

more speci�cally concerned with providing frameworks� or infrastructures� for supporting

the development of software products	 Thus� the SDE community is less concerned with the

development of speci�c tools but rather with the integration and interoperability of these

tools within an environment� it is not only concerned with support for an individual user

but also with support for coordination and interaction among multiple users participating

in the development of a product� and� �nally� it is concerned with the management and

integrity of the various artifacts involved in a software product
e	g	� modules� libraries�

design documents�� which are manipulated by diverse users using diverse tools	

Early research in SDEs� dating back to the mid seventies� focused on support for

coding and debugging ���	 Called programming environments� these systems often included

a set of language�speci�c tools
e	g	� language�based editors� that assisted an individual

programmer to code programs	

There was a transition in the eighties� when language�based editors were used as

front�ends to integrate a set of language�based tools	 Examples included Pecan ����� which

emphasized visualization� and generator environments like Gandalf ����� and the Synthesizer

Generator ����	

�

More advanced SDEs focused on general purpose tool�integration techniques	 An

example system was Field ����� in which tools interact with each other by sending and

receiving messages to a centralized Broadcast Message Server� e�ectively implementing a

�software bus� from which tools can be easily added or removed� thereby providing exten�

sibility	 Another direction in SDE research was to provide comprehensive support to the

entire lifecycle of a software project� not only programming	 Termed Integrated Project

Support Environments
IPSEs� ������ these systems had to also support multiple users
as

opposed to earlier single�user systems�� and often included management of the software ar�

tifacts	 ISTAR ���� is a representative IPSE that emphasized integration of managerial as

well as engineering tasks and tools�	 Other systems from that era include DSEE ���� and

NSE ����	

��� Process Modeling

In order to provide comprehensive project support� SE researchers and developers

had to observe and understand project development processes	 This marked the beginning

of the �process� era ����� pioneered by Humphrey ���� and Lehman ����	 The realization

that the process of constructing and maintaining software was crucial in determining the

success of the project
 while at the same time widely di�erent from project to project�

depending on the nature of the product being developed� management policies� tools used

and so forth
 has led the SDE community to shift its focus towards support for the process

as a key factor in increasing productivity and improving the quality of software	

The term �software process� can be de�ned as an orderly approach to applying

methods and tools to software development	 It includes�

� The set of activities carried out during the development process	 These activ�

ities can be low�level activities� such as invoking a compiler on source code� or

they can be high�level and decomposable activities
also called tasks�� such as

the integration test phase of a large system	 Process activities can be further

categorized by the degree of computer support they require� ranging from

purely computer�oriented activities� such as compilation� to activities with

partial computer support� such as code inspection� to purely human�oriented

activities� such as design meetings	

�A more detailed account of ISTAR will be given in Chapter ��

�

� Local constraints on activities� typically in the form of prerequisites to� or

implications of� activities	 This includes constraints imposed on the execu�

tion of activities and obligations that must be carried out as a result of the

execution of activities	 For example� a process might restrict depositing a

modi�ed source code to a repository that holds a stable version of the sys�

tem� only if the source code had been statically inspected	 An example of

an activity implication might be that after the release of a new version of a

product� all current licensees must be noti�ed and get the upgraded version	

� Global constraints on tasks	 For example� a release deadline constraint might

a�ect all activities related to preparing the release	

� Partial ordering among tasks	 For example� the well�known waterfall model �����

for software development implies sequential ordering among the various phases

with feedback to previous phases	

� Synchronization among concurrent tasks	 It is common for software processes

to allow for concurrent execution of tasks	 This implies that the process can

also specify points where dependent tasks synchronize	

The interest in the software process has consequently led SDE researchers to explore

ways to represent the process with a formal notation in order to support it	 Pioneered by

Balzer ��� and Osterweil ����� this research direction has become to be known as process

modeling�	

The advantages of using a formal notation for the de�nition of software processes

are�
�� Understanding
 clearly� by explicitly and rigorously de�ning processes one can

clarify and gain a better understanding of the processes themselves	 A written process also

helps in explaining it to the personnel involved in the process� thereby achieving a better

understanding among the project participants	 Moreover� by using programming language

concepts such as data and control abstraction� modularity� and encapsulation� processes can

be better de�ned and understood much in the same way that programming and design

in general bene�t from these techniques	
�� Analysis
 Static process analysis can be

performed on processes modeled in a formal notation using well�understood techniques

�Although Osterweil referred to it as �process programming�� this term later became associated with a
more speci�c approach to process modeling�

�

from the programming languages domain� which can result in process improvement	 For

example� program optimization techniques can be used to eliminate redundant activities�

to point out potential for increased concurrency among independent activities� to identify

�dead ends� from which the process cannot proceed� and so forth	 Furthermore� when

processes are represented as state machines
e	g	� as in StateMate ����� formal automata

techniques can be employed� for example for reachability analysis	
�� Execution
 Perhaps

the dominant aspect� at least within the SDE community� and the one that is emphasized in

this thesis	 Once there is a formalism that encodes a
software� process� there is a potential

for the process to be interpreted by a �process machine�
or process engine� that is sensitive

to the de�ned process� and can assist in its execution�	

However� while there is an obvious resemblance between software processes and or�

dinary software� there is also a fundamental distinction between them	 Whereas the opera�

tional semantics of the latter are fully and completely de�ned by the software program� the

compiler� and the underlying machine
and operating system� on which the program runs�

a software process model only de�nes a
possibly small� subset of the overall process	 More

importantly� the software process is not being executed completely on a physical machine�

and it involves
unpredictable� humans carrying out signi�cant portions of the process	 As

a consequence� the process engine cannot
and should not� control all aspects of the pro�

cess� and all we can hope for is to �nd ways in which it can assist users in carrying out

the process	 This view has implications on the choice of the modeling paradigm and on the

types of support that can and should be provided	 Thus� in the remainder of the thesis

we will use the term process modeling to encompass de�nition of the model regardless of

whether it is executable or not	

The process community invented the term process enactment to describe assis�

tance in process execution and distinguish it from the notion of program execution	 Enact�

ment is also sometimes confused with the concept of simulation
although process simulation

might be a viable option� in that while a simulation might also involve nondeterministic

agents and behaviors that describe natural phenomena� process enactment involves support

of real execution of the process� involving real devices� tools� artifacts� and real users	 There

are several forms of enactment� or assistance�

�	 Enforcement
 This refers to the capability of the process engine to ensure

�In some cases� such as in APPL�A 	
��
� process models are compiled and executed directly�

�

that constraints� obligations and general process invariants are maintained

consistently	 For example� a speci�c process might impose a constraint that

no source �le can be edited unless it has been properly checked out to a

private workspace using the process� con�guration management subsystem	

In this case� the process engine will enforce this constraint and disallow

violations� thereby maintaining process consistency as promised	 More com�

plicated consistency constraints might span a group of artifacts and a set of

interrelated activities	 For example� if a function signature has been modi�

�ed� all callers
from di�erent modules� should be outdated� to force recom�

pilation	 This constraint is likely to reduce errors from interface mismatch	

It is� of course� not desirable to enforce all aspects of the process on all

individuals	 Indeed� much of the criticism about process enactment stems

from the impression that individuals are �controlled� by the process and must

operate within strict rules that severely restricts their work and creativity�	

The goal is to enforce those constraints and invariants that constitute process

consistency
the �law of the system� ������ but relax or even leave unde�ned

other activities in the process	 While di�erent environments provide di�erent

enforcement capabilities� the degree of enforcement also depends largely on

the speci�c process model� as de�ned on a project�speci�c basis	 A system

known for its enforcement support is Darwin ����	

�	 Automation
 This refers to the environment�s capability to carry out some

activities of the process automatically on behalf of users	 Automation might

be explicitly speci�ed by the process model� or it can be inferred by the

system	 Note that automation can be used for enforcement	 On the other

hand� enforcement can be supported independently from automation	 SDEs

known for their automation support include CLF ���� and Marvel ����	

�	 Guidance
 The environment builder might choose to guide users in per�

forming tasks in the process� without actually forcing them to do any of

them	 For example� the process might maintain a �to do� list of pending

tasks	 SDEs known for guidance support include ProcessWEAVER ���� and

�In that respect� the choice of the term �enactment� is misleading� but since it is so widely used in the
process community we will stick to this term throughout the thesis�

�

Merlin �����	

�	 Monitoring
 This refers to the environment�s capability to monitor the

progress of the process� and accurately assess the state of the process at any

particular point in time
other mechanisms can be used to actually extract

the process state�	 An extension to process monitoring is process diagnos�

tics� i	e	� when monitoring detects problems that can be diagnosed and later

repaired	 Note that process diagnostics in this context refers to inspecting

active enactable processes analogous to a debugger� and is di�erent from

static analysis mentioned earlier in the context of modeling	 SDEs known

for their monitoring support include SMART ���� and Provence ����	

Process Centered Environments
PCEs� are SDEs that provide a Process

Modeling Language
PML� in which project�speci�c software processes are de�ned by a

process administrator
as opposed to environment end�user�� and a corresponding process

enactment engine that is sensitive to the de�ned process and supports its execution in some

or all ways described above	

Most� but not all� PCEs support some form of data modeling� both for the product

artifacts which are being manipulated by the process
product data�� and for the data used by

the PCE itself to keep track of process state
process data�	 Moreover� some of those PCEs

support data modeling on a per�project basis� in these cases� data modeling is considered to

be part of the process� although it may be speci�ed by a separate Data De�nition Language

DDL�	

Process modeling has increasingly attracted attention in the software engineering

community� as evidenced by the Ninth International Software Process Workshop ���� and the

Third International Conference on the Software Process ����	 Various PCEs have been con�

structed as research prototypes and non�commercial systems� and some have been recently

released as commercial products	 Examples of relatively well�known academic and other

research PCEs include Arcadia ����� Common Lisp Framework
CLF� ����� Melmac �����

Merlin ������ Spade ��� and TEMPO ����	 Examples of commercial products include Pro�

cessWEAVER ����� HP SynerVision ����� and Lion ����	

The state�of�the�art in PCE technology
including all the systems mentioned above��

however� has been supporting centralized and homogeneous processes� for moderate�sized

and often co�located groups	

�

��� Why Decentralization �

Large�scale product development typically requires the participation of multiple peo�

ple� often divided into multiple heterogenous groups� each concerned with a di�erent facet

of the product	 For example� one software product may require di�erent teams for re�

quirements elicitation� functional speci�cation� design� coding� testing� documentation� and

maintenance� another product may also involve multiple teams� in this case with each re�

sponsible for full development of a distinct component of the system	 Each team uses its

own selection of tools� its own private artifact database� and its own management policies

and development work�ow
 all parts of the process	 At the same time� the teams need

to cooperate in order to develop the product� and as studies in software engineering have

shown ����� the interaction among team members accounts for a signi�cant fraction of the

total cost of the product being developed	

The degrees of team autonomy and collaboration between teams both depend on

the nature of the product being developed and on organizational policies
e	g	� centralized

vs	 decentralized management�	 Sometimes multiple independent organizations with pre�

existing processes need to collaborate on a product� in which case autonomy
privacy or

security� is a �hard� constraint that cannot be compromised	

In recent years� there has been an explosive growth in telecommunication technologies

and infrastructures that enable global communication
most notably� the Internet�	 This

�globalization� provides immense opportunities for growth and collaboration among teams

that are geographically dispersed and time shifted	 Indeed� as a result of these enabling

technologies� the �eld of Computer Support for Collaborative Work
CSCW� has gained

popularity in recent years� providing tools and platforms for collaborations among multiple

users
see ���� and Section �	�	��	 However� these technologies also introduce the hard

problems of heterogeneity and decentralization� which will have to be taken in the near

future as a given requirement� as opposed to a design by choice	

��� A Motivating Example

The following is a sample process that illustrates the problems in modeling and

enacting decentralized processes	 Assume there are three development teams working in

separate sub�environments
henceforth SubEnvs� SE�� SE�� and SE�� who are responsible

�

for three disjoint components of a system S� labeled S�� S�� and S�� respectively
see

Figure �	��	 The teams operate in di�erent sites� and reside in di�erent geographical areas	

They each maintain and develop their own private artifacts
represented as rectangles in

the �gure�� using their private tool�set
triangles in the �gure� and their own methods and

policies� i	e	� process
clouds in the �gure�	

Each component can be coded and unit�tested independently� and the components

are interconnected through published� well�de�ned� interfaces	 Suppose S��s interface has

to be modi�ed in order to enhance some of its functionality� thereby requiring the other

components to change	 The following steps are then taken
corresponding to the numbers

in �gure �	���
�� the proposed change has to be reviewed and approved by all SubEnvs�

�� the interface of S� is actually modi�ed�
�� The a�ected components are modi�ed to

correspond to the new interface�
�� a local test of each component is performed� and

�� an integration�test with all revised components is performed	 For simplicity� only the

�successful� path� i	e	� assuming that all the steps were carried out successfully� is described	

One example of an unsuccessful path would be a failure of the local�testing at one of the

SubEnvs� which might require reiteration to step �	�

While the global modi�cation and integration test must be performed synchronously

with respect to all sites� and at one site� the review� local modi�cation� and local test

activities can be performed asynchronously in the local sites� and they can di�er at di�erent

sites	 For example� one site might employ �white box� local testing� while another site might

use �black box� testing	 Moreover� even identical operations might trigger di�erent related

operations when issued at di�erent sites	

At the modeling level� there should be a conceptual framework that allows for the

de�nition of interoperability of the autonomous processes on a per SubEnv basis� in terms of

interactions and information exchange among them	 At the enactment level� a DEcentral�

ized PCE
henceforth DEPCE� should enable and support the execution of a decentralized

task that possibly involves data from multiple sites	 At the architectural level� there must

exist an infrastructure that is capable of providing mechanisms for consistent and reliable

access to shared data� communication protocols and capabilities for accessing remote data

in a proper manner� and a decentralized enactment engine that performs well� both in terms

�Although the term site usually refers to an administratively cohesive Internet domain sharing a single
network �le system� we will use it throughout the thesis more liberally to denote logical cohesiveness of a
computing unit� and therefore will use at times site and SubEnv interchangeably� In order to distinguish
between logical and physical sites� we will refer to the latter as an Internet domain� or simply domain�

�

SE1 SE2 SE3

Tools

Process

Data

Process Process

Data

Tools Tools

Data

 Change

1. Review and approve (decentralized)

2. Modify interface (centralized)

3. Modify affected components (decentralized)

4. Unit−Test change (decentralized)

5. Integration test (centralized)

S

S2

S1 S3

Figure �	�� A Motivating Example

of functionality and e�ciency	

For this particular example� a wrong and in some cases impossible solution would be

to collect all the necessary data from the remote sites to the coordinating site
i	e	� SE���

and then carry out all the process steps
and all implied and triggered steps� on all data

as de�ned in SE��s process	 Besides the obvious performance limitations� this approach

would be a clear violation of autonomy� since each site has its own sub�process for its

local activities
e	g	� local testing�� which may not even be known to the coordinating site	

Another possible problem might be that some of the tools do not exist in all SubEnvs
e	g	�

because licensing binds a tool to a speci�c site or host�� and other tools can be executed only

in speci�c SubEnvs
e	g	� special�purpose hardware�� which necessarily binds the execution

of a process step to a speci�c SubEnv	 On the other hand� some of the operations involve

data from multiple sites and must execute at a common location� and all sites have to

agree on it	 Therefore� the solution should enable handling of such work in a manner that

retains maximum process autonomy and operational independence while still providing for

��

collaboration and interaction among the processes as needed	

��� Research Focus

This thesis focuses on the modeling and enactment of interoperability and collabo�

ration among independent� autonomous� and possibly pre�existing processes	 Within this

focus� it is important to clearly identify what issues are addressed in this research� and

equally important� what issues are beyond the scope of this research	

����� Decentralization vs� Distribution

Broadly speaking� a distributed system is de�ned as one that provides a single� ho�

mogenous� logical perspective to its applications� but is physically distributed into multiple

computing units� usually across machines of a single site	 That is� a distributed system

transparently shields the distribution from its applications ����	 In contrast� a decentral�

ized system is comprised of relatively independent and heterogenous subsystems with some

degree of correlation between them� perhaps
although not necessarily� spread among mul�

tiple sites	 In particular� transparency is intentionally not supported� for several reasons	

First� it inherently violates site autonomy since it implies unrestricted access to at least

some remote resources and repositories	 Second� transparency is simply irrelevant when the

involved entities are heterogenous at the application level
i	e	� they run di�erent programs�

see Section �	�	��	 Finally� transparency is undesirable when the entities are geographically

dispersed� since it is often necessary to distinguish between di�erent access costs� given that

they can vary widely depending on the available bandwidth� available computing resources�

etc	 For example� if a component has a timeout mechanism on fetching objects for fault

tolerance purposes� then it should be aware of the �degree of remoteness� of the object

being accessed in order to determine when to time out	

Observing the evolution and scaling up of large systems� the natural order tends to

be�
�� centralized control�
�� distributed control�
�� decentralized� or �federated� control

the best representative of this kind of evolution is the database �eld�	 The reader might

wonder why skip over step � and jump directly into step �� when the problems of step �

are not yet resolved � The answer is� that if transparency shields users and applications

from knowing where the data is� and retains a uniform view of the data and the process�

then the main problem becomes to provide this transparency	 From the PCE research

��

aspect� it is much more interesting to look at loosely coupled and autonomous systems that

allow for di�erent processes to coexist	 Furthermore� environment distribution is a form of

�vertical� scale�up� in that it allows for more users to work� but under the same process

and within some bounded physical distance
typically a local�area network�	 This thesis

explores mainly �horizontal� scale�up� where the number of users per group sharing the

same process may not grow much
and in fact may consist of a single user�� but the number

of groups may be arbitrarily large� each group with its own private process and data but

collaborating in a concerted e�ort with the other groups	

����� Process� Language and System Heterogeneity

Heterogeneity can be categorized into three levels� system� language� and application	

For example� in a heterogenous database system� the multiple local databases can di�er from

each other in their inner structure
system heterogeneity�� they can di�er in their front�

end Data De�nition Language
DDL� while still having similar inner structure
language

heterogeneity�� and they can support di�erent schemas at the di�erent databases� written

using the same DDL
application heterogeneity�	 Similarly� DEPCEs can have system

heterogeneity by allowing di�erent product databases to be used in di�erent sites	 They

can support language heterogeneity by allowing di�erent sub�processes to be written in

di�erent PMLs� and they can allow di�erent processes written with the same PML to

interoperate
application heterogeneity�	

Each level can be further categorized based on the degree of heterogeneity	 For ex�

ample� system heterogeneity can vary from component di�erence
e	g	� di�erent databases�

to more substantial architectural di�erence
e	g	� message bus vs	 client server�	 Also� there

can be di�erent combinations of the above	 For example� there could be support for mul�

tiple languages to de�ne di�erent aspects of a single� centralized process� or there could

be support for interoperability between di�erent subsystems with di�erent corresponding

PMLs that are used for support of di�erent aspects of the same process	 Thus� while

decentralization usually implies heterogeneity� the reverse is not necessarily true	

Support for heterogeneity is� in general� an extremely di�cult problem	 This thesis

explores a limited aspect of heterogeneity within the context of decentralization	 The system

and language levels are �xed� that is� it assumes� for the most part� homogeneity at the

system level and at the PML level� and focuses on heterogeneity at the process level	

��

That is not to say that the other aspects of heterogeneity are totally ignored	 For

example� it is hoped that the language level can be addressed by translating various PMLs

to an underlying �assembly� PML� similar to the approach taken in some Heterogenous

Distributed Data Bases
HDDBs�
e	g	� �����	 In fact� some evidence that this approach is

feasible was given by the work described in ����	 Furthermore� in investigating architectural

support for decentralization� some level of system heterogeneity� namely componentization�

is considered and is one of its guidelines
see Chapter ��	 Nevertheless� multi�PML support

and componentization are� by and large� guidelines
and constraints� on this research as

opposed to subjects of the research� and are partially addressed in the theses of Popovich ����

and Heineman ����� respectively	

Finally� while this research focuses on process heterogeneity and assumes homogene�

ity at the language level� it does not restrict itself to a speci�c PML� but instead attempts

to provide a high�level abstract model that can be implemented by a family of PMLs	

����� Bottom�up vs� Top�down

As mentioned above� this thesis looks into interoperability between multiple� possibly

pre�existing� processes	 This implies a bottom�up view on the construction of a multi�

site environment� without necessarily having any a priori knowledge of the �neighboring�

processes at the time of construction	 This is in contrast to decomposing a single process

in a top�down fashion into sub�processes with prede�ned and coordinated interfaces	 There

are architectural implications which further distinguish between the two approaches� as will

be seen in Chapter �	

����� Inter�Process Collaboration vs� Intra�Process Coordination

Intra�process coordination is concerned with coordinating concurrent activities that

might violate the consistency of the project database� assuming that all participants use the

same process� the same schema� and most importantly� share the same centralized� project

database	 In contrast� this research is about collaboration between users or teams with

di�erent processes� di�erent schemas� and most importantly� di�erent project databases	

Work on intra�process coordination has been investigated in the Marvel project� primarily

by Barghouti ���� and is discussed brie�y in Section �	�	�

��

����	 Logical and Physical Decentralization

Logical decentralization refers to multiple autonomous and heterogenous processes

which are enacted separately but are physically co�located
i	e	� operate within the same

local area network�� and physical decentralization adds the dimension of physical separation

between the SubEnvs� with arbitrary communication bandwidth between them	 Physical

decentralization obviously has implications on the architecture
e	g	� variable bandwidth�

no shared �le system� security� see Section �	��� but is likely to also a�ect the general

model	 Nevertheless� the problem of providing interoperability among heterogenous and

autonomous processes can be examined independently of the additional constraints and

problems associated with having those processes enacted in arbitrary physical separation	

Thus� while this thesis discusses at length the architectural considerations and the actual

design of a DEPCE that supports physical dispersion among the SubEnvs� the generic model

is at the logical level and applies to both	

��� Requirements

We now formulate the general problems and motivations discussed above into a

set of well de�ned �research requirements� which guide the design of the model and its

realization	 This is a high�level overview of the requirements	 More detailed re�nements of

these requirements are given in the relevant chapters� as the context to understand them

builds up	

�	 Process Locality
 A basic requirement is that as far as local work is con�

cerned� a DEPCE should provide the same capabilities and same support as

a PCE does	 The underlying assumption is that most of the work done by

a site is local to that site� and therefore each site should still be optimized

towards local work	 Thus� a DEPCE subsumes the capabilities of a PCE	 We

address here mainly the additional requirements for a DEPCE that are not

PCE�speci�c� and extensions to existing PCE requirements	
 ���� discusses

general requirements for a PCE�	

�	 Process Autonomy
 Each local SubEnv should have complete control over

its process and data� while allowing access by remote SubEnvs under restric�

tions that are solely determined by the local SubEnv	 Access to a process

��

has two perspectives�
�� access to the local artifacts owned by the process

through a process interface� and
�� access to� and use of� the process itself	

Autonomy constraints imply that� by default� a site allows no sharing of

process or data	 Moreover� once de�ned� sharing should be minimized to the

degree necessary for interoperation	 Autonomy is a strong requirement with

major in�uence on all aspects of this thesis	

�	 Process Collaboration and Interoperability
 Autonomy trivially exists when

there is no possible interaction between the SubEnvs	 However� we are in�

terested in allowing interoperability between multiple independently�de�ned

heterogenous SubEnvs� each serving a group of users	 Collaboration in this

context refers to not only enabling �read�only� access to remote process and

data� but also enabling operations that might a�ect the process state and

the product data of remote processes	 Such interoperability is particularly

di�cult in the context of processes� because of the richness of the semantics

associated with process and its modeling power	

�	 Independent Operation and Self�Containment
 Related to autonomy� this

means that a SubEnv should be able to behave as a complete environment by

itself when not collaborating with any other SubEnvs� and SubEnvs must be

able to operate concurrently and independently� except when their processes

explicitly collaborate	 The most fundamental implication of this require�

ment is that it requires a �share�nothing� architecture	 That is� no service�

mechanism� or data� in the environment can be centralized or shared across

SubEnvs� and all interaction should be based solely on message passing	 An

additional implication of this requirement is that SubEnvs must be prepared

to be dynamically disconnected�reconnected from�to each other when in�

teroperating� without disrupting the operation of local tasks in individual

SubEnvs� and moreover� they cannot rely on having all sites always active	

Besides the architectural implications� this requirement also e�ects the con�

ceptual model in various ways� as will be seen in Chapter �	

�	 SubEnv Interconnectivity
 To support process interoperability� there must

be an infrastructure that supports connectivity between the participating

��

SubEnvs	 This includes a name service to identify and address SubEnvs and

a communication service to exchange messages between them	 Autonomy

and independence constraints exclude a centralized name service and require

a mechanism to
re�connect to� and automatically invoke� remote SubEnvs	

�	 Dynamic Recon�guration
 A related issue to interconnectivity is that of site

con�guration	 A DEPCE should have the capability to dynamically add new

SubEnvs and remove inactive SubEnvs without disrupting the operation of

the currently active SubEnvs	 The concept of an inactive SubEnv is a direct

implication of requirement �	 An inactive SubEnv is one that is temporarily

dormant� although it may have recently been active� and could potentially

be active in the future	 In contrast� an active SubEnv is one that is currently

under execution	

�	 Support for Pre�existing SubEnvs
 A DEPCE should enable a SubEnv with

a pre�existing process to �join� a global environment with other pre�existing

process
es�� with minimal overhead	 Similarly� a �split� of a SubEnv from

its current global environment should be supported	 This requirement is

important when two or more organizations with established processes need

to collaborate for a limited time	

�	 Data Sharing� Querying� and Presentation
 While remote data access

should not be transparent in a DEPCE and governed by the process op�

erating on it as discussed earlier� there should still be a mechanism that

enables sites to access� query� and browse through data residing at remote

sites� provided that the access is granted by the owner process	 Moreover�

since PCEs often support complex and highly structured data models� it is

especially desirable to be able to display graphically the types of data and

the relationships among them	 This represents a challenge both in user in�

terface design� and in the communication protocols that are responsible for

updating the user�s view
s�	 Chapter � elaborates on this issue	

�	 Transaction Support
 Multi�user SDEs in general� and PCEs in particular�

require sophisticated and �exible concurrency control
CC� and failure re�

covery mechanisms ��� ���	 DEPCEs add the dimension of remote vs	 local

��

access and potential heterogeneity of transaction management policies	 This

complicates CC and recovery because extended transaction models devised

for centralized� and even distributed systems� might not be adequate	 For

example� if semantics�based CC is employed� then di�erent processes impact

their local CC policy di�erently� requiring some sort of negotiation between

local CC engines	 Furthermore� operational independence excludes any sort

of centralized transaction service	

��	 Flexibility
 This is perhaps the most important
meta� requirement	 It

is concerned with the general approach to be taken to ful�ll all the above

requirements	 That is� analogous to one of the most important character�

istics of PCE technology
 modeling a process on a per�project basis and

its enactment by a process�sensitive engine
 a DEPCE should similarly

possess such �exibility and be able to specify the degree of autonomy as

well as the collaboration on a per�SubEnv basis� and not by a hard�wired

policy	 Flexibility� autonomy and independent�operation requirements have

been most in�uential on this research� and are henceforth referred to as the

�core research requirements�	

To summarize� this research attempts to provide an enabling technology for process�

interoperability	 The underlying theme in the requirements is to provide both autonomy

and interoperability� which are often con�icting goals	 Obviously� some compromise between

these two is necessary	 The idea is to apply suitable modeling and enactment facilities that

will minimize the impact that SubEnvs can have on one another besides what they have

explicitly agreed upon	

��� Thesis Organization

The main body of the thesis addresses modeling and enactment of multiple interop�

erating processes at three levels of abstraction�

�	 A conceptual framework� given by a formal and generic
i	e	� system� and

language� independent� model
Chapter ��	

��

�	 A comprehensive realization of the model in Oz�� a speci�c PCE with a

rule�based PML
Chapter ��	

�	 An architectural framework and infrastructure that supports the decentral�

ized model
Chapter ��	

��
�� Chapter �� Previous and Related Work

Section �	� surveys state�of�the�art PCEs� particularly those that address distribu�

tion� interoperability� and heterogeneity	 Section �	� gives a detailed description of Marvel�

the predecessor to Oz� with emphasis on the system characteristics and principles that

were carried over to Oz	 Section �	� presents work in related �elds� namely databases�

heterogenous processing� and CSCW	

��
�� Chapter �� The Formal Decentralized Model

This chapter presents the formal decentralized model� independent of any speci�c

PML or PCE	 It is the cornerstone of this research	 Section �	� de�nes basic terms and

concepts which are used throughout the thesis� Sections �	� and �	� present the Treaty

and the Summit models for de�ning
modeling� and executing
enacting� inter�process

collaboration� respectively	 Section �	� revisits the motivating example in the context of

the decentralized model	 Section �	� applies the model to three families of PMLs which

represent the paradigms of choice in many existing PCEs� namely� rules� Petri�nets� and

grammars� and brie�y discusses its applicability to APPL�A	 Section �	� discusses exten�

sions of the model to address integration of groupware technology	 And Section �	� concludes

the chapter with other potential extensions and alternatives to the model	

��
�� Chapter �� Realization in Oz

The generic model� as a high�level abstraction� leaves many aspects unde�ned and

unresolved� both technical and conceptual	 Chapter � addresses these issues by describ�

ing the realization of the model in the Oz DEPCE� with its rule�based PML	 Section �	�

starts with a conceptual and operational overview of the system	 Section �	� is devoted

to introducing the structure of Oz objectbases	 Section �	� covers all aspects of modeling

�Why Oz � as a continuation to the Marvel project� named after Professor Marvel from �The Wizard of
Oz��

��

process interoperability in Oz� including the algorithms that implement the Treaty protocol

for de�ning common sub�processes� the associated problems of preserving the consistency

of both local� and inter�process de�nitions while allowing local evolutions� and other issues

related to the de�nition of shared schema and the accessibility of data instances	 Section �	�

covers all aspects of multi�process enactment� focusing on the operational and transactional

semantics of the Summit protocol in Oz	 Section �	� discusses an e�ective
though pre�

liminary� implementation of language and system mechanisms for integration of groupware

technologies into the Oz framework	 Section �	� summarizes the implementation status

with respect to what has been described in this chapter	

��
�� Chapter 	� Oz Architecture

This chapter discusses the architectural support for the decentralized model	 Sec�

tion �	� begins with an architectural overview� and the underlying principles that guided

the construction of the system	 The focus is on multi�server infrastructure support rather

then on a single server architecture
which is covered in�depth in �����	 Section �	� de�

scribes the communication infrastructure including the decentralized repository for main�

taining
dynamically changing� communication information� the actual communication pro�

tocols� and decentralized naming schemes	 Section �	� presents the mechanism for dynamic

re�con�guration of sites participating in a global environment	 The unique approach taken

here is that con�guration is modeled and enacted as a process� and as such� it may be tai�

lored
to some degree� on a per environment basis	 As a by product� this chapter also shows

that process modeling and enactment can be used not only for software processes� but also�

for example� for con�guration processes	 Section �	� explains the context switching mecha�

nism that is required in order to avoid communication deadlocks and starvation during the

concurrent execution of Summits	 Section �	� presents the remote object cache in Oz that

signi�cantly enhances the performance of Summits	 Section �	� discusses the architectural

extensions which were made in order to support arbitrary geographical dispersion over the

Internet	 Finally� Section �	� summarizes the implementation status of the architectural

aspects of Oz	

��

��
�	 Chapter
� The ISPW Example� Validation and Methodology Is�

sues

This chapter validates the decentralized model and its implementation in Oz by

discussing an Oz multi�site environment that was built to support an example �benchmark�

process written at the International Software Process Workshop
ISPW�	 The discussion of

the solution is focused on design issues
the actual process code is given in Appendix B�	 In

addition� a methodology for modeling decentralized processes is given� based on examples

from the ISPW solution environment	

��
�
 Chapter �� Summary� Evaluation� and Future Work

This chapter evaluates the thesis� summarizes its contributions and the conclusions

of this research� and points to future directions	

��

�

Previous and related work

While decentralization� heterogeneity and interoperability have been active research

topics in several communities
 databases� engineering� and distributed systems in general

 these issues have been mostly unexplored in the PCE community until recently� mainly

because the �eld is relatively young and the state�of�the�art in PCE technology was too

immature	 In the last two years� however� there has been a surge of activity in this area� and

several PCEs and ideas have been developed to address some of these issues	 These issues

have also been acknowledged recently as one of the main future research directions �����

and seem to be a natural evolution of PCE technology	 Nevertheless� most of the work to

date is still on interoperability and heterogeneity under a single process
modeling� and�or

under centralized control with centralized shared database
enactment�	 Further� much of

the current work is still �on�paper�� i	e	� at the theoretical stages of development	

This chapter is divided into three major parts	 The �rst part
Section �	�� surveys

SDEs and PCEs that address some levels of heterogeneity and�or decentralization	

The second part
Section �	�� gives a detailed account of Marvel� the predecessor to

Oz� from which many concepts
and code� were inherited	 This section is important for the

understanding of Chapters � and �� where the Oz system is presented	 Finally� the third

part
Section �	�� surveys work that has been done in related �elds� namely databases�

heterogeneous processing� and CSCW	

��

��� PCEs

ISTAR ����� one of the earliest SDEs
or �Integrated Project Support Environ�

ments��� provided comprehensive support to the software development lifecycle� including

both management and software engineering	 The main idea in ISTAR is the contractual

approach� in which a �contractor�
e	g	� a group of programmers� provides services to a

client
e	g	� manager�	 The contract must have well de�ned deliverables and acceptance

criteria� and might include additional constraints imposed by the client	 A contractor can

further delegate some of the tasks to a sub�contractor� creating a �contract hierarchy� in

a top�down fashion	 In addition� the ISTAR architecture permits for sub�contracts
and

all of their sub�contracts� recursively� to operate autonomously in di�erent sites� since the

contract databases are distinct and can be operated independently	 Although ISTAR was

not a PCE
it had a somewhat hard�coded process�� its architecture is an important
and

somewhat neglected� step towards decentralization	

Shy� Taylor� and Osterweil were among the �rst to explicitly identify decentralization

as a key environment technology ����	 Their theoretical work draws an analogy between

software development and the business corporation� and they advocate a �federated decen�

tralization� model for PCEs with global support for environment infrastructure capabilities

and local management with means to mediate relations between local processes	 Among

the arguments made for this model
as opposed to �corporate autocracy� or �radical decen�

tralization�� are�
�� The level of global support is not rigid	
�� While the communication

is established under guidelines determined by the global process� the actual communica�

tion is provided and maintained under the control of the local entities	
�� Extensibility�

because integration of processes and services can be implemented gradually	 This prelimi�

nary model� while advocating decentralization� still considers every sub�environment to be

strongly a�liated with the corporation and necessarily abiding by some global rules	 Thus�

autonomy is necessarily restricted a priori	

Heimbigner argues in ���� that just like databases� �environments will move to looser�

federated� architectures 			 address inter�operability between partial�environments of vary�

ing degrees of openness�	 He also notes that part of the reason for not adopting this

approach until recently was due to the inadequacy of existing software process technology	

However� his focus is on support for multiple formalisms	 His proposed ProcessWall ���� is

an attempt to address heterogeneity at the language level	 The main idea in the Process�

��

Wall is the separation of process state from the programs that construct the state� in theory�

multiple process formalisms
e	g	� procedural and rule�based� can co�exist and be used for

writing fragments of a process	 However� decentralization as a concept is not addressed�

and in particular� the process state server is inherently centralized	

Peuschel and Wolf explain why current client�server architectures are inadequate to

support distributed software processes ����	 They identify four alternatives for distribution�

�� hierarchical process organization�
�� distributed process data�
�� distributed process

engines over local area network�
�� distributed process engines over wide area network	

They further propose four architectural approaches to meet these requirements� concluding

that distributed process engines with only partially distributed process data
 including

a common process database that serves as a communication platform among the process

engines
 is best	 Once again� this proposal excludes the possibility of a �shared�nothing�

architecture	

Kernel��r ����� from the Eureka Software Factory project� supports a special case of

process formalism interoperability	 The system identi�es and divides the process into three

distinguished kinds of process fragments� each with a separate process engine
and PML�	

The interworking process engine� MELMAC ����� supports cooperation between teams or

within a team	 An instance of the interaction process engine� WHOW� supports a single

user working with a variety of tools to create� manipulate and delete development materials	

The interoperation support� through the MUSE software bus� behaves like a process engine

in that it controls partially ordered sequences of tool invocations where human intervention

is not required	 Although Kernel��r does not directly support collaboration among multiple

independent processes� MELMAC can� in principle� interface to teams who use another PCE

or who are not concerned with process at all�	

ProcessWEAVER� another spin�o� from the Eureka Software Factory� is a commer�

cial product of Cap Gemini Innovation� with a Petri�net based PML	 Fernstr�om describes

�			in a process� which consists of a set of cooperating sub�processes� every sub�process

can be characterized by the set of �services� it provides and requires from the other sub�

processes� ����	 This sounds remarkably similar to our approach	 However� in the Pro�

cessWEAVER system� �			processes are recursively structured into sub�processes of �ner

and �ner granularity and detail	� In other words� processes are de�ned top�down� and

provide essentially for �ne�grained decomposition of one global process� whereas in our ap�

proach� what is in e�ect the decentralized process of a global environment should be de�ned

��

bottom�up from the
collaborating� processes of the constituent SubEnvs	 Finally� auton�

omy concerns for local process and their artifacts� which is a fundamental requirement in

our approach� is not considered	

SMART ���� is an attempt to provide a methodology and a supporting technology

for the process
as opposed to product� lifecycle through multi�formalism support� whereby

di�erent phases in the lifecycle are supported by di�erent formalisms and corresponding

sub�systems	 Speci�cally� SMART views the lifecycle of a process as consisting of a de�

velopment phase� followed by analysis and possibly a simulation phase� followed by an

embedding phase� in which a process model is instantiated with actual tools and product

data bound to it� followed by an execution and monitoring phase� which feeds back to the

development phase	 Modeling� analysis� and simulation are performed with the Articulator

system ����� process execution is performed by HP�s SynerVision� and Matisse ����
also from

HP� is used to maintain a knowledge�base containing the artifacts that represent the process

models developed in the Articulator� and serves as an integration medium between Artic�

ulator and SynerVision	 Thus� the emphasis is on multi�paradigm support for the process�

and on bi�directional translation� from process models to process
executable� programs�

and from the process execution state back to the process model level	 From a heterogene�

ity standpoint� SMART can be categorized as having some degree of system heterogeneity�

since it integrates three di�erent systems� and formalism heterogeneity� although not for

de�ning di�erent aspects of the process
as in ProcessWall�� but rather for supporting dif�

ferent phases of a prede�ned lifecycle	 However� there is no support for multiple processes

with distinct instantiated products	

TEMPO ���� is a PCE that is designed to support �programming�in�the�many�� i	e	�

projects that involve a large number of people� and therefore its emphasis is on model�

ing and mechanisms for supporting collaboration� coordination� and synchronization be�

tween project participants	 TEMPO provides three main abstractions that facilitate mod�

eling multi�user aspects of the process�
�� hierarchical decomposition of processes to sub�

processes in a top�down fashion� similar to ProcessWEAVER�
�� support for multiple pri�

vate views of the process� through the role concept which allows to de�ne private constraints

and properties� and
�� active and programmable connections between role instances� which

are de�ned and controlled by rules with temporal constraints in addition to pre� and post�

conditions	 TEMPO is data�centered� and is built on top of Adele ����� an active object

management system with data�driven triggering� which enables to realize rule processing in

��

TEMPO	 While TEMPO provides for de�nition of �personal� processes and supports coor�

dination among them� it is still inherently centralized� in that it requires a single database as

the coordination platform� and supports multiple views of essentially a single group process�

de�ned in a top�down fashion	

��� Marvel	 The Predecessor PCE

This section gives a relatively detailed overview of Marvel� for two reasons	 First� to

introduce concepts and terms which will be used throughout the thesis� since large portions

of Marvel were
re�used in Oz	 Second� to clearly distinguish the work that was done in

this thesis from the work that was done earlier in the context of the Marvel project	

In a nutshell� Marvel ���� ��� ��� is a highly tailorable rule�based PCE that supports

project�speci�c de�nitions for the data model� process model� tool envelopes� and coordina�

tion model	 The runtime environment
i	e	� the process engine� has a client�server architec�

ture that supports multiple users and enacts a centralized process on a centralized project

database	 We now discuss each major aspect of the system separately	

����� Data Model

The data model de�nes an object�oriented schema for the product data
the software

system under development� and the process data
additional state information used to track

the ongoing process�	 An object in Marvel has a unique identity and a state associated

with it	 However� it does not contain behavioral �methods�	 The equivalent of methods

are represented as a set of rules� de�ned separately	 Class de�nition supports multiple�

inheritance in the conventional manner� i	e	� the class lattice is a directed acyclic graph�

and subclasses denote specialization of their superclasses and overriding of methods de�ned

on those classes	

Marvel supports four types of attributes� state� �le� composite� and reference links	

The �rst two attributes contain the contents of objects whereas the last two attributes are

used to denote relationships to other objects	 State attributes are used mainly for process

data
although they can be used to hold product data as well�� and can be formed from

a set of primitive types such as integer� string� enumerated� etc	 File attributes can be

either text or binary� and are used usually to maintain product data which is held in �les	

File attributes are implemented as a �le�system path pointing to the �le in a �hidden� �le

��

PROTECTED�ENTITY�� superclass ENTITY�

owner� user�

rule�s perm�string� string � �rwad rwa��� end

AFILE �� superclass ARCHIVABLE	 RANDOMIZABLE	 HISTORY	 PROTECTED�ENTITY�

machines � set�of MACHINE�

config � string � �MSL�� end

MINI�PROJECT �� superclass BUILT	 PROTECTED�ENTITY�

config � string�
 state

options � string�
 state

log � text � ��log��
 file

exec � EXEFILE�
 single composite

files � set�of FILE�
 multi composite

exe � link EXEFILE�
 single link

includes � set�of link INC�
 multi link

afiles � set�of link AFILE�
 multi link

end

Figure �	�� Several Classes from C�Marvel

system	 Thus� end�users access objects in the objectbase which abstract the �le system	

Composite attributes are used to denote an �is�part�of� relationship between objects to

form the composition hierarchy	 Finally� reference link attributes
or simply links� allow any

arbitrary semantic relationship between two objects	 Both composite and link attributes

are typed� and both allow one to specify whether arbitrary number of objects can be linked

by the set of construct� or whether only a single object is allowed to be linked	 The

general structure of an instantiated Marvel objectbase can be viewed as a forest of trees�

each of which represents a composite object� with additional links between objects across

and within the trees	

Figure �	� shows some representative classes from C�Marvel� the process used for

developing Marvel itself	 The MINI PROJECT class inherits attributes from its superclasses

BUILT
not shown here� and PROTECTED ENTITY
part of access control support� see Sec�

tion �	�	��� it contains two state attributes� config and options� both of type string� a

�le attribute named log with a post�x �log� two composite attributes� one single and one

set� and three link attributes	 For example� the afiles attribute speci�es a link to a set of

objects of type AFILE	

��

����� Process Modeling

The process model
in addition to the data modeling� which is also usually considered

part of the process but for the purposes of this discussion is treated separately� is speci�ed in

a rule�based process modeling language� called the Marvel Strategy Language
MSL�	 Each

process step is encapsulated in a rule	 A Marvel rule has a
not necessarily unique� name�

typed formal parameters� and three optional constructs� condition� activity� and e�ects	

The condition consists of two parts� bindings which are used to select objects by

querying the objectbase� and a property�list which is applied to the binding set and must

evaluate to true
in which case the condition as a whole is said to be satis�ed� prior to invo�

cation of the activity	 A rule binding speci�es a quanti�ed variable�
or a derived parameter

in Marvel terminology� to distinguish it from regular rule parameters� to which objects are

bound� a class restriction on the allowed bindings� and a query that determines the binding

set	 The query consists of a possibly complex clause with nested conjunctions and disjunc�

tions of predicates of two kinds
 structural and associative	 Structural predicates navigate

the objectbase to obtain ancestors or descendants of speci�ed types� containers or members

of aggregate attributes� and objects linked to or from other objects	 Associative predicates

query the objectbase to obtain those objects satisfying a relation
equality� inequality� less

than� etc	� speci�ed between attributes of two objects� or between an attribute and a literal	

At the end of the binding phase� each variable is bound to a set
zero� one� or more� of

objects	 The property list is similar in its syntax to the query part of the binding� consisting

of a complex logical clause of associative predicates� but it is applied over the actual and

derived parameters and returns a boolean value	

An activity involves invocation of an external tool to operate on the product data

encapsulated within the bound objects	 Tools are encapsulated via an envelope mechanism

written in a Shell Extended Language
SEL� ����	 If there is no activity� then by de�nition

there can be only one e�ect	 If there is an activity� then in general the invoked tool may have

several possible results mapped one�to�one with the given e�ects	 A non�empty activity

speci�es an envelope and its input and output arguments� which may be literals� status

attributes and�or
sets of� �le attributes	 In addition to output arguments� each envelope

�The speci�cation of variable quanti�cation at the binding phase is merely due to a �aw in the design
of MSL� since it is only used later in the property�list� If the quanti�er is universal� then all objects in the
binding set of that variable must satisfy the condition� and if it is existential only one object in the set must
satisfy the condition for the whole condition to yield a true value�

��

returns a code that uniquely selects one of the speci�ed e�ects	

Finally� a rule�s e�ects are mutually exclusive in the sense that only one e�ect can be

asserted at any rule invocation� as determined by the return code from the activity	 Each

e�ect consists of a set of predicates	 An e�ect predicate assigns the speci�ed value to an

attribute� or applies any of Marvel�s built�in add� delete� move� copy� rename� link and

unlink operations	

A sample rule� taken from C�Marvel� is shown in Figure �	�	 This archive rule

accepts one parameter of class MODULE	 It has six composite binding expressions
lines ��

���� a property�list expression
lines ������� an activity that takes three arguments� each

of which can be possibly bound to a set of objects
line ���� and two e�ects
lines ������	

More explanations about this rule will be given shortly	

Rules are interrelated by means of matchings between assertions in the e�ect of one

rule and predicates in a condition of another rule� which are are compiled into a static rule�

network	 Thus� operations between steps in a process can be implicitly formed by matching

predicates in the condition of one rule and an e�ect of another rule� and the enactment

engine enforces and�or automates the sequencing	 However� the process is not in any sense

limited to a deterministic sequence of steps	
See ���� for discussion of the speci�cation of

alternatives� iteration and synchronization through the conditions and e�ects of rules	�

����� Process Enactment

Enactment is provided in Marvel by chaining	 Forward and backward chaining over

the rules enforces consistency in the objectbase and automates tool invocations	 Enforce�

ment and automation are the two main forms of enactment supported in Marvel	

Marvel�s process enactment is user�driven� with reactive control	 When a user enters

a command with the arguments� the environment applies its overloading mechanism to select

the rule with the same name and �closest� signature to the provided actual parameters

considering multiple�inheritance ����	 Then it dynamically binds objects to the derived

parameters� and evaluates the condition	
dynamic� or late� binding� is an essential feature

of Marvel that allows it to separate rules from the underlying objects	� If the condition

of the selected rule is not satis�ed� backward chaining is attempted� recursively	 If the

condition is already satis�ed or becomes satis�ed during backward chaining� the activity

is initiated	 After the activity has completed� the appropriate e�ect is asserted	 This

��

archive �
m�MODULE��

��

 bindings

�� �and � CFILE
c suchthat �and

�� no�chain �member �
m�cfiles
c��

�� �or �
c�config �
m�config�

�� �
c�possible�config � ������

�� �forall YFILE
y suchthat �and

�� no�chain �member �
m�yfiles
y��

�� �or �
y�config �
m�config�

�� �
y�possible�config � ������

��� �forall LFILE
x suchthat �and

��� no�chain �member �
m�lfiles
x��

��� �or �
x�config �
m�config�

��� �
x�possible�config � ������

��� �forall MODULE
child suchthat �member �
m�modules
child���

��� �exists AFILE
a suchthat �and

no�chain�linkto �
m�afiless
a��

��� �
a�config �
m�config���

��� �forall MACHINE
mc suchthat �member �
a�machines
mc����

��� �

���

 property�list

��� �and no�chain �
m�archive�status � NotArchived�

��� no�forward �
m�compile�status � Compiled�

��� no�forward �
c�archive�status � Archived�

��� no�forward �
y�archive�status � Archived�

��� no�forward �
x�archive�status � Archived�

��� no�forward �
child�archive�status � Archived��

���

 activity

��� � ARCHIVER mass�update
m�log
a�file
a�history �

���
 effect �

��� �and �
m�archive�status � Archived�

��� no�chain �
mc�time�stamp � CurrentTime�

��� �
a�archive�status � Archived���

���
 effect �

��� no�chain �
m�archive�status � NotArchived��

Figure �	�� Example Rule from C�Marvel

��

triggers forward chaining to any rules whose conditions become satis�ed by this assertion	

The asserted e�ects of these rules may in turn satisfy the conditions of other rules� and

so on	 Eventually� no further conditions become satis�ed and forward chaining terminates	

Marvel then waits for the next user command	 Because of the event�driven nature of the

enactment model� the actual parameter�selection for rules invoked through chaining is done

by an algorithm that �inverts� the logic of the bindings of the chained�to rules ����	 This is

in contrast to the data�driven approach� in which the parameters are supplied directly by

the database as a result of data updates	 We will refer from now on to this algorithm as

the inversion algorithm	

Predicates in e�ects of rules are each annotated as either atomicity or automation	

By de�nition� all forward chaining from an atomicity predicate in an asserted e�ect to rules

with satis�ed conditions and empty activities is mandatory	 In contrast� forward chaining

from an automation predicate or into any rule with a non�empty activity is optional� and

can be explicitly restricted through no forward� no backward or no chain directives on

individual automation predicates	 It is important to understand that only automation

chaining is optional� users are still obliged to follow some legal process step sequence implied

by the conditions and e�ects of rules� whether through manual selection of commands or

automation chaining	

An automation predicate is enclosed in parentheses �
			��� and may optionally be

preceded by a chaining directive	 An atomicity predicate is enclosed in square brackets

��			��	 For example� the property list of the archive rule shown in Figure �	�
lines ���

��� consists solely of automation predicates	 It �rst checks that the MODULE parameter

represented by the �m symbol� has not already been archived� and then permits backward

chaining to attempt to compile the MODULE parameter and�or to archive any of the CFILE

�c symbol�� YFILE
�y� or LFILE
�x� components� or nested MODULEs
�child�	 However�

the �no forward� directive in lines
������ prevents from automatically chaining into this

rule from other rules whose assertions might otherwise satisfy these predicates	 Thus� there

is full control over the degree of automation in rule invocations	

The �rst e�ect of this archive rule
lines ������ has two automation predicates and

one atomicity predicate	 The atomicity predicate guarantees that whenever this archive

rule is successfully executed and its �rst e�ect selected� then any other rules whose conditions

are satis�ed by setting the status of a related AFILE to Archived will also be executed	 If

for some reason one of these rules
 or one of their own such implications
 could not be

��

completed� then the whole recursive atomicity chain would be rolled back as if none of its

rules had ever been �red	 In contrast� no such atomicity requirements are imposed by the

assertion of automation predicates	 We will return to discuss automation and atomicity in

more detail later in Section �	�	�	

����� Synchronization and Coordination Modeling

There has been extensive work on support for advanced Concurrency Control
CC�

in Marvel	 In fact� Marvel�s architecture is heavily in�uenced by� and geared towards�

supporting �exibility in the selection and application of CC policies
see �����	 For exam�

ple� the separation between data and transaction management� as well as the separation

between con�ict detection
lock management� and con�ict resolution within transaction

management� enhances the �exibility in tailoring concurrency control policies	 An addi�

tional innovation in Marvel�s support for concurrency is that it allows both the dimensions

and the contents of the lock compatibility matrix to be modi�ed	 Consequently� Marvel

can determine� on a per�project basis� which locks
from the matrix� should be applied on

certain operations	 Thus� concurrency control can be con�gured to support a wide range

of policies and lock modes	 Finally� Marvel provides a programmable interface to model

coordination among team members� by means of a Coordination Rule Language
CRL�

due to Barghouti ���� that de�nes how to resolve lock con�icts in accessing data	 This

allows speci�c semantics�based CC policies to be implemented	 However� as mentioned in

the introduction� the coordination is among users that operate within the same process	

Moreover� this can be viewed as an a posteriori coordination� i	e	� coordination rules are

called only after a con�ict has arisen� which limits the modeling capabilities	 These aspects

are currently addressed by Heineman ����	

����	 Process and Schema Evolution

Process evolution in PCEs is analogous to schema evolution in a database manage�

ment system	 An initial process model is developed based on a requirements analysis for the

project� but changes are often needed later on	 By this point� however� the process may be

already instantiated with process state re�ecting the progress through the installed process	

To replace the process model� it is necessary to modify this state so that it is possible to

continue work using the new process from the point at which work using the old process left

��

o�� while ensuring that the process state is semantically as well as syntactically appropriate

with respect to the new process	 In particular� it is usually undesirable to �start over� with

a pristine state and� in general� incorrect to continue work using the previous process state

�as is�	 Further� it is tedious and error�prone to modify the process state manually	

In PCEs that support data modeling� schema evolution is a necessary adjunct to

process evolution� because changes in the process model often mandate changes in the

schema specifying the types and composition of the process state and possibly also product

data representation	 The need for a schema evolution mechanism is clear� when a structure

of a data element
e	g	� a relation in a relational database� or a class in an object�oriented

database� is modi�ed� the pre�existing data that was de�ned according to the previous

de�nition of the structure must be upgraded to conform with the new de�nition in order to

be accessed properly	 Some structure modi�cations� like adding primitive �elds to a class�

can be handled relatively easily by adding those �elds to all instances with some prede�ned

default values	 Other structure changes� like renaming �elds
but wanting to keep the old

values�� changing the types or the allowable ranges of �elds� and deleting �elds� are harder

to implement	 And �nally� changes that update the class hierarchy
adding or removing

superclasses from a class de�nition� or the composition hierarchy
e	g	� removing a child

attribute which might imply disconnecting the hierarchy� are hardest to implement	

In most cases� however� the di�erences between the old and new schemas can be

syntactically analyzed to enable subsequent automatic update of the database	 This is the

gist of the schema evolution mechanism in Marvel� implemented as part of the Evolver

utility	 It consists of two components� a front�end� based on an algorithm adapted from

the Orion object�oriented database management system ���� that compares the old and new

schemas and either produces a �delta�
which is also displayed to the administrator to

allow him�her retraction if evolution is unacceptable� or rejects the evolution if it contains

changes that are not supported by the Evolver� and a back�end that actually updates the

objectbase according to the new schema	 For more details on Marvel�s schema evolution�

see ����	

In contrast to schema evolution� process evolution is much more complicated	 First�

it is not clear how to technically analyze the syntactic �delta� between the two process

models and represent it in a form that can be used for evolution	 Second� it is far from clear

how to analyze and identify the semantic di�erences between the old and the new models

in order to properly update the process state	 Third� even if a semantic �delta� is feasible�

��

it is not clear whether to apply the changes on none� some� or all of the relevant process

states	

The general approach in Marvel is based on the notion of process consistency� and on

ways to identify inconsistencies that might be introduced as a result of changes that were

made to the process model	 We summarize here our general approach and solution to this

problem	 A detailed discussion of this topic can be found in ���� ���	

������� Process Consistency and Enforcement

Process consistency refers to constraints that are de�ned in the process
either im�

plicitly or explicitly�� and are assumed to always hold for any relevant process state in any

instantiation of the process	 The process state is deemed consistent if all constraints have

indeed been enforced on all past process steps� and inconsistent otherwise	 Thus� an under�

lying premise here is that under normal circumstances� process constraints are enforced by

the process engine	 Adding process steps
or tasks� to an existing process might introduce

new constraints� some of which could potentially make the process inconsistent with respect

to the existing process state	 For example� suppose that we want to add to a development

process a new static code�inspection step	 The associated new constraint in the process is

that source code can be checked�in to a stable �master� repository only after it passed suc�

cessfully code�inspection	 Then� the source code which is already in the master repository

violates the new constraint and thus introduces some inconsistency	 Thus� a systematic

method to identify inconsistencies and generate a �process delta� can be used as a basis for

process evolution	 However� such analysis does not imply necessarily how to repair it	 In the

above example� for instance� it may not be reasonable to require manual code�inspection of

all source code in the master area that was there before the new constraint was introduced	

The gist of our approach is to generate a list consisting of every process step a�ected

by the new constraints� and give the user the opportunity to enact each such process step on

none� some or all data items of the relevant type	 The goal is to apply the new constraints

retroactively to the existing process state� in order to make the state consistent with respect

to the new constraints� but not necessarily by following all the steps that would be required

under normal process execution	

��

����
 Access Control

Access control is a mechanism that allows to specify by whom� and in what manner�

artifacts can be accessed� independent of a particular application that accesses them or a

particular time at which they are accessed	 In other words� it is a persistent property of

the artifacts	 An example of such a mechanism is the Unix permissions on the �le system	

Marvel employs a similar access control mechanism at the object level	 The original

idea was to build a �exible mechanism that could be tailored on a per�project basis to

meet the demands of a particular environment� much like other aspects of process modeling	

However� since such a mechanism necessarily involves low�level operations on the objectbase

 including interaction with the hidden �le system and dynamic checks on the objectbase

each time an object is accessed
 this approach would require to expose those operations

to the modeling language� involving extensive modi�cations to both MSL and the process

engine	 Alternatively� separate notations and interpreters could be built for access control

speci�cations	

As neither of these approaches was feasible and since access control was treated in

Marvel less as a research topic and more as a bare necessity� the approach that was taken in

Marvel was a compromise	 The de�nition of access�control is done using the notations used

to de�ne normal data attributes and classes� but the manipulation of the permissions data

is done through a set of built�in operations� and the actual checking of permissions is also

hardwired	 Representing the permissions data by normal class�attribute de�nitions enables

one to potentially access and manipulate the permissions through MSL rules� analogous

to the way structural operations in Marvel have both built�in and rule�based interfaces	

However� this approach also introduces the problem of potential security violations through

the process� which would have to be addressed before allowing such rule�based access	

In order to realize protections� two important concepts were added to Marvel� the

notion of a user object� to which protection information can be attached� and the notion

of a permission group� similar to group permissions in Unix	 The natural way to represent

users and groups was to use Marvel�s data de�nition language and objectbase to de�ne and

store user objects� respectively	 This also avoided the need to hard�code any notion of users

or groups within the kernel	 The protection model thus de�nes built�in classes to represent

users and user�groups
called USER and USER GROUP� respectively� that contain the necessary

permission information
e	g	� a mask string attribute that de�nes the default permissions

��

on an object created by a user� and are structured in a �user tree�	 The representation

of users and groups in the objectbase goes beyond access control� as it can contain any

information that pertains to that user
e	g	� personal data�	 Indeed� several instantiations

of Marvel environments de�ned specialized sub�classes of the USER class with additional

information� for example to represent roles	

In addition to de�ning users and groups� the protection model must associate per�

missions with each individual object in the objectbase	 Once again� to avoid hard�coding

of permissions� it was implemented by adding a generic class called PROTECTED ENTITY�

such that only classes that are de�ned as subclasses of PROTECTED ENTITY are protected	

Therefore� the protection mechanism is entirely optional	 In particular� if there is no need

for such a mechanism
for example� in a single�user instantiated process� then the overhead

associated with protections is totally eliminated	 Another bene�t of this approach is that

by using the Evolver� protections can be easily added to� or removed from� an environment

instance by simply adding PROTECTED ENTITY as a superclass to all classes and evolving

the objectbase
the addition of the user tree should not require evolution if no such tree

pre�existed�	 The MSL data de�nitions for protection are given in Figure �	�	

The runtime behavior of the protection model is as follows� when a user logs in to a

Marvel environment� the server associates the user with his�her appropriate USER object� if

there is one	 The matching between a user and his user object is done via the Unix user�id

which is stored in each user object
there is no such association with Unix groups� though�	

If there is no USER object for that user� he�she is associated with the anonymous user object

with default guest permissions	 If a user logs in as an administrator� he�she is associated

with the special administrator object rather then the user object	 When a user accesses

any object either directly from the client� or indirectly through chaining� the server enforces

the protections by matching the mask of the user�s USER object with the accessed object�s

permissions attribute	 The actual checking takes place in the transaction manager to ensure

that any access to an object is checked	 The check occurs before any other operation� and if

the objects� permission denies the requested access to the object� the associated transaction

aborts	 For a detailed discussion of the access control mechanism in Marvel� see ����	

����� Marvel ��� Architecture

��

strategy protection

imports none�

exports all�

objectbase

PROTECTED�ENTITY�� superclass ENTITY�

owner� user�

perm�string� string � �rwad rwa���

end

Login�Register�� superclass PROTECTED�ENTITY�

group�list� GROUP�LIST�

user�list� USER�LIST�

end

GROUP�LIST�� superclass PROTECTED�ENTITY�

glist� set�of USER�GROUP�

end

USER�LIST�� superclass PROTECTED�ENTITY�

ulist� set�of USER�

end

USER�GROUP�� superclass PROTECTED�ENTITY�

grp�name� string�

end

USER�� superclass PROTECTED�ENTITY�

groups� set�of link USER�GROUP�

mask�string� string � �rwad r�a���

end

end�objectbase

Figure �	�� Class de�nitions for protections

��

SERVER

LOADER
Task Management

Synchronization

CLIENTProcess (MSL)

Synch. (Tables)

Coordination

(CRL)

Tool Integration

(SEL)

CLIENT

Data Management

Query
Processor

Rule
Processor

Command
Processor

Coordination

Transaction Manager

Lock Manager

Object Management

File
Manager

Storage
Manager

User Interface

Objectbase
Display

Command
Processor

Activity
Manager

CLIENTCLIENTCLIENT

EVOLVER

Process &
Data

Evolution

(queries)

Unix

Administrator

Client

Scheduler

Session Manager
M
E
S
S
A
G
E

S
E
R
V
E
R

Manager

Figure �	�� Marvel �	� Architecture

Marvel�s architecture is illustrated in Figure �	�	 The architecture follows the client�

server model� where the server is centralized and manages the data� process� and synchro�

nization� and clients manage the user interface
including objectbase browsing� and activity

invocation by forking operating system processes to execute external tools using the enve�

lope wrapping mechanism	 Each client can support multiple threads of control and clients

can be distributed across machines� but the server and all of its clients must reside in the

same Internet domain and share the �le system	 Every user command
besides a small

number of commands that are handled solely at the client� is transferred to the server�

which validates the request and possibly backward�chains to other rules� manages the ac�

cess to objects
including concurrency control�� sends the activity to be carried out to the

client� and switches context to service new requests	
The actual scheduling algorithm is a

simple FIFO queue	� Upon completion of an activity� the server attempts to forward chain

to other rules� which in turn may lead to more interactions with the client to execute more

activities� and so forth	

Various built�in
process�independent� operations are available in every instantiated

environment� with proper user interface	 Some of the important services include� a set

of commands for structural objectbase manipulation
implemented as built�in rules that

embed the corresponding built�in e�ects� e	g	� add object�� which could be tailored on

��

a per�process basis but the default basic operations are always available� an ad�hoc query

processor� a browser� and several process�inspection and animation utilities� such as the rule�

network navigator and the display of class and composition hierarchies of a given schema	

Finally� additional components of the system include� the Loader� available to ad�

ministrators� which translates the process speci�cations and loads them into the server�

the Evolver� discussed earlier� and marveld� a daemon responsible for activating a server

on a given environment upon client request when the environment is inactive
the server

normally shuts down when no clients are connected to it�	 The rationale behind the Marvel

architecture can be found in ����	

This architecture is adequate for a small to medium number of people interacting

with the server through clients in the same local�area network
we have experienced using

Marvel successfully with up to �� concurrent clients and � users�	 But as the number

of
simultaneous� clients grow� the server becomes a bottleneck	 More importantly� the

architecture is inherently single�process� and dictates that all users must work essentially

within the same process� or at best allow minor deviations but still from the same process�	

And �nally� Marvel requires all entities to reside in the same domain
although clients

can reside in di�erent hosts within the same domain�	 Thus� Marvel lacks the necessary

architectural support for scale and heterogeneity	

��� Other Domains

Autonomous decentralization� heterogeneity� and interoperability� are very active re�

search areas in several related �elds� including the database community
more speci�cally

Heterogeneous Distributed Database Systems
HDDB��� Computer Support for Collabora�

tive Work
CSCW�� and Heterogeneous Processing
HP�	 We brie�y summarize each �eld�

give some examples� and di�erentiate them from the research on PCE decentralization	

����� Heterogeneous Distributed Data Bases
HDDBs�

The relevance of work in HDDB to DEPCEs is analogous to the relevance of
central�

ized and distributed� database research to PCEs	 Just as PCEs generally impose speci�c

requirements on the representation� storage� and
concurrency� control of the persistent

�The actual implementation does not support deviations at all� See 	�
 for a design of such a mechanism
for Marvel�

��

artifacts being developed ����
also known as software engineering databases�
 DEPCEs

might similarly require special�purpose modeling and mechanisms to support various de�

grees of heterogeneity and site autonomy with respect to the persistent artifacts which are

manipulated by the environment	 The database community has de�ned this �eld as feder�

ated� or heterogeneous databases� which permit a high degree of site autonomy ����	 The

heterogeneity is usually with respect to one or both of two criteria� system and schema

the third �standard� criteria� namely language heterogeneity� is embedded in the system

criteria since the data de�nition and manipulation languages are usually strongly associ�

ated with the underlying system�� the sites may employ the identical system but devise

their own schema independently
also known as a homogeneous federation�� and�or they

may select di�erent database systems from among those supported by the federation �glue�

heterogeneous federation�	

UniSQL�M is an HDDB that assumes a common relational data model to which

all component database systems convert their schemas	 In ����� Kim describes a complete

framework for classifying schematic and data heterogeneity as a basis for a later �homoge�

nization� of the databases	 The general approach to addressing heterogeneity is by providing

an underlying common formalism into which the various formalisms translate	 The main

di�culty with this approach is that the common data model and the formalism
in this

case� relational and SQL� respectively� must be expressive enough to support a wide variety

of data models and languages
 which in many cases might not be feasible	

Pegasus ����� from HP laboratories� is an HDDB that uses object�oriented technology

to extend the schematic integration approach in an attempt to alleviate the di�culties with

arbitrary mappings of data models and to increase local autonomy	 First� local schemas

need not be mapped completely� only imported
sub�schemas are integrated	 This allows

one to hide parts of the local schema
and the instantiated data� that are either hard

to map or for privacy concerns	 Second� the integrated schema is not necessarily global	

Instead� Pegasus builds a hierarchy of integrated schemas that apply to a subset of the local

databases and enables a more re�ned integration	 The approach for integration is based

on the notion of �upward�inheritance�� where types can be superimposed to generalize on

local types in di�erent schemas
and di�erent databases�	 Finally� in addition to object�

oriented data abstractions� Pegasus also exploits object�oriented function abstractions to

enable non�trivial integration of schemas by attaching optional functions to support the

mapping	

��

����� Heterogeneous Processing

Heterogeneous Processing is an emerging �eld concerned with architectures for dis�

tributed systems that support heterogeneity and interoperability of autonomous entities	

The main focus in this �eld is on
�� investigating system level heterogeneity� and
�� pro�

viding solutions to the general heterogeneity problems by exploring integration at the system

level	 The main relevance of this �eld to PCE research and technology is in the area of

architectures for decentralized and heterogeneous PCEs	 The analysis and identi�cation of

requirements for DEPCE�speci�c architectures is another research issue that involves both

communities	

One of the prominent speci�cations for heterogeneous processing systems is OMG�s

Common Object Request Broker Architecture
CORBA� ����	 The key idea in CORBA is to

insert a programmable intermediary level between clients that request to invoke operations

on some
active� objects
which may be viewed as servers� and the object implementations�

thereby providing an infrastructure that enables to �glue� heterogeneous components and

mix and match between them	 The heart of the intermediary mechanism is the Object

Request Broker
ORB�� which interconnects objects and clients
location� message transfer�

etc	�	 Object implementations specify their interface in an Interface De�nition Language

IDL� that is independent of the programming language in which the object is implemented�

and is understood by the rest of the system	

InterBase ���� is a system that addresses the
mostly data� heterogeneity problem

by using integration at the system level	 This is in contrast to most HDDBs that provide

integration at the schema level	 Moreover� it can be viewed as a control�oriented approach

as opposed to data�oriented	 The main idea in InterBase is that each subsystem supplies

a programmable Remote System Interface
RSI� that serves as an intermediary between

the local sites and the �federation�� and global transactions are supported through a dis�

tributed transaction manager that interacts with these RSIs and coordinates the concurrent

execution of global transactions� thereby serving also as a coordination platform	

To summarize� it can be seen that the �eld of heterogeneous processing� is also

seeking to use data and control abstractions to cope with system heterogeneity and interop�

erability� by trying to hide everything that is not pertinent to interoperability� minimize the

�exposure� to global control� and determine the desired exposure at each site autonomously	

��

����� Computer Support for Collaborative Work
CSCW�

CSCW focuses on support for human�human interactions� including social aspects of

collaboration and tools to enhance collaboration and coordination� possibly among phys�

ically remote group members	 As such it also borders with the user interfaces
or more

generally Human Computer Interaction
HCI��� Multimedia and the Virtual Reality com�

munities	 CSCW is related to PCE technology because software development is inherently

a collaborative task	 The interesting challenge from the PCE perspective is in embracing

CSCW technologies into the process framework	 Some work in that direction is given in

Sections �	�� �	�� Chapter �� and ����	

Suite ���� is a system that provides an infrastructure for building multi�user and

multimedia tools	 Suite provides mechanisms to support �exible and �ne�grained concur�

rency control
needed to enable simultaneous sharing of data in multi�user applications��

synchronous and asynchronous collaboration facilities� caching of user�interface state at lo�

cal workstations
to reduce communication overhead�� coupling of user�interface states of

di�erent collaborators� and audio and teleconferencing annotations for multi�media collab�

oration	 FLexible Environment for Collaborative Software Engineering
Flecse� ���� is a set

of collaborative software engineering tools built on top of Suite� intended to support prod�

uct development of a group of geographically�dispersed engineers� with focus on multi�user

tools such as editing� debugging� and versioning	 The technological idea is to provide the

local user an interface front�end and a cached state of the tool
provided by Suite�� while

manipulating the actual tool�s data and state in a central location	 Flecse can be considered

essentially as a toolset� without integration mechanisms or policies regarding their invoca�

tion	 This� however may be bene�cial when considering the integration of the tools within

a PCE	

An example of a full blown CSCW system is Conversation Builder
CB� ����	 The

main concept in CB is that of a conversation� which is a context in which a user performs

its actions
�utterances��� and can potentially a�ect other users participating in the same

conversation through a shared conversation space yet still protect their private conversation

space	 An interesting capability of CB that most CSCW systems lack� is the ability to spec�

ify activities and their interrelations using protocols� which are state�machine descriptions

of the �ow of the conversations	 Thus� a limited form of tailorability and collaboration

modeling is provided	 The architecture of CB is centralized� with a shared conversation en�

��

gine
analogous to process engine in PCEs� with which all clients communicate	 It is based

on a multi�user FIELD�like message bus that serves as the control�integration mechanism	

CB has been used in several application domains� including con�guration management and

code inspection� and has some overlap with PCE concepts	 However� the emphasis in CB

is on user�user collaborations� not the software process in general� and it does not have any

form of enactment	

Finally� Media Spaces ���� is a multi�media project at Xerox PARC that supports a

virtual environment in which people that are physically dispersed can feel and operate as if

they were co�located	 The speci�c approach to reaching virtual reality is based on providing

non�activity�speci�c oriented environment
such as �chance�encounters��� in addition to the

standard activity�oriented support
e	g	� video conferencing�	 The
remote� relevance of this

work to our research is mainly in motivating the PCE community to explore ways in which

such technologies could be useful for software development� and in integrating them into

PCEs� with proper modeling and enactment support	

����� Summary

What distinguishes research in DECPEs from the above domains� is the fact that

heterogeneity� autonomy and interoperability have to be addressed not only in the context

of architectural support
Heterogeneous Processing�� data integration
HDDBs�� and tools

for human collaboration
CSCW�� but in the context of the modeled process that oversees�

integrates and assists in the invocation of multi�user tools� on heterogeneous data� and on

behalf of� and with the participation of� multiple collaborating human users	 Furthermore�

the challenges in this research are to �nd suitable notations� mechanisms� and infrastructures

that support all the above in a �exible and project�speci�c manner	

��

�

The Formal Decentralized Model

Chapter � provided the motivation for why decentralized environments should be

investigated� and imposed some requirements on how to build them	 In this chapter we will

show how this can be done� by introducing a general formal model for process interoperabil�

ity	 The model is both language and system independent and is in principle applicable to

a wide range of Process Modeling Languages
PMLs� and Process centered Environments

PCEs�
as will be seen in Section �	��� although in a particular language�system only a

subset of the model�s capabilities might be realized	 Chapters � and � will show a particular

realization of the model in Oz	

The high�level approach taken in this thesis to meet the challenges described in the

introduction� is to supply an abstraction mechanism whereby multiple possibly pre�existing

processes can be encapsulated and retain security of their internal software artifacts� tools�

and steps� while agreeing with other processes on formal interfaces through which all their

interactions are conducted on shared data	 Thus� another perspective on process modeling

is that process models� being encoded in formal notation� can be used as a sound basis for

formally modeling interoperability among processes	 Furthermore� multi�process enactment

engines can support the execution of collaborative inter�process activities in the same way

that single�server enactment engines support the execution of single processes	 This thesis�

then� starts out from the premise that process modeling is in general a viable technology�

and asserts that inter�process modeling and enactment� as invented in this thesis� is a viable

technology as well	

��

Some intuition to the decentralized model may be gained by the �international al�

liance� metaphor which will be used occasionally in the thesis	 In such an alliance� the

default is for independent countries
processes� to operate autonomously and collaborate

interoperate� only in accordance with prede�ned treaties	 The actual collaboration is mod�

eled as a summitmeeting� where preparations to the summit and consequences of the summit

are performed independently
according to private sub�processes� and the summit itself is

performed cooperatively
according to a shared sub�process�	

We begin with de�nitions of terms and a formalization of concepts that are used in

the rest of the model� followed by discussion of the formal model for de�nition and execution

of decentralized processes� followed by application of the model to various types of PMLs�

discussion of groupware support� and conclude with possible extensions to the model	

��� De
nitions

The purpose of this section is to establish a common terminology to be used con�

sistently throughout the thesis	 It is particularly important to clarify the meaning of the

heavily overloaded term �environment�� and to distinguish it from other concepts	

����� PCEs� Process Models� and Environments

As mentioned in the introduction� a Process Centered Environment
PCE� is a sys�

tem in which processes are modeled and enacted� and a process model is an actual de�nition

of a project�speci�c process� as speci�ed in the Process Modeling Language
PML� supplied

by the PCE	 The PCE may supply �base� process models which are then tailored to project�

speci�c needs� or processes can be written from scratch to support a speci�c project� but this

distinction is irrelevant to the ensuing discussion	 While a process model tailors a generic

process
if any�� it is a static entity which does not represent execution� only de�nition	

A process model can be instantiated� by loading it and binding to it real artifacts�

tools� users� and any other system bindings which are required by the PCE in order to

initialize it for execution�	 An instantiated environment
or environment instance� is an

enactable process model	 It can be viewed as the loaded �core image� of a process model	

However� it usually maintains persistent data and state that lasts across
operating system

�A process can also be initialized for simulation� in which case the bindings are to virtual or simulated
artifacts� users� tools� and so forth�

��

process� executions of the process model	 For brevity� we shall call an instantiated envi�

ronment simply an environment	 This term should not be confused with the term PCE�

which refers to the system on which
instantiated� environments run	

Thus� a process� lifetime begins when it is initially de�ned as a process model	 Af�

terwards it is loaded and instantiated for execution
perhaps with intermediate testing and

analysis steps�� at which point it turns into an instantiated environment	 Note that the

same process model can be instantiated in multiple environment instances	 At some point

during its execution� the process model might need to be re�ned� e	g	� because of feedback

from the environment or new requirements� in which case it is modi�ed and then reloaded�

although this time the persistent process state and product database have to be evolved to

conform to the new process model	

����� A Generic Process Context Hierarchy

The following is a generic de�nition of a three�level hierarchy of nested contexts

within a single process	 A particular PML might have more or fewer levels� but we assume

that there is some mapping into these core levels�

�	 Activity
 This level is where the PCE interfaces to actual tools� including

input�output data transfer with respect to the tools	 This is sometimes done

through wrappers� or envelopes	

�	 Process�step
 This level encapsulates an activity with local prerequisites

and immediate consequences
if any� of the tool invocation� as imposed by

the process	 For example� in the FUNSOFT Petri�net based PML ����� a

process step corresponds to a transition along with its
optionally� attached

predicates� in the Articulator task graphs ����� this level corresponds to a

node with its predecessor and successor edges� and in rule�based PMLs�

a process step is represented by a rule with pre� and post�conditions	 The

process�step level may also supply the mechanism to interface amongmultiple

activities in a process	 For instance� in rule�based PMLs� a post�condition

of one rule is matched against a pre�condition of another rule to determine

possible chaining� similarly� the �ring of a Petri�net transition can enable

another transition	

��

�	 Task
 This level is de�ned as a set of logically related process steps that

represent a coherent process fragment	 Depending on the speci�c PML and

PCE�
�� there are typically some ordering constraints� or work�ow� among

the activities or process steps of a task�
�� parts of a task might possibly

be inferred dynamically� emanating from an entry activity or process step

selected by the user� and
�� a task might be partially carried out automat�

ically by the PCE on behalf of the user� usually by triggering the inferred

activities or steps	 The task level may be explicitly de�ned in the PML

through a special notation� or may be implicitly de�ned through the local

prerequisites�consequences in the process�step level� or both	 For exam�

ple� the Activity Structures Language ���� speci�es �local constraints� using

rules
the form of process steps�� and �global control �ow� using constrained

expressions
explicit tasks�	 In a Petri�net PML� the task level typically

corresponds to a subnet� if such a construct exists	 Tasks may be further

decomposed into subtasks	

����� A Multi�User� Single�Process Environment

The following is a formal de�nition of a single�process environment	 It is a minimal

de�nition� in that it speci�es only the ingredients which are necessary for our model	 Thus�

our goal here is to include as many PCEs as possible� but at the same time identify
families

of� PCEs which cannot possibly �t in the model	

An
instantiated� environment E is de�ned as a quintuple�

E � S�D� T� U�P �

Where�

� S
 A schema representing data types for modeling the product and process

data manipulated by the environment	 Note that this requirement excludes

environments with no data modeling support
e	g	� Synervision �����	 Fur�

thermore� the schema must support the notion of an �object� as explained

below	 However� there are no further requirements on the expressiveness

of the data de�nition language� and in particular� it can either be a sub�

language of the PML� or a separate language	

��

� D
 A database storing a set of objects� each belonging to a certain type

or class� from S	 This component requires persistent storage for at least

the process data� and possibly for the corresponding product data
the latter

could alternatively be maintained in a separate database or in the native �le

system� but should be identi�able from the process data�	 As noted above�

the database should be object�based� in the sense that data elements are

typed
or classi�ed�� they have unique identity� and they can be referenced

and manipulated by the process	 Requiring an object�based project database

does not seem to be a severe restriction� though� as most existing PCEs

tend to use object�based databases
Adele�� ����� Merlin ������ SPADE ����

Arcadia ����� Matisse ����� to name a few�	

� T
 A set of tools being used in the environment	 The tools can be o��the�

shelf� or customized to work in the PCE� but in either case it is assumed

that the PCE has means to invoke those tools from within the environment

through process activities	

� U
 A set of users using the environment	 No built�in roles or hierarchies

are assumed to be attached to users� except for the concept of environment

administrator� who de�nes and can modify each of the elements in E
anal�

ogous to the role of a database administrator�	

Note that this component implies an important requirement on the under�

lying architecture� it must support multiple users sharing the instantiated

process� possibly simultaneously	

� P
 A set of activities�steps�tasks and their inter�relationships� which to�

gether comprise the process model	 They can be invoked either manually

by human end�users� or automatically by the process engine	 Each activity

encapsulates a tool from T � with formal parameters from S� and actual pa�

rameters from D	 An activity is not required to be bound to speci�c users

or roles from U � although such a requirement can be imposed by a speci�c

implementation or a speci�c process de�nition	

As can be seen� the de�nition above imposes some architectural requirements on the

PCE	 These will be fully discussed in Chapter �	 For the time being� it is su�cient to note

��

that a PCE supporting this de�nition of an environment must include�

� Data modeling� repository� and management
including concurrency�

� Communication services

� Tool integration mechanisms

� Task�Process management

� User interface

� Translators and�or interpreters for the process and data models

Hence� with the exception of the last item� these are the same components as in the

�toaster� reference model for general SDEs ����	 The key di�erence is that by using the

translator and loader� some or all of the above components can be tailored� and are not hard

wired into the system	 Indeed� one of the architectural challenges in building a DEPCE is

to preserve the modi�ability property� which� as evidenced in ����� is the most important

property in determining the quality of the architecture	

Based on the above de�nitions and requirements� a high�level view of an architecture

of a single�process PCE with an instantiated environment is depicted in Figure �	�	 It

consists of a database server managing the process schema and data� a tool server integrating

the project�s tools� a process server enacting the de�ned process� a client�user interface� and

a communication layer connecting all components	 A typical interaction with the PCE

is as follows� an end�user from U initiates a task from P by invoking an activity that

encapsulates tool
s� from T � on a set of data arguments from D that belong to classes from

S	 The process server receives the request� and depending on the speci�c installed process

and other ongoing activities� determines what to do before� during and after the requested

activity� involving the data and tool servers which can also interact directly with the client	

������� A Sample Single�Process Environment

The following is a speci�cation of a sample environment� E�� that supports a code

change sub�process
taken from an actual Marvel process model used to develop Oz�	 For

simplicity� only that sub�process is presented here	 E� is de�ned as�

E� � S�� D�� T�� U�� P� �

��

client client client

Process
 Server

 Data
Server

 Tool
Server

Environment
<P,S,D,T,U>

Communication

Figure �	�� A Generic Single�Process Environment

where�

S� f FILE� LIB� WORKSPACE� EXEFILEg

D� f IssyWorkSpace� IssyExe� ServerLib� ClientLib� server	c� client	c� server	h�

client	h� server	h	local g

T� f rcs� emacs� cc� lint� gdb� inspect tool� tags� ar� �nd dep� list dep� latex g

U� f israel� heineman� pds� popovich� tong g

P� is represented by the graph in Figure �	�	

A change sub�process consists of issuing a Reserve activity to check�out a source

�le from some master�area
maintained by another sub�process not mentioned here� to

a local workspace� followed by the Outdate activity that out�dates the local workspace�

thereby invalidating any local binaries that were constructed in prior changes� followed by an

Edit�LocalRef�Analyze�Compile�Build�Debug�Edit cycle�� followed by the unit�test

task
marked in black�box in the �gure to denote an entire sub�task which is not expanded in

�
LocalRef is a utility that checks that relevant master�area artifacts have not been updated since the

reservation took place�

��

Edit(FILE)

Analyze(FILE) Compile(FILE)

Build(PROJECT, LIBS)

Debug(EXEFILE)

Deposit(FILE)

Outdate(WORKSPACE)

LocalRef(FILE, WORKSPACE)

Reserve(FILE, WORKSPACE)

MASTER−BUILD

t
UNIT−TEST

Figure �	�� Change Sub�Process

this example�� a deposit activity� and a master�build task� also not given here	 Forward

edges represent the expected �successful� �ow of the process� and backward
dashed� edges

represent the �ow of control when activities �fail�
e	g	� unsuccessful compilation�	

����� A Multi�Process Environment

A multi�process decentralized environment is formally de�ned as

fEig i � � � �n

where each Ei is a single�process environment as de�ned in the previous section	

In addition� a multi�process environment has some
modeling and enactment� facilities for

��

Wide Area Network

client client client

Process
 Server

 Data
Server

 Tool
Server

Environment
<P,S,D,T,U>

Communication

Remote
Data
Server Inter−

Process
Server

Remote
Tool
Server

client client client

Process
 Server

 Data
Server

 Tool
Server

Environment
<P,S,D,T,U>

Communication

Remote
Data
Server

Inter−
Process
Server

Remote
Tool
Server

Environment
<P,S,D,T,U>

c
o
n
n
e
c
t
i
v
i
t
y

c
o
n
n
e
c
t
i
v
i
t
y

Figure �	�� A Decentralized Environment

environment and process inter�connection and inter�operability	 This is the main subject of

this chapter	

Site autonomy and operational independence impose a strong architectural require�

ment� it must be a �share�nothing� architecture	 This means not only that processes are

private� the data is also disjoint� and all inter�process communication is performed through

message passing	 This is in sharp contrast to the �blackboard� or shared�memory approach

adopted in the single�process environment with respect to the multiple clients� in which

multiple entities operate on shared data using a centralized process	 While the data is

disjoint� it must nonetheless be accessible by remote SubEnvs in order to enable process�

interoperability	 Thus� we assume that the underlying PCE has the necessary mechanisms

to reference and bind remote data objects to local activities� consistent with the �global�

browsing� requirement
see Chapter � for an actual implementation of these�	 Driven by

autonomy requirements� however� the data in each SubEnv is private by default� and is said

to be �owned� by its local process	 Thus� access to both process and product data cannot

be made from a remote process without prior �permission� from the owner process	

��

The high�level architectural view of a generic decentralized PCE with a three�site

decentralized
instantiated� environment is depicted in Figure �	�	

Each local environment consists� in addition to the single�process components
as

outlined in Figure �	��� an inter�process server� a remote�data server� a remote tool server�

and a connectivity server
along with a possible connectivity database� that enables SubEnvs

to connect to� and communicate with� other SubEnvs participating in the same
global�

environment	 These elements together form the necessary infrastructure support needed

for process�interoperability	 Notice the �no sharing� property� which enables full operation

of some sites when some of the other sites are inactive or disconnected
e	g	� the leftmost

SubEnv in the �gure is inactive�	

A multi�site activity is an activity that involves� when executed� data objects from

remote SubEnvs	 Note� however� that this is a dynamic property of an activity� in that a

given activity may or may not be considered a multi�site activity at di�erent invocations�

depending on whether the data bound to it includes remote objects	 Multi�site activities

are the building blocks of any process�interoperability in this model	

Referring to the context�hierarchy described in the previous section� it is important

to note that there is intentionally no fourth level that represents a local process as part of

a global process	 This re�ects our concept of independent collaborating
local� processes	

While this model of a DEPCE provides global infrastructure support to enable interoper�

ability among local processes� it explicitly avoids the need for a global �super� process

although such a process can be implicit	

��� De
ning Process Interoperability	 the Treaty

����� Motivation and Requirements

The following is a set of requirements speci�c to modeling interoperability� driven by

the high�level requirements presented in Section �	�	

�	 In order to enable invocation of multi�site activities� there must be a way to

de�ne and agree on a common sub�process that would become an integral part

of each local process intended to collaborate during that sub�process
but not

necessarily by all SubEnvs in a global environment�	 A common sub�process

determines what actions can be taken in the multiple participating SubEnvs	

��

At the very least� the multi�site activities must be commonly speci�ed so

that they can be identi�ed during execution	 But the �unit of commonality�

might also be the process step� or even the task	 In any case� this unit

has to represent those process fragments that potentially involve multiple

local processes	 The decision as to what level
in the context hierarchy�

to choose as the unit of commonality depends on the modeling primitives

of the speci�c PML	 For example� in a Petri�net formalism the transition

along with its input and output places� seems a natural choice� whereas

in rule�based PMLs the rule
process step� is likely to be chosen	 In PMLs

that support task hierarchies and modularization
e	g	� Articulator ������ a

subtask might be the right choice	

It is important to recognize that the activity portion of a decentralized sub�

process need not be executable in every participating SubEnv� e	g	� since

the encapsulated tool may not be physically available everywhere	 Instead�

the activity only needs to be executable in one of the SubEnvs intended to

collaborate� which would hence always serve as the invoking� or coordinating

process	 This means that common sub�processes are not necessarily recip�

rocal� in the sense that not all participant SubEnvs have identical process

�privileges� on multi�site activities	 This issue has direct implications on the

model� as will be seen shortly	

�	 In order to enable the de�nition
at least in strongly typed PMLs� and the

execution
in all PMLs� of multi�site activities
as part of a multi�site com�

mon sub�process�� the SubEnvs which are involved in that sub�process must

have a common sub�schema� so that the types of the parameters speci�ed

in the activity are known at the SubEnvs	 For example� if an activity A�

is invoked from SubEnv E� on remote data from E�� then E� must have

the proper types in its schema and consequently the properly instantiated

objects that are required by A�	

Note� however� that a common sub�schema does not necessarily imply that

the corresponding data instances are shared
 only their types
i	e	� their

schema� are shared	 De�ning common data schema and allowing access

to data instances are separate concerns which should not be confused or

��

coalesced	

�	 Following the above argument� there must be a way to de�ne
and subse�

quently� control� which data instances are allowed to be accessed� in what

way� and by which SubEnv	 That is� local databases are by default private�

consistent with the autonomy requirement� and parts of them can be made

accessible to enable remote access by multi�site activities	

�	 It must be possible for a common sub�process
and the corresponding com�

mon sub�schema� to be shared among only some of the local processes

SubEnvs� of a given global environment� not necessarily all of them	 Fur�

ther� the same local processes must be able to participate in multiple common

sub�processes� together with the same or di�erent collections of remote pro�

cesses	 There is usually some portion of each local process that is not shared

with any other process
a private sub�process�	 Similarly� it must be possible

to specify access to subsets of the data instances to only some but not all

participating SubEnvs� as opposed to allowing data to only be either totally

private or universally public	

�	 Finally� the PML must allow for both dynamic inclusion and exclusion

of common sub�processes� as well as independent evolution of private sub�

processes	 The former is particularly important when independent pre�

existing processes decide to collaborate� perhaps only temporarily� while the

latter is important for preserving the autonomy of local processes	 One

of the architectural implications of this requirement is incremental process

compilation capabilities� 	

����� Alternatives� Design Choices� and Justi�cations

In considering the possible alternatives to expressing common sub�processes within

otherwise private and encapsulated processes� we can draw an analogy between our prob�

lem and similar problems in the �neighboring� domain of programming languages and

distributed systems and investigate alternatives there�

�The meaning of �compilation� depends on the speci�c PCE� but most translate their processes into
some internal format rather than repeatedly reparsing and reinterpreting the text�

��

�	 Process interface speci�ed within the PML
 This approach includes pro�

gramming language abstraction mechanisms in which all control and data of

a unit are by default private
or hidden� unless speci�ed explicitly as pub�

lic in the unit�s interface	 For example� the body�speci�cation distinction in

Ada could be used to expose only the common sub�processes
or sub�tasks

in Ada terminology� in the speci�cation and hide the private sub�process in

the body	 Another example is the export�import mechanism in Modula���

in which a subset of the activities
functions� could be exported by one pro�

cess
module in Modula�� terminology� and imported by another� while the

rest of the local process
module� is by default hidden	 A third example is

the object�oriented approach to encapsulation� whereby a class denotes the

public methods in its interface� and hides all other methods
which are part

of its implementation�	

The main disadvantage with this language�based approach is that it is static

in nature� con�icting with requirement � from the previous section	 That is�

the interface speci�cations cannot be changed while the program is executing�

and all the bindings among the di�erent modules are made at �compile�

time	 Another problem with this approach is that the underlying motivation

for it is to provide abstraction for distinguishing between a unit�s external

public� interface and its internal
private� implementation	 While this might

be the case in process inter�operability� more often the distinction is along

the lines of shared versus private sub�processes� regardless of whether the

private process is an �implementation� of the shared process	

�	 Process interconnection language� separate from a speci�c PML
 This is

analogous to Module Interconnection Languages� in which a separate nota�

tion is used to denote how modules are inter�connected	 For example� the

Darwin ���� con�guration language� the successor to Conic ������ enables

operating system� processes to interconnect independently of the speci�c

language in which they are written� by means of typed ports through which

data is exchanged between the processes	 Ports are protected and made ac�

cessible through an import�export mechanism
the actual notation in Darwin

�Not to be confused with the Darwin environment mentioned earlier�

��

is require and provide�	

The advantage of this approach over the previous one with respect to
soft�

ware� process interoperability is that it can be made dynamic� as is the case

with Darwin	 That is� the nature and kinds of bindings between the pro�

cesses can be changed dynamically	 However� since this is still essentially

a language�based approach� dynamic changes impose a problem in terms

of comprehensibility� either the changes do not correspond to the original

source de�nitions� which is an obvious problem� or the interconnection is not

explicitly declared� defeating in some sense the purpose of using a language�

based approach to begin with	 The latter approach is taken in Darwin� where

the references to the services
or control constructs� are passed in messages�

allowing to change their behavior� but as the authors point out� this feature

is not recommended for long�term or semi�permanent bindings	

�	 Other distributed programming languages
 This community produced nu�

merous languages that support some form of dynamic program con�guration

among relatively independent
operating system� processes	 One representa�

tive is Hermes ������ another port�based language in which new ports can be

added to an executing
operating system� process and existing port connec�

tions can also be changed� by statements executed from within the existing

Hermes code	 New processes can also be added using the create of statement�

but only from within an existing process	 Thus� it is not possible to add new

facilities that were not anticipated in the original program	

One aspect which is not addressed in either of these language�based approaches is the

independent�operation requirement� as processes are de�ned
and later enacted� in separate

SubEnvs� there must be facilities for enabling such dynamic cross�SubEnv bindings� which

imply some degree of system support	

Our solution then is system�based� not language�based	 The idea is to take advan�

tage of the underlying virtual machine specialized for supporting process modeling� and

extend the available PCE�s enactment engine with mechanisms to support de�nition of

the model	 As such� this approach does not require the invention of a whole new PML

intended for decentralization� nor does it make any assumptions about a particular PML�

making it generically applicable	

��

The formal model presented below attempts to address all of the requirements pre�

sented in Section �	�	�	 The central concept here is the Treaty	 Some intuition to the model

can be gained from the �international alliance� metaphor mentioned in the beginning of

this chapter	 Multiple countries collaborate by signing �treaties� determining what kinds

of artifacts are allowed to be exchanged and how to perform the exchange�collaboration	

Once signed� treaties have to be rati�ed by the local parties� so that the full impact of the

treaty is re�ected in each country when enacted	

The Treaty model addresses directly requirements �� � and � from Section �	�	�	

Requirements � and � are addressed in Sections �	�	� and �	�	�� respectively	

����� The Treaty

In the following discussion� the following notation is used�

� Ei denotes an instantiated environment as de�ned earlier	

� Ai is used to denote a set of process steps that form a common sub�process

as explained above	 Note that in terms of the de�nition of an environment�

Ai is a subset of P � i	e	� it does not necessarily contain a subset of T � D� U �

but it does imply a subset of S
schema� through the types of the formal

parameters to the activities in Ai	 Furthermore� Ai may consist of a set of

unrelated steps� all of which are part of the common process� or they can be

interrelated� for example representing a single common task	

� Ai
Ej� denotes sub�process Ai of environment Ej � i	e	� a fragment of Ej �s

process model	

We de�ne the following operations�

�	 export
A�
E��� E��
 Export A� from E� to E�� enabling E� to import A�	

This operation executes locally at E�	

�	 import
A�
E��� E��
 Get A� from E�� and integrate it with E��s process	

This operation executes at E� and involves also E�	 The successful outcome

of this operation generates A�
E��� a local version of A�� fully integrated

with the rest of E��s process	 The exact meaning of �full integration� is

intentionally left out here� since it is PML�speci�c	 Intuitively� the idea

��

is that the newly imported sub�process gets interconnected with the local

process and becomes an integral part of that process	 For some concrete

examples� see Section �	�	

These operations form the mechanism to implement common activities	 However� as

mentioned earlier� a separate concern is to determine execution privileges on the common

activities� such as which SubEnv is entitled to execute a multi�site activity on remote data	

In some cases� invocation of speci�c activities cannot be made from some of the SubEnvs�

for example� due to tool invocation restrictions
e	g	� licenses� platforms� location of tool

experts� etc	�	

It appears at �rst that such �execution privileges� semantics could be attached to

the export and import operations in some fashion	 However� early experiments with our

implementation revealed that these are indeed separate and orthogonal concerns	 That it�

we separate the issue of how to provide common multi�site activities from the concern of

how to restrict or control their application	

Therefore� we de�ne the following two directives� each of which could be used in

conjunction with either of the above operations�

�	 request
A�� E�� E��
 specify an intent of E� to use A� on data from E�	

Note that A� can be either exported by E� or imported from some other

SubEnv	

�	 accept
A�� E�� E��
 allow A� to be used by E� on data from E�	 Once

again� A� could be originally de�ned at E�� in which case it was imported

by E�� or it could be exported by E� and imported by E�	 The latter case

resembles the concept of a process interface� where the process publishes the

tasks that can be used by other processes to access its own data	

To summarize� the four combinations and their intuitive meanings are�

�	 export request
A�
E��� E��
 I
E�� want to use my A� on your
E�� data	

�	 import accept
A�
E��� E��
 I
E�� allow you
E�� to use your A� on my

data	

�	 export accept
A�
E��� E��
 I
E�� allow you
E�� to use my A� on my

data	

��

�	 import request
A�
E��� E��
 I
E�� want to use your A� on your
E��

data	

A
simple� Treaty
denoted as T � is a binary relationship between two sites� de�ned

as either one of these two possibilities�

TA�

E�� E�� export request
A�
E��� E��� import accept
A�
E��� E��

or

TA�

E�� E�� export accept
A�
E��� E��� import request
A�
E��� E��

In words� this Treaty allows users operating at E� to execute activities de�ned in

A� on data from E�	 We shall refer to this Treaty as �a Treaty from E� to E�� on A��	

Both de�nitions lead to the same outcome� the di�erence being the origin of A�� in the �rst

expression A� is initially de�ned in E� and is exported to E�� which imports it� whereas in

the second expression A� is initially de�ned in E� and exported to E�� which imports it	

Thus� a Treaty between two SubEnvs consists of one requester and one acceptor� as

well as one exporter and one importer	 The export�import pair of operations establishes a

common step
containing multi�site activities�� and the request�accept pair de�nes which

site is eligible to invoke activities from the common step
the requester� and which one

allows access to its data
the acceptor�	 The gist of the Treaty is that it requires both sides

to actively participate
and perhaps negotiate� in the agreement that determines their inter�

process interactions	 In particular� a request on an activity without a corresponding accept

on the same activity has no e�ect on either SubEnv
regardless of whether the activity

is properly imported�exported�	 As for the order of the operations in a Treaty� the main

reason for them not being commutative is to protect the privacy of the exporting process	

This means that any implementation of import should restrict its visibility only to activities

which have been already exported by other SubEnvs	

It is important to understand that the Treaty relationship is not symmetric	 For

example� the Treaty above does not imply that E� can run activities from A� on E��

i	e	� it is only uni�directional	 This property of Treaties addresses the concerns raised in

requirement � in Section �	�	�	 Furthermore� the Treaty is not transitive� and each Treaty

between two sites must be formed explicitly	
Treaties can be considered re�exive� though�

if self�export and self�import are de�ned as �no�ops�	�

The extension of a Treaty to multiple sites is de�ned as�

��

TA�

E��
E� � � �En��

n�

i��

TA�

E�� Ei�

This multi�site Treaty allows users operating in E� to run activities de�ned in A� on

remote data from some or all of Ei� i � �	

To enable symmetric Treaties� we de�ne a
binary� Full Treaty
denoted FT � as�

FTA�

E�� E�� TA�

E�� E���TA�

E�� E��

and similarly� a multi�site full Treaty is de�ned as�

FTA�

E�� E� � � �En�

�

i�j

FTA�

Ei� Ej�

This consists of the union of all unordered pairs of binary full Treaties
or all ordered

pairs of regular Treaties�	 While symmetric� full Treaties are still not transitive� to protect

the privacy of sites	

A Full Treaty allows any participating SubEnv to invoke a multi�site activity on data

from any other SubEnv in the Treaty	 Note that when multiple sites are involved� there are

many combinations of possible Treaties between the sites on the same set of activities� not

only simple or full	 For example� the Treaties�

TA
E��
E�� E���

and

TA
E��
E�� E���

allow either E� or E�� but not E�� to invoke multi�site activities from A on data from

some or all of the three sites	

As can be seen� this model provides maximum �exibility in expressing interprocess

collaboration� and each participant in a Treaty must explicitly �sign� it by invoking the

proper operation that re�ects its role in the Treaty	

In order to retract from Treaties� the following operations are de�ned�

�	 unexport
A�
E��� E��
 This operation executes in E�	 It removes A� from

further being available to E� and invalidates possible previous Treaties	 In

addition� it revokes any privileges which were associated with the export
see

below�	

��

�	 unimport
A�
E��� E��
 This operation executes in E�� e�ectively removing

A� fromE��s process	 Like unexport� it invalidates any previous Treaties and

privileges which were attached to the import	

�	 cancel
A�� E�� E��
 has the opposite e�ect of request� i	e	� it disallows to

further use A� at E� on E�	 It is issued at the requester end of a Treaty	

�	 deny
A�� E�� E��
 The opposite of accept� it disallows E� to further access

E��s data through A�	 It is issued at the acceptor end of the Treaty	

Since export and import are the mechanismfor establishing shared common sub�

processes� when unexport
unimport� is executed on a previously exported
imported�

activity� the corresponding execution privileges property
either request or accept� is also

revoked
by cancel or deny�	 The opposite is not true� though	 A cancel�deny does not

imply unexport or unimport	 For example� a requester activity could be transformed to

an acceptor activity by issuing a cancel followed by accept� regardless of whether it is an

exported or imported activity	

In order to enable unilateral withdrawal from the treaty
 which �ts well both

with the operational independence and the process autonomy principles
 all retracting

operations are local� not involving remote interaction	 However� this results in an overhead

in execution time� as every invocation has to be validated at run time� because even if at

some point at the past such an invocation was well formed in a Treaty� it might not be the

case at the time of the invocation	 This issue is discussed in Section �	�	�	

To summarize� Treaties are the abstraction mechanism used to de�ne process in�

teroperability	 The only way by which a SubEnv can collaborate with other SubEnvs is

through these pre�de�ned arrangements that determine how to collaborate� and on what

artifacts	 Consequently� the degree of collaboration
vs	 autonomy� between each pair of

SubEnvs is determined by the �size� of their common sub�process	 This can range from

total isolation
no common sub�process is de�ned�
 where the SubEnvs have no means to

access each other�s data but are entirely autonomous
 to total collaboration
the entire

process is common�
 where the SubEnvs lose any autonomy and logically share the same

process and data and are perhaps only physically distributed	

By splitting a Treaty into two independent operations and the Full Treaty into four

operations
as opposed to bundling them to one global operation� we ensure that both ends

��

agree on the Treaty and join it on their own terms	 Not requiring synchronous execution of

export and import enables Treaties to be formed incrementally and when each party wants

to join them	 In fact� of all of the primitive operations� import is the only operation that

requires both sides to be simultaneously active	 This independent multi�step protocol also

enables SubEnvs to retract from� and join to� a Treaty� independently and dynamically	

Finally� it might appear that this approach su�ers from being too low�level in that

it makes it di�cult and somewhat awkward to de�ne Treaties between sites	 However�

this formalism ensures maximum process autonomy in all involved sites	 A particular im�

plementation might use �macros� or �scripts� that perform all the necessary operations

automatically to form Treaties between �friendly� sites in cases that privacy can be com�

promised for simplicity and convenience	 Alternatively� an implementation might decide to

bundle some of the operations	 For example� it could always implicitly associate export with

request and import with accept� or vice�versa� but not both	 Or it could set defaults for

the combinations but allow the expert process administrator to modify them	 Finally� the

PCE can make provisions for enabling a user to be an administrator on multiple SubEnvs�

so that in environments that allow multi�site administrators
e	g	� when the interoperability

is between tightly�coupled SubEnvs�� it is possible to bundle the Treaty as one operation�

without violating autonomy	 Several of these alternatives were in fact implemented in Oz

see Chapter � for details�	

����� De�ning Common Sub�Schemas

There are several alternatives to de�ning common sub�schemas� with di�ering de�

grees of �exibility and complexity	 The simplest and most restrictive approach is to require

a global schema� i	e	� all SubEnvs must have identical schema	 This is obviously too re�

strictive and counter�autonomous� and in particular it prevents the bottom�up approach of

forming Treaties over pre�existing environments	 While some common sub�schema has to be

formed ultimately� the goal is to minimize its extent	 In addition� given the share�nothing

architecture� it would be very hard to guarantee that the the complete schemas� which are

maintained locally at the SubEnvs� are kept identical	

A second alternative would be to require global product�data sub�schema� but to

allow variation in the process�data sub�schema	
Recall that product data are the actual

artifacts under development� e	g	� source �les� design documents� and so forth� and process

��

data is used by the PCE to manage the project� e	g	� a source �le�s version� its compilation

status� etc	� The rationale behind this division is that in cases where the product data

is heavily shared� it provides for more freedom in de�ning the process model while still

requiring a common denominator for de�nition of the product	 The opposite alternative

would be to require global process data and local product data
 in cases where a global

process needs to be de�ned but security and privacy of local data is important	 While

these approaches support a larger degree of autonomy
process and data� respectively��

they are still too restrictive	 In the former approach� some local processes might still need

to retain additional private product data� and in the latter approach some SubEnvs might

need private process data for extensions to the local process	 In addition� data might not

always be clearly classi�able in to one of the two categories	 Thus� while the distinction

of process and product data is conceptually important� it seems like the wrong criteria for

determining what parts of the schema to make common	

The third and most general approach would be to have both common and private

sub�schemas� regardless of the type of attributes�classes involved	 Here again� a restricted

approach would be to require the common sub�schema to be shared by all SubEnvs� and

a more general approach would require only pairwise common sub�schemas that match the

corresponding pairwise Treaties	 This approach is the most �exible� and �ts well with the

overall research requirements� but it is also the hardest to realize	 The problems associated

with this approach fall in general under the domain of schematic heterogeneity� a topic

that is investigated by the heterogeneous database community
e	g	� see ����� and is largely

beyond the scope of this thesis as a research topic� although a practical solution is given in

Section �	�	�	

����	 Sharing Data Instances

Requirement � in Section �	�	� indicated the need to identify data instances which

should be made accessible to Treaty subtasks	 At the highest level� there are two main

alternatives to address this issue�
�� tie the export of data instances with the export of

common�sub tasks� or
�� treat export of data instances as orthogonal to de�ning common�

processes	 The �rst alternative implies that processes or tasks are de�ned on particular

data instances	 While this might be true in some cases� it is a narrow view that necessarily

restricts the notion of a process and its scope	 A more generic and realistic view of a process

��

is that it is de�ned over classes of instances� and may over time be bound to� and execute

on� di�erent instance sets of the project database	 In addition� it is quite possible that

Treaties
as well as local processes� are de�ned before the creation of instances that are

used in that Treaty� in which case the �rst alternative is impractical	

Taking this view� our approach is to de�ne an access�control mechanism that de�nes

which SubEnv can access which data� through which operation	 Formally� we de�ne the

operation

export data
D�
E��� mode� E�� A��

to denote� make data instances D� of the local SubEnv E� accessible to remote

SubEnv E� in the speci�ed access mode
e	g	� read� write� under operations from A�	 Note

that this operation is meaningless if A� is not a part of a Treaty between E� and E�� and

therefore could be checked at de�nition time	

It is important to note that this operation� like the rest of the model� ignores issues

that have to do with particular databases� PMLs� and PCEs� which might require pro�

hibitively expensive implementation of these operations	 In some cases it might be neces�

sary to restrict the model in order to make it feasible	 For example� the Oz implementation

given in Section �	�	�� does not specify the last parameter� only allowing to distinguish

between SubEnvs� not speci�c activities	 Another PCE�speci�c issue is the granularity of

access control	

����
 Independent Local Evolutions

We discuss now brie�y how the Treaty model can support local evolutions� and some

tradeo�s	 A fully detailed account of this subject is given in Chapter �	

We assume that environments are evolved by the process administrator� who modi�es

in some way the process and�or the schema and reloads them into the environment� possibly

upgrading the existing populated product and process database	

The most important integrity constraint associated with the validity of a Treaty is

what we refer to as the common�subprocess invariant� which simply states that a common

sub�process which was de�ned through a Treaty� must remain identical in all participating

SubEnvs to retain its validity	 Since there is no shared space in which Treaties are stored�

this is the only way to guarantee that the original Treaties have not been altered by the

��

time they are invoked on remote data	 Thus� if due to local evolutions a Treaty step is

altered only in some but not all SubEnvs� the Treaty should be invalidated	

Given a Treaty TA�

E�� E��� several kinds of evolutions could make it invalid�

�	 E��s process is evolved� possibly modifying activities in A�	 Then the treaty

might no longer be valid since A� could di�er arbitrarily from the version

agreed upon when the Treaty was signed	 Therefore� whenever a multi�

site activity is invoked from E� on data from E�� E� has to dynamically

check whether its version of the imported activity is identical to the version

invoked by E�	 A convenient mechanism is to associate a timestamp with

each activity
see Section �	�	�	��	

�	 E��s process is evolved� possibly modifying activities in its own version of

A�	 In this case the treaty is again no longer valid� and A�
E�� should be

outdated and its validity checked at execution time	

�	 E� cancels A� on E�� disallowing users in E� to further invoke activities

de�ned in A�� from E�� on data from E�	 To cope with this evolution� each

time a multi�site activity is attempted atE�� E� must check locally whether it

is still allowed to invoke such an activity on data from E�	 The reader might

wonder why to check locally for the validity of one�s own operations	 The

answer is that SubEnvs in general involve multiple users� and even though a

cancel was carried out by the local administrator� other users� perhaps not

aware of the cancellation� might still try to invoke A�	

�	 E� denies E� to further execute A� on its own data	 This evolution has

the most signi�cant implications with respect to Treaties� as it enables an

accepting site to leave the Treaty unilaterally	 Note that �leaving� the Treaty

is not �breaking� it� since the Treaty is not misused	 It is simply prohibited	

To allow such one�sided deny operation� each time a multi�site activity issued

at a coordinating site requests to access remote data� the remote SubEnvs

must check dynamically whether the issued activity is still accepted� and

reject it if it is not	

The approach outlined above is consistent with our concerns for maximum locality

and autonomy� both logically and physically	 An alternative approach at the other end of

��

the spectrum is to attempt to immediately notify all involved SubEnvs when any of the

above operations occur	 For example� a deny operation would notify the denied SubEnv�

which in turn would invalidate the Treaty at the �source� SubEnv	 This approach has

the advantage of reducing the number of invalid invocation requests� and more importantly�

possibly eliminating the need for dynamic validation of Treaties	 However� since it is possible

that at a given time only some but not all of the SubEnvs are active or reachable on

the network� it is in general impossible to eliminate altogether the dynamic validation

mechanism	 Moreover� this approach unnecessarily tightly binds the SubEnvs and incurs

signi�cant communication overhead� which is unacceptable when the SubEnvs are arbitrarily

distant	 For example� each local evolution in a SubEnv would imply immediate broadcast to

all other SubEnvs that have any Treaty arrangement with it	 Finally� for this �immediate�

update� approach to be e�ective� cross�site operations must be atomic
all or nothing�� or

otherwise all dynamic checks would still have to take place� defeating the purpose of the

update in the �rst place	 But preserving atomicity� particularly for distributed operations�

involves signi�cant overhead
for example� supporting context sensitive rollback� and require

global control� two good reasons to avoid this approach	

����� Inter�process Consistency

The �nal requirement in Section �	�	� regarding incremental and dynamic inclusion

and exclusion of common sub�processes� introduces the problem of preserving the local

process consistency when a process is augmented with a new decentralized sub�process� or

such an extension is removed	 In particular� violations of process consistency that cannot

be tolerated must somehow be rejected	

The key to the solution of this problem lies in the observation that this is a subset of

the more general problem of process evolution� where a local process is modi�ed by adding

removing� new activities to
from� it	 Since there is no global process� there are no global

consistency considerations� reducing this problem to the same problem as in single�site

PCEs	 Thus� this issue is not discussed here any further	 The solution in Oz is to use the

Evolver utility� which was covered earlier in Section �	�	�	

��

��� Enacting Process Interoperability	 the Summit

Given the Treaty model for de�ning process interoperability� the second major issue

is to support the enactment of multiple interoperating processes	 Once again� the ma�

jor requirements that a�ect this model are autonomy� independent operation� and �exible

interoperability	 Although a Treaty requires some mechanisms that enable its operation�

inter�process enactment requires much more infrastructure support� since it implies extend�

ing signi�cantly the process engine	

����� Alternatives� Design Choices� and Justi�cations

At �rst glance� there are two ways in which a multi�site task can be executed�
��

one SubEnv
call it the coordinating SubEnv� copies remote data into its own space and

executes locally� or
�� the task leaves the data where it is� and requests that its activities be

executed by the remote SubEnvs	 This is similar to the two main approaches to distributed

program execution� fetch the data and execute locally� or send a request for remote function

execution	 There are obvious tradeo�s between the two approaches� and the superiority of

one over the other largely depends on the nature of the program and the volume of the data

involved	

However� since a multi�site task inherently involves more then one process� neither of

these approaches is always feasible or desirable�
�� Process autonomy restricts application

of the data fetching approach� since some of the remote data might not be accessible to the

executing process� and even if it is� the prerequisites and consequences determined by the

coordinating process might not maintain consistency with respect to the remote process
es�	

�� The function sending approach does not address activities that manipulate data from

multiple
local and remote� processes� but instead assumes that an activity�s arguments all

reside in the same SubEnv	 In addition� as mentioned earlier� tools invoked by an activity

may not be available at a remote SubEnv
in fact such a scenario might be the initial

motivation for running the activity in the originating site�� and even copying the tools

might not work if the SubEnvs operate on heterogeneous platforms or if there are licensing

restrictions	

We devised a third hybrid approach� which combines the two approaches mentioned

above in a manner that ameliorates their limitations	 At the activity level� remote data is

fetched and modi�ed locally� but at the process�step level� any subtasks emanating from

��

prerequisites and consequences are executed at the remote SubEnvs	 This permits activities

with arguments from multiple SubEnvs� executes tools at the same site as their process� and

maintains consistency in process and product data according to the local processes owning

the data	

����� The Summit

Following the �international alliance� metaphor mentioned in the introduction to

this chapter� our decentralized enactment model can be described as a �summit meeting�	

Before the meeting
multi�site activity�� each party
process� handles local constraints
pre�

requisites� that are necessary for the meeting to take place� then the meeting is held at one

location
SubEnv�� where the various parties send representatives
data� to collaborate�

once the meeting is over and agreements were made
results of the activities�� all parties re�

turn home
to their SubEnvs� and carry out the implications
consequences� of the meeting

locally	 Summits can lead to subsequent Summits� each involving a subset of the parties�

possibly with di�erent representatives
data arguments�	

Similarly� process interoperability takes place when an activity is invoked
either

manually by an end�user or automatically by the process engine� on data from one or

more SubEnvs	 The case of only local data from the same SubEnv does not lead to inter�

process collaboration� and is handled however it would normally be done by the underlying

single�process PCE	 We call the process from which the decentralized activity is invoked

the coordinating process	 The Summit protocol consists of the following phases
not all of

which must necessarily exist in all implementations��

�	 Summit Initialization and Veri�cation
 First� the coordinating process in

which the Summit request was issued� establishes a task context
necessary

to support interleaved execution of multiple activities� and allocates the nec�

essary resources needed for the Summit	 It then binds the actual parameter

objects
at least one of which is remote� or otherwise this would not be

considered a Summit� to the formal parameters of the activity	

Initialization is followed by veri�cation� checking whether the Summit is

allowed to be executed	 For example� a multi�site activity A� is eligible for

execution from site E�� on data from site E� and E� only if it conforms with

the Treaty protocol� i	e	�

��

a� A� was de�ned as a common activity by means of any valid combination

of export and import operations	 For example� it could have been

exported by E� and imported by E� and E�� but it could also have

been imported by E� and exported from E� or E�	

b� A� has been requested in E� and accepted in E� and in E�	

However� while a necessary condition� this static property is not a su�cient

condition for allowing the Summit� since by the time the Summit is invoked

for execution� local evolutions might have violated the Treaty	 Thus� an ad�

ditional runtime Treaty validation phase is required	 Validating whether the

speci�c data instances are accessible to the remote processes is determined

at the remote SubEnvs by checking their local access�control mechanism to

see if the instances are properly exported to the coordinating SubEnv� as

outlined in Section �	�	�	

�	 Pre�Summit
 The involved processes
i	e	� those that own some of the data

requested by the multi�site activity� are noti�ed� and all of them
including

the coordinating process� perform simultaneously and asynchronously pre�

Summit process actions� each according to its local process� with its local

data� in the local SubEnv	 Examples of pre�Summit actions include� not

necessarily in this order�
�� Veri�cation that prerequisites imposed by the

process step enclosing the activity are satis�ed
locally��
�� Veri�cation

that the activity can be executed with respect to the task work�ow�
��

Active invocation of related activities� e	g	� to satisfy
�� and
��� and
��

Deriving and binding data arguments that are required by the activity but

were not speci�ed as parameters
for example� a compile activity on a C

source �le may require to bind all the �included header �les for the activity�	

Pre�Summit requires that all involved SubEnvs identify the same requested

activity� in order to know what to verify�satisfy	 This is guaranteed through

the import mechanism of the Treaty	

It might be possible in some cases
depending on the PML as well as the

speci�c activity� for the coordinating process to determine locally whether or

not launching remote pre�Summit is necessary for each participating SubEnv�

��

in which case no �fan�out� to the local sites is required	 In general� however�

the local SubEnvs need to be able to decide for themselves whether or not

they need to undertake any work	 The main point is the locality of the

enactment� which is determined solely by each SubEnv on its local data�

without �global� intervention	

�	 Summit
 If pre�Summit is successful in all involved processes� the requested

activity is invoked in the coordinating process� with all the necessary local

and remote data arguments	 Note that for the time being� we restrict the

invocation of a summit to occur not only at one time� but also at one location

i	e	� the coordinating process�	 An extension of this phase that enables to

perform summit activities across multiple sites simultaneously
e	g	� group�

ware activities� is discussed separately in Section �	�	

�	 Post�Summit
When the Summit completes� all involved SubEnvs are noti�

�ed� and all of them
including the coordinating SubEnv� perform simultane�

ously and asynchronously Post�Summit process actions� again each according

to its local process� with its local data� in the local SubEnv	 Examples of Post�

Summit actions include� not necessarily in this order�
�� Assertions on the

process and product data that re�ect the fact that the various activities were

executed
depending on the PCE� it may not always be possible to directly

modify such data within the activities themselves��
�� Binding and assign�

ment of data a�ected by the activities that were not supplied as arguments�

�� Verifying that consequences imposed by the steps in the Summit can

be ful�lled
this is not always a logical implication of the pre�Summit ver�

i�cation�� and
�� Triggering execution of further activities� e	g	� as part of

��	

�	 Summit Completion
 When Post�Summit completes in all local sites
in�

cluding the coordinating SubEnv operating in �local� mode� the coordinat�

ing SubEnv checks whether further Summits are pending
see below on how

composite Summits are formed�	 If any Summit is pending� the algorithm

returns to step �	 If no Summits are pending� the Summit is completed

by releasing all resources associated with the Summit	 Note that this is a

��

�tail�recursive� algorithm� in that its last step calls itself	

Thus� all participating SubEnvs act as if the activities in the Summit took place in

their local process with local data only
 in the sense that they all carry out the
pre and

post� implications of the Summit activity
 although only the coordinating SubEnv really

executes the activities	 The interesting point here is that both pre� and post� Summit phases

occur in each SubEnv only according to its local process� while execution of the Summit

phase involves collaboration among the participating SubEnvs	 This design minimizes the

interference between the processes
and hence maximizes autonomy� while still allowing

them to carry out the desired common activities as agreed upon in the Treaty	

������� Composite Summits

The Summit algorithm presented above indicated the possibility of multiple related

Summits executing as one unit	 Indeed� the capability to enact multiple Summits
or multi�

activity Summits� is crucial� as can be evidenced even from the example given earlier in

Chapter �	 While a complete answer necessarily delves into the particulars of a speci�c PML

and indeed such a solution is given in Chapter ��
 the general idea is that subsequent

Summits are invoked through whatever enactment and binding mechanisms the PCE and its

associated PML provide	 They might be speci�ed explicitly in an imperative�like PML with

static binding� and therefore invoked in a straight�forward manner� or inferred implicitly

through the PCE�s inference mechanism
e	g	� rule chaining� or Petri�net transition� with

dynamic binding capability to bind remote objects to new Summits	 The point is to be

able to distinguish between derivation of local activities
which are therefore still part of

Post�Summit� versus new Summit activities	

Thus� a composite Summit
e	g	� consisting of multiple Summit activities� can be

viewed as alternating between �local� mode
 in which each participating site
including

the coordinating site� performs local operations
 and �global� mode in which the coordi�

nating process carries out operations involving remote data� with the approach intended to

minimize the �global� mode and maximize the �local� mode	

Finally� a note on concurrency� the Summit protocol is primarily designed for in�

creased autonomy	 Nevertheless� this design also contributes to increased concurrency
and

hence throughput� since the local
and thus independent� operations can potentially execute

in parallel	

��

������� Transactional Semantics

The details of the operational and transactional semantics of the Summit are left

unde�ned in this chapter since they are inherently PML� and PCE�speci�c	 A detailed

solution is given in Section �	�	�	 Nevertheless� some of the issues that come up are generic�

and are worth mentioning here	

For one thing� it is mandatory that some transactional semantics be attached to the

Summit	 In particular� there must be mechanisms that preserve the atomicity of at least

a single Summit� which means that distributed abort and rollback as well as distributed

commit of Summits must be supported	 While autonomy concerns should play a role in the

design of distributed transaction management supporting our model� it is in general impos�

sible to provide global consistency as well as local autonomy in transaction management

as shown by Korth in ������	 The approach to be taken� then� should be directed towards

minimizing the global atomicity requirements of Summits	

Another problem with supporting transactions in our model is that interleaving

among distributed tasks is inherent and unavoidable� making it harder to preserve atomicity

in general and serializability in particular	
It is trivial to preserve the serializability of

non�interleaving� and thus serial� execution	� The reason is that when a Summit task �fans�

out�� the coordinating SubEnv must switch contexts� or else the SubEnv would be blocked

inde�nitely
until all remote SubEnvs �nish their local execution�	 This e�ectively creates

an interleaving among distributed transactions each time a Summit alternates between

global and local modes of execution	

The transactional semantics of Summits in Oz are presented in Chapter �� where

they are tied to the notions of consistency and automation forms of enactment	 However�

the actual implementation of the decentralized transaction manager that supports these se�

mantics is for the most part beyond the scope of this dissertation� and is part of Heineman�s

dissertation� covered in ����	

��� The Motivating Example Revisited

Recall the motivating example introduced in Section �	�
Figure �	��	 Figure �	�

illustrates its enactment using the Summit protocol	 Note that each box in the Figure does

not necessarily represent a single activity� but rather a subtask that might be broken down

��

Pre−Summit

Post−Summit

Init−Summit

Change(S1, S2, S3)

Analyze(S3)

Auto−test(S2)

Manual−test(S3)

Integration−test(S1,S2,S3,S)

Check−Out−RCS(S1)
Check−Out−SCCS(S2)

code−inspect(S2)

SE1 SE2 SE3

Auto−test(S1)

Review(S3)

Review(S2)

Review(S1)

Approve(S1, S2, S3)

Modify(S1, S2, S3)

Summit activities

 Summit activity

Figure �	�� Enactment of Motivating Example

into a �ne�grained set of process steps	

The change activity is initiated by the coordinating SubEnv SE�	 Pre�Summit

takes place in a decentralized manner� where each SubEnv performs the Review activity

locally according to its own process	 For example� SE� requires an additional analysis

step before the review and both SE� and SE� require a check�out phase using di�erent

con�guration managers
RCS and SCCS� respectively�	 Once reviewed by all sites� the

Summit activity approve is executed� determining whether to approve or disapprove the

change based on the local reviews	 If the approval step succeeds� the modify activity is

executed� where the objects are modi�ed	 When �nished� Post�Summit begins� again in a

decentralized manner	 All SubEnvs are engaged in a unit�test step� but each one does it

according to its own process	 For example� SE� employs a manual�test procedure
e	g	�

for testing the user interface� which involves human users that actually perform the tests

devising the input sequences for the test suites can be also done manually or automatically

for either manual or automatic testing�� whereas the other SubEnvs perform automatic

��

Change(S1, S2, S3)

Analyze(S3)

Check−Out−SCCS(S2)

SE1 SE2 SE3

failed

Review(S1)

Review(S2)

Review(S3)

Init−Summit (global)

Pre−Summit (local)

Summit activity (global)

Post−Summit (local)

 Summit activity (global)

Review(S3)Review(S2)Review(S1)

Revise−change(S1, S2, S3)

Approve(S1, S2, S3)

Approve(S1, S2, S3)

Modify(S1, S2, S3)

failed

Figure �	�� Another Enactment of Motivating Example

testing� but SE� has an additional code�inspection step	 Completion of the local testing

leads to integration�test� another Summit activity in this composite Summit	

It is important to understand that Figure �	� depicts a particular execution trace

of the process� not the whole process	 For example� �gure �	� shows a di�erent execution

trace of the same process� where this time the review phase fails at SE�� requiring a

revision in the proposed change� after which a second review succeeds and leads to the

modify activity	 This example illustrates how the Summit protocol can support some form

of process negotiation� where the Summit activities represent the negotiation table� and the

local implications represent private consultations	 A full example of such a negotiation�

based process is given later in Chapter �	

��� Application of the Model

We describe now how the model can be applied to three families of PCEs categorized

by the paradigm underlying their PMLs� namely rules� Petri�nets� and grammars� and

��

ImplicitExplicit

Task Graphs Grammars

Petri Nets Rules

High
Level

Low
Level

Control Flow

Decomposition

Figure �	�� Comparison of PMLs

outline how the model might be applied in the APPL�A process programming language	

These families were chosen to cover most of the known PCEs ����	

Each PML style has its own strengths and weaknesses with respect to process mod�

eling� and there is no �perfect� process modeling
some of these di�erences are overviewed

in �����	 Further� a particular PML might arbitrarily divert from the properties that iden�

tify its family	 Nevertheless� these PMLs can be generally characterized in terms of their

support
or lack there of� for explicit
implicit� control��ow� local constraints� and modular

decomposition
other important aspects of the PML are ignored in this discussion�	 In gen�

eral� rules are best suited to de�ning local constraints and automatic inference of process

steps� but multi�rule tasks are implicit and rule are inherently low�level with respect to sup�

porting modularity and process decomposition	 Petri�nets are good at explicitly de�ning

the control �ow of the process� but even though some versions enable Subnets to be de�ned

as means of decomposition� they are still inherently low�level� like rules	 Grammar�based

PCEs give implicit control��ow support� and modular decomposition support	 Finally� Task

Graphs provide both explicit control �ow and modular decomposition	

Figure �	� summarizes these characterizations along two axes� implicit vs	 explicit

control �ow� and low�level vs	 high�level decomposition	

Since enactment in PCEs is heavily in�uenced by the type of PML used to model

��

processes� we cover in the sequel Summits in full	 As for modeling� though� since the Treaty

approach is not language�oriented� most of the operations are not considered here	 The

main issues that are covered with respect to Treaties are�
�� identi�cation of appropriate

units of commonality and
�� implementation of the import operation	

Finally� since we take the existing PMLs as given� the uninitiated reader should see

the cited references for background and justi�cation of each approach to process modeling	

��	�� Rule�Based PMLs

In general� a rule represents a process step in our context hierarchy� consisting of an

optional action
activity� with its pre�condition
prerequisites� and post�condition
imme�

diate consequences�	 Some rule formalisms consider the action to be optional� permitting

�inference rules� where the pre�condition directly implies the post�condition� while other

formalisms have only two parts� usually with the action and post�condition merged together	

Parameters and variables are represented by symbols used in the rule� which are often but

not necessarily typed
the restriction to data of the appropriate type is the simplest form

of prerequisite�	 The process step corresponding to a rule is enacted by �rst evaluating the

pre�condition� the action is initiated only if the pre�condition is true	 Completion of the

action leads to asserting the post�condition	

Tasks are implicit in the possible rule chaining	 Backward chaining involves matching

the pre�condition of a rule with some rule whose post�condition might cause some subpart of

the pre�condition to be satis�ed	 Then the �ring of the second rule is considered recursively	

Forward chaining arises when the action or post�condition of a rule ful�lls the pre�conditions

of some rules� which are then �red recursively	 Rule�based PMLs can be roughly divided into

backward�chaining oriented such as Prolog�based Darwin ����� forward�chaining oriented

such as AP� ����� and those that incorporate both� like Merlin �����	

The rule is the natural unit of commonality for import�export� although in practice

the import can be carried out on a set of logically related
but nevertheless independent

from each other� set of rules	 Implementing import is relatively straightforward for rules�

since the relationships to other rules is determined implicitly through predicate matchings

as outlined above	 If the PML supports static compilation of the rule set into a rule network�

a re�compilation is necessary	 Otherwise� the new rule has to simply be added to the rule

base and no further recompilation is needed	

��

The Summit protocol applies to rules as follows� when a multi�site rule is �red� either

directly by a user or indirectly through automatic chaining
we assume that the PCE has

mechanisms to bind remote objects as rule parameters�� the following takes place�

�	 Summit Initialization and Veri�cation
 The participating SubEnvs supply

data to be bound to the symbols of the rule� and the validity of the Summit

request is performed as outlined in the generic model	 The details of how

this is accomplished depends on the PCE	

�	 Pre�Summit
The condition of the rule is evaluated	 Although in some cases

depending on the PML and the particular rule� the condition evaluation

could be broken down to local sub�conditions which could be then evaluated

in a distributed manner� single conditions that involve data from multiple

sites must be evaluated centrally in the coordinating site	 For example� if a

and b are symbols bound to objects a� and b�� respectively� where a� and b�

belong to di�erent SubEnvs� then a condition of the form�

if
a�status b�status�

must be evaluated in the coordinating SubEnv	 Thus� while part of the

condition evaluation can be possibly distributed for optimization purposes�

it cannot always be fully distributed	

When the evaluation completes� if the condition is not satis�ed
or at least is

not already known to be satis�ed�� all SubEnvs with data that does not meet

the condition are then noti�ed	 In backward�chaining PCEs� each SubEnv

may then activate other rules in its local process� in an attempt to satisfy
or

verify� the failed pre�condition on its own data
 possibly in a backtracking

manner trying multiple alternatives	 In any case� if the pre�condition cannot

ultimately be satis�ed� then the rule execution is halted in the coordinating

process	

�	 Summit
 The action is executed in the coordinating SubEnv� involving

both local and remote data	

�	 Post�Summit
On completion of the Summit� the coordinating process fans�

out with the relevant output to the remote SubEnvs	 All sites
including the

��

coordinating site in �local� mode� in turn assert the post�condition of the rule

on their own data	 In forward�chaining systems� this leads to triggering of

other rules in the local SubEnvs whose pre�conditions have become satis�ed	

However� while inferring rules for forward chaining� any discovered rules

which are Summit rules
i	e	� they ful�ll the necessary Treaty requirements

and have remote objects bound to them� are deferred until after the Post�

Summit phase completes
see below�	 Each SubEnv noti�es the coordinating

SubEnv when it completes its local Post�Summit phase	

�	 Summit Completion
At this phase the coordinating SubEnv checks whether

there are further Summits pending� in which case it starts another Summit�

or if no more Summit rules are pending the
multi�rule� Summit is completed	

Since the Oz PML is rule�based� we defer further discussion of rules to Chapter �	

��	�� Petri�Nets

The Petri�net ���� is a powerful formalism for modeling concurrent systems� and it

has been widely applied to software process modeling	 The application of our decentralized

model to Petri�net�based PCEs is in�uenced primarily by SLANG ��� and FUNSOFT �����

and their corresponding PMLs SPADE and MELMAC� respectively	 Each of these PMLs

is based on extended Petri�net formalisms
speci�cally� SLANG is based on ER nets� and

FUNSOFT on predicate�transition nets�� but we will stick for the most part with the general

Petri�net formalism	

Transitions usually represent our notion of activities
note that our activities are

di�erent from SLANG�s notion of activities� which are more like our notion of a task�	 The

equivalent of a process activity that involves
possibly external� tools is termed in SLANG

a black transition� and in FUNSOFT it is called a regular agency	

Places represent the activity�s formal parameters	 When places are typed� the input

places can be viewed as prerequisites on the transitions� and the output places as immediate

consequences on transitions	

A predicate on the actual parameters
tokens� see below� can be attached to a tran�

sition and must be satis�ed prior to �ring the transition	 The predicates de�ne local con�

straints on an activity� as opposed to the general control �ow expressed by the topology

��

of the net	 Both languages support the notion of a predicate	 In SLANG they are called

guards� and in FUNSOFT simply predicates	

Tokens
or the marking of the net� represent the current state of the process under

execution and the product data used in the activities	 A transition is said to be enabled

when its input places contain the su�cient quota of tokens
with the right types� and the

predicate on the transition is satis�ed	

Finally� a single net can be divided into several subnets� or they can be nested in

a hierarchy in which case a subnet is represented as a transition of its supernet� providing

better abstraction and decomposition mechanisms	 Such a subnet corresponds to our notion

of a task
if the PML does not support subnet constructs� tasks are implicit� like in basic

rule�based PMLs�	

A transition along with its attached predicates and input and output places corre�

spond to a process step� and is necessarily the minimal unit of commonality for Treaties�

since it is impossible to alter the input or output places of a transition without having to

modify the transition itself
this would be analogous to allowing to change the number or

types of the parameters to rules�	 Also� the predicate is a local constraint on the transition

and therefore conceptually part of it	

The import operation in a Treaty is more complicated than in the case of rules�

mainly due to the explicit topology of the net	 That is� while in the case of rules the

relationships between the imported and the existing rule sets can be inferred automatically�

in Petri�nets there must be manual modi�cation of the net to integrate the imported process

steps	 The integration of a process step into an existing net involves�
�� merging
or adding

new� output places of local steps with input places of the imported step� and
�� merging

output places of the imported step with
possibly newly created� input places of local steps	

These operations e�ectively merge the imported
common� step with the local process
net�	

It is not mandatory� however� to connect an imported step to the net	 There might not

be opportunities to do so� just as it is possible that in rule�based PMLs an imported rule

will not match with any local rule� leaving it isolated� in which case pre and Post�Summit

become trivial	

The Summit protocol starts when a common transition is attempted� and the input

places contain some tokens representing remote objects
again� we assume remote binding

capabilities which are provided by the underlying PCE��

Summit initialization
 The unusual aspect of this phase is the binding procedure	

��

While only the coordinating SubEnv actually binds data arguments to its input places� all

involved SubEnvs mark their nets like the coordinating SubEnv� except the tokens in the

non�coordinating SubEnvs are merely stubs	

Pre�Summit
 The transition�s predicate
if any� is evaluated at the coordinating

site� and if not satis�ed� the involved SubEnvs are noti�ed	 Since Petri�net based PMLs

are usually not extended to support the equivalent of backward chaining in rules� pre�

Summit might not exist or degenerate to condition evaluation if needed to be performed in

a distributed manner	

Summit
 The transition is �red in the coordinating SubEnv� invoking an activity

on the data arguments	 When the activity �nishes� all involved remote SubEnvs �re the

transition without executing the activity	 If there is a conditional branching that depends

on the result of applying the activity� then the same �return code� is used in all SubEnvs

to properly direct the �ow of tokens to the output places	

Post�Summit
 All associated SubEnvs transfer the appropriate tokens from their

input to their output places	 This can lead to �ring of local transitions depending on the

local nets	 When local �ring of transitions that were triggered by the Summit transition

completes� the remote SubEnv noti�es the coordinating SubEnv	

Summit�Completion
 The coordinating SubEnv checks if new Summits can be de�

rived from the previous Summit� based on further connections in the coordinating SubEnv�s

net	 If none exist� the Summit is complete	

To summarize� one way to look at a Treaty and a corresponding Summit in Petri�nets

is as an �intersection� subnet which is shared by the participating local nets
although pos�

sibly with di�erent usage privileges�� whereby each local net has its own private connections

to the subnet� and its own �role� in the shared subnet� in terms of sending the data that is

necessary for enacting the Treaty subnet	

������� An Example

The following example� depicted in Figure �	�� illustrates how Treaties and Summits

can be applied in Petri�nets	 This is a multi�process extension of an example which was

originally given in ��� describing SLANG	

In the example� there are two processes� CODE and TEST� used by two separate

groups that are responsible for coding and testing the application� respectively	 In order

��

Begin
Coding

edited
module

module to
be edited

compile

edit

compiled
module

ok failed

ready
object code

end
coding

timeout ok

object
code

test
package

prepare new
test package

old package

object
code

test

test
output

evaluate
results

faulty/insufficient
test

oktest failed

TEST

CODE

Figure �	�� Example Multi�Process Petri�net

to increase productivity and consistency� the two teams� previously not connected in any

way by their processes� decide to collaborate	 The main collaborative step involves a joint

evaluation of the test results by representatives from both groups that will lead to better

understanding of the errors	 In addition� implications of this step should provide local

feedback to both groups	 Finally� the necessary data transfer among the groups
e	g	� object

code� reports� etc	�� previously done outside the process� should be modeled and handled

through the inter�process modeling and binding mechanisms� respectively� thereby enabling

automatic yet consistent transfer of the artifacts between the collaborating groups	

The dashed sub�process within the TEST process is then identi�ed as the future

shared sub�process	 The main modi�cations made to that sub�process before turning it to

��

a Treaty sub�process are in the addition of an interface input place
depicted by a circle

with an inner�circle� representing in SLANG an end�user interacting with an activity� from

the CODE group for purposes of the evaluation of the test results� and two new transitions

with cross�process implications�
�� if the test fails� the CODE group is noti�ed to �x the

problems indicated by the test�
�� if the test is recognized as faulty� or insu�cient� the

TEST group is noti�ed and modi�es its package according to the recommendations made

in the evaluation	 Finally� the input place holding the object code is now transferred by the

CODE group through the Summit mechanism� whereas before it was implicitly supplied to

the TEST group	 This� however� does not require a change in the sub�process� since when

the Treaty is established� the object�code output place in the CODE process is merged with

the corresponding input place in TEST	

Once the Treaty is established� all coding and test package preparations are still

done independently and autonomously as before� but the processes synchronize for the

actual testing phase when both groups are ready� as indicated by the presence of their

respective tokens in the input places of the shared activities	

When the shared activities
Summit� are complete� a �fan�out�
or Post�Summit�

occurs� involving passing the relevant evaluation results to each team� possibly a�ecting

their
local� state	 At a later point� when both teams are ready for a second test� a second

Summit activity is initiated	

��	�� Grammar�Based PMLs

The grammar hierarchy ���� and the corresponding automata provide another pow�

erful formalism for modeling a wide variety of systems� although they may have been less

frequently applied to software process modeling than the other paradigms mentioned	 There

is a spectrum of approaches to employing grammars in process enactment� analogous to sen�

tence generation at one end
what Heimbigner calls a prescriptive process ����� to sentence

recognition
parsing� at the other
proscriptive�	 The PDL project employed the former for

context�free grammars ����� while the implementation of the Activity Structures Language

on top of Marvel follows the latter approach ����	 One group experimented with both in

the context of attribute grammars� for HFSP ���� and ObjectiveAttributeGrammars �����

respectively	

Considering the grammar�based PMLs� a terminal symbol corresponds to an activity

��

in our context hierarchy� a non�terminal symbol to a task� and a production to a process step	

Grammar�based PMLs usually associate some kind of condition with each production� or

possibly with each symbol in a production� to specify when it could be selected	 For example�

in the PDL�based system these are called restriction conditions� in the Activity Structures

Language they are rule skeletons� and in HFSP they are decomposition conditions	 Symbols

are associated with formal and actual parameters in some fashion speci�c to the PML and

PCE	

The symbol
along with its possible condition� seems the best candidate for the unit

of commonality	 But it doesn�t have to be a terminal symbol	 This re�ects the hierarchical

decomposition property of grammar�based PMLs� since it essentially allows to de�ne any

sub�process as common	 However� any sub�tree that can be possibly generated at execution

from that symbol must be identical in both processes
otherwise it will not be common�	

Thus� the import of a symbol is necessarily recursive� i	e	� when a symbol is imported� all

of its possible productions are imported recursively	 Of course� a cyclic import must be

detected as part of the import procedure	 As with Petri�nets� the importing site must also

explicitly augment its grammar with the new symbol� and use it in its production
s�	

An issue that comes up in all PMLs but is particularly eminent here is the issue

of
sub�task naming	 The newly imported symbol must not con�ict with the name of any

other local symbol� and at the same time it
and in fact all the derived symbols in a Treaty�

must be identi�ed as the common symbol when the Summit is enacted� eliminating simple

local renaming as an option	 The general approach recommended here� and the one actually

taken in Oz
see Chapter �� consists of separation of logical and physical names combined

with unique physical name generation	 This approach enables both private
logical� naming

of subtasks� as well as a global name space for running Summits	

The Summit protocol works as follows
we skip the �rst and last phases��

�	 Pre�Summit
 This phase begins when an activity represented by a common

symbol is invoked in one process with data from multiple processes	 The

remote SubEnvs are noti�ed� and any prerequisites of enacting that symbol

are checked in each of the participating SubEnvs� each according to their own

local process	 In principle� a recognition�oriented PCE might now recursively

enact any symbols immediately preceding the common symbol in the current

production in an attempt to ful�ll the prerequisites� analogous to backward�

��

chaining for rule�based PCEs	 This could be regarded as a form of sentence

generation	

�	 Summit
 Assuming all SubEnvs ultimately agree� the symbol is enacted

in the coordinating SubEnv	 If� however� this is a non�terminal symbol rep�

resenting composite subtask� it is �parsed� recursively� possibly involving

multiple multi�site activities	 This is in fact a �natural� instance of compos�

ite Summits mentioned in the generic model	 This is also why non�terminal

Treaty symbols are imported recursively� a common sub�task must be lit�

erally common so that all involved sites know
and trust� what exactly is

taking place when their data is accessed	

�	 Post�Summit
 All the participating SubEnvs are noti�ed by the coordi�

nator to complete the symbol	 For example� in the case of a generation�

oriented PCE� each local process might automate control �ow through its

local production within which the symbol was embedded	 Once again� the

productions including a common symbol might be completely di�erent in

di�erent local processes� and enacted independently and autonomously	

��	�� APPL�A

We conclude this section with an attempt to apply the decentralzied model to

APPL�A �����	 APPL�A is an imperative PML that extends Ada ���� with several con�

structs that support modeling and execution of processes� such as persistent data types

relations�� triggers for reactive control� and predicates for speci�cation of local constraints	

APPL�A takes an unusual approach to process modeling in that it models processes as

actual programs that execute directly on the computer� unlike the more common approach

whereby process models are interpreted by and executed on a process engine	 In that sense�

it is lower�level than the declarative PMLs mentioned above	

Hence� it is hard to imagine how to support the Treaty model in APPL�A	 For

example� it is not clear how a common sub�process could be de�ned and integrated with

local sub�processes� nor is it clear how Treaties can be formed incrementally and over

possibly pre�existing processes
short of recoding and recompiling the programs�	

However� Ada
and hence APPL�A� has some built�in constructs for concurrent and

distributed programming that might be used to model Summits	 In particular� the Ada

��

Rendezvous ���� seems suitable at �rst glance	 Figure �	� shows a partial implementation of

the motivating example using Rendezvous	 The coordinating process encodes the composite

Summit as an Ada task
Change Summit� and de�nes two synchronization points
repre�

sented as task entries� used by the local processes to signal that they have completed their

work	 The task entries are also the shared interfaces used for exchanging data between the

tasks	 The coordinator task �rst waits for the local tasks to complete their local reviews
the

local review done entry�� then if the reviews are approved� the coordinator performs local

code modi�cations	 When the body of the accept completes� the results are transferred

back to the waiting local processes� which in turn proceed with the unit testing	 When

done� they invoke the unit test done entry sending the information that is needed by the

coordinator� the coordinator then performs integration test� and sends the new binaries to

the local processes	 For simplicity� we ignore various exceptions to the process	

While powerful for certain kinds of concurrent tasks� the Rendezvous mechanism does

not seem satisfactory for modeling Summits	 The main problem is with the alternating

�activeness� of the local and coordinating entities	 That is� Summits inherently require

both that the coordinator will wait
i	e	� accept� for the local processes� as well as that

the local processes will wait for the coordinator	 For example� the initiation of a Summit

from the coordinating site
missing form the solution� as the reader might have noticed�

requires that the local processes will be waiting for a Rendezvous	 However� if the local task

executing the body of such an accept would invoke a task entry back to the coordinator� a

deadlock would occur� since the coordinator is blocking on the entry	 Although the accept

blocks could be made smaller� it seems in general that Rendezvous is geared towards a

single acceptor and multiple senders� as opposed to multiple tasks� each of which alternates

between being a sender and an acceptor	

Another problem is that Rendezvous is �too synchronizing� for our purposes� and

limits the potential concurrency	 For example� when the local process completes its review�

there is no reason for it to block	 Instead it should be able to perform other tasks and be

noti�ed asynchronously
again� by its own accept block� when the coordinator has completed

its task	 Finally� another problem is support for multi�process
not only binary� Rendezvous	

Here again� a solution might be to �collect� all the information from the individual binary

Rendezvous and then call the �global� procedure� but the coding involved in implementing

this would be complicated	 In fact� this is the way the Oz process engine implements

Summits	 But this implementation is totally hidden from the process engineers� they use

��

the Summit abstraction to model multi�site interoperability	 Thus it is possible to realize

Summits with Rendezvous� but perhaps would be easier for the process engineer if some

enhancements could be made to APPL�A	

��	�	 Summary

An interesting outcome of investigating the application of the generic model on dif�

ferent PMLs is that each PML illuminates di�erent aspects of the model� due to its dis�

tinguished characteristics	 For example� the explicit process structure of Petri�nets shows

the Treaty as an intersection�net� and grammars bring the naming issue to the forefront

and also emphasize composite Summits due to their decomposition nature	 Moreover�

actual implementations of the model to di�erent PMLs are likely to raise new require�

ments and subsequently modi�cations to the model	 Yet� overall it seems that having

a language�independent model enables on one hand to investigate problems inherent to

process�interoperability regardless of the PML used to de�ne it� and on the other hand

it makes it potentially applicable to a wide range of formalisms	 The particular model

presented in this chapter seems to be capable of adjusting itself to the di�erent concerns�

abstractions� and granularities of the di�erent PMLs	

��� Groupware Tools and Delegation in Summits

The model presented so far in this chapter lacks consideration of two important

generic issues	 The �rst has to do with integrating groupware technology� mainly integra�

tion of synchronous multi�user tools
e	g	� multi�user editors� that enable multiple human

users� possibly physically dispersed� to collaborate
support for enactment of asynchronous

multi�user tools in PCEs has been investigated in ������	 While in some aspects the intro�

duction of this technology obviously implies additional architectural support from the PCE

for example� connecting multiple human users from multiple sites to the same conceptual

activity�� the extension of this aspect to our model seems both natural and simple	 Recall

that the Summit phase is always executed in the coordinating site� while the other sites

behave �as if� the activity executed at their site� in order to carry out any implications of

that activity locally	 Integrating multi�user tools simply implies that when such tools are

invoked as part of a Summit� all sites
not just the coordinating site� actually execute the

Summit activity� instead of just �pretending� to execute it� so the Summit phase still exe�

��

task Change�Summit is

entry local�review�done�sources� in files� in�reviews� in docs�

out�results� out res��

entry unit�test�done�sources� in files� in�results� in res�

out�results� out res� bins� out binaries�

end Summit�

task body Change�Summit is

begin

loop

accept local�review�done�sources� in files� in�reviews� in docs�

out�results� out res� do

if �in�reviews � OK� then

out�results � modify�code�sources��

end if�

end local�review�done�

accept unit�test�done�sources� in files� in�results� in res�

out�results� out res� bins� out binaries� do

if�in�results � OK� then

out�results � integration�test�sources	 bins��

end if�

end unit�test�done�

end loop�

end Summit�

task type local�proc�

task body local�proc is

do�local�review�doc��

local�review�done�source�files	 review�results	 global�results��

if �global�results � OK� then

do�local�test�files	 result��

unit�test�done�files	 local�results	 global�results	 binaries��

end if�

if�global�results � OK� then

install�new�binaries�global�

end if�

end local�proc�

Figure �	�� Summits in Ada

��

cutes in one point in time� but not necessarily in one point in space	 Consider� for example�

Petri�nets	 Whereas in the standard model the remote sites would normally �re the tran�

sition without actually carrying out the associated activity� in the case of multi�user tools

the transitions would really �re the activities� except they might involve binding new users�

one per site� and thus must be de�ned
either as �instances� or as �roles�� analogous to

the distinction between classes and instances in object�oriented programming� somewhere

in the body of the activity or elsewhere in the Summit	

A second major aspect� which is related to but separate from groupware� is the issue

of delegation	 As soon as multiple users might be involved in the execution of related

activities� the notion of delegating a task to a speci�c user
or a role instantiated by a

human user� comes to the surface	 Delegation can occur in our model in two places� within

the Summit phase in a multi�user tool� as described above� and in either pre or post Summit

phases	 For example� a pre�Summit phase might involve �ring an activity at a remote site

by a user at that site� as opposed to the user that initiated the Summit� or in case of a

non�interactive tool it could be �red �unmanned�	 The latter is considerably more e�cient

if the SubEnvs are physically distributed� since the execution occurs where the data resides	

And the former might be more appropriate in many cases that involve interactive tools that

have to be performed by speci�c remote users
see Section �	��	

Support for delegation� while extremely important for e�ective execution of Summits�

is largely a PML�PCE�speci�c issue� since it requires language extensions to enable binding

of activities to human roles� or providing a �user�context� from which potential users can

be selected for interactive execution of certain activities	 Once such support exists� it can

be extended to support multi�site activities	 The main necessary extension is to enable

binding of remote users to activities� analogous to the mechanisms which are necessary to

enable binding of remote data to Summit activities	 A particular approach to supporting

delegation in the Oz framework is given in Section �	�	�	

Finally� note that support for both delegation and multi�user tools is in some sense

orthogonal to SubEnv�interoperability� in that the same functionality could be used by

multiple users of the same SubEnv	 It is only more evident in the case of multiple SubEnvs	

Indeed� the implementation of delegation in Oz supports both intra� and inter�process

delegation and activation of multi�user tools	

��

��� Extensions and Alternatives to the Summit Model

There are several directions in which the Summit algorithm could be altered and�or

extended	 Some of the changes actually divert from the basic model and are not compat�

ible with it� while others could be augmented to the basic model with varying degrees of

implementation e�orts	 We consider here only the conceptual changes to the model� and

defer implementation issues to the next chapter	

����� Summit Branching Policy

The �rst alternative to consider is related to the execution order of local vs	 global

activities in composite Summits	 Recall that in the Summit algorithm a Summit activity

is followed by fan�out to local sites� and only when the fan�out completes� another Summit

activity is enacted� and so forth	 An alternative approach would have been to execute

all related Summit activities consecutively� preceded and proceeded by local operations

This� in fact� was the initial composite�Summit model as presented in �����	 That is� when

a summit activity completes� the coordinating SubEnv enacts
recursively� any further

Summit activities emanating from the previous one� and fan�out begins only when the

global execution completes	 The main advantage of the former
our Summit approach� is

in the fact that it subsumes the functionality of the latter	

A related problem at the implementation level has to do with carrying out the

branching policy discussed above	 The coordinating SubEnv has to be able to distinguish

between Summit and local activities� and apply the right order of execution as described

above	 This problem occurs particularly in cases where the choice of activities to run is

not explicit in the PML code but rather inferred� such as in rule�based and grammar�based

PMLs� where the branching occurs dynamically and is not known a priori	 This issue is

addressed in Section �	�	�	�	

����� Local Derivation of Summits

The basic Summit algorithm restricts Summit activities to occur only at the coor�

dinating site	 Of course� di�erent Summits can occur at di�erent sites� but once a Summit

begins at the coordinating site� all subsequent Summit activities in the same composite

Summit must occur at the coordinating site	 A reasonable extension to the model would be

to allow derivation of Summit activities o� local executions	 Consider� for example� the case

��

where an initial Summit between sites E�� E�� and E� leads to another Summit between�

say� E� and E�� where E� is a sub�contractor of E� but is not concerned with the previous

Summit	 While this seems like a natural extension� there are several di�culties with it�

both conceptual and technical	

Conceptually� the main problem is that there is no way to de�ne clear boundaries

for a Summit and identify each activity with its associated Summit	 Thus� the notions of a

Summit context and a coordinating site become blurry and ill�de�ned	

Technically� there are numerous problems to be resolved	 The main one is concerned

with concurrency� multiple �sub�Summits� can lead to circular dependency which might

lead to a deadlock� as will be explained in Section �	�	 Another problem is if atomicity

semantics were desired for some kinds of composite Summits
as is the case in Oz� see

Section �	�	��� maintaining atomicity across multiple coordinating SubEnvs requires com�

plicated transaction facilities	 Finally� the issue of dynamic binding comes up	 The problem

is how can a site executing in �local mode� derive a Summit with other sites	 One way is

to �inherit� the context of the parent coordinating site and use it� but this is still limited

to forming Summits o� sites that participated in previous Summits	

One restriction to the local derivation mechanism could make it more feasible� limit

local derivation of Summits to involve new sites which did not participate in prior Sum�

mits� thereby forming acyclic hierarchical Summit structure that alleviates the concurrency

problem� although it worsens the binding problem
a possible solution to the latter in Oz

is discussed in Section �	��	

To summarize� while local derivation of Summits might be an attractive extension�

there are several implications to implementing it� and they have to be weighed against the

potential gained bene�ts before attempting any implementation	

����� Multiple Global Environments

Another extension to consider is interaction between multiple
global� environments	

One particularly attractive option would be to have a SubEnv that belongs to several envi�

ronments� and executes in the context of one of the environments	 Or it could even allow

simultaneous execution with multiple environments
by the same or di�erent users�	 The

former approach is compatible with the general model since SubEnvs are self�contained

and loosely coupled with each other	 It might even have di�erent Treaties with di�erent

��

SubEnvs in the di�erent environments	 The main architectural requirements are
�� to

support global name space for global environments and globally unique SubEnv identi�ca�

tion scheme� and
�� to have a mechanism that enables to dynamically bind
and unbind� a

SubEnv to a particular global environment	 The more ambitious approach to allow simulta�

neous interaction with multiple environments imposes several architectural problems� such

as addressing and selecting objects in di�erent SubEnvs� but is also in principle compatible

with the general model� so long as the SubEnv has one instantiated process	

��

�

Realization of the Decentralized

Model in Oz

In this chapter we explore issues that are concerned with the realization of the decen�

tralized model in a real PCE	 Although most of the concepts introduced here have been fully

implemented� � the discussion in this chapter will try not to focus on the actual implementa�

tion	 Thus� while detailed enough for understanding the wide range of issues concerned with

such realization� the discussion will attempt to present the problems� ideas� and techniques

that could be relevant to an implementation of the model in other PMLs�PCEs in general�

and rule�based PMLs�PCEs in particular	

Before launching into the realization of the decentralized multi�process model� we

begin with an overview of the concepts that were �inherited� from the single�process Marvel

PCE� so the reader should be familiar by now with the main concepts and functionalities

of Marvel as presented in Section �	�	

Oz is a multi�process PCE as de�ned in Section �	�� supporting modeling and enact�

ment of autonomous multiple sub�environments	 As such� Oz subsumes the de�nition of a

single�process PCE	 In particular� an Oz environment consisting of a single SubEnv behaves

similarly to a Marvel environment
albeit an enhanced one� because of improvements that

were made in Oz independent of support for multiple processes�	

�The unimplemented features are summarized in Section ����

��

As in Marvel� each local
sub�environment in Oz is tailored by a local administrator

who provides the data model� process model� tool envelopes� and coordination model for its

team	 These de�nitions are translated into an internal format and then loaded into the

environment by a special loader component	

The data modeling capabilities of Oz are identical to those of Marvel
 object�

oriented data de�nition including classi�cation� multiple inheritance� composition hierarchy�

horizontal bi�directional links� and �le and state attributes	 Similarly� the process model�

ing language of Oz is based on the Marvel Strategy Language
MSL�� with some minor

extensions
which will be pointed out as their functionalities are discussed�	 Most impor�

tantly� Oz extends the user�driven� rule�based paradigm to multi�process environments	

Speci�cally� as far as local processes are concerned� Oz processes are de�ned in terms of

Marvel�like rules� which correspond to the notion of process�steps in the generic context

hierarchy	 Process tasks are implicitly de�ned by matchings between e�ects and conditions

of rules	 The constraints de�ned in the process
in terms of rule conditions� are enforced�

and automatic enactment is supported through backward and forward chaining	 Finally�

the single�site transactional semantics of Oz are like those of Marvel� supporting atomicity

and automation chaining
more details are given in Section �	�	��	

��� Operational Overview of Oz

In general� Oz has a two�level architecture� within a SubEnv� it has a client�server

architecture� with multiple clients communicating with a single centralized process�server	

Across SubEnvs� Oz has a �share�nothing� architecture� as advocated in the formal model	

This means that the processes� schemas� and instantiated objectbases are kept separately

and disjointly in each SubEnv� and that there is no global repository or �shared memory�

of any sort
details of the architecture will be given in Chapter ��	

Human interaction with the environment is provided through a client that is con�

nected primarily to its local server	 Using the client�s connection to its local server� users

can operate with the local tools� on local data objects� and under the local process� much

like in Marvel	 In addition to the local server� however� Oz users can connect to remote

servers	 Each remote SubEnv is represented in each local objectbase by a �stub� object

that is visible to the client	 By issuing the built�in open�remote
close�remote� command

with the appropriate stub object as parameter� a client can open
close� a connection to a

��

remote SubEnv
again� implementation details are deferred until the next chapter�	 A re�

mote connection provides limited access to the remote SubEnv	 A remote client can browse

through remote objectbases and get information about remote objects
subject to access

control permissions�	 However� a client has no access to remote processes
i	e	� rules� tools�

and access to remote data can be made only by binding remote objects as parameters to

Treaty rules
their realization is the subject of Section �	�	��	

For example� �gure �	� shows how the client for user israel
the user�s name is

shown in the upper left corner of the interface window� is connected to the local server of

SubEnv NY� with a
default� view of the local objectbase�
parent�child relationships are

depicted with straight lines and links by curved lines�	 Figure �	� shows israel�s view

after an open�remote on site CT has been made� making CT�s remote objectbase available

for browsing by israel	 israel�s client has not connected to SubEnvs MA and NJ� and they

may� or may not� be currently active
i	e	� executing�	 israel interacts with the environment

by selecting commands from the rules menu� which contains all the process�speci�c user�

level commands
inference rules used internally do not appear in the menu�� and he supplies

arguments to the rules by clicking on objects from the objectbase	 In particular� if a remote

objectbase is open� he can initiate a Summit by selecting remote objects as arguments to

Treaty rules	 When the
local� server services the request to �re a rule� it checks its own

process� and communicates with remote SubEnvs if the rule accesses remote data from

their objectbases� and eventually determines whether an activity has to be executed	 That

activity could be either the one explicitly requested by the user� or another activity related

to the requested one through a chained rule	 The server then sends a message to the

requesting client to execute the activity in its activity�manager component
except in cases

of delegation� where an activity can be sent to a delegated client� see Section �	��	 During

a Summit activity� remote objects are temporarily copied to the local SubEnv and passed

to the client prior to the activity execution	 Note that since a client has no explicit access

to remote processes� it cannot invoke �remote Summits�� thus all Summits are initiated by

local clients	

A special administrator client has� in addition to the normal client functionality� an

interface for updating the actual process de�nition	 An administrator client can evolve the

process by adding� removing� or loading a whole new or revised set of rules into the current

�For simplicity� only a small objectbase is shown� but in reality Oz can maintain thousands of objects
with adequate browsing support�

��

Figure �	�� An Oz Environment

SubEnv	 The interface to the load command is shown in �gure �	�� where the analyze

strategy is about to be added to the local process	 The administrator can also optionally

specify a process con�guration �le that contains a list of strategies to load
The notion of

an Oz strategy and its contents are explained later in Section �	�	��	

��� Oz Objectbase

Whereas an instantiated objectbase in Marvel is a forest data structure� a local

objectbase inOz is a rooted tree with a special SubEnv root object that contains information

pertaining to the local SubEnv
the details are given in Chapter ��	 Thus� a typical forest�

like Marvel objectbase is mapped to an Oz objectbase by connecting all the forest�s roots

as children of the SubEnv object�	

�This provides an easy migration path from Marvel to Oz objectbases� Marvel objectbases can be
migrated to Oz local objectbases with a simple upgrade facility that essentially extends the original schema
with the addition of the Oz built�in class that de�nes SubEnv objects� and connects all roots of the forest
to the SubEnv object�

��

Figure �	�� Oz Environment with one open remote site

Figure �	�� Load Interface in Oz

Since each local objectbase is maintained by a di�erent Oz server� a �global� ob�

jectbase is merely the union of all local disjoint objectbases� although the schema may vary

from site to site	 This implies that composite objects cannot be partitioned across di�erent

objectbases� since this would violate the disjointness property� because a composite object

contains its sub�objects	 For reference links� the situation is di�erent	 Links could concep�

tually cross an objectbase boundary since they do not impose a containment relationship	

��

����� Cross�Site Links

There are tradeo�s in supporting cross�site links	 The main advantage with having

them is that they provide cross�site data modeling capabilities	 Another advantage is that

they enable remote objects to be bound as parameters to multi�process rules in an on�going

chain	 This seemingly obscure property of cross�site links stems from the fact that automatic

as opposed to user�invoked� derivation of the parameters of rules during chaining is based

on their structural relationships to parameters in previously executed rules
for details

of this �inversion� algorithm� see �����	 Thus� since cross�site links are the only way to

structurally relate the otherwise disjoint objectbases� the lack of such a construct would

eliminate the possibility of automatically deriving parameters from remote SubEnvs� unless

those SubEnvs have already participated in earlier Summits in the on�going chain	

If however� cross�site links are allowed� there are several conceptual and technical

problems�

�	 The main conceptual problem is that a cross�site link permanently connects

two local objectbases	 With the navigational querying capabilities of MSL�

cross�site links would allow a query to traverse an entire remote objectbases

through a remote link	 This might violate both the autonomy and inde�

pendent operation requirements	 While autonomy might be relaxed in some

cases in favor of close cooperation purposes� independent operation should

not be compromised	 For example� if a site with remote links from�to other

sites is �down� or just unreachable� then any rule that uses links to the dis�

connected objectbase will either fail or produce di�erent results depending

on which sites are reachable	

�	 With cross�site links� it is no longer clear to users
as well as high�level

modules in the system� what the origins of the involved data are� and how

expensive it is to fetch� bind and execute an activity	 This violates the non�

transparency property	

�	 Cross�site links create cross�site dependencies that might lead to communica�

tion deadlocks if not handled carefully	 The gist of the problem is that when

a remote query is requested from site A to site B
e	g	� in the binding phase of

a rule�� site Bmight not be able to service the query without consulting other

��

servers that are connected through cross�site links� possibly creating a cir�

cular dependency	 The general issue of communication deadlocks is covered

separately in Section �	�	

�	 Since links in Oz are typed� cross�site links require implicit speci�cation of

common sub�schema	 Thus� a remote object which is linked to a local object

must correspond to the local schema type	

�	 Implementation of cross�site links is both hard and expensive because these

links would be �virtual�� i	e	� two objects linked by such a link do not share

an
operating system� process address space or �le�system space	 They would

have to be implemented by �stubs� at both ends containing information that

allows queries to �follow� the link� and a corresponding protocol between the

servers that enables e�cient access to those remote objects	

To summarize� cross�site links could be viewed as an implicit� �data�oriented� ap�

proach to enabling access to remote data	 Instead� the approach taken in this thesis favors

explicit speci�cation of the remote data to be accessed
through rule parameters�� and in a

more �process�oriented� fashion	 Thus� regular cross�site links cannot be supported in Oz	

However� preliminary experience with using Oz revealed that for some situations�

not having any means to model inter�site data modeling led to an unintuitive and awkward

modeling of inter�process modeling� particularly in the cases where the sites were more

tightly coupled	 This led to the contemplation of �soft� links�	

������� Soft Links

The main ideas in soft links are�
�� to distinguish cross site links from regular links�

not only in the data de�nition language
di�erent attribute types�� but also in the process

modeling language� and
�� to treat the invocation of rules with soft links as Summit rules�

which implies that they must be �Treati�ed� before their use	

This design addresses most of the problems which were raised above�
�� queries

would not cross sites unless they speci�cally contain soft links in their de�nition� and site

autonomy would be preserved by the fact that only Treaty rules can use soft links� and

they are regarded as Summit rules	
�� Non�transparency would still be preserved� since

�Borrowed from the Unix terminology for symbolic links�

��

the process must explicitly state when it accesses remote data� and normal links will only

refer to local data	 And any satisfactory solution to the sub�schema
�� and deadlock
��

problems for regular Treaties and Summits would also cover these soft link Treaties
these

solutions are presented in Sections �	�	� and �	�� respectively�	 Problem � is still valid�

though� and is the main reason for not having at the time of this writing an implemented

version of soft links	

������� Remote Derivation Without Soft Links

Even if cross�site links do exist� there is still a need for a complementary mechanism

that addresses the automatic remote derivation problem mentioned earlier without using

them
e	g	� because of data privacy concerns�	 Recall the �sub�contractor� example given in

Section �	�	�� with no cross�site links� there is no way that the sub�contractor site could be

automatically� derived as a candidate for a Summit with the sub�contracting site� because

it was not part of the previous Summit	 The proposed solution extends the parameter

inversion algorithm to allow logical inversions o� associative
i	e	� non�structural� queries	

This capability� in conjunction with global associative queries� would enable one to model

the example in the following manner� in the sub�contractor site E�� a special attribute of the

relevant object is set to denote that it is a sub�contractor of E�	 Then� upon completion of

the �rst Summit� E� issues a global query that locates the sub�contracting object in E� and

binds it to E��s rule� thereby providing the necessary context to subsequently �re a Summit

with E� as desired	 Once again� this approach might be preferred over using cross�site links

in cases where a �permanent� connection between the sites is not desired	 Furthermore�

the de�nition is more �process�oriented� as it is de�ned explicitly in the process and not

�hidden� in the data modeling level	

��� Modeling Process Interoperability in Oz

As discussed in Section �	�	�� modeling interoperability involves the following aspects�

�	 De�nition and evolution of common sub�processes	

�	 De�nition and evolution of common sub�schemas	

�	 De�nition of data instances to be used by common sub�processes	

��

Given the core requirements of autonomy� independent operation� and �exibility� ef�

fective modeling of interoperability imposes guidelines and constraints on how to implement

modeling facilities for the above aspects� among them independent and dynamic evolutions

of local processes� as well as non�global de�nition	

In the rest of this section we examine each aspect in detail	 The �rst aspect� discussed

at length in Sections �	�	� and �	�	�� is an e�ective implementation of the Treaty protocol as

outlined in the previous chapter	 The second and third aspects� discussed in Sections �	�	�

and �	�	�� respectively� are PCE and DDL speci�c� and are presented here in a somewhat

abbreviated form	

����� De�ning Common Sub�Processes� the Treaty

In general� Treaties are realized in Oz following the formal model outlined in Chap�

ter �	 Treaties are formed by active participation of both sites of the Treaty� with one site

being the requester and the other site the acceptor� as well as one importer and one exporter

all four combinations are possible�	

The basic unit of commonality in Oz is the rule	 However� mainly due to granularity

issues� the unit that is exported and imported is the strategy	 A strategy is a bundling

construct for rules� somewhat analogous to a module consisting of functions in modular

programming languages	 Although the intent of a strategy is to bundle rules that are

conceptually related
 either by their functionality or by belonging to the same task

there is no enforcement of this policy	 In particular� there are no chaining restrictions

between rules in the same or in di�erent strategies�	

A strategy consists of two sections� a tools section that declares tools and de�nes

the interface to them
from rules�� and a rules section in which rules are de�ned	 In

addition� the schema required by the rules is provided by special data de�nition strategies

de�ned separately	 The separation between schema and process de�nitions
which did not

exist in Marvel� has several bene�ts�
�� it facilitates the realization of Treaties that are

formed among rule strategies only�
�� it eases local evolution� avoiding the need to perform

schema evolution if only rule strategies are modi�ed� and
�� it increases componentization

by separating data and process modeling� thereby allowing the potential to use di�erent data

de�nition languages
and di�erent OMSs� with the same rule language� and vice versa	

�An early Marvel paper 	��
 described a di�erent approach with respect to restrictions and chaining
across strategies�

���

Figure �	�� Import and Export Interfaces in Oz

Oz provides the following �ve built�in commands for establishing Treaties� export�

import� unexport� unimport� and treaty	 Although there are no separate commands for

request� accept� deny and cancel� they are speci�ed as parameters to each of the above

commands� making it possible to generate all possible combinations that were discussed in

the formal model	

������� export

The export operation is de�ned as�

export
strategy
SrcSubEnv��DstSubEnv� �privileges��

This is an inexpensive operation in Oz	 It executes locally at SrcSubEnv and merely

involves adding an entry with the speci�ed strategy and DstSubEnv to a persistent local

export table	 By default� Oz associates request privileges with export� i	e	� it assumes that

in most cases the the exporter wants to use the exported strategy on data fromDstSubEnv	

But the administrator can change the default by explicitly selecting accept privileges	 In

addition to accept and request� Oz provides a third option called shared	 The semantics of

the shared option are to export a strategy both as a requester and as an acceptor	 The main

use of this option is to facilitate convenient generation of full
i	e	� bi�directional� Treaties�

a shared export followed by the proper shared import establishes a full Treaty	 The actual

Oz interface is shown in the lower window in �gure �	�� where strategy doc is about to be

exported to SubEnv NJ as a requester	

���

������� import

The import operation is de�ned as�

import
strategy
SrcSubEnv�� DstSubEnv� �privileges��

import is the main operation in modeling Treaties� and is quite complicated both

in terms of user interface support and the internal implementation	 As usual� we assume

the existence of the necessary underlying infrastructure to communicate with the remote

SubEnv
which is explained in detail in Chapter ��	 In particular� there must be an open

connection to SrcSubEnv� since the operation is initiated at DstSubEnv but it involves

both SubEnvs	

The actual interface is shown in the upper window in �gure �	�	 It shows that strategy

test is to be imported from SubEnv NY as an acceptor� i	e	� it will allow rules de�ned in

the test strategy to be �red from users at remote site NY on local data
which happens

to be site CT�	 As with export� it is possible to associate either of the three privileges with

import� with accept being the default	

�	 The �rst issue to consider is how to select the strategy to import� given that it

resides in a remote SubEnv and is thus not usually visible to the local process	 The import

interface must supply the administrator at DstSubEnv a list of the available strategies at

SrcSubEnv that were explicitly exported from it to DstSubEnv	 Further� this information

must be generated dynamically� since the list of exported strategies at SrcSubEnv can

change at any time as a result of issuing local export or unexport operations	

�	 Once the importer at DstSubEnv selects the strategy to import� it has to be

copied from SrcSubEnv� along with additional information needed for runtime veri�cation

see Section �	�	��	 This is done in Oz by fetching a copy of the strategy� which is held

for the duration of import and is removed immediately afterwards	
A physical copy of the

strategy is required only when the SubEnvs do not share a �le system	 Otherwise� only a

path to the strategy is sent� and the process translator at the importing site fetches the

�le from its original location	� There are two reasons for not keeping a local copy of the

imported strategy�
�� only one physical copy of the strategy �source code� is maintained

and all importing SubEnvs point to that copy�� thereby avoiding the need to keep multiple

copies consistent�
�� this approach also facilitates dynamic veri�cation of Treaties that

might be violated by local evolutions� as will be explained shortly	

���

Note that import fetches only the rules� without the envelopes
and tools called from

them� associated with the rules	 While this is not a problem with the default import�accept

option
since in this case the activity is not executed at the importing SubEnv� only its

data is accessed by the activity� which executes at another SubEnv�� the import�request

combination implicitly assumes that the activity exists at the importing SubEnv� so if this

is not the case it must be copied outside the environment
e	g	� cp� or ftp across domains�	

�	 The third step is to verify that the strategy can be integrated with the local process

atDstSubEnv� both syntactically and semantically	 This includes sub�schema compatibility

discussed in Section �	�	�� and process�consistency
discussed in Section �	�	��	

�	 The fourth step involves connecting the rules in the imported strategy to the local

rule�network	 This is done by forward connecting each new rule to all other rules
both

imported and local� whose conditions match the rule�s e�ect� and backward connecting it

to all rules whose e�ects matches the rule�s condition�	 At the end of this procedure� the

imported strategies are fully integrated with the local process	 When executed as part of a

Summit� local prerequisites and consequences
in addition to �global� Summit implications�

of the imported rules would be automatically enacted	

Figure �	� illustrates the integration phase
using rules that correspond to some of

the steps in the motivating example�	 Suppose the modify rule is imported by two dif�

ferent processes residing at SiteA and SiteB� respectively	 In siteA� modify is backward

connected to rule review through the matching between modify�s condition and review�s

e�ects� and it is forward connected to rule manual test through the matching between

modify�s e�ects and manual test�s condition	 Similarly� in siteB� the rule modify is back�

ward connected to analyze and forward connected to auto test	 Thus� modify becomes

an integral part of both processes� and may trigger� or be triggered by� invocation of related

rules during enactment	

The ease with which process integration can be achieved reveals the strength of the

declarative nature of the rule paradigm	 process fragments can be incrementally added
or in�

crementally removed� and automatically integrated without user intervention� The context�

less rules� as well as the �ne granularity of rules as process building blocks� also pay o�

handsomely	

Since accept�request operations can only be invoked by import�export� it is neces�

�Actually it is more complicated because chaining directives �lter some of the connections�

���

manual_test[?f:FILE]:

binding
(forall MODULE ?m suchthat (member [?m.files ?f]))

#condition
:
(?f.status = Modified)

activity

{ TEST man_test ?m.exec }

effects

(?f.status = UnitTested);
(?f.status = TestFailed);

auto_test[?f:FILE]:

binding
(forall MODULE ?m suchthat (member [?m.files ?f]))

#condition
:
(?f.status = Modified)

activity

{ TEST auto_test ?m.exec }

effects

(?f.status = UnitTested);
(?f.status = TestFailed);

SiteA SiteB
review[?f:FILE]:

#condition
:
(?f.status = NotReviewed)

activity
{ REVIEW review ?f.request ?f.review }

effects
(?f.status = Reviewed);
(?f.status = ReviewFailed);

modify[?a:FILE, ?b:FILE, ?c:FILE]:

condition
:
(and (?a.status = Reviewed)
 (?b.status = Reviewed)
 (?c.status = Reviewed))

activity

{ MODIFY mod ?a.contents ?b.contents ?c.contents }

effect

(and (?a.status = Modified)
 (?b.status = Modified)
 (?c.status = Modified));

analyze[?f:FILE]:

#condition
:
(?f.status = NotReviewed)

activity
{ REVIEW review ?f.request ?f.review }

effects
(?f.status = Reviewed);
(?f.status = ReviewFailed);

Figure �	�� Integration of Imported Rules

sary for import to be idempotent with respect to the compilation mentioned above	 This is

particularly important for Treaties that involve more than two sites	 For example� suppose

site E� imports strategy S� from site E� and site E� also imported S� from E�	 Now site

E� wants to grant accept privileges to E�� so it issues an import�accept command� but this

time compilation of the process model is not necessary so only the execution�privileges �ag

is modi�ed	 When an import is requested on an already imported strategy
or alternatively�

if it is a local strategy which was exported and is now imported� possibly to form a full

Treaty�� only the process privileges are updated� and the compilation part is ignored	 We

will refer to such import operation as a �faked� import	

�	 The last step of import involves sending an acknowledgement to SrcSubEnv	

This acknowledgement is not critical� however� since runtime checks are performed anyways

���

import server import client export server

send strategy list

select strategy

send strategy

update client update (remote) client

update display
and make
new strategy available

(3, 4) INTEGRATE

(2) request import

(1) get strategy list

(5) send acknowlegdement

Figure �	�� The Import Algorithm in Oz

to verify the validity of Treaties	 Its sole purpose is to notify users at SrcSubEnv of those

Treaties that are possibly available to them	

Figure �	� illustrates the import algorithm and the interaction between the SubEnvs

at the execution of the import� with numbers corresponding to the steps listed above	 Notice

that menu generation in the �rst step is done by direct communication between the remote

client and the export server	 Once theOz client selects which strategy to import� it requests

its local server to perform the import	 From then on� the two servers communicate in a

client�server fashion
 with the import server acting as a �client� and the export server

acting as a �server�
 until the service is completed� in which case both servers update

the client� the import server sends to the client the revised set of rules and rule�network�

and the export server noti�es the client that a Treaty from the import server to the export

server was formed	

It is worth mentioning here a problem that manifests itself in this implementation

of import� but is only a private case of the more general problem regarding server�to�server

���

communication	 Basically� the problem with this client�server�like interaction between the

import server and the export server is that as a �client�� the import server needs to wait for

the service to be provided	 This means that if the export server is single threaded and non�

context switchable at step
��� then the import server might block inde�nitely� potentially

�starving� its own clients� or even worse� deadlocking with other waiting servers acting

as clients	 In the speci�c case of import� since it involves changing the local process� the

import server must execute in single�user mode	 This alleviates the import problem since

there are no potential starving clients� but it doesn�t solve the deadlock problem	 And in

the general case multiple clients interact concurrently with a server� adding the starvation

problem as well	 This problem is addressed separately in Section �	�	

There are two more properties that the import operation must have	 One is atomic�

ity� clearly� the import operation has several potential failure points� meaning that it must

be accompanied by a context�sensitive rollback mechanism that preserves the integrity of

the server in case of failures	 However� there is no need to guarantee cross�site atomicity for

import� which �ts well with the general decentralized requirements� the acknowledgement

is optional� as mentioned above	 The atomicity of the operation has to be preserved only

in the importing server	

The second property is persistence	 The imported strategy� along with the necessary

information used for runtime validation� must be stored permanently with the local process

since it outlives an execution of the server� and needs to be reloaded in subsequent evolutions	

������� unexport

The unexport operation is de�ned as�

unexport
strategy
SrcSubEnv��DstSubEnv� �privileges��

Like export� this is a local operation that executes at SrcSubEnv	 It removes

DstSubEnv from the list of SubEnvs that are entitled to further import strategy	 In

addition� the execution privileges are undone based on the speci�ed privileges argument

 when coupled with accept the e�ect is deny� coupled with request results in cancel�

and coupled with shared revokes both	 Note that if� for example� the exported strategy

was previously shared
i	e	� both requested and accepted�� then unexporting with request

accept� retains the accept
request� privileges intact	

���

������� unimport

The unimport operation is de�ned as�

unimport
strategy
SrcSubEnv��DstSubEnv� �privileges��

Unlike its import counterpart� unimport is a local operation� as it should be ac�

cording to the formal model	 However� unlike unexport� it might involve some non�trivial

amount of work at the server	 The algorithm is as follows� if strategy is marked as imported

from more than one SubEnvs� or if strategy is a local strategy
which was faked imported

for full Treaty purposes�� then unimport does not modify the process� and only updates the

privileges similar to the way it is done in unexport	 If� however� DstSubEnv is the only

strategy from which strategy is marked as imported� then unimport removes strategy from

SrcSubEnv�s process	 This requires �decremental� recompilation and regeneration of the

rule network	 Such a physical unimport also revokes all privileges from all remote SubEnvs

regardless of the parameters that were speci�ed with the operation� since the strategy is

removed from SrcSubEnv and cannot be used in any manner there	

As can be seen� not having the four execution�privileges commands
request� accept�

cancel� and deny� available separately from the four strategy�transfer commands
export�

unexport� import� unimport� introduces some technical and conceptual di�culties	 On the

other hand� preliminary experiments showed that easing the procedure of forming Treaties

is pragmatically important� and that most of the Treaties can be formed using the default

privileges� while more pro�cient administrators can still select other options in order to get

the desired behavior	 In any case� this is mainly a user�interface issue� the important issue

is that the equivalent semantics of the formal model are fully obtainable in Oz	

������� Operational Overview of Forming Treaties

Going back to the formal model� a simple binary Treaty between two SubEnvs is

formed by an export operation at the source SubEnv� followed by a matching import oper�

ation at the target SubEnv	 But these operations do not have to be synchronized� and in

particular� the import can occur at anytime after the export� or never occur at all	 From

the system�s standpoint� Treaties are formed implicitly� and perhaps even without explicit

intention	 That is� Treaties can be inferred automatically� when the right combination of

export and import occurs at the SubEnvs	 In some sense� this is a continuation of the

���

Figure �	�� The Treaty Interface in Oz

context�less rule�based model that �ts well with autonomy concerns	 In particular� there is

no need for a �global administrator� to form Treaties� they are formed by local administra�

tors willing to collaborate in order to form the Treaties� and using the system to formalize

their intentions as well as ensure that they are carried out as agreed	

In cases where SubEnvs are more tightly coupled� however� there might be a need

to support
simple and full� Treaties as one operation� to simplify their formation	 Indeed�

early experience withOz revealed the need for such an operation in cases where� for example�

each SubEnv represented a single�user process� in which case a global administrator
and a

corresponding global Treaty operation� was essential	 Therefore� Oz supports the explicit

Treaty operation� which bundles an export and import� as explained below	

������	 Treaty as one operation

In order to be eligible for executing the Treaty operation� a user has to have adminis�

trator privileges on both SubEnvs	 Note� however� that in conformance with the �not�only�

local�or�global� principle� the user does not need universal administrator privileges� only on

the two sites of a given Treaty	

The treaty operation is de�ned as�

Treaty
strategy
SrcSubEnv��DstSubEnv� privileges�

and the actual Oz interface is shown in �gure �	�	

The semantics of the operation are as follows� strategy is exported from SrcSubEnv

and subsequently imported by DstSubEnv	 Treaty is atomic� meaning that both SubEnvs

have to rollback in case of a failure	 In addition� DstSubEnv has to operate in single�user

mode
i	e	� only one client can be connected to it� although SrcSubEnv and other SubEnvs

might have arbitrary number of active clients�	 To simplify matters� Treaty is always

initiated by the exporter	 However� the exporter can be either a requester
default� or an

���

acceptor� implying acceptor or requester privileges on DstSubEnv� respectively	 Finally� as

mentioned earlier� a shared privilege implements a full Treaty� i	e	� either site can operate

the rules in the strategy on the other site�s data	

������� Rule Name Space

Back in Section �	�	� we identi�ed the naming problem of process units� which ap�

pears here too	 Since Treaties e�ectively implement common sub�processes� once a set of

rules is imported and integrated in a local process� there must be a way to identify the

very same rule across the multiple �members� of the Treaty	 Rule names are obviously not

su�cient� since multiple
overloaded� rules with the same name can co�exist even within

a single local SubEnv
see ���� regarding rule overloading�	 So� some sort of unique rule

id scheme is needed	 In Oz� this is done by using the unique SubEnv id
multiplied by a

large constant� as a pre�x to the normal id generation of the rule translator	
In fact� all

the necessary unique identi�ers are derived from the uniqueness property of the SubEnv id

which is guaranteed at site registration time� as will be seen in Section �	�	� Thus� rule�ids

of all rules of an imported strategy are guaranteed to be distinct from the rule�ids of any

local rules� or rules from other imported strategies	 When a Summit rule is invoked� its

rule id enables remote sites to uniquely identify the invoked rule with their own copy of

the rule� and service the various Summit requests that refer to that rule
e	g	� veri�cation�

remote backward and forward chaining� etc	�	

����� Local Evolutions and Dynamic Veri�cation

In Chapter � we discussed the rationale for autonomous local evolution and the

tradeo�s associated with it	 The main point was that in order to comply with the autonomy

principle� we want to allow independent modi�cation of local processes� including operations

that explicitly leave Treaties� as well as operations that might indirectly a�ect Treaties	

To comply with the independent operation principle� we do not want to depend on other

SubEnvs when such evolutions occur� and we want to minimize the communication overhead	

On the other hand� we still want to make sure that Treaties are valid during relevant

Summits	 Another aspect of the dynamic veri�cation is to protect a site from remote

�invasions� of privacy� by ensuring that rules that were never included in a Treaty are not

allowed to execute across SubEnvs	

���

Oz fully complies with this model of local evolution	 With the exception of import�

all operations that manipulate the local processes are local and involve no interaction with

other SubEnvs	 Therefore� some of the operations can potentially invalidate prior Treaties	

In order to be able to detect invalid Treaties� we have to revisit the conditions that constitute

a valid Treaty� analyze all the cases that might cause some of those conditions to not hold�

and ensure that the proper checks are made at run time to detect invalid Treaties	

A
simple� Treaty from E� to E� on strategy S� is valid only if all three conditions

below hold�

�	 Either�

a� S� is marked at E� as exported to E�� and is marked at E� as imported

from E��

b� S� is marked at E� as imported from E�� and is marked at E� as ex�

ported to E�	

�	 S� is marked at E� as a requester of E�� and is marked at E� as an acceptor

from E�	

�	 S� is identically de�ned in both SubEnvs	 This is the �common sub�process�

invariant discussed earlier in Section �	�	�	

The �rst condition can be invalidated whenever unexport at the exporting site� or

unimport at the importing site� is issued	 unexport can be easily detected locally at the

invoking site
 the invocation is rejected if the issued rule is not
anymore� exported	

unimport is also easily detectable since when a Summit rule is requested on the remote

site� if it is part of a strategy which has been unimported it will simply not be found
the

case of faked import� i	e	� when the rule was already de�ned locally� is covered in the second

condition since the sole purpose for faked imports is to a�ect execution privileges�	

As for the second condition� both request and accept privileges have to be checked

for their validity	

�	 request
 E� can lose its request privileges on S� if the equivalent of

cancel
S�� E�� E�� was issued	 This can occur in Oz in one of two ways�

depending on the method by which the request privileges were originally as�

signed�
�� If through export�request� then an unexport�request on S� from

���

E� to E� revokes request privileges	 This can be validated at E� locally

when the Summit rule is invoked� at the same time the export privileges are

checked	
�� If through import�request� then an unimport on S� at E� in�

validates condition �	 Thus� validity checking is similar to that for condition

�	 In case of a faked import� the request privileges are checked locally	

�	 accept
 E� can revoke accept privileges from E� on S� whenever the equiv�

alent of deny
S�� E�� E�� occurs at E�	 This can occur also in one of two

ways� depending on the original commands issued to set up the privileges�

�� In case of export�accept� an unexport�accept command revokes the accept

privileges	 To validate this case� E� must explicitly check for proper accept

privileges every time a rule in S� is issued from E� on data from E��
��

In case of import�accept� an unimport at E� invalidates the accept privi�

leges	 Again� in case of normal unimport� there is nothing to check� the rule

will simply not be found	 In case of a faked unimport� a check for accept

privileges is required	

The third condition implies that all copies of a Summit rule must be identical in

all involved SubEnvs	 This condition can become unsatis�ed as a result of
local� process

evolutions� and is more complicated to check for	 The key to the solution is evolution

timestamps� explained below	

������� Evolution Timestamps

A set of strategies can be added� removed� or modi�ed� e�ectively evolving the

on�going process at a local site	 There are several considerations with respect to Treaty

veri�cation	 First� it is important to retain the validity of prior Treaties which are not

a�ected by the evolution	 Speci�cally� a Treaty is not a�ected by a local evolution if the

evolved site is
only� the importing site in that Treaty	 Since sites have no access to the

�source code� of imported rules
as explained earlier in Section �	�	�	��� this evolution does

not violate the common�subprocess invariant	

The more severe problem is when a strategy which was imported into a remote

SubEnv
s� is being evolved at the exporting
�source�� SubEnv	 Regardless of the process

privileges attached to the exported strategy� such evolution violates the common�subprocess

invariant	

���

The idea is for the local SubEnv to assign a �timestamp� each time a strategy in

its process is compiled and loaded locally	 The term timestamp is a bit misleading� in that

it is simply a local incrementing counter which does not depend on any real time or any

other SubEnv�s counter that would require �global time�	 When a strategy is imported� its

timestamp is also shipped and stored at the importing SubEnv	 At run�time� whenever a

Summit rule is invoked for execution� the timestamp at the requesting SubEnv is compared

to the one stored at the accepting SubEnv	 If there is a mismatch� it means that local

evolution took place at the exporting SubEnv� implying invalidation of the Treaty� and

the execution is rejected	 Re�activation of the Treaty can be made by either re�importing

explicitly the
possibly modi�ed� strategy� or by reloading the process� which also fetches

the up�to�date versions of all imported strategies	

Under the above circumstances� the mismatch is guaranteed regardless of whether

the exporter is an acceptor or a requester	 But care must be taken that the check is for

exact comparison	 That is� if the exporter is a requester� its timestamp will be greater than

the importer�s� but if the exporter is an acceptor� its timestamp will be smaller than the

importer�s	

To illustrate this point and the timestamp mechanism in general� consider the two

scenarios depicted in �gure �	�	 In
a�� strategy S� is loaded in E� with timestamp �� then

exported as a requester toE�� and imported by E� as an acceptor	 A subsequent
local� load

at E� increases S��s timestamp to �� so when
a user operating in� E� requests execution

of a rule de�ned in S� on data from E�� the timestamp comparison at E� fails because the

acceptor�s
E�� timestamp on S� is smaller than the requester�s
E��	 In
b�� E� is the

exporter and E� the importer as before� but the privileges are switched� E� is the acceptor

and E� is the requester	 When an attempt is made to execute from E� a rule de�ned in

S� on data from E�� right after a
local� load that occurred at E�
thereby increasing S��s

timestamp� the timestamp comparison fails again� but this time because the acceptor
E��

has a larger timestamp number than the requester
E��	

This dynamic approach to Treaty veri�cation eliminates the need to notify all related

SubEnvs when a local process change occurs
some of them might not even be active at

that time�� and moves the responsibility of upgrading the imported rules to each remote

SubEnv when it actually needs to use them	 This �lazy update� approach �ts well with the

general decentralized philosophy	

Figure �	� summarizes this section by presenting the dynamic Treaty veri�cation

���

E1 E2

load(S1, 7)

load(S1, 8)

time

export−request(S1, E2)

import−accept(S1, E1, 7)

E1 E2

load(S1, 7)

load(S1, 8)

time

Treaty Invalid (8 > 7)

export−accept(S1, E2)

Treaty Invalid (7 < 8)

(a) export−request and import−accept

(b) export−accept and import−request

import−request(S1, E1, 7)

execute S1 on data from E2

execute S1 on data from E1

Figure �	�� Evolution Timestamp Example

algorithm
in pseudo�code�� which is executed in the acceptor SubEnv prior to invocation

of each Summit rule	 Notice the three distinct levels of checking which correspond to the

three conditions discussed above� and the possible actions that are required in order to

reactivate old Treaties or establish new ones	

����� Common Sub�Schema

Since every data binding and reference in Oz rules is typed� rules implicitly require an

underlying schema	 For example� the compile rule in �gure �	�� operates on a formal pa�

rameter of type CFILE
line ��� which must have a compile status attribute of enumerated

type with at least three of the possible values in that type being NotCompiled� Compiled�

and ErrorCompiled� as seen in lines �� ��� and ��� respectively	 The bindings of the rule

also impose structural requirements on the schema	 In the example� line � implies that

CFILE has a link attribute named hfiles to the class HFILE
representing header �les that

are included by the CFILE�	

���

verify�treaty�SrcSubEnv	 DstSubEnv�

�� Executes at DstSubEnv ��

�� CONDITION � ��

�� if � find rule with the given rule id�

�� CONDITION � ��

�� if � DstSubEnv is an acceptor of the rule�s strategy

�� for SrcSubEnv�

�� CONDITION � ��

�� if �rule�s remote timestamp �� rule�s local timestamp�

�� Treaty is valid	 allow execution

�� else

�� Treaty is invalid	 reject execution

�� Reason� local evolution at the exporting SubEnv

�� Reactivation� re�import �or reload� at the

��� importing SubEnv with proper privileges

��� else

��� There is no Treaty on that rule	 reject execution

��� Reason� an equivalent of cancel occurred

��� Reactivation� DstSubEnv needs to accept the strategy

��� else

��� Requested rule does not exist in local SubEnv	 cannot execute

��� �Re�activation� DstSubEnv needs to �re�import the remote strategy

Figure �	�� Run�time Treaty Veri�cation Algorithm

When a rule is imported� the importing SubEnv must have the proper compatible

sub�schema in order to be able to compile the rule and later execute it	 Thus� the strong

typing property rules out any hope for de�ning Treaties over totally disjoint and unknown

schemas	 The discussion of this issue in Section �	�	� advocated a solution that allows to

specify arbitrary common and private sub�schemas� as opposed to requiring global schema

or restricting the common sub�schema by some criteria	 We now turn to the solution in Oz	

���

�� compile �
c�CFILE��

��
 Bindings� collect the header files which belong to this project

�� �forall HFILE
h suchthat �linkto �
c�hfiles
h����

��
 condition�

��
 if the C file has been analyzed successfully but not yet compiled	

��
 you can compile it�

�� �and �
c�analyze�status � Analyzed �

�� no�backward �
c�compile�status � NotCompiled��

��
 activity� invoke the activity with all necessary files�attributes

��� � COMPILER compile
c�contents
c�compile�log
c�object�code
h�contents �

���
 effects�

���
 mark the state of the
c to compiled or error	 depending on the

���
 return code from the compiler�

��� �
c�compile�status � Compiled ��

��� �
c�compile�status � ErrorCompiled ��

Figure �	��� Compile Rule

������� Solution in Oz

There are two problems with realizing common sub�schemas�
�� Static
 how to test

whether a remote sub�schema that is implied by a set of imported rules� is compatible with

the local schema of the importing SubEnv	
�� Dynamic
 how to uniformly manipulate

objects with only partial common�subschema	

To illustrate the problems� consider the two de�nitions of the class CFILE at two

SubEnvs� E� and E�� given in �gure �	��	 There are several di�erences between the class

de�nitions	 For example� the �rst de�nition has a config attribute
line �� that is missing

from the second de�nition
which has instead a set attribute configs� in line ���� the

enumerated analyze status attribute at line � has a di�erent set of values than in its

counterpart at line ��� and the compile options attribute is of type string in the �rst

���

de�nition
line �� and an enumerated type in the second
line ���	 Yet despite these

di�erences� the compile rule that was shown earlier in �gure �	�� should be able to properly

�re on objects from either de�nition� because the subset of attributes that is accessed by

that rule is compatible	 But in order to enable this
and disable non�compatible rules��

the local process translator has to syntactically accept such rules at compile time� and the

process engine must be able to accept objects from either class at runtime� even though

they share only a sub�schema and are therefore not structurally identical	

In some cases the same symbol might be bound to a set of objects de�ned by di�erent

classes� making the dynamic problem more severe	 Consider� for example� the multi�edit

rule in �gure �	��� in conjunction with the de�nitions of the CFILE class of �gure �	��	

Suppose that a user invokes the multi�edit rule with parameter objects M� bound to �m��

and M� bound to �m� where M� and M� are from SubEnvs E� and E�� respectively	 Then�

the symbol �c
line �� will be bound to all CFILE objects which are children of either M�

or M�� meaning that they will be instantiated from di�erent de�nitions of CFILE	 Note that

this rule should also be allowed to execute as far as sub�schema compatibility is concerned�

because the accessed attributes in this rule are common to both de�nitions	

Addressing the Static Problem

Oz�s solution to the static problem is as follows	 First� there are no provisions

for allowing isomorphic compatibility� i	e	� structurally identical sub�schema with di�erent

names	 Although a possibly useful feature� it is beyond the scope of this research	 But only

by�name type checking is not su�cient either	 For example� the compile options attribute

has the same name in both de�nitions but the types are di�erent� so such incompatibility�

which cannot be tolerated� will not be detected	 So both by�name and by�structure checks

are required	 The process translator �rst checks whether the names of classes and attributes

that are referenced in the imported rules exist in the local schema	 This is identical to the

by�name checking that is performed for local rule compilation� so no special extensions are

needed to obtain this functionality	 This should be true for any strongly typed PML that

must perform type checking to verify that the operands conform to the schema	 The by�

structure check is more complicated� however	 Each attribute speci�ed in the imported rules

has to be checked in both schemas� to see that it corresponds to the same type	 Note that

there could be some complications due to inheritance� because an attribute of a class that

���

����������

SubEnv E�

����������

�� CFILE �� superclass FILE�

��
 State Attributes

�� analyze�status � �NotAnalyzed	 Analyzed� � NotAnalyzed�

�� compile�status � �NotCompiled	 Compiled� � NotCompiled�

�� object�time�stamp � time�

�� compile�options � string�

�� config � string

��
 File Attributes

�� object�code � binary � ��o��

��� contents � text � ��c��

���
 Composite Attributes

���
 Reference Attributes

��� hfiles � set�of link HFILE�

��� end

����������

SubEnv E�

����������

��� CFILE �� superclass FILE	 PROTECTED�ENTITY�

���
 State Attributes

��� analyze�status � �NotAnalyzed	 ErrorAnalyzed	 Analyzed� � NotAnalyzed�

��� compile�status � �NotCompiled	 Compiled� � NotCompiled�

��� compile�options � �Debug	 Optimize	 Normal� � Normal�

��� object�time�stamp � time�

���
 File Attributes

��� object�code � binary � ��o��

��� contents � text � ��c��

���
 Composite Attributes

��� configs � set�of CONFIG�SRC�oz�

���
 Reference Attributes

��� hfiles � set�of link HFILE�

��� end

Figure �	��� Two De�nitions of class CFILE

���

�� multi�edit �
m��MODULE	
m��MODULE��

�� �and

��
 binding�

��
 collect all source files contained within either module

�� �forall CFILE
c suchthat �or

�� �member �
m��cfiles
c��

�� �member �
m��cfiles
c����

��
 collect all the header files linked to the sources

�� �forall HFILE
h suchthat �linkto �
c�ref
h�����

���
 condition � check that sources are accessible to invoker

��� �and

��� �
c�reservation�status � CheckedOut�

��� �
c�allowed�edit � CurrentUser��

��� � MULTI�EDIT multi�editor
c�contents
h�contents �

���
�� sources from both m� and m� changed

��� �and �
m��status � NotCompiled�

��� �
m��status � NotCompiled��

���
�� only sources from m� changed	

��� �
m��status � NotCompiled��

���
�� only sources from m� changed	

��� �
m��status � NotCompiled��

���
�� no changes made	 assert nothing

��� no�assertion�

Figure �	��� Multi�edit rule

is speci�ed in a rule might actually be de�ned in one of its superclasses� implying that the

process translator has to search through the class hierarchy	 Moreover� checking for lattice

compatibility
i	e	� the composition hierarchies� might be required for the structural bindings

in rules	 Finally� a potential problem might be di�erent ordering of the same attribute in

di�erent class de�nitions	 This� however� is not a problem in Oz since attributes in Oz are

���

accessed through their name� not through �eld o�sets	 In fact� this attribute�based access

also facilitates the solution to the dynamic problem� as will be seen shortly	

The general solution to the static problem is then to compare the subschema speci�ed

in the imported strategy with the local schema� generate the structural �delta� between

them� and determine if the attributes accessed by the rules in the imported strategy overlap

with the �delta�	 If there is such overlap� the imported strategy is not schema�compatible

with the local process� and the import fails� otherwise it succeeds	

An alternative solution would have been to merge schemas	 That is� in case of�

say� two CFILE de�nitions� both SubEnvs would end up with the same CFILE de�nition

that is the union of the attributes� with some arbitration policy among con�icting at�

tributes	 However� this approach has several drawbacks� particularly with respect to the

�core� requirements	 The main problem with this approach is that it implies that the local

instantiated objectbase has to be evolved to correspond to the new merged schema� and

even the �source� SubEnv might possibly need to be evolved	 But most of all� since objects

are �mixed� only temporarily during execution of rules� but otherwise reside in their own

private objectbase with their own schema� there is no justi�cation to merge local schemas

and evolve the objectbases just to satisfy the type restrictions	

The solution in Oz is based on the �delta� analysis front�end component of the

Evolver� discussed in Section �	�	�	 The idea is to apply this delta analyzer selectively to

the classes that are referenced in the imported strategy� and generate a �delta� between the

importing and the exporting SubEnv
which therefore must send those class de�nitions at

import time�	 If the delta is unacceptable
for example� because of mismatched types� the

import is rejected	

It seems that the same approach could be applied to a wide range of implementations�

so long as they have a schema evolution utility	 The key observation is that the analysis

step in schema evolution is similar to the one that is needed for import purposes	

Addressing the Dynamic Problem

The essence of the solution to the dynamic problem is attribute�based access men�

tioned above	 That is� when an object is transferred from one site to another� it is treated

merely as a set of attribute�value pairs
and an object�id�	 These pairs also include all the

attributes that were inherited from any superclasses	 Since all accesses to objects from the

���

rule processor specify attributes� there is no need to carry the original class de�nition with

the object	 As long as the attributes that are accessed by the rule have been veri�ed at

Treaty de�nition time to be compatible with those de�ned in the remote schema� the corre�

sponding remote objects can be accessed properly	 Since all attributes that are accessed by

the process are explicitly stated in the rules� there is no way to mistakenly access attributes

that are not de�ned or have the wrong types	

The simplicity by which the set of accessed attributes is speci�ed in rules enables

us to rigorously analyze which object fragments will be accessed� and therefore enable

co�existence of di�erent schemas with su�cient common�ground for execution of multi�

site activities	 The object�based paradigm in itself also helps to support co�existence of

multiple schemas� because the object identity allows a rule to have a direct handle on an

object� without necessarily requiring to know its full schema	 It is su�cient to require only

that the values of the attributes which are part of the subschema accessed by the �method�

rule� will be valid	

����� Exporting Data Instances

In Section �	�	�� it was realized that while in some cases the de�nition of a common

sub�schema might imply that the instances of the classes in the common�subschema are also

common� this is the exception� not the norm	 In general� it would be impractical to assume

that an accepting SubEnv implicitly �exports� all instances that belong to the common

sub�schema	 This observation certainly holds for Oz� where a typical project�database is

built around a composition hierarchy that is orthogonal to the class hierarchy	 Thus� the

fact that a set of objects is instantiated from the same class is immaterial with respect to

their semantic relationship� more often� a SubEnv would want to export a set of objects

that are structurally related	 Consider� for example� the case where CFILE� a class that

abstracts C source �les� is part of a Treaty from E� to E�	 Then the above approach would

imply that users from E� can access with Treaty rules any CFILE objects in E�	 Not only is

this granularity too coarse� it is the wrong kind of association	 Instead� the export of data

should be speci�ed by selecting objects which are related structurally� e	g	� a sub�project

containing some CFILE objects� as well as libraries� binaries etc	

It is clear� then� that a separate export data mechanism� as outlined in Section �	�	��

is required	 The generic speci�cation of export data ignored several practical issues concern�

���

ing speci�c PCE implementations� however	 The �rst major issue to discuss is the various

granularities for specifying the export�
�� Is it a�ordable to control the data export in

Oz on a SubEnv�basis
as suggested in the generic speci�cation� or should it be global�
��

Is it a�ordable to further control the export on a per�strategy basis
as suggested in the

generic speci�cation��
�� What should be the objectbase granularity for exporting data

the generic speci�cation did not address this PCE�speci�c aspect at all�� and
�� What

should be the granularity for specifying access modes on exported data� if di�erent from

��	 The second major issue concerns the interface to such a mechanism	 The problem is to

abstract the operation so that it can be performed in a relatively high�level� not requiring

to specify each data element separately	 We now discuss our solution	

������� Exporting Data in Oz

Clearly� controlling the export on a per�SubEnv basis must be supported as it is

essential for autonomy and security purposes� and is in�line with the �not�only�local�or�

global� approach adopted throughout the thesis	 Given that the number of SubEnvs is

relatively small� the overhead should be small	 As for the data granularity for speci�cation

of export� a single object seems like the ideal granularity� but the overhead is much higher

since the number of objects is typically large� and this scheme implies that each object must

have an additional information concerning export status	 Moreover� in conjunction with the

per�SubEnv support� this information must be maintained as a list� as opposed to a binary

�ag	 Similarly� speci�cations for access permissions and control on a per�SubEnv basis are

desired but add both space and computation overhead	

The design of export data in Oz is based on extensions to the basic access control

mechanism inherited from Marvel
discussed earlier in Section �	�	��	 The idea is to utilize

the already existing mechanism for specifying group permissions� and associate SubEnvs

permissions with such groups	 That is� an exported object has� in addition to its local user

and group permissions� SubEnv permissions
that happen to be implemented as permission

groups�	 When a SubEnv E� receives a remote request from E� to access a local object O��

the server at E� checks whether O� is accessible to E� by inspecting O��s group permissions

for E�	 If no group permissions are de�ned in O� for E� or if the permissions are not

compatible with the request� the access is denied	

Thus� using a straightforward extension of the general�purpose access control mech�

���

anism� we obtain�
�� object�level granularity for export�
�� per�SubEnv speci�cation of

export� and
�� object�level permission speci�cation	 Moreover� this extension does not

seem to incur extra overhead beyond what is necessary by the local access control	 How�

ever� just as with local access control� the number of groups attached to each object does

a�ect performance� as each access to an object involves a larger search space	 But given

that the name space of SubEnvs is well known� a simple e�ective hashing algorithm can

retain a constant search time	 The only capability that cannot be supported in this ap�

proach is to be able to specify exports on a per�strategy basis	 However� the problem with

this feature is not with the actual speci�cation� since it could be achieved by considering

the Cartesian product of SubEnvs and strategies and creating a unique group for each pair	

The main problem with this feature is that such a mechanism would imply that any evo�

lution involving Treaty rules would require a global search in the database to update all

objects that might have been a�ected by the evolution� making this feature intractable and

unacceptable	

The next issue to consider is how to abstract the export data operation so that

it can be performed as a relatively high�level command	 The idea here is to rely on the

composition hierarchy as the abstraction for grouping objects	 Thus� export data takes as

arguments a remote SubEnv� a local composite�object that is the root of the sub�tree to

be exported� and a permission string	 The operation then traverses all descendant objects

of the root� and for each object it generates the proper SubEnv group
unless it already

exists� with the speci�ed permissions	 This approach allows the administrator to apply the

export data operation on arbitrary level of granularity	 In particular� it can be applied to

single �leaf� objects	

Finally� an additional possible extension to the access�control mechanism could be to

extend remote permissions on a per�user basis
as opposed to on a SubEnv�basis�� similar

to local access control	 The main problem with this approach is that the set of possible

remote� users is not known at any time� and obtaining knowledge at each SubEnv about

users from remote SubEnvs contradicts decentralization	 In addition� this model assumes

that in most cases the group�level permissions associated with SubEnvs is su�cient� just as

Treaties are formed between groups of users on a SubEnv basis
if the group becomes too

large to treat it coherently� perhaps it should be split into separate SubEnvs�	

In the rare cases where remote user�level access control might still be highly desired� a

possible approach might be to assign the remote user a
remote� user object� which entitles

���

the permissions as speci�ed in its mask� subject to the SubEnv permissions which receive

�rst priority	 One way to look at these permissions is that the remote user is treated as a

friend user
borrowed from the concept of a friend function in C!!�� which� regardless of

the origin SubEnv from which he�she operates� can access the remote data as a local user	

In some cases� the �friend� user can be the same
mobile� person who logs in from several

SubEnvs at di�erent times	

����	 Preserving Process Consistency

The general process consistency problem was de�ned in Section �	�	�	 Because of

the decentralized nature of our model� there is no notion of �global� consistency	 Just as

sub�schema compatibility is a sub�problem of the more general schema evolution problem�

sub�process �compatibility�
i	e	� consistency� is a sub�problem of the more general process

consistency problem	 In fact� this is even more evident in the case of process than in the case

of schema� since import implies only pure additions or deletion of whole rules	 That is� it

excludes the harder cases of allowing to modify existing rules	 The reason is that Oz allows

multiple rules with the same name
and even signature� to co�exist� and further� it does

not have the notion of �merging� rules�	 Thus� importing a strategy amounts to evolving a

process by adding to it a set of new rules
or deleting rules in the case of unimport�	 This

means that the process evolution algorithm employed in Marvel can be used �as�is� by the

import operation to verify the consistency of the local process after a set of Treaty rules

has been added to it	

��� Multi�Process Enactment in Oz

Process enactment in Oz can be roughly divided into local and multi�SubEnv enact�

ment	 The former involves only a single SubEnv and all interactions between the server and

any of its local clients
and their corresponding users�	 The latter includes all operations

that involve interactions among servers and clients from multiple SubEnvs	

Pure local enactment not related to multi�SubEnv enactment is largely the same as

in Marvel� and is not discussed here any further	 As for multi�SubEnv enactment� there are

several types�

�This was supported in earlier versions of Marvel� but not in Marvel ��x� and not in Oz�

���

�	 Purely remote
 a client interacts directly with a remote SubEnv without

involving its own local server

�	 Built�in cross�site commands
 multi�SubEnv operations that are imple�

mented as part of the kernel� and are not process�speci�c

�	 Enactment of Treaty rules� following the Summit model	

The �rst two kinds of enactment are� for the most part� not process�speci�c and relatively

minor� and are discussed brie�y in Sections �	�	� and �	�	�� respectively	 The third type is

the major type of enactment� and is discussed in depth in Section �	�	�	

����� Direct Remote Interaction

First� we need to justify why a client would directly interact with a remote server

without involving its local server
except for establishing the connection in the �rst place�

explained later in Chapter ��	 A simpler architecture would direct any cross�SubEnv inter�

action through the local server� reducing the types of interactions across SubEnvs	 However�

given that there are some �core� built�in operations that have identical well�de�ned seman�

tics in all servers and involve data from only one remote site� it makes sense to allow direct

communication between clients and remote servers for these operations� thereby eliminating

unnecessary overhead at the local servers and reducing the number of message �hops�	

Several direct remote services are provided in Oz� mostly those that correspond to the

built�in objectbase access and manipulation operations� namely� browse� print object�

add� delete� link� unlink� and the single�server versions of move and copy	 Thus� a client

that is connected to a remote SubEnv can potentially issue these commands directly to the

remote server without involving the local server	

One potential negative implication of this approach might be due to overloading	

Since Oz allows built�in operations to be overloaded with process�speci�c rules that spe�

cialize these operations on certain classes
the default built�in operations work on all classes��

a request for remote operation might have various unanticipated implications	 This could

have been a serious problem if the executed rule was remote to the data
i	e	� local to the

remote user�s SubEnv�	 However� this is an impossible scenario since the operation is exe�

cuted at the remote SubEnv using its own
perhaps overloaded� built�in operations� which

are local to its data
and therefore �owned� by it�	 Thus� this does not incur any violation

���

of autonomy or privacy	 In the worst case� the
remote� user might be surprised by some

unanticipated behavior resulting from invoking an overloaded built�in operation	

����� Built�in Multi�SubEnv Operations

Oz extends Marvel�s repertoire of built�in commands with�
�� cross�site copy and

move objectbase operations�
�� import and treaty operations that support construction of

Treaties� and
�� a set of built�in rules for SubEnv
de�registration	

The import and treaty operations were covered earlier� and site registration is cov�

ered separately in Section �	�� so we cover here only copy and move	

The operational semantics of these operations are straightforward� they copy
move��

a
possibly composite� object from one SubEnv to another	 There are several technical

problems� though�
�� The schemas at the two SubEnvs might di�er in an incompatible

manner� such that one or more of the objects at the source SubEnv belongs to classes that

are either de�ned di�erently at the target SubEnv� or worse� not de�ned at all	 A related

problem� particularly with copying
moving� composite objects� is possible incompatibility

in the composition hierarchies�
�� The overloading mechanism could be potentially dan�

gerous here since� as described above� local processes might overload these operations� and

unlike the single�SubEnv case� both SubEnvs are involved here	 This means that it might

be possible for one SubEnv to invoke an overloaded version of� say� the copy rule� on remote

data� with the remote SubEnv
and its administrator� not knowing the contents of the rule

consider a worst case scenario where some malicious remote SubEnv overloads copy with

delete�	

Before addressing these problems� it is worth mentioning a useful application of cross�

site copy and move� it can be used to e�ectively implement objectbase split and merge

operations
provided that the merged objectbases have compatible schemas�	

������� Addressing the Schema Compatibility Problem

The main reason that the schema compatibility problem reappears here is that we

want to support these operations without the need to specify them as part of a Treaty�

similar to the way single�server built�in operations are supported	 Further� this problem

di�ers from the schema compatibility problem addressed in Section �	�	�	� where objects

are temporarily transferred across SubEnvs	 Here� the copied objects become part of the

���

local persistent objectbase� thus they must fully correspond to the local schema de�nition	

If we blindly allow copy
or move� to occur� we risk the possibility of acquiring objects

which are completely or partially schema�incompatible� making them either inaccessible or

even worse� corrupting the internal objectbase structure	 An analogy to this situation is the

well known �structure o�set� problem in conventional programming languages� whereby a

data structure with the same name is de�ned di�erently in two modules� and a pointer is

passed from one module to another	 The o�set due to the di�erent de�nition is likely to

corrupt the program stack when the �receiving� module executes	

There are two possible solutions to the schema problem	 The �rst solution simply

avoids the problem by requiring an identical sub�schema� and rejecting the operation in case

of incompatibility	 This a simple but unnecessarily restrictive solution	 The second solution�

which was adopted in Oz� interprets an object copied to the target SubEnv according to

the local schema�s class de�nition	 This in turn might result in some loss of data if some

attributes in the class de�nition of the source SubEnv are missing from the de�nition in the

target SubEnv	 Alternatively� if the target class subsumes the source class� the default values

which can be determined optionally in the class de�nition� are assigned to the missing

attributes	 If attribute types con�ict� the target SubEnv can coerce values if possible� or

assign the local default values	

As for the composition hierarchy� a similar approach is applied	 Here� however� entire

composite� sub�objects might be lost if the expected composition attributes are missing in

the target SubEnv	 To avoid possibly undesirable loss of data due to schema incompatibility�

which is especially important in the case of move� a warning message listing the lost data

should be presented to the user with the option for a possible retraction	

������� Addressing the Rule Overloading Problem

A cross�site copy�move operation can be executed in one of two possible ways� it

can be executed either at the source SubEnv
i	e	� the SubEnv from which the objects are

copied�moved� or at the target SubEnv	 In either case� only one SubEnv �res the actual

rule� and the other SubEnv performs the remote operation derived from the actual built�in

copy�move operation	
Note� however� that the low�level operations for copy and move as

well as the other structural built�in operations cannot be overloaded in Oz
 only the rules

containing them can be overloaded	 This design choice was made deliberately to avoid the

���

possibility of arbitrarily changing the semantics of primitive operations	�

Thus� if the SubEnv that executes the copy
move� happens to have an overloaded

rule which is unknown to the other SubEnv� such execution
without a Treaty� presents

a clear violation of autonomy	 Therefore� only the built�in
non�overloaded� versions of

copy�move can be used for cross�site execution� and an overloaded version could be used

only if it is part of a Treaty	

����� The Summit Model in Oz

Implementation of Summits in Oz could be considered as the most important and

most comprehensive aspect of the implementation e�ort	 Summits are the main means

by which multiple SubEnvs interoperate� and as such� they encompass all the support

that is required to enable multi�process activities among the pre�de�ned common sub�

processes while still preserving the autonomy and privacy of the private sub�processes	

While Treaty support is also dynamic� it is conceptually static or �meta�enactment� since

it deals with de�nitional aspects of the process	 Consequently� infrastructure support for

the realization of the Treaty protocol is much less complicated	 Summit is the realization

of �real� enactment of multi�user and multi�process activities� rules� and rule chains
i	e	�

automatic enactment of tasks�	 Thus� whereas Treaties refer to static properties of rules and

data
e	g	� formal parameters and types�� Summits are concerned with dynamic properties

of rules under execution� such as the runtime objects that are bound to an executing rule�

the chaining context in which they execute� and so forth	

To make our discussion more clear� we de�ne a Summit rule to be a rule that contains

actual parameters from at least one remote SubEnv	 This is a dynamic property of rules	

While it is true that every Summit rule must have been de�ned in some Treaty� the converse

is not always true� since a Treaty rule can at times execute only with local data� in which

case it is not acting as a Summit rule	 A Summit task refers to an entire rule chain that

involves at least one Summit rule	

We now describe in detail the realization of the Summit protocol� covering all �ve

phases of the formal model� with focus on inter�process aspects	 To simplify the discussion�

we defer the discussion of two important aspects�
�� transactional semantics of Summits�

which are discussed in Section �	�	�� and
�� Context switching requirements that enable

concurrent execution of rules and Summits� discussed in Section �	�	 An e�cient caching

���

mechanism for accessing remote objects during Summits is covered in Section �	�	

To better illustrate how Summits work� the explanations below are accompanied by

an example� involving the multi�edit rule from �gure �	��� and the simple objectbases

shown in �gure �	�	

������� Summit Initialization and Veri
cation

A Summit task is initialized as a result of an explicit request from a user	 From the

user�s point of view� the only di�erence between invoking a Summit rule and a normal rule

is that at least one of the parameter objects speci�ed by the user is remote
recall from

Section �	�	� that MSL supports late binding� allowing the user to select di�erent objects at

di�erent times as parameters to rules� which is essential to the understanding of Summits�	

The local server from which the user invoked the rule is called the coordinating server	

For example� assume that user israel operates in site NY and invokes the multi�edit

rule
from �gure �	��� with one local MODULE object named ui� and one remote MODULE

object from CT named db� corresponding to the objectbases of �gure �	�	
To simplify the

example� this rule operates with only one remote SubEnv� but in general Summit rules can

operate with multiple remote SubEnvs	�

The �rst action taken by the coordinating server is to fetch copies of the remote

objects from their original SubEnvs� and bind them to the parameters of the rule		

This fetching is necessary because the client only holds an objectbase image that

enables the user to select objects as parameters to rules	 The client sends to the server

object�ids� which are resolved by the server
s� to real objects	

The reader might wonder at this point why is it necessary to fetch the remote objects

before doing Treaty veri�cation	 The reason is somewhat pragmatic� and has to do with

the rule�overloading mechanism	 Recall that Oz allows multiple rules with the same name

to co�exist� and determines which rule to execute based on the types and number of actual

parameters supplied by the client ����	 Therefore� when the local server receives a request

to execute a rule� it has to �nd the �closest� rule that matches the types of the parameters�

so only after the remote objects
and their type information� are fetched� can the server

determine which rule is intended for the Summit	
Actually� this could have been optimized�

if the client maintained type information in its image and had sent it along with the remote

�This is in addition to the obvious binding of local objects� but as we focus on inter�site issues� we will
ignore from now on purely local aspects of the rule processor�

���

object�ids
 but this is not implemented in Oz	� Overloading of rules appears to introduce

another problem� when an object is fetched from the remote site� its class de�nition might

di�er from the one in the local schema� or might not even exist	 However� if the class is

not in the local schema� then overloading would never �nd a proper rule	 Alternatively� if

the class is identi�ed in the local schema and a Treaty rule that matches the types of the

parameter list is found� the corresponding sub�schema is guaranteed to be compatible� as

described earlier in Section �	�	�	

Once the rule is identi�ed� the second step involves Treaty veri�cation	 First� the

coordinating server checks locally whether the rule could be invoked as a Summit rule� by

checking that the rule has request privileges on the remote participating SubEnvs
i	e	� those

SubEnvs that have objects bound to parameters of the rule�	 If this is not the case� the rule

cannot be executed in a Summit	 But� as explained earlier� this is only a necessary condition�

not a su�cient one� because the Treaty might have been invalidated unilaterally by one or

more of the participating remote SubEnvs	 So� after local veri�cation� the coordinating

server requests each participant SubEnv to execute the veri�cation algorithm of �gure �	�

covered in Section �	�	��	

After the rule has shown to be a valid Summit rule� the third step binds remote

derived parameters	 In our example� the bindings of the multi�edit rule collect all objects

of type CFILE that are children of either ui or db� and bind them to the symbol �c
lines ��

��
	 This results in a binding set fddl�c� query�c� tty�c� xv�cg	 It also binds to the symbol �h

all the HFILE objects which are linked to all �c objects
line ��	 This results in the binding

set fdb�h� shared�hg	 As with regular parameters� sub�schema compatibility among derived

parameters is assumed to have been checked at Treaty de�nition time	 This concludes the

initialization phase of a Summit in Oz	

������� Pre�Summit

This phase consists of two parts	 First� the coordinating server evaluates the rule�s

condition	 In our example� the condition is a simple conjunction of two predicates that

evaluates to True if all objects bound to �c have been properly checked out
line ��� and

that the current user invoking the rule is allowed to edit those objects
line �����	

	The oddity with respect to universally quantifying �c in line � was explained in Section ������
�

CurrentUser is a built�in value in Oz that denotes the user who �red the rule� or on whose behalf the

server is �ring the rule automatically�

���

The second part of Pre�Summit is required if the condition is not satis�ed
i	e	� it

evaluates to False�	 The coordinating server attempts to satisfy the condition by fanning out

to the participating sites and triggering local backward chaining at each site in an attempt

to update the objects so that they satisfy the condition	 Backward chaining is private� i	e	�

each process performs this step according to its autonomously de�ned sub�process	 Some

optimizations could be made here	 For example� in cases where it is possible to satisfy a

condition only based on backward chaining at the coordinating site� it should be attempted

�rst� before any remote chaining is spawned	 And in the cases where remote chaining

is necessary� it should be spawned and performed simultaneously in all sites
including

the coordinating site in �local� mode�	 Note this can be done only if there are no data

dependencies across sites
another good reason to avoid cross�site links�	

The backward chaining algorithm is iterative in the following sense� After spawning

the remote backward chains� the coordinating server �waits�
in practice it actually saves the

context in a data structure called the �rule stack� and performs a context�switch to service

other requests� but for the purposes of this discussion we can assume that it logically waits�

for the remote servers to return with the results� which possibly contain some modi�ed

objects	 The coordinating server then re�evaluates the condition	 If backward chaining

has not satis�ed the condition� the rule is denied execution	 However� even if a particular

predicate became satis�ed during backward chaining� the changes to the objects could

have made other parts of the condition unsatis�ed	 Thus� the entire condition has to be re�

evaluated each time� and backward chaining may be iteratively spawned several times during

this phase until either the condition is satis�ed� or all possibilities have been exhausted and

the rule is not satis�able and cannot be executed	 Note that the potential to enter an in�nite

loop while evaluating a condition exists� but it merely indicates a �aw in the process model	

In our example� suppose that the object xv�c from NY and query�c from CT are

not checked�out	 NY�s process backward chains to its local con�guration manager� say

RCS ������ and issues a check�out rule on the object	 At the same time� CT backward chains

locally to its private con�guration manager� say SCCS ����� and issues its own check�out

request	 This rule could further have a condition that implies �ring other rules recursively�

independent of any other site�s process knowledge or interest	 To illustrate the need for

re�evaluating the entire condition� it could be the case that some check�out rule satis�ed

the �rst predicate in multi�edit�s conjunction
line ���� but at the same it might have

also unsatis�ed the second predicate
line ���� which could have been satis�ed prior to the

���

backward chaining	 Although perhaps not a likely situation in this particular case� we can

see how this could happen in general	

Execution of Remote Activities in Pre�Summit

One important aspect of remote backward
and also forward� chaining involves exe�

cution of
remote� activities	 In Oz� both backward and forward chaining can lead to the

execution of further activities	 That is� chaining is not limited to inference rules� and can

involve the same kinds of activities contained within user�invoked rules	 In particular� some

of those activities might be interactive� requiring input from a user	 This presents both

conceptual as well as technical problems that do not come up in local backward chaining�

conceptually� the remote server must determine which user�s client should execute the re�

mote activities� technically� it should be able to redirect the activity to the speci�ed user�s

client	

The solution in Oz is to direct all activities to the initiating user� by default	 An

optimization could be to direct only interactive activities to the remote client and execute

non�interactive activities with a local �proxy� client	 To provide a full solution� however�

Oz allows remote activities to be �delegated to
remote� users by extending its modeling

language to specify delegation� and by providing a delegation mechanism that redirects

activities	 This is explained separately in Section �	�	

In addition to directing activities to clients� anOz server also sends process animation

messages to the client that inform the user visually about the task being executed	 In order

to extend this useful capability to Summits� the server redirects all animation messages to

the �coordinating�client�
the client that issued the Summit request�� including messages

that are executed on behalf of remote sites� and possibly by remote delegated users� thereby

providing a �global� view of the process for monitoring purposes	

������� Summit Activity

If the condition of the rule is satis�ed� the activity can execute at the coordinating

client	 Activity execution usually involves dereferencing �le attributes� which map to �les

in Oz�s �hidden� �le system
inherited from Marvel�� and handing them to the �le�based

tools de�ned in the activities	 If all servers share the same �le system
e	g	� via NFS�� then

as in the case of a single server� only path names of the associated �les
both local and

���

remote� need to be sent to the client� and the tool can access the �les through the path

names	 If servers do not share a �le system� however� the actual �les have to be physically

transferred to the coordinating server�s �le system before handing them to the client
clients

and their local server must have a shared �le system� by de�nition�� and when the activity

completes the �les have to be transferred back to their original location in the �le system	

This implies a remote �le transfer mechanism separate from the object transfer mechanism	

Note that while Oz objects are �light�
 containing only state attributes� pointers to other

objects� and �pointers� to �les
 �les are arbitrarily large	 In all the various cases mentioned

previously� the remote objects being transferred contained no �les	 The remote �le transfer

mechanism� including prefetching and �le caching considerations� is a separate mechanism

outlined in Section �	�	�	�	

Back to our example� the bound CFILE objects
fddl�c� query�c� tty�c� xv�cg� and the

related HFILE objects
fdb�h� shared�hg� are passed to the editor activity� which in turn

invokes a multi�bu�er editor tool with one bu�er per �le
line ���	 Although access modes

for objects are discussed later in Section �	�	�� it is worth addressing here the issue of access

modes for
�le� attributes	 Each strategy �le has a tool de�nition section that enables the

process administrator to specify in which mode the �les could be accessed	 This information

also a�ects transaction management and lock assignment	 For example� here is the tool

de�nition for multi edit�

MULTI�EDIT �� superclass TOOL�

multi�edit � string � �multi�edit CFILE�contents X HFILE�contents S��

end

This de�nition speci�es that the multi edit activity requires to access the CFILE

objects in eXclusive mode
denoted by the X lock request� and the HFILE objects in Shared

mode
denoted by the S lock request�	

������� Post�Summit

The �rst step in Post�Summit asserts the appropriate e�ects of the Summit rule�

depending on the return code from the activity� including remote assertions	 Since the

executed rule is identical at all participating sites
because of the common�subprocess in�

variant�� this phase can be carried out in one of two ways� either the coordinating server

���

sends a message to the remote servers to assert the e�ect of the rule on the
remote� objects�

or the coordinating server itself asserts the e�ects on the replicated objects and sends the

updated objects to the remote servers	 Actually� a similar tradeo� exists with respect to

the implementation of the binding phase� bindings could be either evaluated by requesting

the remote server
s� to carry out entire binding queries� or by sending the remote servers

primitive requests to ful�ll parts of a composite binding query	 The prototype rule�based

approach to applying the general model
Section �	�	�� suggested the former approach� and

seems to be the natural solution given that the de�nitions of both bindings and assertions

are guaranteed to be identical in all participating SubEnvs	 Moreover� this approach has

the potential to perform better since the communication overhead is reduced	 However� the

latter approach simpli�es rule processing in that the Summit rule executes as a whole at the

coordinating server and there is no need to invoke remote rule processors to execute rule

�fragments�	 In addition� the replicated remote objects must be updated in the coordinat�

ing server anyways as part of the cache management
explained in Section �	��	 Therefore�

Oz employs the latter approach both in bindings and in e�ects	

In the formal Summit protocol� the next step following the assertions is the �forward

fan�out�� in which each SubEnv
including the coordinating SubEnv� �res rules locally based

on their local and private
sub�processes	 Oz deviates slightly from this order� mainly due to

low�level implementation details not discussed here��	 The coordinating server �rst derives

both the local and the global
i	e	� further Summit� rules to be executed in the forward

chain	 The inferred forward Summit rules are held in a separate Summit stack and are

invoked in the Summit completion phase only after all local forward chains complete in all

sites	 The inference of Summit rules is an important topic� explained separately below	

Following the derivation phase� forward fan�out takes place	 Each SubEnv then

determines which rules to execute based on its local process� and carries out the chains

locally until all possible forward chains have completed	 At this point� they return to the

coordinating server	

Inference of �forward chaining� Summit Rules

Multi�step
or composite� Summits are crucial for modeling and enactment of multi�

process tasks� simply because a Summit task may consist of several steps	 There are several

��They have to do with the notion of atomicity chaining� discussed in Section ������

���

approaches to modeling and enacting multi�step Summits	 Technically� the coordinating

server must distinguish chains which are part of the local fan�out from these which are

�global� Summit rules	 One alternative is to add modeling primitives
e	g	� in the form of

e�ect directives� similar to MSL chaining directives� that explicitly annotate e�ect predi�

cates in rules as �Summit� predicates	 These annotations could be used to determine which

chains are local� and which are global	 In fact� the initial implementation in Oz was done

that way	 However� this alternative both limits the power of the rule inference engine and

proves to be unnecessary	

Given that a Summit rule is syntactically a �normal� rule that just happens to

have remote objects bound to it� then by extending the standard inversion mechanism to

handle inversion of remote bindings in addition to local bindings� the basic rule�inference

mechanism could infer Summit rules
 these are simply the rules that happen to have been

instantiated with
some� remote objects as parameters	 This� of course� could only happen

in our Summit model if the triggering rule had some remote object parameters in the �rst

place� or in other words� if it was a Summit rule	 Thus� inference of Summits is done exactly

in the same way that local inference is done	

The main advantage of this approach is that� as a natural extension of the rule

processor for handling derivation of Summits� it is no more
and no less� implicit that

derivation of rules� and it has the potential for automatically inferring multi�step Summits

which could not have been formed in the explicit notation unless they were pre�determined	

Another advantage is that Summit rules are formed only as needed� whereas the annotation

approach would force the administrator to consider Summits even when no remote data

is involved	 Finally� adding annotations would have added an
apparently unnecessary�

burden on process administrators in forming Treaties	

������� Summit Completion

Once local forward chaining completes in all involved SubEnvs� they notify the co�

ordinating server� which in turn checks its Summit stack to see if there are any pending

Summit rules	 If there are no such rules� it completes the task� releasing resources that were

allocated for the Summit� and commits the associated transactions
see Section �	�	��	

If there are pending Summit rules� the coordinating SubEnv essentially starts with

the Summit initialization phase� except it bypasses the manual parameter binding phase�

���

which was
automatically� performed	 Recall that binding must occur before the initiation

of forward Summits� because it is the binding phase that actually recognizes which rules

are Summit rules	

Finally� there is one more important di�erence between the invocation of the �rst

Summit and subsequently derived Summit rules� The pre�Summit phase in derived Summits

consists only of condition evaluation� without the fan�out for backward chaining	 This stems

from the fact that the rule processor inOz
as in Marvel� is not capable of backward chaining

during forward chaining	 Thus� the realization is limited in that respect compared to the

generic model	

����� A Composite Summit Example

The following is an execution trace of a composite Summit example in Oz that

realizes the motivating example
which was presented in Section �	� and revisited in Sec�

tion �	��	 The example is best illustrated in �gure �	��� while �gures �	�� and �	�� show

two snapshots of the actual Oz animator that were taken as the Summit was enacted	

The environment consists of three SubEnvs� siteA	 siteB� and siteC	 To simplify

the example� each SubEnv has two objects which are relevant to this Summit� a parent

object of class MODULE and a child object of class FILE
shown in the top of �gure �	���	

The Change rule is �red at siteB
which then becomes the coordinating SubEnv�

with FILE objects fA	 fB and fC from siteA	 siteB and SiteC� respectively� e�ectively

initiating a three�site Summit	 Pre�Summit is carried out by fanning�out and performing

local backward chaining	 At siteB� the review rule is preceded by the SCCS co rule that

checks�out fB� at siteA� review is preceded by RCS co on fA� and at siteC� review is pre�

ceded by an analyze activity	 Then the actual Change activity
Summit rules are annotated

in �gure �	�� with S� and their enactment relationships with bold lines� in the Oz animator�

Summit rules are depicted by a special �mountain�summit� icon� to distinguish them from

local rules� is carried out� followed by forward fan�out Post�Summit� which in turn pro�

duces local chaining only at siteC� to the update log rule	 When Post�Summit completes�

siteB triggers approve� the next Summit rule	 Note that approve takes MODULE objects as

parameters� which are the respective parents of the FILE objects bound in Change� so re�

mote derivation of parameters is necessary here	 approve produces no local chaining in any

SubEnv and leads directly to the next Summit rule� modify	
Here again� remote deriva�

���

SiteA SiteCSiteB

fA fB fC

review(fA)

RCS_co(fA)

review(fB)

SCCS_co(fB)

review(fC)

analyze(fC)

update_log(fC)

mA mB mC

manual_test(fC)inspect(fB)

auto_test((fB)

auto_test(fA)

S

S

S

S

Change(fB fA fC)

Approve(mB mA mC)

modify(fB fA fC)

integration_test(mB mA mC)

Figure �	��� Execution Trace of Summit Example

tion of parameters seamlessly takes place as modify operates on the children of approve�s

parameters	� When modify completes� the forward fan�out leads to the local testing phase�

whereby siteB �res inspect followed by auto test rules� siteA performs only auto test�

and siteC does manual test	 At the end of this local chaining� the �nal integration test

Summit rule is �red� to complete the composite�Summit	

As presented in Section �	�� it is possible that at any point during the enactment

of such a process� some of the local operations do not succeed and a totally di�erent ex�

���

Figure �	��� Oz Animation of Summit Example
a�

ecution trace is produced	 For example� if any of the local reviews fails
i	e	� the change

is not approved at one site�� then the Approve rule should lead to a revision session that

leads to a second review
such a scenario is shown in Chapter ��	 And it could also be the

case that local or global unanticipated exceptions in the process lead to dead�ends from

which the process cannot proceed	 But this again indicates merely that there is a �aw

in the process model	 While system exceptions should be handled by Oz� process excep�

tions and mismatches between the di�erent processes are the responsibility of the SubEnv

administrators	

����	 Transactional Semantics of Summit

This is an important aspect of the Summit model� which was deferred until now

mainly due to lack of detailed�enough context in which to discuss it	 Clearly� some transac�

tional properties are desirable in the execution of Summits	 We are concerned here mainly

with the atomicity property of transactions� which can be stated as a grouping of operations

���

Figure �	��� Oz Animation of Summit Example
b�

such that the outcome of their execution has all�or�nothing semantics	 At the very least�

the execution of a single Summit rule should be atomic	 This by itself requires support

for distributed transactions	 The situation becomes more complicated if some degree of

atomicity is desired during a Summit task including pre� and Post�Summits� where there

is a need to handle simultaneous or overlapping execution of subparts of the atomic task

at multiple sites	 Finally� supporting atomicity of composite Summits� i	e	� across Summit

rules� might also be desired in some cases� and requires yet more transactional facilities	

This section focuses on de�ning the desired transactional semantics of the Summit

model	 The general solution of how to build a transaction mechanism that addresses the

needs described here is beyond the scope of this thesis and is presented by Heineman in ����	

The transactional semantics in Oz are tied to the notion of atomicity vs	 automation

chaining which were inherited from Marvel and extended in Oz	 Thus� we begin with a

summary of this model in Marvel� and proceed with the extensions made in Oz	

���

������� Atomicity vs� Automation in Marvel

Both in Marvel and in Oz� a single rule is always an atomic unit	 It is the smallest

unit for which the atomicity property holds	 This� however� does not mean that the rule

actually executes atomically� only that the outcome of its execution is all�or�nothing	 In fact�

rules with activities never really execute atomically� because the server sends the activity

for execution at the client and switches its context to service other clients
see Section �	��	

The interesting issues are with respect to the transactional semantics of chains of

executing rules	 What makes this form of execution interesting from a transaction perspec�

tive is that the set of rules being executed is discovered dynamically� and is not known a

priori	

atomicity chains support all�or�nothing execution of a chain of rules��	 In contrast�

automation chains support tasks of activities that are logically related to each other� but

do not require atomicity	 That is� if a rule is aborted during automation chaining� only

that rule is rolled�back� not the whole chain of previously executed rules	 Atomicity chain�

ing is usually associated with propagation of values that retain some complex consistency

constraints in the process
as opposed to the simple constraint embodied in each rule�s

condition� whereas the automation chaining supports the execution of long�duration tasks�

when it is not reasonable to rollback work that was done over large period of time
hours�

or even days� just because a rule along the chain has aborted	 The transaction support for

this model in Marvel is described in ���� �� ���	

Recall that the implementation of this model in Marvel was based on annotations

made to predicates of rules	 Atomicity chaining is realized by ensuring that chaining from

an atomicity predicate in an asserted e�ect to rules with satis�ed conditions and empty

activities�� is mandatory� if it fails� the corresponding transaction rolls back	 In contrast�

chaining from an automation predicate
or into any rule with a non�empty activity� is

optional and can be explicitly restricted through no forward� no backward or no chain

directives on individual automation predicates	 If� during execution� automation chaining

fails� only the updates of the failed rule are rolled�back� without a�ecting the outcome

of rules that completed execution previously in that chain	 However� since the type of

chaining is based on attributes� it is possible that a certain rule in a chain will trigger both

automation and atomicity chains from the same or from di�erent attributes	 This poses a

��In some of Marvel publications they are called consistency chains� but this is a misnomer�
��The restriction to rules without activities is not inherent� it is only a limitation in the implementation�

���

problem because there could be some overlap in the data accessed by the rules in the chain	

This means that if atomicity �wins�� then in cases of roll�back it will erase automation

e�ects� thus violating the semantics of automation chaining	 And if automation �wins��

atomicity is simply not preserved	

The solution employed in Marvel is to execute all atomicity chains
also termed

consistency implications� �rst� and any automation rules which are encountered during

the atomicity chaining are queued
�rst�in��rst�out�	 Once all immediate atomicity chains

complete and commit their work� the queued rules are inserted into the execution rule

stack
initially in the same order in which they were queued�� and automation chaining

commences	 Note that automation chaining can lead to further atomicity chains� in which

case they are again executed atomically and queue all encountered automation rules� and

so forth	 One way to look at this form of execution is as a chain of automation rules� with

occasional �bursts� of atomicity chaining	

������� Support for Atomicity and Automation in Oz

The goal in the design of transaction support for Oz was to preserve the transac�

tional semantics of automation and atomicity as in Marvel� and to properly extend them

to Summits	 Moreover� just as Marvel supported the ability to de�ne the granularity of

atomicity on a per�task basis using annotations in rules� so does Oz allow to de�ne either

of the three possible granularities
 a single Summit rule� a Summit rule enclosed with

pre� and post� Summit rules� and composite Summits
 using similar annotations	

The execution of a single Summit rule is modeled as a distributed transaction� pre�

serving the atomicity of a rule	 This includes support for two�phase commit protocol and

distributed abort� and involves interaction between local transaction and lock managers

the details are in �����	

The Summit model introduces few new kinds of chains�

�	 Automation chain from a Summit rule to a local rule
�local� in this context

means non�Summit� it does not mean that it necessarily executes at the

coordinating SubEnv�	 We will refer to this as Summit�to�Local�AUtomation

chain
SLAU�	

�	 Automation chain from a Summit rule to another Summit rule	
Summit�

to�Summit�AUtomation� or SSAU�

���

�	 Atomicity chain from a Summit rule to a local rule
SLAT�	

�	 Atomicity chain from a Summit rule to another Summit rule
SSAT�	

The semantics that are associated with the above new kinds of chains are as follows�

The �rst two automation cases� SLAU and SSAU� are handled similarly to the local case�

i	e	� the chained rules are transactionally independent of the Summit rule that triggered

them	 The interesting cases are those that involve atomicity� namely SLAT and SSAT	

Summit�Local�ATomicity �SLAT�

One way to view SLAT chains is as a direct extension of local atomicity chains�

and therefore to treat SLAT chains as part of a standard distributed transaction	 That

is� the global transaction commits only if all local sub�transactions commit
using the �

phase commit protocol�� and any local abort leads to a roll�back of sub�transaction at all

sites and the global transaction	 However� this �standard� approach has a serious �aw

with respect to the semantics of Treaties and Summits	 Since the local rules
to which the

Summit rule chains� are not necessarily part of any Treaty� thus not explicitly �signed� or

even known to exist in other sites� their e�ect on the Summit must be limited
consider�

for example� a local �malicious� rule that always aborts and therefore causes the Summit

rule to be rolled back�	 An alternative approach� therefore� is to make the local rules abort�

independent from the global Summit transaction	 That is� if a local rule aborts in the

midst of SLAT chaining� the e�ects of the local chain are rolled back� but the state of the

Summit transaction and other local sub�transactions remain in general intact	 An abort at

the Summit transaction� however� still entails local aborts	 Moreover� local sub�transactions

are still commit�dependent
 they cannot commit unless the Summit as a whole commits

successfully	 This model seems to �t well with the semantics of Summits� but it also

introduces a problem� Since a Summit rule made an assertion on local data as part of its

e�ect and the local atomicity chaining has aborted� the local SubEnv might be regarded

as being in an inconsistent state	 One solution to this approach is to follow the nested

transaction model ����� and replace the failed local transaction by a sub�transaction that

commits
e	g	� retrying the local transaction� in order for the Summit transaction to commit	

But this approach might hold up the Summit and is complicated to realize	 Another solution

is to roll�back all updates that were made on the local data of the aborting site� including

the updates of the Summit rule
which are maintained locally anyway�	 This approach

���

retains local process consistency� although it might produce global process �inconsistency��

in that the e�ects of a Summit rule are completely undone in the aborting site and are

completely done in all other sites	 However� autonomy concerns outweigh global concerns

in SLAT� and therefore global process consistency is not considered to be preserved under

SLAT chaining	 In order to obtain global process consistency� SSAT chaining should be

used	

Summit�Summit�ATomicity �SSAT�

SSAT has the strongest notion of global atomicity	 It indicates that several Summit

rules� all of which have been Treati�ed and thus known at all participating SubEnvs� are

bonded to each other atomically	 Note how this is di�erent from the SLAT case� where the

chained�to local rules are not part of a Treaty	 The semantics of SSAT chains are that all

operations made during SSAT chaining are fully atomic	 Thus� we can distinguish �local�

atomicity
this includes pure single�server execution that is unrelated to any Summit� in

which local transactions are a�ected by the Summit transaction� but cannot a�ect it� and

a stronger �global� atomicity that ties several SubEnvs and ensures true atomicity in all

involves SubEnvs	

Order of Execution

The last issue concerns the order of execution	 The ordering between local and

Summit rules regardless of atomicity�automation concerns was already discussed in the

context of the �Summit branching� policy in Section �	�	�	 As for automation vs	 atomicity�

arbitrary interleaving of automation and atomicity chains across SubEnvs would violate the

corresponding semantics� similar to the problem in the single�server case which was covered

in Section �	�	�	�	

Therefore� the order of rule execution combines both concerns� consisting of an atom�

icity phase followed by an automation phase� where each phase alternates between global

and local modes following the standard Summit branching policy	 More speci�cally� when a

Summit rule completes� all local atomicity rules �rst execute in the participating SubEnvs�

queueing
locally� any local automation rules encountered	 When all SubEnvs complete

their local atomicity� the next Summit atomicity rule
if any� is �red� followed by all local

atomicity� and so forth	 When the Summit atomicity phase completes� a global commit

���

occurs	 The next step is to �re all automation chains	 Again� the Summit automation rules

�re �rst� followed by the local automation chains� followed by the next Summit automation�

and so forth	 Just like in the single�server case� any local or Summit automation can trigger

various local atomicity chains which are executed as they are encountered� recursively� and

Summit automation chains can also trigger atomicity Summits	

The idea is the same� and applies to both the single�server and the extended multi�

server models� While in automation mode� any encountered atomicity chains
and all of

their atomicity implications� are executed immediately� and while in atomicity mode� any

automation chains encountered are queued for later execution	

As an example� reconsider the enactment of the motivating example which was given

earlier in Section �	�	�	 There� the update log rule was actually spawned o� an atomicity

predicate in the Change rule� to enforce an invariant in siteC that states that every change

to a source �le must be logged
so� if there is no log record the �le has not changed�	 This

is an example of SLAT chaining	 Thus� if update log aborts
e	g	� due to a con�ict�� siteC

rolls�back the updates which were made to fC by both update log and the Summit change

rule	 However� the other e�ects of change are not undone	 This might lead to a di�erent

execution trace
 for example� if the condition of the Summit approve rule requires that

all the relevant source �les will be modi�ed
 but it doesn�t violate any process consistency	

In particular� a similar execution trace could occur if the user that invoked the change rule

simply didn�t update fC	

In the enactment of the motivating example there is no need for real SSAT chaining

that would bind atomically a set of Summit rules
and all their implications�	 Indeed� it

seems that the decentralized nature of modeling and enactment does not lead to many oc�

casions where such modeling is needed	 One extension might have been to add an atomicity

chain from approve to a notify managers Summit rule� so that failure in the latter rule

would roll�back the e�ects of approve and all other SLAT chains
if any� which �red o�

approve	 In that case� all SSAT and SLAT chains would have �re before modify which is

connected through SSAU chain	

������� Local Tailoring of Rule Annotations

This �nal aspect of atomicity in conjunction with autonomy has to do with local con�

trol over rule annotations	 Recall that MSL supports two kinds of annotations on rules	 One

���

kind is the atomicity and automation annotations discussed above	 The second kind is chain�

ing directives
discussed in Section �	�	��
 the annotations that control backward�forward

chaining to�from rules	 While we discuss here only the �rst kind of annotations� similar

arguments� problems� and solutions apply equally well to chaining directives	

The general motivation should be to allow local tailoring of rule annotations	 Since

they are an orthogonal dimension to the rules themselves� used for specifying chaining

among rules� such tailoring does not conceptually violate the �common�subprocess invari�

ant�	 Moreover� such tailoring is important for autonomy concerns	 The main reason is

that a local process should control the local impact of a Summit	 For example� if a local

process imports a Summit rule that has an atomicity e�ect predicate� it might be desirable

to �weaken� the atomicity of the predicate in the local version
i	e	� to turn it into an au�

tomation predicate� to avoid local implications that are undesirable to that site	 Similarly�

it might be desirable at times to �strengthen� the local process consistency by replacing

some automation predicates in the local version of a Summit rule with atomicity predicates	

For example� this would allow to get the desired SLAT behavior from change to update log

even if change did not have originally an atomicity predicate	

However� there are some obstacles to that approach�
�� A conceptual problem is

with respect to SSAT chains	 There are really two reasons for annotating a Summit rule with

an atomicity predicate� to specify connections to other Summit rules
SSAT�� and to specify

connections to local rules
SLAT�	 While the latter should be controlled autonomously� the

former is a global constraint that is inherently part of the common sub�process	 The only

solution to this problem is to extend the lexicon of the annotations to distinguish between

global and local atomicity annotations	
�� Technically� the Treaty mechanism must be

able to distinguish between alterations made to annotations and other alterations which

constitute violation of the �common sub�process� invariant	
�� Finally� an implication of

this requirement is that local SubEnvs would need to maintain their own
possibly slightly

altered� copies of the original Treaty strategies� which would in turn require to address the

associated problems that do not exist with the �single�source� approach
as explained in

Section �	�	�	�	 Once these technical issues are resolved� the support could and should be

added to enhance the autonomy of local processes	

���

��� Modeling and Enactment of Delegation and Multi�user

Tools

Delegation and groupware support were discussed at the generic level in Section �	��

focusing on how they could �t in the Summit model	 We discuss here general issues regard�

ing modeling and enactment of delegation� not necessarily across sites� and the particular

realization in Oz	 Note� however� that we have conducted only preliminary investigation of

this subject� which is a major topic for future research
see Section �	��	

In general� our main interest is neither in inventing actual multi�user tools� nor in

generic human�computer interaction support	 It is speci�cally about process support for

modeling and assisting in the interactions between multiple users of the PCE	 Further�

we restrict here the multi�user tools discussion to synchronous tools� i	e	� tools that require

simultaneous participation of multiple users at the same time
or with bounded delay�� such

as multi�user editors� virtual white�boards� and so on	 Without discounting the importance

of integrating all kinds of groupware activities and user interactions discussed into PCEs�

it seems that activities that are synchronous in their nature provide more opportunities for

enactment support
mainly automation�� and thus they are the subject of this section	 For

related work on infrastructure support for multi�user asynchronous tools
e	g	� �large� tools

that are themselves systems� like databases� see �����	

��	�� Modeling and Enacting Delegation

The need for delegation is clear� since delegation of tasks is commonplace in multi�

person organizations� multi�user PCEs should enable users to delegate certain tasks to

other users and�or other machines	 Moreover� in multi�site PCEs� local activities that are

executed as part of Pre� or Post�Summits must often be operated by local users and�or local

machines to preserve autonomy�security of their process	 Consider� for instance� part of the

motivating example� A multi�site change activity is preceded by a local review phase which

must be performed at each site by the local person who is responsible for the document

being reviewed	 Clearly� the review task has to be delegated to the proper reviewer� and

run in his�her local machine	 At other times the combination of special resources
e	g	� a

special�purpose computer� and special users at remote sites might require the delegation

of an activity	 Another case is when non�interactive activities are �delegated� to a proxy

���

Local Remote Type

� Machine �Proxi� delegation
non�interactive�
� User Machine Machine delegation
export display�
� Machine User User delegation
export display to remote user�
� User� Machine Full delegation

Table �	�� Delegation Types

client�� at a remote site that is nonetheless local to its data� thereby saving the overhead of

transferring the data to the site where the original request was made	 Finally� interactive

activities could still be delegated to a remote machine for any of the above reasons with the

display being exported to the user	 The various user�machine delegation combinations are

summarized in table �	�	�
Local vs	 Remote is with respect to the Initiating User�	 We

focus in this section on user and full delegation
cases � and � in the table�� machine�only

delegation has been explored by Valetto in �����	

Delegation can be ad hoc or process�based	 Ad hoc delegation assumes that a unit

of work has been pre�assigned to a user
or a set of users� and that he can manually

assign
parts of� it to other user
s�	 This approach is relatively straightforward� and can

be realized �outside the process� by built�in commands that allow to transfer tasks across

users� provided that there exist a persistent mechanism in which to store these requests

e	g	� a user agenda�� such approach was taken by Tong et al	 in �������� and we do not

discuss it here any further	 In contrast� process�based delegation assumes that delegation

has been modeled in the process� and therefore the PCE with such instantiated process

model can assist in determining which tasks are delegated under speci�c circumstances�

and who are the possible delegatees� depending on the current state of the project� the

particular artifacts being manipulated� and the available users	 Moreover� the process

engine can assist in setting up the delegation� recover from failures
e	g	� refusal to accept

the delegation� see below�� and so on	 The main point is that the delegation is captured in

the process model� and consequently it can be supported in various ways	

Process�based Support for delegation consists of two aspects�
�� modeling the work

itself� delegatee
s�� tools� and artifacts involved� and
�� supporting the enactment of the

��A proxy client mechanism in Oz was implemented by Peter Skopp originally to support low�bandwidth
clients� but was later generalized for other purposes including delegation� see 	��
 for details�

��Tong also describes support for hybrid form of process�based delegation� where the delegation is modeled
in the process but the delegated work is still entered into an agenda rather than executed immediately by
the delegatee�

���

de�ned delegation	 This includes locating delegatees� redirecting tasks to them� noti�cation

mechanisms
for both delegators and delegatees�� and setting up the environment to enable

invocation of tools on local or remote machines	

Regarding modeling� there are several issues to explore�
�� what is the granularity

of delegation that the process should support�
�� how to model users in general� and how

to specify and determine the delegatees� and
�� what are the operational semantics of

delegation	

Interestingly� the same set of issues come up in supporting multi�user tools� except

they require di�erent solutions there� as will be seen in Section �	�	�	

������� Granularity of Delegation

Granularity of delegation can range from a single activity� or rule� to a complex rule�

chain that consists of many related activities� some of which may themselves be delegated	

Delegation of whole sub�chains may be particularly attractive for pre� and post� Summits�

where whole local chains could be delegated to local users	 However� this subject is yet

to be explored
for a partial treatment of task delegation see ������� here we focus on the

simpler case of activity delegation	

In modeling delegation of individual activities� the speci�cations can be made within

rules� and as such� all the modeling power of Oz rules can be used for delegation
 rule

bindings can be used for dynamic binding of delegatees� provided that users are represented

as objects in the objectbase� rule conditions could be used to check if delegation is possible�

rule e�ects could be used to update information regarding the delegation� and backward

chaining could be used to automatically search for delegatees by invoking other logically

related rules that notify inactive delegatees	

Essentially� modeling delegation involved the addition of a new delegate operator

that accepts representations of user
s� as operands	 The delegate operator is de�ned

and evaluated after the binding section and before the condition section of a rule� for

reasons that will be explained below	 At run time� the rule processor tries to establish the

delegation
explained below� and if the condition of the rule is satis�ed� the
non�empty�

activity is redirected to a quali�ed delegatee� provided that there exists one with an active

client
otherwise� the activity might be stored in an agenda� as suggested earlier	�	 When

the activity completes� the rule processor switches back to the delegator� and subsequent

���

activities from chained rules are directed to him� unless further delegation operations occur�

and so on	

������� Modeling and Binding Delegatees

The main goal in the design of delegation in Oz was to not hardwire the delegatees in

the instantiated process� but rather to bind them dynamically to rules	 The main advantage

of this approach is that di�erent
sets of� users can be bound to a rule depending on the

context in which the rule is invoked� and particularly depending on the speci�c set of objects

that the rule manipulates	 For example� a review rule could specify that its activity should

be delegated to the owner of the document� then� depending on the document� each time

the rule �res� it will be delegated to the appropriate owner	 Moreover� if the owner of a

document changes over time� subsequent invocations of the rule on the same document will

automatically bind the rule to
one of� the new owner
s�� because the delegation is speci�ed

to the owner
s� of the document� not to a speci�c user	

Dynamic user binding was achieved in Oz relatively easily� using the normal data

binding facilities	 Delegatees are represented in binding predicates by an object�attribute

pair� with the attribute restricted to being of type user
 a primitive Oz attribute type

that accepts as correct values only valid
operating system� user�ids	 Note that there is

no restriction on the kinds of objects that the delegate operator accepts	 An alternative

approach would be to rely on some well known user repository	 That is� users would be

represented by objects in the objectbase and instantiated from a USER class� and the user

repository could store information that could be used for various purposes� not only for

delegation binding	 This user repository approach is superior in terms of user modeling�

and also solves the problem of relying on the operating�system�s user�id which might not be

unique across domains	 In fact� such a user repository has already been used
optionally�

for access control purposes ����� but has not been been applied to delegation yet and is a

topic for future work
see Section �	�	��	

Regarding bindings� it is desirable to be able to specify a set of delegatees
not

only one� for two reasons� to enable simultaneous delegation of an activity to multiple

delegatees
which is exactly the mechanism used for multi�user tools�� and to provide for

multiple potential delegatees to select from	 Binding to a set of users is also achieved �for

free� when using the normal binding facilities� since they allow to bind a set of objects to

���

�� analyze�bug�
tr�TEST�RUN	
c�CFILE��

�� �and

�� �forall MODULE
m suchthat �member �
m�cfiles
c���

�� �exists WORKSPACE
w suchthat �linkto �
w�module
m����

�� �

�� delegate�
w�owner��

�� �
c�bug�status � Suspected�

��
 Prompt the user whether the bug is here �so return �� or not �Return ��

��
 also	 generate a change request in the CFILE

���
 For the demo should have a small request already written

���
 ���

��� � ANALYZE�TOOLS analyze�cfile�bug
tr�report
c�change�request

���
c�contents
c�bug�report �

��� �and no�chain �
c�bug�status � Defected�

��� �
tr�report�status � Confirmed���

��� �
c�bug�status � Clean��

Figure �	��� Delegation Example

a symbol	

Figure �	�� shows a rule with a delegation speci�cation��	 The activity involves

analysis of a source �le that is suspected of having a bug� so it is delegated to the person

who �owns� that �le
i	e	� the author of the �le�	 This is expressed in the rule by issuing a

delegate operator
line �� and binding to it the owner of the WORKSPACE
�w� that is linked

to the MODULE
line �� that contains the �suspected� CFILE object
lines ��	 Note how the

same rule would be delegated to di�erent users� depending on the CFILE object on which

the rule was invoked	

������� Semantics of Delegation

Having established the binding to users still leaves some aspects of the delegation

open�

��This rule is taken from the �ISPW example� process� see Chapter ��

���

�	 How to determine the single delegatee in the case of a set of candidates
the

problem of simultaneous delegation to multiple users is addressed separately

in Section �	�	��

�	 how to react to� and recover from� cases where delegation fails	

The �rst issue comes up only if there is more than one delegatee	 The case where

there are no candidates at all
i	e	� the symbol is bound to the empty set� is treated as a

failure
see below�� another special case is when one of the delegatees is also the delegator�

in which case the delegation is void� and the rule is treated normally	 In the general case

we identi�ed two methods to direct the selection�

�	 random
 choose an arbitrary candidate	 A slight alternative is to choose

the ��rst� candidate in an implementation�speci�c order� this still allows

process engineers to predict the order in which delegation will be attempted	

�	 interactive
 allow the user to choose the candidate� from the
sub�set of

users that are active in Oz	

In either case� the process engine should �lter out inactive candidates
i	e	� users with no

active clients�	 In addition� the interactive mode which is designed to re�ne the control

over delegation� must have an option to not choose any of the available active users in the

binding set	 Currently� Oz implements only the random method� and consequently does

not support the explicit speci�cation of method choice in the de�nition of delegation	

The second issue is the failure semantics for delegation	 A delegation operation is

considered �failed� if either there is no active user among the candidate set� or none of

the available users is willing to perform
that is� immediately� the delegated activity
the

mechanism to determine the latter is described in Section �	�	�	��	 Failure is indicated by

treating the delegate operator not only as a binding but also as a boolean predicate that

returns true if delegation succeeded� and false if it failed	 Thus� as far as the process is

concerned� delegation failure is equivalent to a failure to satisfy the condition of a rule� and

thus prevents the process engine from executing the activity of the rule	

At �rst glance� one might be inclined to associate no further semantics with failure

beyond the normal rule failure semantics	 However� as we discovered� delegation failure

may require further actions	 We identi�ed three� non�mutually exclusive actions�

���

�	 store the delegation in the delegated user�s agenda	 The delegatee
s� can be

chosen using similar techniques as above	 This action applies to both kinds

of failure
i	e	� no users vs	 declining users�	

�	 notify the delegated user
s�� for instance by e�mail	

�	 delay the delegation and retry later	

To distinguish between the various options� they should be supplied as either environment

variables or as PML directives to delegation� and in any case optional	

The �compensating� operations above are limited in the sense that they do not

make the failed rule satis�able	 There are two ways in which the PCE could still attempt

to proceed	 The �rst and simple method involves a �programming trick�
 the process

engineer could write an alternative rule that would be triggered if the delegated rule failed	

The idea is to match the conditions of both the delegated and the compensating rules and

order them so that the delegated rule is evaluated �rst� and if it fails� the non�delegated

rule is �red alternatively	
Oz allows for ordering multiple rules with di�erent conditions

whose signatures match the same user command	� Obviously� this option only makes sense

in cases where there is an alternative path to follow� if the failed step is an �articulation

point� in the possible �execution graph�
i	e	� the process must pass through this rule��

then nothing can be done	 An example where this technique is used is given in Chapter �	

The second and more natural approach to address delegation failures in a rule�based

PML like Oz is to attempt to satisfy them by backward chaining to other rules that could

potentially satisfy the delegation operation� analogous to normal backward chaining	 The

fact that delegation is modeled as a boolean predicate facilitates this approach� since it could

logically match with a �delegation� e�ect of another rule� thereby possibly chaining to it	

For example� a generic �wakeup� rule could be chained o� a rule with failed delegation and

activate inactive users by �ring an activity that would notify the relevant users
if they�re

logged in at all� of course� of the requested delegation	

Another useful extension to the PML builds on the fact that delegation is repre�

sented as a predicate in the PML	 The delegation construct could be extended to support

complex logical clauses	 For example� a disjunction of delegation predicates would allow to

bind a set of delegatees from several variables instead of one� and would ease the speci��

cation of delegation that is otherwise limited to a single variable� conjunction of delegation

���

predicates could be used to bind users bound to all predicates� and so forth	 This and

the �chaining� extensions to delegation have not been realized yet� and in general require

further investigation	

������� Infrastructure Support for Delegation

The above discussion made some implicit assumptions about the capability of the

system to support several operations�
�� how to locate users speci�ed in delegation� and

how to identify if they are �active��
�� how to redirect activities across clients�
�� how

to notify users
both delegators and delegatees� and in general support the interface to

delegation	 We brie�y discuss these issues here	

A user is considered active if he has at least one client associated with his user�id

that is connected to the process server from which delegation is issued	 That client can be

either local or remote to the delegated server
see Chapter � for more on the architecture��

but it must be connected to it	 In this scheme� checking whether a user is active is simply

done by maintaining in the server an internal client�table� and searching clients with the

speci�ed user�id	 Note that with the user attribute method
currently employed in Oz��

Unix user ids may not be unique across sites� in which case site pre�xes could be used to

provide uniqueness	 An extension to this scheme is to consider any client that is connected

to any server in a multi�site environment as a potential delegatee	 However� this entails

signi�cant overhead in discovering potential candidates� and has not been explored yet	

As for activity redirection� this is mostly a low�level implementation�speci�c issue	

There are two important points to mention here	 First� the thread in the delegator�s client

that issued the delegation blocks until the delegatee completes the execution of the activity�

this� however� does not prevent the delegator�s client from issuing other activities from other

threads	 Second� when the delegatee completes execution of the activity� the return code of

the activity is redirected as if it came from the delegator client	 Thus� most components of

the rule processor are shielded from this redirection� the rule processor is �fooled� and for

the most part is not even aware of the delegation	

The next issue is the general user interface support for delegation	 Delegation is some�

what unusual in terms of user interface� in the sense that the delegatee is asynchronously

and perhaps might unexpectedly be� noti�ed about the activity	 Thus� the user interface

must then have a way to
�� attract the delegatee�s attention to the delegated activity� and

���

�� enable the delegatee to reject or at least defer the execution of the activity� with optional

directions to store them for later execution� as discussed above	

The last issue concerns the dynamic visualization of the process� since Oz supports

dynamic animation of the executed process� the question is how to redirect animation

messages	 Our approach is to retain all process animation with the delegator� and redirect

only the activity
and its enclosing user interface� to the delegatee
s�	 The rationale is

that in activity delegation the �ownership� is only temporarily transferred to the delegatee

for the execution of that activity� but in general control returns to the delegator when the

delegation terminates	 Note how in this case delegation of coarser granularity
e	g	� task

delegation� would require a di�erent solution� probably to redirect the animation as well as

the activities to the delegatees	

��	�� Modeling and Enactment of Synchronous Multi�User Tools

Considering process support for synchronous multi�user tools� there are two main

issues to explore�

�	 Speci�cation and parameterization of multi�user activities besides user bind�

ing considerations� and

�	 Execution semantics� including selection of a user�subset	

Basically� the invocation of a multi�user tool is initiated by the invocation of a rule

either manually by a client or through chaining� that encapsulates a multi�user activity	

An activity is denoted as multi�user in the tool de�nition section of the strategy��
see

Section B	�	�	� for an example�	 That rule must also contain a user�binding speci�cation

for binding the participants	 If proper binding is made� and the rule�s condition is satis�ed�

the activity is invoked	 When the activity �nishes� the rule proceeds regularly and continues

to be associated with the client that initiated the activity	 We now discuss bindings and

invocation in more detail	

������� Semantics of User Binding

As already mentioned� the same mechanism used for delegation can also be used for

binding users to a multi�user activity	 However� there are several di�erences regarding the

��Borrowed from the language extensions which were made in 	
��
�

���

policy of an acceptable binding set	

First� the activity must be delegated to a set of at least two users and the initiator

may or may not be treated as an implicit participant
regardless of whether he is speci�ed in

the binding set�	 Second� both the random and the interactive options for user selection

must be implemented in a di�erent manner here� the latter has to allow selection of a subset

of participants
not just one�� and the former has to choose a subset of participants	 To

further assist in both the automatic and the interactive binding procedures� the modeling

of user binding should also be extended to allow the speci�cation of minimum� exact� or

maximum number of participants required for a certain multi�user activity� with the default

being all the users in the binding set	

������� Invocation of Multi�user Activities

When a multi�user activity is about to execute
assuming the condition of the rule

is satis�ed and the proper users are bound to the activity� Oz conceptually replicates the

activities in all participating clients�	� and uses a similar user interface as for delegation in

order to notify the participants of the activity	 Then� each client invokes the activity in its

own address space	 However�Oz does not interfere or otherwise support the communication

at the tool level� which is considered the responsibility of the
multi�user� tool itself	 In

order to �tie� the tools to the process
es�� the standard tool envelopes ���� can be used to

bind information from the process to the tools
see for example� the white board envelope

in Appendix B	�	�	��� or our new enveloping mechanism for asynchronous tools can be

employed	

When the activity completes� all return codes except the return code from the initia�

tor clients are ignored	 In that respect� multi�user tool support is simpler than delegation	

An improved implementation should investigate how to incorporate return codes from all

participants in order to form a single representative return code
e	g	� majority vote� nego�

tiate�	

One of the important characteristics of process support for multi�user tools is its

invocation point	 In our approach� it was invoked from a single rule� associated with a

single client� this is the simplest form	 There are at least two alternatives which should

be investigated�
�� simultaneous invocation of a Summit activity in the participating sites

��In practice� if all clients share the �le system it only needs to send them a path of the envelope to
execute�

���

as opposed to one replicated activity�� as outlined in Section �	�� and
�� invocation from

multiple independently executing rules
 for example by local concurrently executing chains

in post Summits	

Finally� another open issue is support for roles	 That is� if a tool has the notion

of di�erent roles
e	g	� a multi�user inspection tool with a moderator vs	 participant� see

Appendix B	�	�	� for an example�� then the process should be able to model this� and

subsequently support it by� for example� invoking di�erent envelopes for di�erent roles	

Currently� this has to be manually coded within the envelopes	

��� Implementation Status

Version �	� of Oz is fully operational� and most of the features which were discussed

throughout this chapter are fully implemented	 To summarize� Oz supports� over multiple

sites� each with a private process model and a private objectbase� the following�

� Treaties
 strategy�sharing operations
e	g	� import� and their intersection

with the execution privileges operations
e	g	� request�� global Treaty oper�

ation� local evolutions and dynamic veri�cation	

� Summits
 Direct remote interaction� all built�in cross�site commands� in�

cluding support for sub�schema compatibility as described in Section �	�	�	��

and most importantly� a full blown support for Summits as described in in

Section �	�	

� Delegation and Groupware
 an e�ective
although still preliminary� im�

plementation of both modeling and enactment of delegation and multi�user

tools	 See Chapter � for actual examples of using these mechanisms	

The aspects which were discussed in this chapter and are only designed or not fully

implemented at the time of this writing are
a similar section appears in Chapter � to

summarize features discussed there�� global associative queries and soft links are not fully

implemented yet� the export data mechanism discussed in Section �	�	� has not been

implemented yet� although the underlying access�control on top of which this facility should

be constructed is fully implemented and operational� the solution to the �static problem� in

common sub�schemas� which was contemplated in Section �	�	�	�
 involving the Evolver�s

���

front�end to verify by�structure type equivalence among the common sub�schema
 has

not been implemented yet� checking for process consistency in Treaties using the Evolver

as described in Section �	�	�� is not implemented� mainly because some essential features

in the Evolver itself are still incomplete� backward chaining during fan�out in Pre�Summits

is carried out serially� and not in parallel� as suggested in Section �	�	�	�
forward chaining

during Post�Summits is carried out in parallel� though�� the various language extensions to

support �delegation�chaining� and the extended logic in evaluating delegation� as well as

the delegation directives to control the assignment of users and the failure semantics� have

not been implemented yet	

���

�

Architectural Support for

Decentralization in Oz

In the previous chapter we discussed the interpretation of the generic decentralized

model into a speci�c PML and PCE� in this chapter we focus on the underlying infrastructure

that supports such a realization	 One way to distinguish the material in this chapter from

the previous one is that the previous chapter discussed interoperability at the software�

process level� whereas here we discuss mainly interconnectivity at the system level� on which

interoperability is founded	 Despite being �low�level�� the discussion in this chapter is� for

the most part� conceptual� focusing on the research issues and ideas that are concerned

with the design of a decentralized architecture that supports the interoperability model and

meets the requirements set forth in Section �	�	

The chapter is organized as a collection of loosely�coupled issues which are concerned

with di�erent aspects of the system�s characteristics	 Section �	� describes an overall ar�

chitectural overview	 Sections �	� and �	� are closely related� the former discusses the

communication infrastructure� and the latter discusses the process for
dynamic� con�gura�

tion of the database that maintains connectivity information	 Sections �	� and �	� are also

somewhat related� the former discusses the underlying support for Summits in Oz with

emphasis on the context switching mechanism and handling communication deadlocks� and

the latter discusses the remote object cache that enhances the performance of Summits	

Section �	� discusses the extensions to the Oz architecture for operation over the Internet�

���

supporting geographically dispersed SubEnvs	 Finally� Section �	� summarizes the current

state of the implementation	

��� Architectural Overview

The external view of the Oz architecture matches the generic description as seen

in �gure �	�� and has already been outlined in Section �	�	 It is a multi� client�server

architecture� whereby each SubEnv follows a standard client�server architecture and is es�

sentially self�su�cient for local work� and multiple SubEnvs are inter�connected through

a communication layer that enables process�interoperability� with no shared�memory	 As

many aspects of the single�server architecture are similar to the Marvel architecture �����

they are therefore not discussed here any further	

The internal architecture of Oz is illustrated in �gure �	�	 We use the following

graphical lexicon� partially adopted from ����� squared boxes with the widest bold lines

e	g	� the Server� represent operating�system processes� or independent threads of control�

squared boxes with lines with intermediate width
e	g	� the Task component� represent

top�level computational components which are part of an operating�system process but

are relatively independent from other components� squared boxes with narrow solid lines

are computational sub�components� dashed�line separators within sub�components further

modularize a
sub�component into the its various functionalities� shaded ovals represent

data repositories� and arrows represent data and control �ow	

Oz consists of three main runtime computational entities� the Environment Server

or simply� the Server�� the Connection Server� and the Client�	 In addition� there are

several entities that convert the various project�speci�c de�nitions into an internal format

which is understood and loaded by the server� and some objectbase utilities for checking�

repairing� and converting
across platforms� Oz objectbases	

There are three kinds of inter�connections�
�� client�to�local�server�
�� client�to�

remote�server� and
�� server�to�server	 The �rst connection is �permanent�� in the sense

that its existence is essential for the operation of the client	 That is� a client is assumed to

always be connected to its local server	
An extension of this model� in which clients can

be disconnected temporarily from their server� is investigated separately by Skopp ����	�

In contrast� the two other connections can be regarded as �temporary�� since they are

�There are actually three kinds of clients� XView� Motif� and a command�line client�

���

A
ct

iv
it

y
E

x
ec

u
ti

o
n

S
ch

ed
u

le
r

T
a

sk

C
li

en
ts

L
o

ca
l

R
em

o
te

S
u

m
m

it

B
u

il
t−

in
 C

o
m

m
a

n
d

s

D
a

ta

R
em

o
te

O
b

je
ct

C
ac

h
e

S
to

ra
g

e
M

an
ag

er

L
o

ck
sA

n
im

at
io

n
In

fo

O
b

je
ct

b
a
se

D

is
p

la
y

L
o

ca
l

S
er

v
er

C
li

en
t

T
ra

n
sa

ct
io

n
s

S
u

b
E

n
v

C
o

n
n

ec
ti

o
n

S
er

v
er

L
o
ca

l
R

em
o
te

R
em

o
te

S
er

v
er

s

R
u

le
 P

ro
ce

ss
o

r

L
o

ca
l

R
em

o
te

L
o

ca
l

R
em

o
te

T
re

at
y

S
ch

em
a

E
v
o
lv

er

T
o
o
l

E
n

v
el

o
p

in
g

P
ro

ce
ss

E
v
o
lv

er

C
li

en
ts

S
er

v
er

R
u

le
B

a
se

T
o
o
l

B
a
se

C
la

ss
B

a
se

S
u

b
E

n
v

O
b

je
ct

b
as

e
P

ro
d

u
ct

F
il

es

C
li

en
t−

S
er

v
er

C

o
m

m
u

n
ic

a
ti

o
n

S e r v e r | S e r v e r C o m m u n i c a t i o n

L
o

ca
l

R
em

o
te C

o
n

n
ec

ti
o

n
B

as
e

T
re

at
y

b
as

e

R
em

o
te

R
u

le
s

&
 B

u
il

t−
in

s
A

d
−

h
o
c

Q
u

er
y

In
te

rf
a
ce

Q
u

er
y

 P
ro

ce
ss

o
r

L
o

ca
l

R
em

o
te

F
il

e
M

an
ag

er

C
o
o
rd

.
B

a
se

S
es

si
o

n
 (

co
n

te
x

t)

P
ro

ce
ss

T
ra

n
sl

a
to

r

C
o
o
rd

in
a
ti

o
n

T
ra

n
sl

a
to

r

S
ch

em
a

T
ra

n
sl

a
to

r

C
S

D
B

In
−

m
em

o
ry

O
b

je
ct

 M
g

m
t.

−
 D

at
a

re
p
o
si

to
ry

−
 C

o
m

p
tu

ta
ti

o
n
al

co

m
p
o
n
en

t

L
eg

en
d
:

Figure �	�� Oz Architecture

���

optional� and can be dynamically reconnected and disconnected over the course of a session�

without disrupting the local operation of a SubEnv	 This is a necessary feature to ful�ll the

independent�operation requirement� particularly when the servers are spread arbitrarily over

multiple domains	 Both kinds of connections are implemented as tcp connections� but with

di�erent operational semantics	 When a permanent connection gets disconnected
either

voluntarily or involuntarily due to some failure� the client ceases to exist and is removed

from the local server�s state	 In contrast� when a temporary connection is disconnected

again� voluntarily or involuntarily�� the system should still enable continuation of local

work and other una�ected remote work� and in case of an unexpected failure� should recover

gracefully	

An Oz
multi�site� environment consists of a set of instantiated SubEnvs� and at

any point in time none� some� or all SubEnvs may be active	 A SubEnv is considered

active if exactly one server is executing �on the environment�� meaning that it has loaded

the SubEnv�s process� and the SubEnv�s objectbase
containing the persistent product data

and process state� is under the control of the server�s object management system	 Typically�

an active environment has also at least one local active
i	e	� executing� client connected to

its local server� because the server automatically shuts itself down when there are no more

active clients
and is automatically started up on demand by the Connection Server� as will

be explained shortly�	 In the rest of this section we will interpret the architecture �gure� so

the reader is advised to refer to it throughout the section	

	���� The Oz Environment Server

The server is the �brain� of Oz	 It consists of three main distinct components�

Task
or process�� transaction� and data managers� each of which can be separately tailored

externally	

������� Task Manager

The task manager is the main component in the server	 Its front�end component

is the scheduler	 The scheduler receives requests for service from three entities that corre�

spond to the previously mentioned inter�connections� namely local clients� remote clients�

and remote servers	 With few exceptions� these requests are served on a �rst�come��rst�

served basis
the exceptions are explained in Section �	��	 The server is non�preemptive�

���

i	e	� it relinquishes control and context�switches to other tasks only voluntarily	 The next

layer below the scheduler is the session� or context� layer	 Each interaction with a server is

enclosed within a context containing information that enables to switch and restore contexts

again� see Section �	��	 The most common case of a multi�step task in Oz is a chain of

rules	 The context of a local rule�chain is kept in a data structure called the rule�stack and

the context of composite Summits is maintained in a Summit�stack
mentioned earlier in

Section �	�	��	 Most of the services provided by the server are handled either by the rule

processor or by the built�in command processor	

The rule processor is the heart of task processing	 It contains the necessary func�

tionality for processing both Summit and non�Summit rules� including parameter binding

and rule overloading� activity execution preparations
including converting the object�based

arguments to their �le�based counterparts used by external tools�� and backward and for�

ward chaining with either direction in one of three possible modes�
pure� local� Summit�

and local but spawned o� a Summit rule	 In addition� it controls the bindings� condition

evaluation� and assertion in rules
all preformed by the query processor� and all access

to remote objects in either of the above phases
performed by the data and transaction

managers�	

The rule processor has very few �system� built�in rules
e	g	� registration rules� see

Section �	�	��� so the behavior of a particular instantiated SubEnv is mostly determined by

the external rule�base repository that it reads upon initialization	 The rule�base contains

the internal representation of the parsed administrator�de�ned rules� their inter�connections

i	e	� the rule�network�� their interface to envelopes� and all the Treaty information

imported� exported� requested� and accepted rules� as well as the corresponding sites with

which those relationships hold	

The built�in command processor handles all the hardwired kernel services which

are available to every SubEnv	 These include the primitive structural operations on the

objectbase
e	g	� add and copy object�� image refresh commands
explained later on�� access�

control� ad�hoc queries� and the various dynamic process loading and Treaty operations	

������� Transaction Manager

All access to data is mediated in Oz by the transaction manager	 Due to the

required decentralization� each transaction manager is inherently local� i	e	� it is responsible

���

only for its local database� and interacts with remote transaction managers to manage

access to remote objects	 Thus� only local locks are maintained at each local transaction

manager	 The transaction manager can be con�gured by one or more of the following

mechanisms�
�� an external lock table� containing compatibility matrix� power matrix�

and inheritance tables�
�� a transaction table that associates lock modes
from the lock

table� with operations which are carried out during process execution� and
�� a set of

control�rules that tailor the default two phase locking protocol for concurrency control
see

���� for
�� and
��	
�� is due to Barghouti ����	 As with rules� an instance of the transaction

manager without proper lock and transaction tables is useless� but unlike rules� Oz provides

default tables which are suitable in most cases
the control�rule base is entirely optional�	

As outlined in Chapter �� the implementation of this component is in general outside

the scope of this thesis and is treated separately by Heineman ����	

������� Data Manager

This is the lowermost component in the server� consisting of several sub�components	

The main sub�component is the in�memory object manager that provides a uniform

object�based access to data from any system component	 Objects can be looked up in one

of three ways� by structural navigation� by testing class membership� and by their object�

id	 Thus� three di�erent data structures are superimposed on the objectbase� a directed

graph that represents the structure of the objectbase with edges labeled as parent� child�

or link� a linked�list that contains all objects of a given class� and a hash�table keyed by

the object�id	 Structural and by�class searches are requested by the query processor

to service navigational and associative queries� respectively� and by�id lookup is used for

several purposes� among them to support direct user selection of objects as parameters to

rules	

The second major sub�component is the query processor	 It has a language inter�

face� and is called from both the rule processor and directly from the client for servicing

ad�hoc queries	 Queries on remote objects are handled at this level� by invoking a server�

to�server service	

The rest of data management consists of an untyped storage manager
imple�

mented on top of the gdbm package� that stores the objectbase contents� a
le manager

that manages access to �le attributes
recall that �le attributes in objects are merely paths

���

to �les which reside in the �hidden� �le system�� and an object cache that holds transient

copies of remote objects when Summits take place
 discussed separately in Section �	�	

As far as modeling facilities� the data manager is de�ned by the project�speci�c

schema which is tied to the instantiated objectbase� including both class� and composition�

hierarchies	 As in the case of rules� without a schema the data manager is useless since it

cannot instantiate any objects
the built�in classes SUB ENV� TOOL� and ENTITY are

not suitable for general use�	

Finally� one of the major research topics in theOz project that is for the most part or�

thogonal to the work described in this thesis� is concerned with componentizing the server�s

main three functionalities
task� transaction� and data management� into independent and

replaceable components� as well as integrating each component in other frameworks	 Com�

ponentization� among other things� is important to support architectural design autonomy�

where SubEnvs can be built with di�erent components
e	g	� di�erent OMS� or di�erent

transaction management�	 While preliminary work towards componentization has been

done by the author in the Marvel project
see ������ it is in general outside the scope of

this thesis� and is addressed in the theses of Popovich ���� and Heineman ����	

	���� The Oz Client

The client consists of four major sub�components�
�� interface to� and information

about� rules and built�in commands�
�� objectbase display�
�� activity execution module�

and
�� an ad�hoc query interface	 Oz clients are multi�threaded� in that a single client

supports multiple concurrent interactions with local or remote servers	 This enables a user

to run in parallel several
possibly long� activities from the same client	

The command interface consists of rule� and built�in menus� utilities for displaying

rules� and the
local� rule�network� all of which are stored at the client�s address space and

can be dynamically refreshed when a new process is
re�loaded	 Another informative utility

is the Treaty information menu� which prints the state of the various active Treaties� import�

export� request� and accept information� as it is known to the local site	 But recall that

Treaties can be invalidated unilaterally� which means that the Treaty information regarding

remote sites represents only an approximation of their current state	

In addition to the display of the static rule�network� the client has a dynamic rule

animator that animates the enactment of rules� including backward and forward chaining	

���

In Oz� the animator has been extended to support animation of Summits	 The idea is that

when local execution of rules at the remote sites takes place� the animation of these rules

is still directed towards the client who initiated the Summit� so that a complete picture

of the Summit is presented at the coordinating client	 This occurs even when an activity

is delegated to other clients	 There are several architectural implications to this design�

�� There must be a complete separation between control and animation messages which

are sent from a server to client
s��
�� when a rule executes as part of remote backward

or forward chaining�
i	e	� during Pre�Summit or Post�Summit� respectively�� it must carry

with it the identi�cation of the coordinating client
which operates in a di�erent SubEnv�

in order to direct the animation messages to it� and
�� the remote server on whose behalf

Pre� or Post�Summit takes place must be able to communicate with the coordinating client

to direct to it the proper animation messages	

The objectbase display is the central component of the user interface� particularly

with respect to multi�site interactions	 In Oz� the client supports the display� browsing�

and parameter selection from both local and remote objectbases� as was seen earlier in

�gure �	�	
But recall that the client maintains an image of only the structural information

for browsing and selection� not the full contents of the objectbase	 Actually� this is also

true for schema and rules� only their �names� are passed to clients for selection and display

purposes� not their contents	� This implies that the client has to maintain multiple simulta�

neous connections to the remote servers� and be able to direct di�erent requests to di�erent

servers	 In addition� decentralization concerns imply that the policy concerning the refresh

of the various images should be determined on a per�SubEnv basis� and not be global� since

the desired refresh policy for the objectbase image may vary depending on the degree of

remoteness from� and frequency of interactions with� servers	 Thus� Oz supports a SubEnv�

speci�c tailorable refresh�policy�	 That is� a user can determine for each objectbase the

frequency for refreshing the local image� thereby controlling the communication overhead	

The policy itself can be based on time� or on number of updates made to the objectbase

by other clients� since a client that a�ects the state of the objectbase receives always the

updated image immediately�	 The default policy� as with other aspects of communication

in Oz� follows the �lazy� approach
 the updates are deferred until users actively request

services from the server� after which the updates are piggy�backed to the reply	 Figure �	�

�This feature did not exist in Marvel even for the single�SubEnv� instead� the refresh policy was hard�
coded in the kernel�

���

Figure �	�� Refresh Policy in Oz

shows the client interface to the refresh policy� where the Periodic�Delta mode is selected

on SubEnv siteA with value �� meaning that after each � updates that are made to the

structure of the objectbase of siteA
e	g	� adding or deleting objects� the changes are prop�

agated to the client	 The threshold value denotes the number of changes after which instead

of sending the �delta� the entire objectbase should be sent	 This is usually a function of

the size of the objectbase	

The two remaining components of the client� namely activity execution and an ad�

hoc query interface� are similar to their counterparts in Marvel� and even when remote

objects are accessed in the activities their transfer is transparent to these components	

	���� Connection Server

The Connection Server�s main responsibility is to
re�establish connections to a local

server from local clients� remote clients� and remote servers	 However� it does not participate

in the actual interactions between those entities� it serves only as a mediator for �hand�

shaking� purposes	 In some cases� the destination server to which a request for a connection

is made� may not be active� in which case the Connection Server is capable of automatically

re�activating a dormant server	 In other cases the desired server may be active but its

address
host IP address and port number� might be unknown to the requesting entity� in

���

which case the Connection Server sends that information to the requesting entity for further

communication	

Unlike the environment Server� the Connection Server is always active�	 Thus� each

con�gured host has its own
logical� Connection Server that supports all SubEnvs
of the

same or di�erent global environments� that reside in that host	 The actual invocation and

functionality of Connection Servers is discussed in Section �	�	�	

	���� Summit from the Architecture Standpoint

We summarize the section by an overview of Summit execution� describing how the

system�s components interact during the course of multi�SubEnv enactment� leaving out

the details of two important topics which are discussed later separately� namely context�

switching and caching of remote objects	

A user interacts with the environment through a client	 He�she initiates a Summit

by selecting a rule from the rule�menu� and by selecting objects for the rule�s parameters�

with at least one object from a remote objectbase
recall that only object�ids are known

to the client� the real objects are resolved at the server�	 Prerequisites to such �ring are�

�� The rule must have gone through a Treaty de�nition� and must have request privileges

on the sites from which remote objects were selected�
�� An open�remote command was

issued by the client on all remote objectbases from which objects were selected� or otherwise

the remote objects would have been invisible to the invoking client	

The request is then sent to the local server
the details of the actual communica�

tion are deferred to Section �	�� and enqueued for execution	 At some point the scheduler

dequeues the request for service and directs it to the session manager which creates a new

context for the requested task	 From there� the rule processor takes control	 The �rst opera�

tion involves resolving the object�ids to real objects	 The local objects are resolved through

search�by�id� and the remote objects are fetched by invoking a server�to�server request� and

are stored in the local cache	 Once the objects are resolved� the overloading module deter�

mines which rule
s� should be invoked� followed by a server�to�server interaction to perform

dynamic Treaty veri�cation	 The binding phase follows� calling the query processor� which

in turn might submit queries to remote query processors	 At this point� the rule processor

calls the transaction manager to acquire locks on the binding set� and requests for locks on

�Actually� it is implemented as a daemon invokable from the Unix inetd mechanism�

���

remote objects are directed to the proper
remote� transaction managers	 The condition

evaluation follows� and if it fails� backward chaining is invoked� involving server�to�server

interaction to notify remote servers to perform local chaining	 If�when the server deter�

mines that the client has to execute an activity� it sends to the client the necessary data

and animation messages	 Then� the client�s activity manager spawns an operating system

process that executes the activity� when �nished� the client returns to the server with the re�

turn code and output from the activity	 The server�s rule processor enters the Post�Summit

phase� initiates remote forward chaining� and when all sites notify completion it proceeds

with subsequent Summit rules� if any� and eventually completes the task� releasing all the

resources associated with the task and removing it from the session manager	

��� Communication Infrastructure

The communication infrastructure is the cornerstone of the inter�connectivity mech�

anism and is� therefore� very important for the understanding of the decentralized architec�

ture	

We address here two main issues�

�	 How to represent� store� identify and locate� computational entities
i	e	�

clients and servers� across SubEnvs	

�	 How to perform the actual transfer of data and control between those entities	

The core research requirements impose several constraints on the design of the in�

frastructure�

�	 Decentralization and independent operation requirements
which in turn en�

tail a �shared nothing� architecture� imply that the communication infor�

mation cannot reside in a shared repository and must be therefore somehow

replicated	

�	 Independent operation coupled with the fact that SubEnvs may or may not

be active at certain points in time� imply that the architecture should be de�

signed to tolerate temporary disconnections between SubEnvs as a built�in

normal scenario� not only as an exception	 Moreover� since the communica�

tion address of the entities might change dynamically
due to the �tempo�

���

rary� nature of these connections�� the communication protocol should be

able to dynamically
re�locate and
re�connect to remote sites� while carrying

out other on�going tasks	

�	 The �exibility requirement suggests that there should be some degree of

freedom in modeling the communication on a per�project basis	

We begin with a high�level outline of the approach taken to address these issues�

followed by the actual realization	

	���� Approach

The key to addressing the two major issues given above requirements is in the proper

design of�
�� a decentralized connection database and
�� a proper communication protocol

that manipulates the database	

The connection database is a persistent repository that contains the necessary infor�

mation for cross�SubEnv communication	 The shared�nothing requirement eliminates the

possibility of a shared repository� so the obvious alternative is to replicate it in all sites	

However� maintaining consistent replicas at all sites violates autonomy and independent

operation� particularly due to the dynamic changes that occur frequently whenever sites

are
de�activated	 And with arbitrary geographical distribution of SubEnvs� this approach

becomes simply impractical	 On the other hand� despite the given lack of consistent repli�

cation� there must be a way to still ensure inter�SubEnv connectivity on demand	

A hybrid approach that addresses both concerns is to maintain a semi�replicated

database� whereby the database consists of two kinds of data� a static component that

contains connectivity information that changes rarely� is fully replicated� and thus assumed

to always be valid� and a dynamic component that contains information that changes fre�

quently� is not always replicated� and might be at times invalid	 Corresponding to that

division� there are two modes of communication� direct communication through the volatile

dynamic information� and indirect communication through the always valid static informa�

tion	 The former mode is faster� but will not work if the dynamic information is invalid�

and the latter is slower but the connectivity information is guaranteed to be accurate
this

will be further clari�ed later in Section �	�	��	

As for �exibility concerns� the obvious direction to follow is to exploit the process�

centered approach and provide facilities and notations for
�� modeling communication

���

on a per�project basis� and for
�� the corresponding enactment mechanisms	 However�

communication modeling imposes problems that do not exist in software process modeling	

First� since communication is primarily concerned with inter�SubEnv interactions� tailoring

can be made only on a global environment basis
as opposed to within a single SubEnv��

which means that communication modeling is at least partially a global modeling procedure	

Second� communication involves low�level system calls and mechanisms that are hard to

expose to the high�level modeling language	

The solution here is a compromise� the connection database is modeled as a set of

�rst�class instances of a class that is de�ned using the standard Data De�nition Language�

but the class is built�in	 And manipulation of the database is performed in part by low�level

components of the kernel� and in part by
built�in� rules	 The idea is to de�ne a built�in

structure of the database� but expose it and its contents to all levels of the system
and

to users�� and in particular make it modi�able via the PML� as well as from the kernel	

Thus� manipulation of
parts� of the connection database is performed through a built�in

process� and has the bene�ts that come with process modeling and enactment in general�

although with some limitations
see Section �	��	 And even the class de�nition of the

connection database can be augmented with additional attributes� so long as the default

required attributes are intact	 We now turn to the actual solution employed in Oz	

	���� The Oz Connection Database

The implementation of the connection database in Oz follows the rationale given

above	 Each SubEnv maintains a private connection database consisting of a set of objects

of the built�in class SUB ENV� each of which represents a distinct SubEnv in the global

environment	 The SubEnv objects are represented as the root objects of their respective

objectbases� and thus they are always part of the displayed image at all clients at all sites

of the global environment	

The actual de�nition of the SUB ENV class is given in �gure �	�	 The static attributes

contain information which is determined at site con�guration time� and is modi�ed only by

subsequent con�gurations
see Section �	��	 It contains values that enable to always locate

the SubEnv and connect to it
through the Connection Server�� like the subenv name and

subenv id �elds for identifying the SubEnv� and the site name and site ip addr which

specify the location of the Connection Server	 Note that the value of the site name attribute

���

SUB�ENV �� superclass ENTITY�

 Static Information

env�name � string�
 unique across global environments

env�id � integer�
 unique across global environments

subenv�id � integer�
 unique within a global environment

subenv�name � string�
 site�pathname or logical name

site�name � string�
 e�g�� cs�columbia�edu

site�ip�addr � string�
 dotted format	 e�g�� ������������

has�nfs � boolean � false�
 true if shares NFS with local server

state � �New	 Initialized	 Defunct � � New�
 configuration state

local � boolean�
 TRUE if local	 FALSE if stub object

 Dynamic information

active�host � string�
 e�g�� bleecker�columbia�edu

host�ip�addr � string�
 dotted format	 e�g� ������������

port � integer � ��
 port number	 if active

active � boolean � false�
 TRUE if active	 not guaranteed

subenv�ob � set�of ENTITY�
 The local objectbase is connected here

 Project Specific

end

Figure �	�� The built�in class SUB ENV

need not be identical to the value of active host� due to the fact that a Connection Server

can activate other hosts within its domain	 This point is discussed later in Section �	�	�	�	

Unlike the static attributes� the dynamic attributes are frequently modi�ed by the

kernel during normal
inter�� process enactment� and contain dynamic bindings of values

e	g	� current Internet address of the host that executes on the SubEnv� its listening port�

etc	�	 In each local connection database there is exactly one local SUB ENV object
denoted

by having a true value in its boolean local attribute�� to which the local objectbase is

connected
through the subenv ob compositional attribute�	 The rest of the SUB ENV objects

are �stubs� which are used to connect to other SubEnvs	 For example� in an environment

consisting of four SubEnvs� each SubEnv will have four distinct SubEnv objects
i	e	� the

total number of SubEnv objects in an environment is the square of the number of SubEnvs��

one of which is the local �real� object and the other three are stubs �pointing� to the other

SubEnvs	 By de�nition� all stubs that point to the same object
one in each SubEnv�

must contain identical static information
 this is guaranteed by the con�guration process	

���

DB1 DB2 DB3

S1 S2 S3 S1 S2 S3 S1 S2 S3

SubEnv1 SubEnv2 SubEnv3

Client

Connection
 Server3

Figure �	�� Connection Database

In contrast� the dynamic information may vary in di�erent stubs representing the same

SubEnv object	 The reason is that a stub in the server is updated only when the server
or

one of its local clients� actively requests to communicate with other server represented by

the stub	 That is� the stub is not updated every time the corresponding real SubEnv object

is modi�ed
e	g	� when it becomes inactive� or is reactivated on a di�erent host�	 Thus� the

dynamic information is always valid only in the real
i	e	� non�stub� SubEnv object	

As for the client� the situation is as follows	 Upon initialization� it receives from its

local server an image of the local objectbase� and an image of the connection database
see�

for example� �gure �	��	 When the client issues the
built�in� open�remote command on a

remote SubEnv stub
shown in �gure �	��� the client switches the image of the stub with the

image of the
remote� real object� along with its connected objectbase� and the local server�s

stub is updated with the proper dynamic information	 This switch of images at the client

is best illustrated in �gures �	� and �	�� In �	� the client has no open remote connections so

its image of the connection database is directly mapped to the local connection database�

and �	� shows client�s image after an open�remote was issued on SubEnv

ignore for now

the Connection Server in the �gure�	 There� the image for SubEnv
 has switched from the

local stub to the image of the real object
along with its connected objectbase�	

An alternative approach to maintaining the connection database at the client
which

���

DB1 DB2 DB3

S1 S2 S3 S1 S2 S3 S1 S2 S3

SubEnv1 SubEnv2 SubEnv3

Client Indirect

Connection
 Server3

Figure �	�� Connection Database with remote connection to SubEnv�

was in fact implemented in an earlier version of Oz� would not switch the image of the

SubEnv objects upon opening a remote connection	 Instead� a distinguished attribute

of the stub would represent the sub�objectbase image stemming from the actual SubEnv

object� and any requests to access remote objects would be directed to the local server�

which would perform the request on behalf of its client� including possibly contacting the

Connection Server	 The main advantage of this approach over the former one is that

it simpli�es the client�s operation and the communication protocols in general since the

client communicates only with its local server and all cross site communication is done

through the servers	 However� this approach unnecessarily overloads the servers and overall

increases signi�cantly the performance overhead for remote communication� since every

remote request must pass through the local server� including the built�in operations that do

not require process�authorization such as parameter selection and remote browsing
note

that access control can still protect sites from unauthorized remote access just as it does so

for local clients�	

	���� The Communication Protocol

As mentioned earlier� Oz supports two modes of communication� the direct mode

which uses the
possibly invalid� dynamic information at the connection database to connect

���

directly to the desired server� and the indirect mode which uses the static and always valid

information in the connection database to connect through the Connection Server	 Indirect

communication is used either to establish a new connection for which there is no dynamic

information available at the requesting server� or when the dynamic information turns out

to be out of date
e	g	� due to the fact that the target server terminated its execution�	

In either case� indirect communication is followed by updating the corresponding

dynamic information in the stub� so that subsequent interactions with the same server can

occur in direct mode	 In some cases� there is no running server on a given SubEnv� which

means that indirect communication must take place	 In this case� the activation capabilities

of the Connection Server are used to start up a new server	

Figure �	� illustrates the two modes in client�to�remote�server interactions
it is sim�

ilarly handled in server�server communication�	 As long as the direct channel is valid� all

interaction between the client and the remote SubEnv
 is done directly	 If the SubEnv
�s ad�

dress is not known to the client� or has become invalid
e	g	� the server has been deactivated��

the indirect channel
shown as the dashed arrows� is used to establish the connection� after

which the
new� direct channel is used again	 Since the address of the Connection Server at

SubEnv
 is always known
maintained by the static information� and it is always available

through the daemon mechanism�� the likelihood of successfully
re�connecting is very high

assuming network connectivity�	 Finally� the indirect communication has an important

role for fault tolerance� It is essential for handling inter� and intra� site failures independent

of Oz	 For example� if a speci�c host which used to run on a SubEnv crashes� subsequent

communication with the Connection Server might lead to restarting a server on the SubEnv

from the same or a di�erent host in the site	 The communication protocol is summarized

in �gure �	�	 Note how all the necessary information can be obtained from the SubEnv

objects in the local connection database	

This design of the communication protocol meets the constraints imposed by inde�

pendent operation and decentralization requirements� and is somewhat analogous to other

aspects of the system that deal with interoperability	 On one hand� the lazy approach to

updating dynamically changing information avoids the need to broadcast the updates made

in the
real� SubEnv objects to all the stubs in the remote SubEnvs	 This is particularly

important since the sites might be physically dispersed and thus incur large communication

overhead	 Moreover� the fact that not all sites are necessarily active at all times simply

makes the �eager� approach impossible	 And most of all� such updates are not always

���

�� if �remote�server is marked as Active�

�� then

�� try to connect directly using the dynamic host information

�� if connection is successful

�� then

�� communicate

�� end

��

�� if ��remote�server is marked as NotActive�

��� OR

��� �direct communication failed due to invalid dynamic information�

��� then

��� contact the Connection Server through the static information

��� if connection is successful

��� then

��� �� get the �dynamic� information from the Connection Server and

��� update the local stub SubEnv object

��� �� communicate

��� else

��� return error� Connection cannot be made at this point

��� end

Figure �	�� server�to�server communication

necessary
e	g	� when some remote SubEnvs are not interacting with the updated SubEnv�	

On the other hand� it is still always possible to reach remote SubEnvs
so long

as they are reachable through the underlying network�� with some overhead	 The main

point is that the �freshness� of the dynamic information is correlated with the frequency

of communication� i	e	� the more often a remote SubEnv is contacted� the more likely the

dynamic information in the corresponding SubEnv stub will be accurate at the contacting

SubEnv� thereby increasing the chances for successful direct communication	

������� Remote Invocation of Environment Servers

We hinted earlier on the possibility to enable a Connection Server invoked in one host

to spawn an Environment Server on a di�erent host within the same domain�	 This feature

decouples the SubEnv�s static �contact� host from the actual host in which the Environment

�Recall that we use domain to explicitly denote a physical Internet domain and assume a shared �les
system� unlike our use of the term site� which may or may not map to a domain�

���

Server executes� thereby allowing to determine the execution node dynamically	 There are

several bene�ts to this design	 First� the execution node can be determined based on various

considerations such as proximity to the SubEnv�s data� load balancing� and fault tolerance

issues	 Second� if logical SubEnv names are supported
as explained below�� SubEnvs can

be migrated without a�ecting the Connection database� and in this case the Connection

Server can choose the proper host based on its local site information	

Thus� the Connection Server maintains information on� and can be con�gured to

operate based on� local domain considerations� which are shielded from Environment Servers

and Clients that operate over a logical �site�based� name space
see below�	

Typically� the SubEnv�s static address
as denoted in the site name attribute of the

SUB ENV objects� should be that of the host in which the SubEnv�s data physically resides�

and that local host is then the default host for spawning the Environment Server	 However�

in some cases it is desired to have a static address of a �public� node in the domain� in

which case the Connection Server should spawn an Environment Server on the �private�

node in which the SubEnv physically resides	 This scenario is typical in ��rewalled� sites�

where only a single node
the ��rewall�� can communicate with the outside world	

To facilitate this feature� the Connection Server maintains a Domain SubEnv Table

that contains invocation information for each SubEnv in its domain	 This table is modi�ed

only at site con�guration time
covered in �	�� and is used only by the Connection Server	

The main two pieces of information stored there are�

�	 Mapping of the logical name of a SubEnv to a physical host and path in

which the SubEnv repositories reside	

�	 A priority list of hosts in the domain in which to invoke Environment Servers

on the SubEnv	

	���� Decentralized Naming Schemes

The obvious di�culty in decentralized naming is ensuring uniqueness and proper

identi�cation and location of elements without a centralized repository or global control	

Further� autonomy considerations should lead us to strive to enable SubEnvs to handle

their own naming without depending in any way on other SubEnvs	 And as with other

naming schemes� there might be a need to provide logical names which are mapped to

���

internal physical ids	 Oz employs separate name spaces for SubEnvs� object�ids� rule�ids�

and client�ids	

������� SubEnv Name Space

SubEnv naming is the central naming scheme in Oz	 It is used for both inter�site

communication purposes and as a basis for guaranteeing uniqueness in all other name spaces

in Oz	 Most of the necessary information resides in the connection database	

One possible approach to naming� termed here site�based� is to bind each SubEnv

with an Internet host as part of its identi�cation	 The main advantage of this approach

is that it eliminates the need for an Oz�speci�c name space for SubEnvs� and in order to

distinguish between multiple SubEnvs within the same site� the �le system could be used	

However� this approach implies a �hard� binding of a SubEnv to a speci�c site� which

may not be desirable	 Our motivation is to enable SubEnvs to migrate across hosts with

minimum con�guration overhead� as well as to enable di�erent hosts
in the same domain�

to execute on a given SubEnv regardless of the host that holds their data� as explained in

Section �	�	�	�	 The approach in Oz is to maintain a logical naming scheme independent of

the underlying physical hosts� thereby enabling to move SubEnvs across hosts��le system

while retaining their same unique id� and invoke di�erent hosts on SubEnvs regardless of

their physical location	 Thus� in this SubEnv�based approach� the network address is only

a regular attribute of the SubEnv object used for location purposes� but is not used as part

of its identi�cation	 In particular� its value can change if the SubEnv migrates	

However� we are still faced with the problem of ensuring uniqueness	 One approach

might be to reuse the native object�ids of the SubEnv objects as the SubEnv�ids	 But this

approach would require global control in assigning object�ids
or at least stub objects� to

ensure uniqueness� which is far from desired for autonomy concerns� particularly given that

assigning object�ids is a frequent operation
see Section �	�	�	��	

The preferred solution is then to base the naming on some sort of consensus	 The

actual naming scheme in Oz is as follows	 When the registration process
discussed in

Section �	�� initializes a new SubEnv in an environment� it queries all existing SubEnv

objects
by looking at the connection database� and assigns a number that di�ers from

all others	 This SubEnv�id is guaranteed to be unique within the
global� environment

although not across global environments�	 And as part of the static attributes of the

���

SubEnv object� all stubs pointing to the same object get the same SubEnv�ids although

they may or may not have the same object�ids� which are determined autonomously	 Joining

a pre�existing SubEnv
as opposed to registering a new one� requires then to reassign the

SubEnv�id	

In order to actually communicate across SubEnvs� their physical network address is

extracted from the proper SubEnv stub object� consisting of the �le system path name of the

environment directory that contains the SubEnv�s persistent repositories
i	e	� objectbase�

rule�base� etc	�� coupled with the Internet address of the host that controls that repository

and the port number	

Finally� in order to enable movement of SubEnvs across global environments� a global

assignment is in general unavoidable	 This functionality has not been realized in Oz yet�

as evidenced by the �rst two unused �elds in the SUB ENV class	

������� Object� Client� and Rule Ids

Distributed object naming schemes have been thoroughly investigated in the dis�

tributed object�oriented database community
see� for example� Orion�� �����	 This is in

general outside the scope of this thesis as a research topic� and we only present here a sim�

ple solution	 The main goal in the design of the object�id management is to reconcile the

con�ict between allowing autonomy in id assignment and still providing uniqueness	 The

solution here is to identify an object by the pair �SubEnv id	 obj id� where the latter

is determined by the owner SubEnv with no global constraints� and the former relies on

the unique SubEnv id as explained earlier	 Note that this is not a �long� id split into two

�elds� but rather two di�erent ids	 In particular� unless cross site operation takes place

e	g	� Summits� only the obj id �eld is used	 This re�ects the decentralized nature of the

architecture	 However� the client�s image treats the pair e�ectively as a single id� since it

might contain images from multiple objectbases	 This approach enables each local object

management to employ its own id management without worrying about uniqueness across

sites	 Moving�copying objects permanently across SubEnvs is treated as adding a new ob�

ject to the target SubEnv with the speci�ed values
and in case of move also deleting the

source object�� thereby assigning to it a new id locally	

Two other entities that require global uniqueness are client� and rule�ids	 As with

object�ids� their uniqueness is derived from the uniqueness of the SubEnv�id	 Rule�ids were

���

already discussed in Section �	�	�	�	 The reason why client�ids need to be unique across

SubEnvs is that an open�remote operation is e�ectively treated by the remote server as a

remote�login operation� meaning that the remote server makes an entry for the client� and

it uses the client id in order to identify the client� so the ids of all clients originating from

all sites must be distinct	 The implementation of client�ids is similar to rule�id assignment�

i	e	� each local server maintains a private counter� to which it adds the SubEnv�id multiplied

by large constant
the same constant is used in all SubEnvs� of course�� thereby ensuring

global uniqueness	

��� A Process for Site Con
guration

Recall that one of the goals in the design of the communication infrastructure was

to enable some degree of modeling and tailorability	 The �rst step towards achieving that

goal was in the de�nition of the connection database as a set of �rst class objects instan�

tiated from a designated class that could potentially be evolved on a per�project basis

Section �	�	��	 The second step towards achieving that goal is in the manipulation of the

connection database	 The idea is to exploit the concept of process modeling and apply

it to con�guration by de�ning a registration process speci�ed in the normal PML� and to

exploit the concept of process enactment by executing the con�guration process using the

enactment engine normally used to enact a software process	

As with software processes� this approach grants the potential for tailorability of

the con�guration process	 However� divergence from the standard process in this case is

con�ned mostly to the global environment level� since con�guration is inherently a global

task	 Nevertheless� some limited site�speci�c extensions to the global con�guration process

are also possible� in principle	 In addition� since
re�con�guration is performed using the

normal process engine it can be performed dynamically as it amounts to a normal process

step invocation	 This ful�lls one of the base requirements set forth in Section �	�� namely

dynamic con�guration	 Further� the exploitation of process automation ensures that the

addition�deletion of sites is carried out consistently across all of a global environment�s sites�

with minimal human
and error�prone� intervention	 Finally� protection from accident is

a�orded through the objectbase�s normal access control facilities	 We now present the actual

registration process	 A detailed description of the con�guration process is also given in ����	

���

	���� Con�guration Facilities

The registration process presented here is mostly similar to any otherOz
sub�process	

The di�erences are in that
�� it was written by the environment kernel implementors rather

than by process engineers
although the latter might extend this process to some extent��

and
�� it is a �global� process that requires the issuer to have administrator privileges on

all remote SubEnvs� since it manipulates the connection database in all SubEnvs	

The process consists of a set of rules and envelopes that wrap �con�guration� tools�

and operates over the connection database� i	e	� over all SubEnv objects in all SubEnvs	

The details of the registration process� just like those of software development processes

written by typical process engineers� can safely be ignored by most environment end�users	

The process consists of three tasks�
�� Registering a new
perhaps pre�existing� SubEnv

into an Environment�
�� Deregistering a SubEnv� and
�� Moving a SubEnv to a di�erent

location and�or host within the same global environment	 All tasks are modeled as rules

which are invoked interactively inside any one of the existing SubEnvs� with the same user

interface normally employed for regular process enactment	

������� SubEnv Registration

A multi�site environment is populated by means of a registration task which can

be invoked from any other existing active SubEnv	 The only exception is the creation of

the �rst SubEnv� which is �hand crafted� using a special utility	 The registration task

consists of two steps�
�� adding a new stub object
representing the new SubEnv� to all

existing SubEnvs
modeled by the register subenv rule�� and
�� physically creating and

initializing a new SubEnv or joining a pre�existing one
modeled by the send connection db

rule�	 Both rules are listed in Appendix A	�	

The register subenv rule may be evaluated from any site already participating

in the relevant global environment	 It binds the SubEnv objects of all existing SubEnvs

�real� object for the local SubEnv and stub objects for reomte SubEnvs�� and executes the

register subenv tool envelope
listed in Appendix A	�� with the SubEnv objects as the

activity�s parameters	

This �tool� prompts the administrator for the new site�s static information� and

creates in all existing SubEnvs
including the local one� a replicated SubEnv stub object

instantiated with the speci�ed static information	 If the envelope detects the occurrence

���

of any of a set of common problems
e	g	� cannot contact a remote SubEnv�� it returns an

error code
which can in principle trigger the activation of an �exception handler� rule�	

The second step in the process creates and initializes the new SubEnv
or modi�es

the joining SubEnv if it pre�existed�� by invoking a remote environment�initialization utility

at the new
joining� location which was speci�ed in register subenv� creating
modifying�

the local SubEnv object there and adding all the stub objects
 one for each of the other

SubEnvs in the environment	

Notice that both steps require to contact remote SubEnvs and update their object�

bases
adding SubEnv objects�	 This is possible due to a batch facility that enables recursive

invocation of a new Oz client from within an envelope forked by an existing client	 The new

client performs the sequence of commands listed in a script and exits	 This gives the ability

for an envelope executing at a client in one SubEnv to generate a script of Oz commands

and spawn another
batch� client that executes the generated script in a remote SubEnv	

This technique provides for a simple registration mechanism that can be controlled from a

single interactive client	 For example� the registration envelope generates a script of com�

mands that contain invocation of the init remote subenv rule
listed in Appendix A	��	

This rule� simply adds a new
SubEnv� object with some speci�ed values	 Then� it tra�

verses the local connection database
i	e	� the set of SubEnv objects� and for each remote

stub object it spawns a batch client that operates on the proper remote SubEnv with the

generated script as the input command batch �le	

������� SubEnv Deregistration

This task is modeled by the deregister subenv rule
shown in Appendix A	��	 It

removes a site from the global environment� by deleting the site�s SubEnv objects from

all other SubEnvs
again� using the batch facility�� and by deleting the SubEnv objects

representing these other SubEnvs in the site�s own sub�objectbase	 The SubEnv itself is

only split o� from the global environment� but it is not destroyed� the former SubEnv

can continue operation on its own as a single�site environment� and may be rejoined into

this or another multi�site environment later	 For autonomy reasons� this step can only be

performed locally� i	e	� at the site that is about to be de�registered	

�The hide keyword preceding the de�nition of that rule prevents that rule from being displayed at the
client�s rule�menu� since it is not intended to be executed interactively�

���

������� SubEnv Migration

The last supported step in the con�guration process is migration of a SubEnv to

another physical location� modeled as the change subenv location rule
shown in Ap�

pendix A	��	 This rule prompts the user for the new location
host and �le system path��

physically moves the environment directory�s contents to the new location� and updates all

the stubs in the remote SubEnvs
again� using the remote batch facility�	 As with deregis�

tration and for similar reasons� this rule can be �red only locally� i	e	� at the SubEnv that

is actually moved	

	���� Summary

The main research contribution with respect to con�guration is that it is treated as

a fully integrated process� bene�ting from most of the advantages that come with process	

In particular� it can be enacted by the process�centered environment exactly like any other

process that one undertakes during software development	 Furthermore� the process can be

partially modi�ed and tailored for new and existing environment instances using the same

process evolution capabilities� provided that the required parts of the data and rules are

protected from modi�cations	

There are several additional important advantages of this approach� as opposed to

hard�wiring the
re�con�guration mechanism internally in Oz�

�	 It is likely to prove substantially easier to modify� mainly for the parts that

do not require kernel changes	 In particular� it can be modi�ed by system

administrators on a per global environment basis	

�	 It was much easier to implement� reusing largely pre�existing facilities	 For

example� maintaining the con�guration database as part of the process and

product database took advantage of Oz�s persistent object management sys�

tem	

�	 Since the uniform mechanism is part and parcel with the rest of the system�

many aspects of the
re�con�guration process come nearly �for free�	 For

instance� transactional
re�con�guration can be supported immediately as a

private case of the general decentralized transaction manager� eliminating

the need for a special purpose transaction facility for con�guration	

���

��� Context Switching in Summit

	���� The Problem

In a conventional client�server architecture� it is clear that if some requests take

long time to service� and�or they consist of a series of interactions between the client and

its server for which a context must be kept throughout the interaction
 then a context

switching mechanism is necessary to avoid starvation of other waiting clients	 For example�

in a single�server enactment of a
local� rule�chain� all activities execute at the client�s

address space	 These activities might take arbitrarily long� and it is not reasonable to

expect that the server will block while the activity executes at the client	 Further� as a

chain consists of several rules� it is even more unacceptable to assume that a whole chain

and its associated activities� will actually execute atomically� even if the �all or nothing�

atomicity property is required for the execution	 Thus� it is necessary for the server to

keep a context for each chain� and switch among the contexts to service multiple clients

concurrently	 A mechanism for context�switching among multiple executing clients was part

of Marvel
due to the author� see ����� and was upgraded to Oz	

Considering the multi�server architecture of Oz� there is an additional problem	 In

cases where a server has to communicate with other servers in order to service a client

request� two things can happen�
�� the server might wait arbitrarily long until the remote

servers complete to service the request� thereby reintroducing the starvation problem more

vigorously than in the single server case� and
�� if a server has to wait for other servers�

then the servers might deadlock	 Moreover� since servers might wait arbitrarily long� the

chances for getting into a deadlock situation in a naive implementation are pretty high	

To illustrate the problem� consider the following example of a communication dead�

lock between two servers
illustrated in �gure �	��� Suppose a client C� is requesting to �re

a Summit rule at its local server� S�� involving some remote objects managed by server S�	

S� requests from S� the remote objects� and waits	 The request is enqueued in S��s service

queue� which already contains several requests	 At some point after the request from S�

was made and before it was serviced� a client c� requests from its local server S� to per�

form another Summit rule� involving objects from S�	 S��s request is enqueued at S�� but

since both servers are waiting for each other� we have a deadlock	 Note that this deadlock

problem is completely orthogonal to the notion of transaction deadlock	 In particular� the

objects or rules which were accessed by the servers can be totally unrelated to each other	

���

S1 S2

C1 C2

1 4

2 or 3

2 or 3

request

request

request request

Figure �	�� A Communication Deadlock Example

In order to realize the magnitude of this problem and the importance of solving it in

Oz� we analyze the types of synchronous server�to�server and server�to�client interactions

which require the requesting server to conceptually wait for the response before continuing

with the underlying task	

The majority of these cases occur during the normal execution of an ordinary Summit

rule�

�	 binding of remote objects to the Summit rule�s parameters

�	 Treaty veri�cation � all involved remote sites validate the eligibility of exe�

cuting the Summit rule

�	 binding of remote objects to the Summit rule�s derived parameters

�	 remote backward chaining

�	 activity execution
server waits for client�

�	 remote assertions

�	 binding of remote objects as part of the inversion algorithm for new Summits

discussed earlier in Sections �	�	� and �	�	�	��

�	 remote forward chaining

���

Other places that require the server to wait include the import and treaty com�

mands� cross�site built�in operations
particularly move� where the local copy should not be

removed unless the copy was successful� which were discussed earlier� remote �le transfer�

and transactions	

The key problem in such interaction is that a server� acting as a client� can block

inde�nitely waiting to be serviced by another server due to circular waiting	

	���� The Solution

One possible solution to the problem is to implement a fully context�switchable

server� so that it never blocks	 However� besides the di�culties with implementing arbi�

trary context�switching� this might introduce inconsistency in the server�s state if arbitrary

interleaving is allowed	 In particular� some critical sections
i	e	� regions of code that have

to execute atomically� might need to be de�ned in order to protect the integrity of the data

in the servers� reintroducing the deadlock problem	

The pragmatic solution in Oz � consists of three di�erent methods which are applied

at di�erent �break points� as de�ned above	 The �rst one is full context switching� that

is� the server sends the request to the remote server
s�� saves the context of the operating

task
which then enters a �sleep� state�� and is ready to accept new requests for service	

In addition to the context switch point for activity execution at the client
which already

existed in Marvel�� Oz employs two other context switch points in the major natural breaks

of the Summit algorithm� namely remote backward chaining and remote forward chaining	

The second method� which we shall refer to as �busy�service�wait� loop� is applied to

services that are characterized by being simple and consisting of a single step� but are called

from deep within a complex context that makes it highly undesirable to switch contexts

there	 Examples of such break points include binding of parameters� Treaty veri�cation

in Summits� and some other non�Summit services	 The idea in busy�service�wait is that

the requesting server is not blocking but does not leave its context either	 That is� it is

primarily waiting for the reply to its original request but while waiting� it checks to see if new

incoming requests for service arrived� and services them immediately	 The key observation

that makes this method feasible� is that unlike servicing a client� an Oz server that services

a request from another server� never needs to communicate with other servers or clients�	

�done with Peter Skopp
�This would not be true if arbitrary cross�site links were implemented� Another exception to this is

���

That is� servicing remote servers is done locally	 Under that premise� it is guaranteed that

there will be no circular waiting because the kind of services that it handles while waiting

for the reply do not depend on any other computational entity	

The third and last method� that we shall refer to as �extended�busy�wait�service�� is

a modi�cation of the second method� and is applied to steps that are themselves composite

and require multiple service requests to complete� but are still hard to fully context switch	

In Oz these are the direct and inverse binding phases in Summits
steps � and � above��

which might require several requests to multiple remote servers to complete the binding

recall from Chapter � that bindings in Oz are realized as a set of individual sub�binding

requests�	 In these situations� care must be taken so that the partial bindings are not

altered while servicing incoming requests in the service loop� or in other words� there has

to be a way to protect the integrity of the data while bindings take place because they are

not performed atomically	

The solution here is to defer any service request that can potentially update objects

and queue it for later execution	 However� if not careful� the deadlock problem could reap�

pear if two
or more� servers were in the same �binding� mode and were deferring each

other�s binding requests for later execution� inde�nitely	 Fortunately� since the binding

phase is read�only� its requests can be serviced immediately� so a server in a midst of a

binding phase can still service remote requests for binding from other servers	 When the

binding phase completes the server can context switch to service any queued update re�

quests	 Figure �	� summarizes the �extended busy�wait�service� algorithm that is executed

whenever a server requested a service from another server and is waiting for the reply� and

table �	�	� summarizes the method applied in each of the break points presented earlier in

the previous section	

��� The Remote Object Cache

	�	�� The Problems

While a composite Summit is being executed� the same object might be accessed by

the same remote server multiple times and for various purposes� including�

�	 Binding of user�selected remote objects as parameters for Summit rules

coordination rules� see 	��
�

���

�� while�waiting�for�reply�

�� do

�� if�incoming�message�

�� then

�� if�this is a new service request message�

�� then

�� if�a non�update request�

�� then

�� service�request�incoming�message�

��� else

��� queue�request�incoming�message�

��� end

��� else �� this is the reply ��

��� waiting�for�reply � FALSE

��� end

��� end

Figure �	�� The Extended Busy�wait�service Algorithm

Remote Request Method

� Parameter binding busy�wait�service
� Treaty veri�cation busy�wait�service
� Derived parameter binding extended�busy�wait�service
� Remote backward chaining full context switch
� Activity execution full context switch
� Remote assertions busy�wait�service
� Inversion binding extended�busy�wait�service
� Remote forward chaining full context switch

Table �	�� Context Switch Summary

�	 Binding of remote objects to derived parameters in Summit rules

�	 Automatic derivation of remote objects as parameters to Summit rules in an

ongoing chain
using the inversion algorithm�

�	 Firing of di�erent unrelated Summit rules� i	e	� across di�erent chains� whose

respective durations and object �working set� overlap

In a naive implementation of Summits
and the implementation that predated the

current version of Oz�� a fresh transient copy of the remote object had to be fetched for

���

every request to access that object regardless of whether it had been already fetched	 If a

local copy of a remote object could be maintained consistently such that subsequent access

to the object from the local server would only need to refer to that local copy instead of

re�fetching it� and if the overhead for maintaining this consistency is small enough� a great

improvement in performance would result	 The idea of establishing remote object cache

came up aiming at this purpose	

There are several problems in implementing a cache in a system like Oz�

�	 Cache invalidation and update
 This is the most crucial aspect of the cache	

Clearly� a copy of a remote object should be invalidated if the original object

has been updated� or else the access to the
stale� copy is inconsistent	

�	 Structure Validity
 The arbitrary complex relationships among objects in

an object�oriented database complicate cache management� since in addition

to the validity of the objects� the validity of the links has to be maintained�

particularly due to the various structural and associative querying capabili�

ties which are used to access objects	

�	 Pre�fetching
 A related issue is to assess whether to pre�fetch related ob�

jects along with the requested one� and to what degree	 For example� pre�

fetching could range from immediate �relatives�
children� parent� links� at

one end of the spectrum� to the transitive closure at the other end	

Cache and replica management as well as pre�fetching methods in distributed systems

in general and in distributed database and �le systems in particular� is a wide topic on its

own and has been widely explored
e	g	� Coda �����	 However� special characteristics of Oz

make it a �special case� worth discussing the solution to the �rst two problems mentioned

above	 Prefetching� while a promising direction� is beyond the scope of this thesis and is

not further addressed here	

	�	�� The Solution

The cache in Oz is part of the data manager component
see �gure �	��� and can

be viewed conceptually as a non�persistent extension of the in�core local objectbase	 Each

server maintains a single cache that is shared by all clients	 An alternative to this design

would have been to maintain a temporary cache on a per�task basis that is initialized upon

���

fetching the �rst remote copy and is destroyed when the task is complete		 The main

advantage of this approach is that it simpli�es the invalidation scheme since no other tasks

can access the
private� copies� and at the end of the task all the copies are simply removed	

However� the limited scope of such a cache and the large overhead associated with it� make

this approach not worth pursuing	 Thus� the cache can be accessed by any local task
from

any client� that involves access to remote objects over arbitrary periods of time� as long as

the cache objects are valid	

The cache is implemented as a hash table that can be looked up by the object�s id

similar to the hash table used in the main in�core objectbase� except the lookup is also by

the SubEnv�id� not only the object�id	

However� unlike the regular objectbase� it does not maintain the by�class list or the

structural graph	 Instead� each cached object is enclosed within a �cache entry� that con�

tains information regarding its relationships to other objects� termed here the relationship

lists
the cache entry contains also validity information which is discussed later�	 More

speci�cally� the cache entry contains four lists that cover the two directions in the two

kinds of relationships among Oz objects
 children� parent� forward links� and backward

links	 Each list is further decomposed to sub�lists that correspond to the attributes within

their category
	 The individual sub�lists� however� contain only object�ids� not pointers to

objects	 Thus� at any point in time� none� some� or all of the replicas of the objects that

correspond to an id�list may reside in the cache	

An important invariant in the design of the cache can be de�ned as follows� if a cache

object is marked as valid� then its relationship lists are also valid� i	e	� it is indeed connected

in the original objectbase to all objects whose ids are stored in those lists	 One implication

of this validity invariant is that an object needs to be invalidated not only when its content

changes� but also when its relationships with other objects change	 More speci�cally�

� When a new object is added� any cache copy of its parent should be invali�

dated	

� When an object is deleted� any cache copy of itself� its parent� and objects

that previously linked to the deleted object or were linked�to by the deleted

object� become invalid	

�Recall that a task corresponds to a single chain of rules�
	Recall that a class in Oz can have several attributes of the same type�

���

� When an object is linked to� or unlinked from� another object� any cache

copy of both objects should become invalid	

Other implications of this invariant will be discussed shortly	

Finally� the cache in Oz is a �write�through� cache	 That is� any updates to a remote

copy
through remote assertions in the e�ects of rules� are immediately propagated to the

original copy	 However� such updates do not invalidate the remote site from which the

update was made since its copy is still up�to�date	 Only remote copies of that objects from

other sites are invalid	 Technically� the cache should handle similarly structural changes

to a remote objectbase such as addition and deletion of objects	 However� at present only

changes to the contents of individual objects
not to the object lattice� are supported in

the cache� the structural operations are performed directly in the remote objectbase
and

any relevant entries in the cache are invalidated�	

������� Maintaining Structure and Connectivity

When a remote object is accessed directly by its id� the local object manager �rst

looks in its cache� and if an entry is found and is marked as valid� the proper pointer to

the object is returned to the caller	 Otherwise� the object is fetched from the remote site�

along with its relationship lists
but none of the related objects is actually accessed�	

The second way to access remote objects is through structural queries	
Associative

queries that appear in conjunction with structural queries are handled by evaluating the

structural query �rst� and then �ltering it through the associative query	 The infrequent

purely associative queries are not supported in the cache and require remote fetch	� In

Oz� exactly one of the two symbols in a structural query is always already bound� and the

second symbol is bound as a result of the query	 For example� in the query�

�forall CFILE �c suchthat �member
�m�cfiles �c���

the symbol �m is already bound to a set of objects� and the query binds to the symbol

�c all objects that are members
i	e	� children� of the cfiles attribute of the objects in the

binding set of �m	

Thus� when a structural query on remote objects is made
e	g	� as part of a Summit

rule�� all remote objects associated with the bound symbol
�m in the above example�

must have already been fetched previously
either directly during the binding or through a

���

previous query� and thus exist in the cache	 To evaluate the query� �rst the bound objects

must be valid� otherwise they are re�fetched	 Thereafter� the proper relationship list is

scanned
for example� in the above query the children�cfiles sub�list would be scanned�

and each id is looked up in the cache	 In the ideal case where all remote objects are found

in the cache and are all valid� the query completes without accessing remote servers at all	

Otherwise� the missing or invalid objects are
re�fetched from the remote servers
along

with their relationship�lists�	 Thus� the relationship�lists play a major role in reducing the

amount of remote fetching while incurring a relatively small overhead	 Notice how the

validity invariant mentioned above is necessary for the correctness of this scheme	

������� Cache Invalidation Scheme

The cache invalidation problem is clear� given that objects can be updated over time�

there must be a way to know if the the replica of an object in the cache is up�to�date with

respect to the original copy	 If the replica is out�of�date� it must be invalidated so that

subsequent access requests would result in re�fetching of a new copy	

One solution to this problem is to maintain in the original object a list of sites that

hold a replica in their cache� and whenever the primary copy is modi�ed� all remote caches

are asynchronously noti�ed to invalidate their outdated copies of the object	 The list of

SubEnvs that hold a cache copy would have to be maintained in each object� adding an

entry upon remote fetch and deleting it when the associated replica becomes invalid	 Several

minor variations can be made to this basic approach	 For example� the server might send

the modi�ed object
or the changes from the original copy� along with the invalidation

message	 And another alternative to maintaining the per�object SubEnv list would be to

simply broadcast the invalidation to all sites in the environment	

However� this �instant noti�cation� approach does not jibe well with autonomy and

independent operation requirements� due to the overwhelming cross�site communication

involved� and due to the fact that
possibly long� delays might easily lead to race conditions

in which a cache object is accessed before it has been invalidated	

There are other requirements that make the invalidation problem hard in Oz	 The

fact that object management is decoupled from transaction and task management implies

that the cache and the invalidation scheme should also be decoupled from transactions and

tasks� with transaction and tasks only invoking invalidation requests and the cache imple�

���

menting them	 This is a clear example of the need to separate
invalidation� mechanisms

and
invalidation� policies	 Moreover� an instance of Oz might employ an advanced con�

currency control method that facilitates collaboration by means of allowing� for example�

multiple simultaneous writers	 Embedding a built�in invalidation policy in the cache is

likely to con�ict and e�ectively prevent such tolerance by� for example� repeatedly fetching

new copies and restarting tasks due to the interleaved updates	 This reinforces the need to

determine the invalidation policy independent of the mechanism	 The cache in Oz takes

into considerations all of the above arguments	

The invalidation mechanism is relatively straightforward	 Each cache entry contains

a valid �ag that indicates the validity of the object in its entry	 When a cache object

is invalidated� its valid �ag it turned o�� but its memory is not freed	 The reason is

that the same cache object might be pointed to by multiple
possibly sleeping� tasks� or

even by multiple symbols in the same active task� so freeing the memory would result in

stale pointers
unless the cache maintains a list of accessors and noti�es them to unlink

their pointer� but this is a costly procedure�	 Therefore� whenever a new copy is fetched�

its contents are copied into the contents of the old object� so that all references continue

to point to the right object	 The only problem with this approach is that the memory

occupied by a cache never shrinks
although it grows slowly because multiple fetches of the

same object do not require additional memory allocation�� but a simple garbage collection

could be launched when the server is idle	 Then� whenever a cache object is accessed� either

directly or via a relationship list of another
valid� cache object� its valid �ag is checked	

If it is invalid� then a fresh copy is requested to be fetched	 Note that following the analysis

in Section �	�� there is no need to abort the task to avoid deadlock	 Once again� the validity

invariant mentioned above is necessary here for the correctness of queries involving cache

objects	

The invalidation policy inOz is not as simple� however� as it is tied to the semantics of

the operations that use the cache� in order to optimize it with respect to the requirements

set above	 Given that instant noti�cation is impractical� we try to �nd ways to apply

the lazy approach without sacri�cing correctness	 This is done by enforcing the following

constraints�

�	 The �rst constraint made is that no two executing
i	e	� active� tasks can

update the same object
or its replica� simultaneously	 Note that while this

���

scenario cannot physically occur within a single�threaded server� it might

very well occur if two tasks execute each at a di�erent server and update

di�erent copies of the same object	 This constraint can be enforced by the

transaction manager� since we assume that each request for a remote fetch

involves also a lock request	 Although limiting� this scheme still allows for

interleaved updates of an object by multiple tasks� as will seen shortly	 Also�

it is still adequate for the current support for groupware multi�user tools�

because from the server�s point of view� only the initiating task is updating

the objects� multiple updates to parts of these objects
e	g	 �les� are handled

by the multi�user tool and are shielded from the server	 If� however� the

support for multi�user tools is modi�ed in Oz and requires to allow multiple

decentralized tasks to explicitly update the same objects
for example� along

the lines of ������� this constraint might need to be relaxed	

Given the above constraint� the implication is that if we could �nd a way to

properly update a ready�to�run task with the relevant update information

just before activating it� its view of the cache would still be valid	

�	 The second constraint that we impose is that no two unrelated tasks executing

in di�erent servers can operate on an object with con�icting modes� that

is� with at least one of them being a writer	 While apparently restrictive�

it still allows for related
sub��tasks to con�ict� and also allows multiple

unrelated tasks executing in the same server to con�ict	 A typical example

of the former case is remote backward chaining in Summit� whereby the

object that �failed� to satisfy the condition must be updated in order to

make the condition satis�able� even�though the
non�active� Summit task

at the coordinating site has been accessing the same object� at least for

reading purposes	 An example of the need for the latter case is for supporting

advanced concurrency�control mechanisms such as in ���	

The rationale behind this constraint is to keep the update privileges under

the control of� and within the boundaries of the
global� Summit task
and its

associated distributed transaction�� so that all relevant update information

can be passed upon reactivation of a Summit task at the coordinating site	

���

�	 The third and last constraint states that an object in the cache is valid only

while there is at least one Summit task that references it
note that objects

reside in a cache of a server only if that server is the coordinating server of an

executing Summit task�	 This implies that at the completion of a Summit�

all the cache objects which were accessed by the Summit task are invalidated�

unless some other Summit task is referencing them	 This constraint appears

to reduce the utilization of the cache most signi�cantly� but is nevertheless

necessary with lack of asynchronous instant noti�cation� since we need to

keep each cache object under the control of
at least one� active task that

maintains its validity	

������� Cache Operation During Summit

The above constraints e�ectively de�ne the invalidation policy	 To illustrate inval�

idation� consider the operation of the cache manager at the coordinating site in a typical

execution of a Summit� along its major phases�

�	 Summit Initialization and Veri�cation
 This phase binds all objects that

are accessed by this rule
but not necessarily all objects accessed by subse�

quent Summit rules in a composite Summit�	 Binding of the user�selected re�

mote objects to the rule parameters and binding of remote objects to derived

parameters through queries is done as explained earlier in Section �	�	�	�� and

these objects are put in the cache	

�	 Pre�Summit
 If remote backward chaining takes place� the Summit task

becomes inactive� and gets reactivated only when all remote sites complete

their backward chain	 When a remote backward chain completes� it sends

along fresh copies of the modi�ed objects to the coordinating site� and when

the Summit task becomes active it updates the cache properly	 The ac�

tual update can be implemented either by sending a �delta�
reducing the

communication overhead� or by replacing whole objects
reducing the com�

putation invovled in calculating the delta�	 For small sized objects the latter

approach was adopted in Oz� but for objects with �le attributes that had

to be transferred to remote domains a di�erent approach was taken
see

Section �	��	

���

It is important to note that during backward chaining the cached objects in

the coordinating site cannot be updated by the coordinating proces because

it is e�ectively blocking	

Notice that besides the local backward chains� no other subtask in other

SubEnvs can update objects which were accessed by the Summit task� due

to the second constraint	

�	 Summit Activity
 This phase causes no problems in terms of invalidation

since it executes only at the coordinating site	 Still� any access to cached

objects has to be validated as usual	

�	 Post�Summit
 This case is similar to Pre�Summit in terms of the cache	

While the coordinating task is not active� the remote sites might update

their original copies of the objects and when they complete their work in

�local� mode� they send to the coordinating server the updates so that it

can update its cache	

�	 Inference of
forward� Summit Rules
 This case is similar to the binding

step in phase �	 Note that this phase might extend the �working set� of

objects accessed by this
composite� task� since it derives new parameter

objects for subsequent Summit rules	

�	 Summit Completion
 The cache manager invalidates all objects accessed

during the task that are are not accessed by an on�going Summit in the same

coordinator site	

	�	�� Results and Summary

In order to assess the improvement in performance� several experiments were con�

ducted	 The nature of the experiments was basically to run identical Summits on identical

objectbase states twice� one time on a server with cache� and a second time on a server

without cache� and compare their performance	 Since the cache is not intended to add or

remove functionality� the execution trace should be identical in both cases� the only di�er�

ence being in the performance	 Aside from the absolute execution times� the main basis

for comparison was the number of messages which were exchanged between the servers

���

Message Type non�cache server cache�server purpose

GET REMOTE OBJECT � � get remote obj
GET REMOTE PARENTS �� � get remote parents
GET REMOTE CHILDREN �� � get remote children
CHECK REMOTE EXEC � � treaty veri�cation
BC REMOTE � � remote backward chain
ASSERT REMOTE � � remote assertions
FC REMOTE � � remote forward chain

Totals ��
�� sec� ��
� sec�

Table �	�� Performance comparison with and without cache

during the Summit� and their type	 Since the major delays are incurred by the communi�

cation overhead and their growth is inversely proportional to the available bandwidth� and

given that all objects in the experiment were roughly of same size� it is a valid measure of

performance improvement	

We show here the results of one speci�c example on a three�site environment� in�

volving a small number of objects and two remote derivations� one for parents and one for

children	 The results are summarized in table �	�	 Obviously� the improvement is signif�

icant due to the reduction in the number of calls to get the remote parents and children�

and there is no additional communication overhead due to the operation of the cache	 It is

interesting to note that the reason for the large number of requests for GET REMOTE PARENTS

and for GET REMOTE CHILDREN stems from the fact that when the rule processor evaluates

which rules to forward�chain to� there are many possibilities to instantiate each such rule

i	e	� to select objects as parameters�� of which only a small fragment really gets executed�

because the rule�s condition is not satis�ed on most of the instantiations��	

As for overall performance improvement� it was expected that the communication

overhead will outweigh computation overhead across hosts� particularly as the available

bandwidth between the hosts decreases	 However� even across
operating�system� processes

in the same machine the improvement was signi�cant	 For example� a simulation of the

above Summit with no interactive activities
thus mostly involving operation at the server

host� with the three �sites� running as
operating�system� processes in the same physical

host� took �� seconds on a non�cache server versus � seconds on a server with cache	 As

can be seen in table �	�� the time ratio is very close to the ratio of the number of messages

�
This spurious instantiation is typical of Oz rules with multiple parameters� since the rule processor
generates a cross product of the sets of objects for each parameter in the chained�to rule�

���

between the non�cache and the cache�server� con�rming that the computation overhead is

negligible relative to the communication overhead� and consequently clearly showing the

performance improvement of the cache server	

������� Cache and Transaction Management

There is one caveat to the above results� they were taken ignoring the overhead of

the locking�based decentralized transaction manager	 In principle� the transaction manager

should not impact the ratio in performance between the cache� and the non�cache server�

since when optimized� its locking overhead should be proportional to the number of objects

obtained� and the non�locking�related overhead should be independent of the cache	 In

practice� however� if the locks are maintained separately from the objects�
as in the case

of Oz�� this requires implementation of cache locks in addition to the cache objects	 With

lack of such a cache� each request for a remote object would incur a locking request message

to the remote transaction manager even if the server has a local replica of that object� thus

decreasing the improvement of the cache�server	 This is a subject of future work	

��� Oz Over the Internet

Although the Oz model and its architecture are conceptually geared towards oper�

ation across sites� and although most of the implementation was done with geographical

dispersion in mind� extending the system to operate over the Internet introduces several

new problems�

�	 No shared �le system across sites

�	 Security� authorization� and access control issues

�	 Di�erent administrative network domains

�	 Variable bandwidth and time shifting

This section provides a brief summary of our preliminary exploration of only the �rst

two problems� and solutions to them	 The discussion in this section is by no means com�

prehensive or complete� and by�and�large� it is a subject for further investigation
see �	��	

In particular� the last problem dealing with the general performance� optimization� and

���

synchronization in the operation of the system as a function of the
perhaps dynamically

changing� bandwidth� load� and frequency of interaction between the sites� is outside the

scope of this thesis	

	�
�� No Shared File System

The fact that SubEnvs have no means to share any data� either physically or through

the underlying operating system
e	g	� NFS�� complicates several aspects of the implemen�

tation�

�	 The biggest problem is with respect to sharing bulk data�
e	g	� �les�� due to

the large volume of data involved	

�	 With lack of shared data� the �le system cannot be used for communica�

tion purposes� for example to store and retrieve addresses of remote ports	

Moreover� pathnames are no longer necessarily unique	

��	���� File Transfer

The main reasons for sharing �les across sites in Oz are�

� For execution of activities in Summit rules that involve remote objects
and

their associated �les�	

� In built�in cross�site copy and move operations

� The import operation as part of Treaty involves receiving a list of available

strategies from the exporting SubEnv and copying them
see Section �	�	�	��	

� The con�guration process which was discussed earlier requires invocation

of batch clients� meaning that at least the generated batch �les must be

transferred	 Another problem with registration is the initialization of a new

remote site
as opposed to joining an existing one� which is �ne�	

Of the above� the �le transfer during the activity execution on behalf of Summit rules is

the most critical� and the only one discussed here	 The other cases are simpler and can be

realized on top of the general purpose �le transfer mechanism
e	g	� ftp�	

���

With a shared �le system� when an Oz server transfers objects across sites for rule

execution purposes� it physically transfers only the �light� status attributes
along with

other information such as its id� class� etc	���� but for the �heavy� �le attributes only their

pathname is sent� and when a remote client needs them
e	g	� for executing a rule activity�

they are accessed through the provided pathname
recall that we still assume that clients

and their local servers share the �le system���	 Thus� with no shared �le system there must

be an underlying �le transfer mechanism that physically transfers the �les	 Moreover� this

mechanism needs to transfer the �les back if they were changed during their use	

The main technical problem with implementing a �le transfer mechanism is that it

cannot be executed synchronously� otherwise it would e�ectively block both servers
the

sender and the receiver� which� as seen earlier in Section �	�� cannot be allowed	 Thus� �les

must be sent asynchronously� �in the background�� and the receiver server noti�ed when

transfer is complete	 Since the light objects arrive quickly at the receiving end� another

optimization would be to start the activity and wait only when the �les are really needed	

Finally� care must be taken that no �les are transferred unnecessarily
either back or forth�	

The general design of the �le transfer mechanism�� is as follows	 All �le transfers

are initiated by the server that executes the
Summit� rule� i	e	� the receiving server� and

only when they are needed
as usual� this lazy approach seems most appropriate for this

purpose�	 At this point� the server performs a context�switch and the executing rule enters

a sleep state	 In order to not occupy the server for a long duration� �les are transferred in

small chunks
�kbytes� and only when the server is idle	 An alternative and perhaps more

appropriate approach would have been to send the �les over a completely separate channel�

but for practical considerations the former approach was chosen	

When the transfer is complete� the sleeping rule is woken up and continues its exe�

cution
but recall that it has to wait for the next context�switching opportunity since the

server cannot be preempted� by sending the necessary arguments to the client on whose

behalf the �le
s� were requested� for executing the rule activity	 When the client �nishes

its activity� the rule enters a second context�switch point� this time for copying back �les

if they were updated by the activity	 Both the receiver and the sender servers create and

��The size of an Oz object depends on the schema de�ned in its process� but on average it is about
��
bytes long�

��An extension of this model that deals with low�bandwidth clients where there is no shared �le system
with their server �mainly to address remote clients that are connected through a modem to the server� is
dealt with separately by Skopp 	��
�

��This is largely due to Peter Skopp and Shelley Tselepis

���

maintain information on the transfer	 However� information regarding the halted rule is

held only by the receiver	

In order to reduce unnecessary transfer� the following methods could be employed

in practice� only the �rst two have been implemented as of this writing��

�	 File caching
 When a server imports a remote �le� the copy is placed in a

special area of the SubEnv that identi�es it uniquely	 Then� upon completion

of an activity involving a remote �le� it is not destroyed	 Instead� if the same

�le has to be sent to the same SubEnv for execution of another activity and

it hasn�t been changed since� the transfer is not necessary and the client can

use the cached �le	

�	 Checksum
 Each time a transfer is requested� the sending server �rst sends

the receiving server a �magic� number that represents the �le	 If the receiv�

ing server happens to have that �le� and their �magic� numbers are identical�

there is no need to perform the transfer	 There are two frequent situations

in which no transfer is necessary� �� in the copy�back stage� in case the exe�

cuting activity accessed the �les in �read�only� mode� and �� if the �le was

recently updated by the same client or another client in the same SubEnv�

and is sent again for another activity
 this is possible due to �le caching	

�	 Semantic prefetching
 Prefetching of �les during idle time can lead to

substantial improvement in performance	 The idea is to anticipate future

use of some �les� and prefetch beforehand� so that when the user wants to

use them they are already local	 The key issue is to use the right criteria to

determine what �les are likely to be needed soon� and prefetch them	 For

example� one method might be to use history of access patterns
for more

work in that area see ������	 The interesting aspect from the Oz perspective

is that the process model contains semantic knowledge which might help in

predicting future references	 For example� by observing the rule network

and anticipating a path in a chain of rules� �les that are intended to be

used in
forward�chained� rules in the near future can be prefetched	 Some

preliminary work in this area has been done by Skopp� see ����	

���

��	���� Extensions to Connection Server and Database

The basic requirement here is to ensure that all the information which is necessary for

connectivity� without exceptions� can be obtained from the connection database or through

the Connection Server	 To achieve that� the following enhancements to the Connection

Server were made�

� The SUB ENV class has been extended with a boolean attribute called

has nfs� that indicates for each remote SubEnv� whether it is sharing its

�le system with the local SubEnv or not	 This is important information that

enables to determine� for example� whether to send pathnames and rely on

the underlying shared �le system� or actually send the �les	 Note that the

attribute might be set to false even if there exists an underlying shared �le

system� in cases that the performance of the shared �le system degrades� or is

temporarily not operational	 The has nfs attribute has the unique property

that even though it is part of the static information of the SubEnv objects

and its value is de�ned at registration time�� it is not replicated� since for

example� the value of this attribute in each SubEnv object at its local site

is always true� but the value of its stub in remote SubEnvs may or may not

be true depending on whether the two SubEnvs share a �le system	 Thus�

the value should be determined at each remote site individually	

Incidentally� this example shows how the tailorability of the connection

database has paid o�� Modifying the SUB ENV class was done simply by

adding the attribute and evolving the objectbases� with no code changes in

the kernel	

� To uniquely resolve pathnames as locations of environments� the simplest

solution is to prepend them with the full host name	

� The Connection Server has been extended with the capability to respond

to queries about port numbers of active servers in its domain	
Previously�

servers were �peeking� to each other�s port��les which contained the port

number	�

� Finally� since intermittent disconnections and noise are more likely to in�

terfere with communication between geographically dispersed SubEnvs� the

���

inter�process�communication layer in clients and servers should be more fault

tolerant and anticipate them	

	�
�� Security Firewalls

In order to address the desire of private corporations to be connected to some net�

worked services but at the same time isolated
which is in a sense similar to the tension

between autonomy and interoperability at the process level�� some security mechanisms

have been invented with an option to control the level and kind of �openness�	 One com�

mon security mechanism that is intended to isolate private networks from public networks

i	e	� Internet� is the ��rewall�	 A �rewall host is a dually homed machine� meaning that

it contains two network interfaces
 one attached to the secure� private network and the

other one is attached to the public� insecure network	 The �rewall machine can then be

customized to allow or deny certain network packets to pass through� depending on source

address� destination address� port number and in more advanced software� even by user

identity	 For example� it is common in companies to allow only incoming and outgoing mail

and block any other service	

In order to provide more �exibility and programmable control over the allowable

communication through secured networks� the SOCKS package was chosen��	 SOCKS is a

public�domain package that allows hosts behind a �rewall to gain full access to the Internet

without requiring direct IP reachability	 It works by redirecting requests to talk to Internet

sites to a server� which authorizes connections and passes IP packets back and forth	 The

SOCKS package also allows external hosts to access a de�ned set of internal machines	 The

SOCKS daemon runs on a �rewall machine and serves requests from other SOCKS clients	

The SOCKS daemon receives packets on a designated SOCKS port� and decides whether

to forward the packet to the other interface	 By using the SOCKS library of replacement

socket calls� Oz clients and servers can communicate with each other� thereby enabling in�

teroperability through �rewalled sites	 For more details on the SOCKS integration� see ����	

��This work was done by Andrew Lih�

���

��� Implementation Status

As already mentioned in Chapter �� at the time of this writing� Oz version �	� has

been completed and is fully operational��� with most of the features discussed in this chapter

fully implemented	 The following is a summary of the aspects which were discussed in this

chapter and are only designed or not fully implemented at the time of this writing	

Connection Server
 Automatically reverting from direct to indirect mode during

a remote session when the dynamic information turns out to be out�of�date� is not sup�

ported	 Instead� a client has to manually close its remote connection and re�open it using

the indirect mechanism	 The domain SubEnv table and its associated feature
 to an�

ble the Connection Server to invoke remote Environment Servers on remote hosts in the

same domain as described in Section �	�	�	�
 is not operational yet
an earlier prototype

developed by Will Chou� has to be upgraded�	

Environment Server
 Global environment naming scheme is not supported� as

explained earlier	 Lock management is not optimized for operation with the object cache

as explained in Section �	�	�	�� and lock cache is not implemented yet	 There is no garbage

collection to clean up the cache	 The �le transfer mechanism has not been generalized

yet	 Therefore� the Treaty and registration processes are not operational over the Internet	

Instead� they both have to be performed manually using external scripts	 But once de�ned�

Summits are fully operational across physical sites	

��We are using Marvel ��
�
 to produce Oz� employing a process based on code re�engineering and compo�
nentization �see 	��
�� but plan to start using Oz for its own further development as soon as it is su�ciently
robust�

���

�

The ISPW Example� Validation

and Methodology Issues

The purpose of this chapter is twofold�
�� To validate the feasibility and e�ectiveness

of the ideas and their implementations as presented in this thesis� and
�� to explore method�

ology issues regarding decentralized process modeling in a decentralized environment	 Both

objectives are attained by discussing the modeling and enactment of an instantiated Oz

environment that supports the so�called ISPW�� Example�	

The ISPW example was �rst introduced at the �th International Software Process

Workshop ���� in an attempt to provide a canonical �benchmark� process scenario� and �		

as a common framework for understanding and evaluating various approaches to software

process modeling and enactment�	 Since then� the example has evolved several times
 ����

��� and the latest version ������ adding or revising
sub�scenarios that require more advanced

modeling and enactment capabilities� and removing some of the rigidity of earlier versions	

The advantages of using this example for validation purposes are not di�erent than

the case for using benchmarks in general� namely� they tend to be objective and not
sus�

pected to be� contrived by the implementors of the solution� they are written by experts

in the �eld and therefore expected to be comprehensive in their coverage of the issues that

need to be addressed� therefore� they are well accepted within the community as a valid

criteria for evaluating the technologies and their underlying concepts	

�This Oz environment was actually demonstrated at the �th ISPW�

���

The remainder of this section is organized as follows� Section �	� describes a brief

overview of the Scenario
a full description copied from ���� is given in Appendix B�	 Sec�

tion �	� discuses in detail the solution to the Scenario with focus on design issues and

rationale� as opposed to actual codi�cation of the process
which is given separately in

Appendix B�	 Finally� Section �	� discusses methodology issues based on� but not only on�

examples from the ISPW solution	

��� Overview of the Scenario

The scenario involves a software system that is under development and is in a rel�

atively advanced phase� at a point where at least some parts of the system can be tested

outside the development team	 The process involves test and change tasks	 Brie�y� the

process� is initiated at the testing phase� where a tester �nds a problem� and reports it	

The next step is the analysis of the problem� which produces a proposed solution� or a

change request� identifying the source module
s� which might need to be modi�ed in order

to �x the problem	 Thereafter� the change task starts� �		 according to pre�established

change procedures
which entail assignment of resources� code and�or documentation mod�

i�cation� analysis�testing�review� approval�rejection		��� followed by actual modi�cation

of the code and reiteration to the testing phase	 In addition to the base�scenario� the

example suggests additional optional sub�scenarios
e	g	� problem reporting�analysis� ap�

proval�rejection procedures� and recommends to demonstrate support for some speci�c

capabilities
e	g	� multi�user coordination� dynamic process changes�	

In order to demonstrate the full modeling and enactment capabilities of Oz� we

extended the Scenario along two dimensions
which may also be regarded as an extended

solution to the original problem��

�	 We discerned three teams� each responsible for a subset of the overall process

and treated as a �site�	

a� Quality Assurance
QA�
 In charge of testing the system

b� Coding
 The code development team

�In reality� the process described in the Scenario is really a small sub�process of the overall software
process� but for the sake of brevity and clarity we will refer to it as a process� and will refer to smaller units
within it as sub�processes�

���

c� Design
 The design team� also supervising code development

�	 We added steps to the process that require multi�user and�or cross�team

collaborations	

��� Solution in Oz

The solution environment consists of three autonomous yet cooperating sub�processes

that correspond to the three teams speci�ed above	 That is� each process can perform

some tasks locally and independent of the other processes� while some sub�tasks might be

dependent on other processes� or require interoperability with other sub�processes	 Some

of those interoperabilities require both modeling and enactment support for multi�user

collaborations via synchronous multi�user tools� which may or may not cross sub�process

boundaries	

The solution process de�nes four major tasks�

�	 Test
 Performed locally at QA	

�	 Analyze
 Performed by QA and Coding teams	

�	 Review
 Performed by Design and Coding teams	

�	 Change
 Performed mostly locally at Coding� but with small extensions to

both Design and QA	

Thus� with the exception of the Review task
 which was de�ned in the problem speci��

cation as a sub�task of the Change task and is modeled in our solution as a distinct task

all tasks map directly to the original problem speci�cation	

Figure �	� depicts the high�level design of the solution	 The ovals represent tasks�

bold links represent general control��ow dependencies� and arrows represent artifacts that

get generated in one task and used in a subsequent task	 The dashed �clouds� in the

�gure represent other tasks that are not relevant to the Scenario and might be executed

independently and concurrently	

We now turn to the description of the speci�c processes and their participation in

the various multi�site tasks� which are modeled as Treaties and enacted as Summits	 But

�rst� we start with a description of the �product� we chose for the example	

���

Test

QA DESIGNCODING

Analyze

Review

Change

Test

Bug Report

Change Request

Review Report

New Binary

Time

Figure �	�� Process Design for ISPW�� Example Scenario

���� The Product

It is important to outline the product being developed� since clearly� the characteris�

tics of the intended product impact the process	 Our choice for the product was the query

processor for the Darkover Object Management System�	

Brie�y� the query processor receives as input a query in a format that is equivalent

to the condition sub�language of MSL� applies the query to an object�oriented objectbase

with class de�nitions that are equivalent to MSL�s Data De�nition Language� and returns

the result of the query	

The reasons for choosing the query processor as our example product were�
�� It

was still under
real� development� so readily available as a �real� example�
�� It was

complex enough to justify a team of developers� but small enough to enable easy migration

into Oz��
�� It has a text�based user interface with well de�ned input and
expected�

�Darkover is being developed as part of the componentization of Oz� one of near�term future goals is to
make Oz�s OMS replaceable by an external system�

�

 header �les with
��� lines of code�

 source �les with ���� lines of code�

���

output	 This characteristic enabled to construct an automatic testing sub�process	 This is

a typical example where the characteristics of the product a�ect the process	 Obviously�

a testing sub�process for a product that involves an interactive user�interface could not

be fully automatic� since the essence of the testing is in the human interaction with the

product	

���� The QA Process

The highly automatic testing
sub� task in our solution is black�box� i	e	� we assume

that the testers have neither access to� nor knowledge of� the source code	

The schema de�nes two main kinds of artifacts� a TEST SUITE that represents test

cases
both input and expected output�� and can be grouped under a TEST SUITE SET object�

and a TEST RUN entity that represents the summary of the results of running a particular

test
its instances can also be grouped under a TEST RUN SET object�	 Each TEST RUN object

is associated with a particular TEST SUITE SET object that contains a set of TEST SUITE

objects	 TEST SUITE objects are generated manually� and are relatively static� whereas

TEST RUN objects are generated automatically� and are relatively dynamic	

The process starts when a tester invokes the start test run rule
see strategy test

in Appendix B�� selecting the executable program to test� and a TEST SUITE SET object

to use	 This rule generates a TEST RUN object� and spawns a sequence of executions of

the run test rule� one for each individual test suite	 This rule runs the program with the

input speci�ed in the test suite� and stores the output of the execution in the TEST RUN

object	 If any of the individual tests fails
which is indicated by a mismatch between the

expected and the actual output� the rule automatically chains to the report bug rule which

forks a report generation tool that inserts all the relevant information such as the input and

expected output of the test and the di�erences between them� and so forth	 The report bug

rule then chains to the notify bug rule which has an activity that is delegated to a user who

is the manager of the Coding group	 Figure �	� shows notify bug	 Note
lines ���� how the

delegatee is determined dynamically by ful�lling the desired values for the role and group

attributes� rather then hardwiring its value somewhere in the rule	 If the delegatee is not

logged�in at the moment of delegation� an asynchronous overloaded version of notify bug

is triggered� which noti�es the delegatee about the pending activity
this is an example of

the �programming trick� described earlier in Section �	�	�	��	 This completes the mostly

���

 notify�bug�

 chained off report�bug	 delegated to a user which is notified

 of the problem

�� notify�bug�
tr�TEST�RUN��

�� �exists PROGRAMMER
p suchthat �and

�� �
p�group � �CODING��

�� �
p�role � �Manager�����

�� delegate�
p�user�id��

�� �
tr�report�status � Reported�

 Generate a notification message with all the necessary information

�� � TEST�TOOLS notify�bug
tr�report �

�� �
tr�report�status � Notified��

Figure �	�� notify bug Rule

local testing task	

Figure �	� shows a screen dump of the objectbase display at the testing site before

any tests were performed
the client�s objectbase display is zoomed at the QA site� thus

the other SubEnv objects are not seen in the �gure� as they are seen in �gure �	��� and

�gure �	� shows the objectbase after the execution of two test runs with the newly generated

TEST RUN objects
called run � and run �� properly linked to their respective TEST SUITE

object
suite �� and to the tested executable
query processor�	 Finally� �gure �	� shows

a trace of the execution of the automatic test task	 Note how this execution invoked the

asynchronous version of notify bug� as evidenced by the message that was generated by

the rule
shown in the bottom half of the window�	

���� The Coding Process

Coding is the central process in the global environment� since the entire Scenario re�

volves around code changes	 The main artifact in this process is naturally the source code�

���

Figure �	�� The QA Objectbase

Figure �	�� The QA Objectbase with New Test Runs

���

Figure �	�� Rule Animation of the Testing Task

along with its derivatives and relatives
e	g	� object code� libraries� documentation� con�g�

uration management�	 They are organized in a project hierarchy� with the PROJECT class

at top� containing MODULEs� BINaries� LIBraries� and so forth	 The Schema further distin�

guishes between a shared stable �master� area� and private workspaces in which developers

make their code development�modi�cations	

The Coding group performs the Analysis and Change tasks� and participates in the

Review task	 The Analyze task� depicted in Figure �	�� consists of two phases	 The general

analysis phase
carried out by the analyze bug rule� is performed by the manager of the

Coding group
who was previously noti�ed by QA�� and he uses the bug report generated by

the QA team along with its own source tree
thus� it is a Summit rule because it contains a

parameter from a remote site�	 The manager tries to assess where the problem is
if there is

any�� ending up selecting a set of �suspected� source �les	 The second phase of the Analyze

task consists of local forward implications at both the QA and the Coding groups	 At the

Coding group� each suspected �le triggers an instance of a local overloaded version of the

analyze bug rule which is delegated to the �le�s �owner�
ownership is determined by the

value of an attribute of the CFILE class�	 This rule provides the developer with all the

���

Delegation

Summit Rule

QA Coding

Analyze_bug

add_bonus Analyze_bug(cfile)

Analyze_bug(cfile)

Analyze_bug(cfile)

Figure �	�� The Analyze Summit Task

past information that is relevant to the bug
e	g	� reports from the QA group and from the

manager�� and the developer has to produce a change request report	 At the QA group� the

Summit triggers local chaining to the add bonus rule which credits the person who found

the bug	 This is an example of a simple multi�site Summit rule that is integrated in both

processes and triggers di�erent local activities	

Analyze is followed by the Review task� which is performed jointly by the Coding

and the Design groups	 This is the most interesting task from the process�interoperability

standpoint� and its discussion is deferred to Section �	�	�	

The Change task is most comprehensive in terms of activities involved� but is essen�

tially a local one	 It is a scaled�down version of the real Marvel process which has been

employed for the production of Oz� based on a check�out model� where developers check�

out
check�in� artifacts from
to� the stable master area to
from� their private workspaces	

Although mostly local� this task contains a single multi�user multi�process step� namely

code inspection� 	 This step involves one participant from Design and one from Coding	

Other steps in the Change task include� Interaction with the con�guration management

�The actual synchronous multi�user inspection tool� developed in�house by Heineman and Skopp� de�nes
one moderator and other participants� all of which are virtually sharing the same emacs bu�er� in the
sense that when the moderator moves its cursor it also moves it in the other participants� The tool also
incorporates audio for verbal communication during the inspection process� and video stills to identify the
participants�

���

setup review

review review

conference

approve

revise Multi−user tools

Delegation

Summit Rule

Coding Design

Figure �	�� The Review Summit Task

sub�system� including sophisticated support for version branching and merging which was

built on top of RCS ������ Tools for editing� compiling� building and debugging the code

�x� automation support for parts of the process� consistency propagations� and more
see

Section B	�	� for details�	

The �nal step in the Change process is the install bin Summit step that involves

the QA and Coding processes� providing the QA team with the newly created binaries

for
re�testing	 Thus� the overlap of the Change Task with Design and QA as shown in

�gure �	�� is due to the �isolated� inspection and binary�installation steps� respectively	

The task is� however� mostly local	

���� The Design Process

The main artifacts in the Design process are of class DESIGN DOCUMENT
which is a

specialization of the FILE class�� which can be grouped under objects of class DESIGN DOC	

The Review task
shown in �gure �	�� is the only Summit task in which the Design

process participates It is initiated with the invocation of the setup review Summit rule	

This rule collects the artifacts which are necessary for the review� including the change

proposal produced by the Analyze phase	 Then� the Summit fans�out to both sites for

local
and delegated� reviews which are performed in parallel	 Each reviewer summarizes

���

his�her results and recommends whether to approve the proposed change� revise it� or

reject it altogether	 Once both reviews complete� then if both succeeded� the approve

Summit rule is invoked automatically and completes the task
see below�	 Otherwise� if at

least one of the reviews failed� the multi�user� multi�process conference rule is invoked�

setting up both reviewers with a groupware tool called white board� that allows them to

discuss and reconcile their con�icts with respect to the proposed change	 At the end of

this step� there are two possibilities� either a recommendation for revision is made� or the

change is rejected	 In the former case� the conference rule leads to a local
delegated�

revise step at the Coding process� in which the responsible developer
s� try to generate an

improved change request	 The conference rule is shown in Figure �	�	 Note how the rule

binds the activity to two users based on objectbase information that relates them to the

reviewed documents
lines ����� also note how the rule�s condition �requires� at least one

failed review
line ������� �nally� note the two e�ects that correspond to the two possible

outcomes mentioned above
lines ������	

The Review task is iterative� in that following the local revise step� the setup review

Summit rule is automatically invoked to start a second round of reviews� and so forth	 If

the Review task completes successfully� the approve rule automatically triggers the Change

task� by automatically checking�out the faulty modules that need repair to the workspaces

of the respective developer
s�	 Thus� this is a case of an automatic transition between high�

level tasks	 This example of a composite Summit shows the versatility of the interoperability

mechanism� and particularly how it can be used to model �process negotiations�� where the

processes essentially interact with each other with the intention to reach an �agreement�	

���	 Treaty De�nitions

We now turn to discuss Treaty de�nitions for the ISPW example	 In general� the

decentralized model was followed and its associated mechanisms were used� both for the

initial de�nition as well as for incremental evolution of Treaties	 Following the model� then�

it is clear that any Summit rule discussed above must have been de�ned by a Treaty before

it could be properly executed across sites	 However� it is not immediately clear where should

the Treaty rules originally be de�ned� nor is it clear how to assign execution privileges
i	e	�

who can run Summits and on what data� to the Treaty rules	 Finally� another classi�cation

�This is a public�domain tool that enables multiple remote users to share a virtual white�board on their
screens�

���

 conference�

 This is a multi�user Summit rule� It is invoked when some local

 reviews fail� It forward chains to �local� revise at the CODING

 process	 and it forward chain to �Summit� set�up�review and approve

 rules�

�� conference�
c�CFILE	
design�doc�DESIGN�DOCUMENT��

�� �and

�� �forall GROUP
coding suchthat �ancestor �
coding
c���

�� �forall GROUP
design suchthat �ancestor �
design
design�doc���

�� �forall MODULE
m suchthat �member �
m�cfiles
c���

�� �forall DOCFILE
d suchthat �member �
design�doc�docfiles
d���

 bind the relevant participants to
p

�� �forall WORKSPACE
p suchthat �or

�� �linkto �
p�module
m��

�� �linkto �
p�doc
design�doc�����

��� �

delegate�
p�owner��

��� �and

��� no�backward �
d�review�status � ReviewRequested�

��� no�backward �
c�review�status � ReviewRequested�

��� �or

��� no�backward �
d�review�rc � Failed�

��� no�backward �
c�review�rc � Failed���

 invoke the multi�user white�board tool

��� � MU�TOOLS confer
c�contents
d�contents

���
coding�site�ip�addr
design�site�ip�addr�

 �� ok	 go to revise 	 and enable setup�review if revise succeeds

��� �and

��� �
c�review�status � RevisionRequested�

 this double assertion enables to chain to setup�review

��� �
c�bug�status � Suspected�

��� �
c�bug�status � Defected���

 �� no hope	 go to reject� needs to start all over again�

��� �and

��� �
d�review�status � ChangeRejected�

��� �
c�review�status � Rejected���

Figure �	�� Conference Rule

���

QA CODING DESIGN interoperability composite

Analyze imp�acc exp�req p�d no
Review imp�acc exp�req p�d�u yes
Inspection exp�req imp�acc p�d�u no
Install bin imp�acc exp�req p�d no

Table �	�� Treaties in the ISPW Process

of Treaties could be made along the lines of the kind of interoperability obtained by the

Treaty	 By de�nition� any Treaty provides for interoperability at the process and data

levels	 However� some Treaties also provide for �user�level� interoperability by means of

multi�user tools	 In fact� our Treaty and Summit mechanisms enabled us to implement

sophisticated groupware tools with relatively small overhead� which could be regarded as

one of the important by�products of this research
see more in Chapter ��	

The Analyze task should be executed only from the Coding process� since analyzing

the bug is the responsibility of the developers	 In addition� most of the involved artifacts

reside in the Coding process� so the multi�site analyze bug rule should also be de�ned at

the Coding site	 Thus� the
simple� Treaty is de�ned from Coding to QA� with Coding as

the requester and QA the acceptor	 Analyze involves only �standard� interoperability� i	e	�

at the process and data levels	

The Review task is more symmetric� and could potentially be both de�ned and

executed from either the Coding or the Design process� with slight preference to Design on

both accounts� due to the fact that Design has more impact on the outcome of the Review	

Thus� it was de�ned with Design as the exporter�requester and Coding as the importer�

acceptor	 Recall that not all the steps shown in the Review Summit were actually de�ned

as Treaty rules� only the multi�site rules� namely setup review� conference and approve	

Finally� Review is an example of a task with a �user�level� interoperability� obtained through

the conference rule	

The other two Summit steps� namely code�inspection and binary installation� are

isolated within the otherwise local Change task� and so should be de�ned in Coding as

exporter and requester� with the other sites being importers and acceptors	

Table �	�	� summarizes the multi�process steps in the solution� along with informa�

tion about the execution privileges set in the corresponding Treaties� and whether the inter�

operability involves process� data� and users
denoted by p� d and u in the interoperability

column�	 The last column indicates whether the Summit is composite or not	

���

Several observations can be made with respect to Treaties and Summits in the pro�

cess�

� All Treaties in the process were binary
i	e	� among two sites�	 This� however�

is a somewhat misleading observation in that one of the main reasons for

avoiding de�nition of ternary Treaties was due to fact that they could not be

shown at the demonstration�	 Still� in retrospect it seems that for the most

part binary Treaties were indeed su�cient here� and while nothing prevented

technically from creating ternary treaties� it didn�t seem necessary in this

particular process	

� With the exception of the Review task� all Treaties in the example were

de�ned in the Coding process� and more importantly� Coding was the sole

requester	 This observation is a bit misleading too	 It stems mainly from

the lack of people who could code Treaties in a timely manner	 While one

might argue that this might be the case in a real�world example� this example

would have been de�ned di�erently under normal circumstances� with Treaty

de�nitions and execution privileges spread more uniformly over the local

processes	

� With the exception of the Review task� there was no need for full Treaties	

Moreover� there was actually a need to explicitly distinguish execution priv�

ileges
for example� in the case of the Analyze task�	 This validates our

approach to enabling a re�ned de�nition of Treaties as opposed to allowing

only de�nition of Full Treaties	 A related observation is that all Treaties

were de�ned with the import�accept and export�request combination� which

veri�es our intuition towards specifying the default modes for Treaty	

� An interesting observation regarding Treaties is that they were used to model

task transitions	 This provides a new perspective on the role of Treaties�

namely as an active mediation between
sub�processes� whereby both pro�

cesses �meet� each other with their interfaces to facilitate the transition from

one process to another	 Task transitions are not the only reason for Sum�

mits� however
as evidenced by the code�inspection tool� for example�� so one

�The demonstration at ISPW�� was restricted to only two physical machines�

���

QA CODING DESIGN BUILT�IN TOTAL

SEL ��� ���� ��� ��� ����
MSL ��� ���� �� ��� ����
SCHEMA �� ��� �� �� ���

Table �	�� Summary of Lines of Code for the ISPW problem

should not draw the conclusion that interoperability is used only for task or

process interface purposes	

���
 Statistics and Summary of Solution

The entire solution was designed and coded by four people	 over nine days	 Al�

though it appears that the process has been outlined top�down� it was mainly because the

Scenario was de�ned without consideration of autonomy� most of the subtasks were de�ned

autonomously and in a decentralized manner� with Treaties de�ned in most cases after the

local sub�processes have been established	 Each process was developed by a di�erent person

with the Treaties designed and implemented by the designers of the relevant SubEnvs	 A

summary of the total lines of code per process
including comments� which on the average

account for about half of the lines of code in strategies� and their breakdown to schema�

rules
MSL� and envelopes
SEL�� is given in table �	�	�	

The amount of Treaty code
i	e	� strategies and envelopes that were part of Treaties�

was ��� lines of MSL code and ��� lines of SEL code� accounting for about ��" of the overall

code	 The actual execution time of Treaty rules was small relative to local executions� too	

Thus� in general most of the work was performed locally	 Another interesting observation

is that large portions of the Change task in the Coding process reused fragments from an

already existing single�site process
� and were adjusted to the requirements of the ISPW

example
the main enhancement was to support version branching and merging in the

con�guration management task�	

To make the process realistic� it was fully instantiated and enacted with a real prod�

uct� which was �ozi�ed� into anOz environment��	 Similarly� all the test cases were valid� as

�The author� George Heineman� Peter Skopp and Jack Yang�
	C�Marvel � a process that supports general purpose code development in the C programming language�
�
A tool that aids in migrating �le�system�based environments into Oz is currently under development�

based on the Marvelizer 	
��
 tool which migrated artifacts from the �le system into a Marvel environment�
We already employ a separate tool for upgrading Marvel environments into �single�site� Oz environments�
and intend to combine both functionalities into the ozify tool�

���

well as the other artifacts that were maintained in the objectbases	 All processes underwent

numerous evolutions during the development cycle� both local and inter�site	

The following is a summary of the highlights of the ISPW solution�

� Three independent yet cooperating processes were constructed� assisting in

the development of a multi�team software project� with control and data

interleaving from being private for local work and shared for �global� work�

as needed	

� Enforcement and automation were the main forms of enactment support	 For

example� enforcement of the constraint that prevents from depositing code

before undergoing code�inspection�� 	 An example for automation support

was the automatic testing task	

� Support for both engineering tasks
e	g	� the local Change task� and man�

agerial tasks
e	g	� assignment through delegation�	

� Support for modeling and executing user�delegation� with emphasis on dy�

namic user binding as explained in Section �	�	

� Support for modeling� executing� and integrating multi�user tools� including

both in�house and o��the�shelf tools	

� Several additions� removal� and modi�cations to Treaties on the �y were

made for evolution purposes
not described in this chapter�	

� The modeling itself was decentralized� which contributed signi�cantly to the

e�ectiveness of the process�modeling process	

To conclude� the main validation was in the very fact that it was possible to fully

implement in Oz an e�ective and comprehensive solution to the ISPW�� example� both

in terms of modeling as well as enactment� and including the multi�process and groupware

extensions	 This should be regarded as an important acceptance criteria by itself
both

conceptual and technical�� given that there are very few
if any at all� other PCEs with

similar capabilities	 A detailed evaluation is given in Chapter �	

��This constraint was also implemented in our production Marvel process that supports the development
of Oz� after it was realized that code was routinely deposited prematurely�

���

��� Methodology Issues

The main issue to explore here is� what is a recommended way to de�ne decentral�

ized processes	 One of the objectives of this whole experiment was to observe not only the

resultant environment� but also to observe the modeling meta�process and deduce from it

a general methodology for de�ning processes	 By�and�large� this is a topic for future work�

as the experience we have had so far in modeling multi�site processes is obviously limited�

and in enacting them even less so	 Nevertheless� based on the conceptual framework of our

approach� our rich experience with modeling single�site processes in Marvel��� and combined

with the few experiments we have conducted in modeling and enacting decentralized pro�

cesses
 several observations can be made� as well as recommendations on how to approach

modeling	

The focus of this section is on methodology for the design and implementation phases	

Although requirement speci�cations and analysis of the process are important phases
as

in any other software engineering undertaking�� methodology for these phases is beyond

the scope of this section and is left unspeci�ed	 More speci�cally� the emphasis here is on

modeling interoperability in multi�site environments and the impact on the overall modeling�

as opposed to modeling stand�alone processes in a single�site environment	 The following is

a set of issues that have to be addressed when considering to build a multi�site environment

instance�

�	 The �rst issue to consider is whether a multi�site environment is at all nec�

essary	 In cases where scale and heterogeneity are reasonably contained�

and physical and organizational boundaries do not exist
or can be somehow

eliminated� there is probably no good reason for dividing an environment�

in which case a single�site� single�process environment may su�ce	

�	 The next issue to consider is how to divide an environment into sub�processes	

Several factors impact this division	 As pointed out back in Chapter �� in

some cases the division is a given constraint� not a design consideration	 For

example� when some or all of the the SubEnvs already pre�exist� or when

physical and�or organizational boundaries pre�de�ne the division	

��e�g�� CMarvel �mentioned earlier�� PMarvel for process evolution and DocMarvel for document prepara�
tion� to name a few�

���

However� in cases where the designer
s� have some control over the division�

two main axes for division can be identi�ed�

� Project�based decomposition
 The scale of the project and its com�

plexity require to decompose it into a set of sub�projects and a corre�

sponding set of groups� whereby each group is internally heterogeneous

and is responsible for the complete development of a sub�project	

� Task�based decomposition
 Here the project personnel is divided into

groups such that each group is more homogeneous internally� has a

designated role and is responsible for certain tasks within the overall

global project	 An example of such a division is the ISPW solution�

where the processes corresponded to the QA� Coding� and Design tasks

in the overall process	

While both decompositions are motivated by scale and heterogeneity� the

former is slightly more associated with scale and the latter with heterogene�

ity	 In any case� the two approaches are not mutually exclusive and some

environments might employ a combination of both��	

�	 Once the division to SubEnvs exists
or if pre�existed�� the next issue to ad�

dress is how to actually model the processes	 There are several non�functional

requirements that might constrain or otherwise impact inter�process model�

ing�

� A major constraint is bandwidth	 The e�ective bandwidth between

every two SubEnvs should be considered when designing Summits� and

should be minimized when the bandwidth is low	

� Another related consideration is whether the SubEnvs share a �le sys�

tem	 In the case they do not� Summits should be de�ned so that the

amount of transfer of bulk data
e	g	� �les� is minimized	

� Time shifting
across geographically dispersed teams� should also be

considered when modeling processes� particularly regarding process steps

��The natural extension to a hierarchy of SubEnvs was originally proposed in 	
�
� but is beyond the scope
of this thesis�

���

that depend on timing constraints	 For example� synchronous multi�

user activities should be restricted to times of day when there is overlap

in working hours	

�	 Another dimension of the actual modeling is related to the external require�

ments which were partially mentioned above	 For example� pre�existing

SubEnvs necessarily imply a bottom�up approach to modeling� with inter�

site connections de�ned on top of the pre�existing
sub�processes� and with

a high degree of process autonomy	 Another consideration that might im�

pact modeling is the nature of the organization	 For example� a centralized

organization might require a top�down approach to modeling multi�site en�

vironments� and might also limit site autonomy	

With all this in mind� we turn now to discussing a methodology for building an

instance of what we consider a �mainstream environment�� where the external constraints

are minimal and most of the major modeling aspects can be determined by the designer
s�	

���� Approach to Modeling

Our recommended approach to modeling multi�site processes can be classi�ed as a

hybrid between bottom�up and top�down	 The approach is also consistent with the general

decentralized philosophy� and resembles the enactment of a Summit	 That is� modeling is

carried out by alternating between local mode
 where the local processes are de�ned

and global mode
 where Treaties are de�ned
and integrated within each local process��

generally oriented towards maximizing locality	

More speci�cally� an Oz environment should be built by alternating between two

orthogonal and interleaved iterations�

�	 data�process
First� an initial schema should be de�ned� mostly covering the

de�nition of the product data	 Next� the process de�nition comes� which in

turn requires enhancements to the schema� mostly for adding state attributes	

This iteration continues until the process stabilizes� and can also be made

after the process is enacted� as part of process evolution	

�	 local�global
 First� the private data and process should be de�ned
unless

they pre�existed�� followed by the de�nitions of the data and process to

���

support site�interoperability� which in turn lead to enhancing the private

schema and process to integrate these steps� and so on	 Again� this iteration

continues until both the local processes and their interactions stabilize� and

can also be re�ned later when the enacted process is evolved	

The ordering of steps to perform across these two axes depends on several factors�

such as whether some of the local processes were pre�de�ned� the degree of interactions

between the process� and so forth	 Under minimum constraints� though� the recommended

order is�

�	 De�ne the local schema
if not already exists�

�	 De�ne the shared sub�schema

�	 De�ne the local process
if not already exists�

�	 De�ne the shared tasks across processes
Treaties�

An important recommendation here that might be perceived as a divergence from the

bottom�up decentralized approach is that if possible� the de�nition of shared sub�schema

should come before the de�nition of local processes	 Based on our experience� it proved

much easier to lay the shared schema foundation before working on the local processes� as

it facilitated a smoother composition of Treaties over the local processes	 More discussion

on the �globality� of data de�nition is given in Chapter �	

To summarize� this section attempted to provide some methodology for modeling

multi�site processes	 However� the importance of this section goes beyond providing imple�

mentation tips and guidelines for designing speci�c Oz processes	 The main research point

was to assert that the approach for the
decentralized� modeling process
or meta�process�

is very much tied to the approach for
decentralized� process modeling� and that similar

arguments� models� and techniques� are applicable to both	 And this assertion was veri�ed

through the ISPW example	

���

	

Summary
 Evaluation
 and Future

Work

The main purpose of this research was to investigate the wide range of issues that are

concerned with introducing decentralization
both inherent and by choice� into the process

modeling and enactment research domain	 To achieve this goal�

� A conceptual framework was built in the form of a generic
i	e	� language�

and system�independent� model that supports the de�nition� evolution� and

execution of multiple autonomous and heterogeneous yet interoperating pro�

cesses	

� A technological framework was constructed to investigate the application of

the model� as well as to validate� evaluate� and provide feedback to improve

the conceptual model	

Two key concerns guided this research�
�� maximization of local autonomy� both

physically and logically� so as not to force a priori any global constraint on the de�nition�

execution and operation of local sites� unless explicitly speci�ed in a particular environment

instance� and
�� �exibility and �ne�grained control over the degree of interoperability	 As

would be expected� these two issues are central in the domains of decentralized systems and

process modeling� respectively	

���

The essence of the approach to address decentralization was to extend the notions

of process modeling and process enactment to inter�process modeling and inter�process en�

actment� respectively	 The former was achieved by the Treaty model	 In essence� Treaties

are abstraction mechanisms that allow to specify shared sub�processes for interoperability

purposes while retaining the privacy of the local sub�processes	 Treaties have several unique

characteristics� First� they require explicit and active participation of the involved entities

to mutually agree on the nature of the interoperability� thereby balancing autonomy and

global speci�cation	 Second� the de�nition of Treaties is �ne�grained� in two respects�
��

they are de�ned pairwise� between every two sites that need to interoperate� as opposed

to being global and known in all sites of a multi�site environment� and
�� each Treaty is

formed over a single and small sub�process unit	 Still� complex Treaties can be formed
and

subsequently executed� between an arbitrary number of sites
not only two� and involve

arbitrarily large sub�processes� by successive invocations of simple Treaties
which could be

optimized from user interface perspective� as discussed earlier�	 The third characteristic of

Treaties is that they are superimposed on top of pre�existing processes as opposed to being

speci�ed as part of each individual process� this enables gradual and incremental establish�

ment of interoperability and supports the decentralized bottom�up approach	 Fourth� they

are designed to support local evolutions including unilateral retraction from Treaties� on

demand	

Inter�process enactment was achieved by the complementary Summit model	 Sum�

mits are execution abstraction mechanisms for Treaty�de�ned sub�processes	 They support

�global� execution of shared sub�processes involving artifacts and�or users from multiple

sites� while maximizing local execution of related private sub�processes	 This is done by

successively alternating between shared and private execution modes� The former is used

for the synchronous execution of the
�ne�grained� shared activities� involving artifacts

and�or users from multiple sites	 The latter is used for the autonomous execution of any

private subtasks emanating from prerequisites and consequences of the shared activities�

thereby enabling to maintain process consistency according to the local processes� which is

unknown to the the �global� executing task	 And depending on the state and �willingness�

of the local processes involved in the Summit� Summits may �re�convene�� and so on	 The

decentralized model is the primary contribution of this research	

The second major contribution of this research is the application of the model to

Oz	 This work �lled gaps left by the formal model� by discussing solutions to various

���

issues that are lower�level but are nevertheless still applicable to a wide range of PMLs and

PCEs� such as speci�cation of common sub�schemas in an object�oriented database� and

associating transaction semantics with the model	 In addition� the realization contributed

signi�cantly to the design of the model itself	 Indeed� it would be naive to assume that

the choice of the rule�based PML and the basic architecture of the PCE had no impact

on the general model� and it is no coincidence that the rule paradigm �ts comfortably

with this model	 However� the rule�based modeling paradigm seems to be well�suited for

decentralized modeling in its own right� regardless of our particular model� since� rules do

not require top�down de�nition and more often are modeled in bottom�up fashion� they are

loosely and implicitly interrelated
like decentralized processes�� and they are context�less

and �ne�grained� allowing to minimize the impact of any interoperability mechanism
e	g	�

Summit� on the local processes	

Finally� the fact that the system was fully implemented enabled us to implement real

environment instances with real processes� and to begin to explore �meta� issues such as

methodology for de�ning processes and the viability of process modeling in general	 The

Oz project and system are far from complete� but they are both �alive�	

The third major contribution of this research was in the investigation of infrastruc�

ture
or architectural� facilities to support a high degree of interconnectivity despite the

�no�sharing� and non�transparency requirements that are essential for enabling physical

decentralization	 The general direction in most cases was to follow the �lazy�update� ap�

proach and tolerate a possibly temporary skewed view of the global state but add facilities

that allow to both indicate this inconsistency
with some additional overhead� and repair it�

on demand	 Such was the case� for example� with the semi�replicated connection database

and the remote object cache management	

There are two contributions which can be viewed as by�products of this research� but

are nevertheless extremely important and form the basis for future research
see Section �	��	

The �rst is preliminary integration of groupware and process technologies	 The concept of

formally de�ning
modeling� collaboration as process steps and subsequently assisting in the

execution of collaborative tools can be investigated regardless of decentralization	 However�

this research brought groupware to the forefront as the need for its use in processes became

evident
as in the ISPW example�	 And at the same time it was realized that groupware

�as�is�� not integrated in a framework� and without modeling and enactment support� is

limited too	 The fact that groupware is particularly attractive for supporting physically

���

dispersed users� means that decentralized and heterogeneous environments are a realistic

setting in which to consider such integration	 Moreover� proper infrastructure facilities for

environment decentralization can be utilized to enable support for the integration of such

tools into the environment framework	 In other words� it seems that
system� interconnec�

tivity enables
process� interoperability which in turn enables
human� collaboration	 Thus�

the marriage of process modeling and CSCW with the �blessing� of decentralization seems

particularly attractive	

The second by�product was the use of a process model for site con�guration purposes	

There were several interesting aspects to this approach	 First� it was an example of modeling

and enacting an other�than�software process	 Second� it required to push the PML to its

limits with respect to its capabilities to access and manipulate low�level system facilities

such as communication protocols� the investigation of the relationship between a PML and

its underlying PCE
the �process machine�� is in itself an interesting research topic	 And

third� it gave an opportunity to explore the possible domain of modeling decentralized

systems
see Section �	��	

��� Evaluation

We now turn to speci�c evaluation of the results of this research by considering how

the decentralized model ful�lls the requirements from Section �	��	 Most of these issues

have already come up in one way or another� so this is mainly a consolidation of them	 We

consider here both the formal model and the realization	

�	 Locality
 To a large degree� this requirement was met� both in the generic

model and in Oz	 The model was speci�cally designed to minimize the

impact on local work	 In particular� the approach of gradually superim�

posing interoperability on top of the underlying
possibly pre�existing and

enactable� local processes� maximizes locality	 As far as the impact of decen�

tralization on the quality and performance of local work
 this issue seems

to have been successfully met� too	 The overhead imposed by Oz on local

work in a SubEnv compared with� say� work in an equivalent Marvel environ�

ment� is negligible	 This is because the infrastructure overhead is directly

�Some of the requirements are coalesced here�

���

proportional to the degree of interoperability� so with no interoperability

there is no overhead	

Another aspect that promoted locality both in the model and in the real�

ization was the general evolutionary research approach� which� in analogy to

decentralized systems� was built on top of pre�existing conceptual and tech�

nological foundations
i	e	� the Marvel research and system� respectively�	

Indeed� one of the big pay�o�s of this approach was the ability to thoroughly

investigate and evaluate decentralization relatively quickly	

�	 Autonomy and independent operation
 Throughout the thesis� we have

seen numerous cases where autonomy played a major role in determining

the design of the model and the system	 Perhaps the major aspect that

ful�lls this requirement is that site autonomy is the default and is guaranteed

unless explicit speci�cation of interoperability is made	 This is in contrast

to
typically distributed� systems in which the shareability is the default�

and some work has to be done to protect the privacy of individual sites	

Autonomy�by�default is closely related to enabling independent operation�

but includes also de�nitional and execution aspects	 Regarding de�nition�

the schema� process� and database are all by default autonomous	 The �ne�

grained modeling of Treaties contributes also to autonomy since each site

can control precisely what is shared and what is not	 The loose commitment

to a Treaty that enables unilateral retraction further supports autonomy�

even though it incurs some performance overhead in dynamically verifying

Treaties at runtime	 Regarding execution� the general idea in supporting

autonomy was to minimize the impact of interoperability beyond what was

explicitly de�ned as shared� and to maximize local execution	 Most of these

arguments hold equally well to the model as well as to Oz	

The tension between supporting autonomy and enabling facilities for inter�

operability have led to some oversights regarding autonomy� however� mostly

in the realization in Oz	 One of them is the global objectbase browsing facil�

ity	 While powerful in its ability to visualize whole remote objectbases and

control their refresh policies� this mechanism is provided by default and does

not require explicit de�nition	 Global browsing has two functionalities

���

the ability to view the contents of individual objects� and the ability to view

and browse through the objectbase structure	 The latter service cannot be

disabled in Oz� and an improvement of this design might consider facilities

for controlling the degree of browsing	 The former can be controlled by speci�

fying proper access�control permissions� but given that these permissions are

optional� this too might be viewed as a violation of autonomy	 Other built�

in services provided by the kernel might also need to be improved in similar

ways
e	g	� cross site copy�	

�	 Interoperability
 Given that autonomy was a crucial requirement� this

�competing� requirement seems to also have been adequately addressed	

Speci�cally� the execution semantics
and the corresponding infrastructure

in the realization� support well the enactment of activities involving data

from multiple sites	 The additional facilities for modeling and enacting del�

egation and groupware tools facilitate collaboration� too	 And �nally� the

infrastructure support and the built�in services enable interoperability	

The areas where some improvements might be needed are�
�� Not having

any means to associate data artifacts across sites� proved to be a limitation	

A solution that addresses this issue with minimal impact on autonomy
e	g	�

the soft link proposal in Section �	�	�	�� would be useful	
�� More operations

that facilitate global de�nition
for both process and schema� may prove

useful� especially in tightly�coupled environments� where autonomy can be

compromised	 The Treaty operation as a single command
with the issuer

being administrator in both sites� was a step in that direction	 Other possible

improvements in process modeling include commands for de�ning multi�site

Treaties� more selective Treaty invalidation procedures that do not invalidate

Treaties unnecessarily� automatic updates of strategies without requiring to

re�establish Treaties� and so forth	

Finally� Summits represent one model of execution� in which interoperability

is attained through shared activities	 Other models should be considered

as supplementary alternatives� e	g	� message passing between local activities

with no data sharing	

���

�	 Support for pre�existing and heterogeneous processes
 This is an extension

of the previous requirement� since the requirement is to support interoper�

ability over such heterogeneous processes	 As already outlined above� as far

as process is concerned� both Summits and Treaties were designed with this

requirement in mind� and proved to be quite e�ective	 It is of course possible

and even likely that two pre�existing and unrelated processes will have no

common sub�process a priori	 But �bridges� of interoperability can be incre�

mentally added� with minimal distractions to local work	 The situation with

pre�existing schemas is less satisfactory� however� particularly with respect

to strongly typed PMLs	 Such PMLs should provide facilities that enable to

superimpose new shared sub�schemas on top of the pre�existing ones
per�

haps along the lines of what is done in Pegasus �����	 Alternatively� PMLs

might need to sacri�ce some of their typing restrictions� at least for Summit

rules� to accommodate heterogeneous schemas	

�	 Infrastructure support
 The comprehensive infrastructure that was built in

Oz to support interconnectivity seems to have addressed the �con�icting�

independent operation requirement	 For example� the Connection Server

as an auxiliary entity for
re�establishing connections across sites and for

re�activating servers enabled sites to operate independently but acquire the

necessary information when they needed to communicate with other sites	

The main open issue here is proper modeling support for operation over a

wide�area network
see Section �	��	

��� Future Directions

����� Modeling of Decentralized Systems

This thesis explored how decentralization impacts process modeling	 An interest�

ing topic to explore is the opposite direction� namely� how modeling and enactment can

be applied to decentralized systems	 It seems that the idea of describing the behavior of

autonomous entities formally� as a basis for constructing consistent and trustworthy interop�

erability among them� and operating within an environment that supports their execution�

goes beyond process modeling and can be applied to general distributed and decentralized

���

system design	 For example� this could be used to model and subsequently support interop�

erability among autonomous Internet repositories� making them more active and responsive

to other objects on the network	

Some related work in this direction has already been done in the area of intercon�

nection languages
e	g	� Conic ������ and in the more general emerging �eld of software

architecture ����� where researchers have been looking at formalisms to de�ne the structure

of complex
distributed� systems
e	g	 ����	

����� Wide Area Modeling

This direction has been addressed in Oz only preliminarily at best
in Section �	��	

The main research issue here is to explore constructs for modeling things like physical

distance�
perhaps dynamically varying� bandwidth� time di�erences and other temporal

constraints� security level� location in case of mobile sites� frequency of inter�site interactions

and more
 in order to support the optimization� synchronization and in general the

operation of sites collaborating over a wide area network	 The key issue is to use the

semantics of the explicit speci�cations to improve the the enactment support	 For example� a

PCE might employ data prefetching when the bandwidth is low� and use further information

in the process model to improve the hit�miss ratio	

����� User Modeling� Groupware and Process

This topic has been already discussed above� and some preliminary work in this

direction has been already done in this thesis
Sections �	�� �	� and �	��� as well as by

other members in our research group ���� ���� ����	 The research path to follow here is to

continue to increase the modeling capabilities and abstractions that de�ne various aspects of

collaboration� use the semantics of the model to enhance the enactment and the integration

of CSCW tools� and characterize the necessary infrastructure support for supporting CSCW

in the process� such as advanced transaction facilities and object caching	 One particularly

neglected aspect of modeling is user modeling	 This has several implications such as unique

identi�cation of users across sites� aliasing of �users� frommultiple sites to the same nomadic

user� security issues� assignment of roles� end so on	

���

����� System and Language Heterogeneity

To re�quote Heimbigner ����� �environments will move to looser� federated� archi�

tectures			 address inter�operability between partial�environments of varying degrees of

openness�	 We certainly agree with this assessment	

This thesis focused on heterogeneity at the process level� and for the most part as�

sumed a homogeneous underlying framework and modelling language	 Multi�formalism and

system interoperability� are still� by�and�large� open research issues� particularly when cou�

pled with decentralization	 One promising approach to follow is to construct a �virtual pro�

cess machine�
i	e	� generic PCE� with low�level services
both centralized and distributed�

that is decoupled from a particular formalism in which process models are speci�ed� and

thus supports any formalism that can be translated into the machine�s �assembly� language	

Such machines should be capable of communicating with other heterogeneous machines us�

ing underlying standards
e	g	� CORBA ����� and service explicit as well as implicit
i	e	�

not�coded� processes	

���

Bibliography

��� Robert Allen and David Garlan	 Formalizing architectural connections	 In �
th
International Conference on Software Engineering� pages ��#��� Sorrento� Italy�
May ����	 IEEE Computer Society Press	 Panel Introduction	

��� Robert Balzer	 A �� year perspective on automatic programming	 IEEE Trans�
actions on Software Engineering� SE���
��������#����� November ����	

��� Sergio Bandinelli and Alfonso Fuggetta	 Computational re�ection in software
process modeling� the SLANG approach	 In ��th International Conference on
Software Engineering� pages ���#���� Baltimore MD� May ����	 IEEE Com�
puter Society Press	

��� Sergio Bandinelli� Alfonso Fuggetta� Carlo Ghezzi� and Sandro Grigolli	 Process
enactment in SLANG	 In J	C	 Derniame� editor� Software Process Technology
Second European Workshop� number ��� in Lecture Notes in Computer Science	
Springer�Verlag� Trondheim� Norway� September ����	

��� Jay Banerjee and Won Kim	 Semantics and implementation of schema evolution
in object�oriented databases	 In ACM SIGMOD Annual Conference on the
Management of Data� pages ���#���� San Francisco CA� May ����	 Special
issue of SIGMOD Record� ��
��� December ����	

��� Naser S	 Barghouti	 Concurrency Control in Rule�Based Software Development
Environments	 PhD thesis� Columbia University� February ����	 CUCS�������	

��� Naser S	 Barghouti and Gail E	 Kaiser	 Concurrency control in advanced
database applications	 ACM Computing Surveys� ��
������#���� September
����	

��� Naser S	 Barghouti and Gail E	 Kaiser	 Scaling up rule�based development en�
vironments	 International Journal on Software Engineering � Knowledge En�
gineering� �
�����#��� March ����	

��� David R	 Barstow� Howard E	 Shrobe� and Erik Sandewall
editors�	 Interactive
Programming Environments	 McGraw�Hill� New York� ����	

���

���� Noureddine Belkhatir� Jacky Estublier� and Walcelio L	 Melo	 Adele �� A sup�
port to large software development process	 In Mark Dowson� editor� �st Inter�
national Conference on the Software Process	 Manufacturing Complex Systems�
pages ���#���� Redondo Beach CA� October ����	 IEEE Computer Society	

���� Noureddine Belkhatir� Jacky Estublier� and Walcelio L	 Melo	 Software process
model and work space control in the Adele system	 In �nd International Confer�
ence on the Software Process	 Continuous Software Process Improvement� pages
�#��� Berlin Germany� February ����	 IEEE Computer Society Press	

���� M	 Ben�Ari	 The Ada Rendezvous� chapter �� pages ��#���	 Prentice Hall
International� Englewood Cli�s� NJ� ����	

���� Israel Z	 Ben�Shaul	 An object management system for multi�user programming
environments	 Master�s thesis� Columbia University� Department of Computer
Science� April ����	 CUCS�������	

���� Israel Z	 Ben�Shaul� George T	 Heineman� Steve S	 Popovich� Peter D	 Skopp�
Andrew Z	 Tong� and Giuseppe Valetto	 Integrating groupware and process
technologies in the Oz environment	 In Carlo Ghezzi� editor� �th International
Software Process Workshop� Airlie VA� October ����	 IEEE Computer Society
Press	 In press	

���� Israel Z	 Ben�Shaul and Gail E	 Kaiser	 A con�guration process for a distributed
software development environment	 In �nd International Workshop on Con�g�
urable Distributed Systems� pages ���#���� Pittsburgh PA� March ����	 IEEE
Computer Society Press	

���� Israel Z	 Ben�Shaul and Gail E	 Kaiser	 A paradigm for decentralized pro�
cess modeling and its realization in the oz environment	 In �
th International
Conference on Software Engineering� pages ���#���� Sorrento� Italy� May ����	
IEEE Computer Society Press	

���� Israel Z	 Ben�Shaul� Gail E	 Kaiser� and George T	 Heineman	 An architecture
for multi�user software development environments	 Computing Systems� The
Journal of the USENIX Association� �
�����#���� Spring ����	

���� Philip A	 Bernstein	 Database system support for software engineering	 In �th
International Conference on Software Engineering� pages ���#���� Monterey
CA� March ����	 IEEE Computer Society Press	

���� Sara A	 Bly� Steve R	 Harrison� and Susan Irwin	 Media spaces� Bringing people
together in a video� audio� and computing environment	 Communications of the
ACM� ��
�����#��� January ����	

���� Omran A	 Bukhres� Jiansan Chen� Weimin Du� and Ahmed K	 Elmagarmid	
Interbase� An execution environment for heterogeneous software systems	 Com�
puter� ��
�����#��� August ����	

���

���� Stefano Ceri and Giuseppe Pelagatti	 Distributed Databases	 McGrawHill� ����	

���� Noam Chomsky	 On certain formal properties of grammars	 Information and
Control� �
��� ����	

���� Donald Cohen	 Automatic compilation of logical speci�cations into e�cient
programs	 In �th National Conference on Arti�cial Intelligence� volume Science�
pages ��#��� Philadelphia� PA� August ����	 AAAI	

���� Wolfgang Deiters and Volker Gruhn	 Managing software processes in the envi�
ronment MELMAC	 In Richard N	 Taylor� editor� �th ACM SIGSOFT Sympo�
sium on Software Development Environments� pages ���#���� Irvine CA� De�
cember ����	 Special issue of Software Engineering Notes� ��
��� December
����	

���� Prasun Dewan and Rajiv Choudhary	 A high�level and �exible framework for
implementing multiuser user interfaces	 ACM Transactions on Information Sys�
tems� ��
������#���� October ����	

���� Prasun Dewan and John Riedl	 Toward computer�supported concurrent software
engineering	 Computer� ��
�����#��� January ����	

���� Mark Dowson	 Istar
 an integrated project support environment	 In Peter
Henderson� editor� ACM SIGSOFT�SIGPLAN Software Engineering Sympo�
sium on Practical Software Development Environments� pages ��#��� Palo Alto�
CA� December ����	 Special issue of SIGPLAN Notices� ��
��� January ����	

���� Anthony Earl	 Principles of a reference model for computer aided software engi�
neering environments	 In Fred Long� editor� Software Engineering Environments
International Workshop on Environments� volume ��� of Lecture Notes in Com�
puter Science� pages ���#���� Chinon� France� September ����	 Springer�Verlag	

���� R	 Ahmed et al	 The Pegasus heterogenous multidatabase system	 Computer�
��
������#��� December ����	

���� Simon M	 Kaplan et al	 Supporting collaborative software developement with
conversation builder	 In Herbert Weber� editor� �th ACM SIGSOFT Symposium
on Software Development Environments� pages ��#��� Tyson�s Corner VA� De�
cember ����	 Special issue of Software Engineering Notes� ��
��� December
����	

���� Marc I	 Kellner et al� Software process modeling example problem	 In �st Inter�
national Conference on the Software Process	 Manufacturing Complex Systems�
pages ���#���� Redondo Beach CA� October ����	

���� Christer Fernstr�om	 PROCESS WEAVER� Adding process support to UNIX	
In �nd International Conference on the Software Process	 Continuous Soft�
ware Process Improvement� pages ��#��� Berlin� Germany� February ����	 IEEE
Computer Society Press	

���

���� G	 Forte and R	J	 Norman	 A self assessment by the software engineering com�
munity	 Communications of the ACM� ��
�����#��� April ����	

���� Pankaj K	 Garg� Peiwei Mi� Thuan Pham� Walt Scacchi� and Gary Thunquest	
The SMART approach for software process engineering	 In �
th International
Conference on Software Engineering� pages ���#���� Sorrento� Italy� May ����	
IEEE Computer Society Press	

���� P	K	 Garg� T	 Pham� B	 Beach� A	 Deshpande� A	 Ishizaki� K	 Wentzel� and
W	 Fong	 Matisse� A knowldge�based team programming environment	 Interna�
tional Journal of Software Engineering and Knowledge Engineering� �
�����#���
����	

���� David Garlan and Dewayne Perry	 Software architecture� Practice� potential�
and pitfalls	 In �
th International Conference on Software Engineering� pages
���#���� Sorrento� Italy� May ����	 IEEE Computer Society Press	 Panel In�
troduction	

���� Carlo Ghezzi� editor	 �th International Software Process Workshop� Airlie VA�
October ����	 IEEE Computer Society Press	

���� Mark A	 Gisi and Gail E	 Kaiser	 Extending a tool integration language	 In
Mark Dowson� editor� �st International Conference on the Software Process	
Manufacturing Complex Systems� pages ���#���� Redondo Beach CA� October
����	 IEEE Computer Society Press	

���� Volker Gruhn and Rudiger Jegelka	 An evaluation of FUNSOFT nets	 In
J	C	 Derniame� editor� Software Process Technology Second European Workshop�
number ��� in Lecture Notes in Computer Science� pages ���#���	 Springer�
Verlag� Trondheim� Norway� September ����	

���� Nico Haberman and Dewayne Perry	 Ada for Experienced Programmers	
Addison�Wesley� Reading� MA� ����	

���� A	N	 Habermann and D	 Notkin	 Gandalf� Software development environments	
IEEE Transactions on Software Engineering� SE���
��������#����� December
����	

���� Dennis Heimbigner	 Proscription versus Prescription in process�centered en�
vironments	 In Takuya Katayama� editor�
th International Software Process
Workshop	 Support for the Software Process� pages ��#���� Hakodate� Japan�
October ����	 IEEE Computer Society Press	

���� Dennis Heimbigner	 A federated architecture for envrionments� Take II	 In
Preprints of the Process Sensitive SEE Architectures Workshop� Boulder CO�
September ����	

���

���� Dennis Heimbigner	 The ProcessWall� A process state server approach to pro�
cess programming	 In Herbert Weber� editor� �th ACM SIGSOFT Symposium
on Software Development Environments� pages ���#���� Tyson�s Corner VA�
December ����	 Special issue of Software Engineering Notes� ��
��� December
����	

���� Dennis Heimbigner and Marc Kellner	 Software process example for ISPW���
August ����	

���� George T	 Heineman	 A transaction manager component for cooperative trans�
action models	 In Ann Gawman� W	 Morven Gentleman� Evelyn Kidd� Perke
Larson� and Jacob Slonim� editors� ���� CASCON Conference� pages ���#����
Toronto Ontario� Canada� October ����	 IBM Canada Ltd	 Laboratory and
National Research Council Canada	

���� George T	 Heineman	 A transaction manager component for cooperative trans�
action models	 Technical Report CUCS�������� Columbia University Depart�
ment of Computer Science� July ����	 PhD Thesis Proposal	

���� George T	 Heineman and Gail E	 Kaiser	 Incremental process support for code
reengineering	 In International Conference on Software Maintenance� pages
���#���� Victoria BC� Canada� September ����	

���� George T	 Heineman and Gail E	 Kaiser	 An architecture for integrating concur�
rency control into environment frameworks	 In ��th International Conference
on Software Engineering� Seattle WA� April ����	 In press	

���� George T	 Heineman� Gail E	 Kaiser� Naser S	 Barghouti� and Israel Z	 Ben�
Shaul	 Rule chaining in marvel� Dynamic binding of parameters	 IEEE Expert�
�
�����#��� December ����	

���� SynerVision for SoftBench� A Process Engine for Teams� ����	 Marketing
literature	

���� Bernhard Holtkamp	 Process engine interoperation in PSEEs	 In Preprints
of the Process Sensitive SEE Architectures Workshop� Boulder CO� September
����	

���� M	 Honda	 Support for parallel development in the sun network software en�
vironment	 In �nd International Workshop on Computer�Aided Software Engi�
neering� pages �#� # �#�� ����	

���� Watts Humphrey and Marc I	 Kellner	 Software process modeling� Principles
of entity process models	 In ��th International Conference on Software En�
gineering� pages ���#���� Pittsburgh PA� May ����	 IEEE Computer Society
Press	

���� Watts S	 Humphrey	 Managing the Software Process	 Addison�Wesley� Reading
MA� ����	

���

���� Hajimu Iida� Takeshi Ogihara� Katsuro Inoue� and Koji Torii	 Generating a
menu�oriented navigation system from formal description of software develop�
ment activity sequence	 In Mark Dowson� editor� �st International Conference
on the Software Process	 Manufacturing Complex Systems� pages ��#��� Re�
dondo Beach CA� October ����	 IEEE Computer Society Press	

���� R	 Kadia	 Issues encountered in building a �exible software development envi�
ronment	 In Herbert Weber� editor� �th ACM SIGSOFT Symposium on Soft�
ware Development Environments� pages ���#���� Tyson�s Corner VA� December
����	 Special issue of Software Engineering Notes� ��
��� December ����	

���� Gail E	 Kaiser� Israel Z	 Ben�Shaul� George T	 Heineman� and Wilfredo Marrero	
Process evolution for the marvel environment	 Technical Report CUCS��������
Columbia University Department of Computer Science� April ����	

���� Gail E	 Kaiser� Peter H	 Feiler� and Steven S	 Popovich	 Intelligent assistance
for software development and maintenance	 IEEE Software� �
�����#��� May
����	

���� Gail E	 Kaiser� Steven S	 Popovich� and Israel Z	 Ben�Shaul	 A bi�level language
for software process modeling	 In ��th International Conference on Software
Engineering� pages ���#���� Baltimore MD� May ����	 IEEE Computer Society
Press	

���� Takuya Katayama	 A hierarchical and functional software process description
and its enaction	 In ��th International Conference on Software Engineering�
pages ���#���� Pittsburgh PA� May ����	 IEEE Computer Science Press	

���� Takuya Katayama� editor	
th International Software Process Workshop	 Sup�
port for the Software Process� Hakodate� Japan� October ����	 IEEE Computer
Society Press	

���� Rick Kazman� Len Bass� Gregory Abowd� and Mike Webb	 SAAM� A method
for analyzing the properties of software architectures	 In �
th International
Conference on Software Engineering� pages ��#��� Sorrento� Italy� May ����	
IEEE Computer Society Press	

���� Marc I	 Kellner and H	 Dieter Rombach	 Session summary� Comparisons of
software process descriptions	 In Takuya Katayama� editor�
th International
Software Process Workshop	 Support for the Software Process� pages �#��� Hako�
date� Japan� October ����	 IEEE Computer Society Press	

���� Won Kim� Nat Ballou� Jorge F	 Garza� and Darrel Woelk	 A distributed object�
oriented database system suporting shared and private databases	 ACM Trans�
actions on Information Systems� �
�����#��� January ����	

���� Won Kim and Jungyun Seo	 Classifying schematic and data heterogeneity in
multidatabase systems	 Computer� ��
������#��� December ����	

���

���� Balachander Krishnamurthy and Naser S	 Barghouti	 Provence� A process vi�
sualization and enactment environment	 In Ian Sommerville and Manfred Paul�
editors� �th European Software Engineering Conference� number ��� in Lec�
ture Notes in Computer Science� pages ���#���	 Springer�Verlag� Garmisch�
Partenkirchen� Germany� September ����	

���� Programming Systems Laboratory	 Marvel �	� Administrator�s manual	 Tech�
nical Report CUCS�������� Columbia University Department of Computer Sci�
ence� March ����	

���� David B	 Leblang and Robert P	 Chase� Jr	 Computer�aided software engineering
in a distributed workstation environment	 In Peter Henderson� editor� ACM
SIGSOFT�SIGPLAN Software Engineering Symposium on Practical Software
Development Environments� pages ���#���	 ACM Press� April ����	 Special
issue of SIGPLAN Notices� ��
��� May ����	

���� Manny Lehman� editor	 Software Process Workshop� Egham� Surrey� UK� Febru�
ary ����	 IEEE Computer Society Press	

���� Manny M	 Lehman	 Process models� process programs� programming support	
In �th International Conference on Software Engineering� pages ��#��� Mon�
terey� CA� March ����	

���� Andrew Lih	 Oz �rewall support� February ����	 Project�course E����y	

���� Lion Engineering Enviornment� ����	 Marketing literature	

���� Je� Magee� Naranker Dulay� and Je� Kramer	 Sturcturing parallel and dis�
tributed progrmas	 Software Engineering Journal� �
�����#��� March ����	

���� Je� Magee� Je� Kramer� and Morris Sloman	 Constructing distributed systems
in Conic	 IEEE Transactions on Software Engineering� ��
������#���� June
����	

���� Peiwei Mi and Walt Scacchi	 Modeling articulation work in software engineering
processes	 In Mark Dowson� editor� �st International Conference on the Software
Process	 Manufacturing Complex Systems� pages ���#���� Redondo Beach CA�
October ����	 IEEE Computer Society Press	

���� Peiwei Mi and Walt Scacchi	 Process integration in CASE environments	 IEEE
Software� �
�����#��� March ����	

���� Naftaly H	 Minsky and David Rozenshtein	 A software development envi�
ronment for law�governed systems	 In Peter Henderson� editor� ACM SIG�
SOFT�SIGPLAN Software Engineering Symposium on Practical Software De�
velopment Environments� pages ��#��� BostonMA� November ����	 ACMPress	
Special issue of SIGPLAN Notices� ��
��� February ���� and of Software Engi�
neering Notes� ��
��� November ����	

���

���� J	 Eliot B	 Moss	 Nested Transactions	 An Approach to Reliable Distributed
Computing	 Information Systems	 The MIT Press� Cambridge MA� ����	

���� John R	 Nicol� C	 Thomas Wilkes� and Frank A	 Manola	 Object orientation
in heterogeneous distributed computing systems	 Computer� ��
�����#��� June
����	

���� Leon Osterweil	 Software processes are software too	 In �th International Con�
ference on Software Engineering� pages �#��� Monterey CA� March ����	 IEEE
Computer Society Press	

���� James D	 Palmer and N	 Ann Fields	 Computer supported cooperative work	
Computer� ��� May ����	

���� Maria H	 Penedo	 Life�cycle
sub� process demonstration scenario� March ����	
�th International Software Process Workshop
ISPW��	

���� Maria H	 Penedo and William Riddle	 Process�sensitive SEE architecture

PSEA� workshop summary	 In ACM SIGSOFT Software Engineering Notes�
Boulder CO� April ����	

���� Dewayne E	 Perry� editor	 �rd International Conference on the Software Process	
Applying Software Process� Reston VA� October ����	 IEEE Computer Society
Press	

���� James L	 Peterson	 Petri Net Theory and The Modeling of Systems	 Prentice�
Hall� Englewood Cli�s NJ� ����	

���� Burkhard Peuschel and Stefan Wolf	 Architectural support for distributed pro�
cess centered software development environments	 In Wilhelm Sch�afer� editor�
�th International Software Process Workshop� pages ���#���� Wadern� Ger�
many� March ����	 IEEE Computer Society Press	

���� Steven S	 Popovich	 Rule�based process servers for software development en�
vironments	 In ���� Centre for Advanced Studies Conference� volume I� pages
���#���� Toronto ON� Canada� November ����	 IBM Canada Ltd	 Laboratory	

���� CLF Project	 CLF Manual	 USC Information Sciences Institute� January ����	

���� Sudha Ram� editor	 Special Issue on Heterogeneous Distributed Database Sys�
tems� volume ����� of Computer	 IEEE Computer Society Press� December
����	

���� Steven P	 Reiss	 An approach to incremental compilation	 In SIGPLAN ���
Symposium on Compiler Construction� pages ���#���� Montreal� Canada� June
����	 Special issue of $i�SIGPLAN Notices�� ��
��� June ����	

���� Steven P	 Reiss	 Connecting tools using message passing in the �eld environment	
IEEE Software� �
�����#��� July ����	

���

���� Thomas W	 Reps and Tim Teitelbaum	 The Synthesizer Generator	 A System
for Constructing Language�Based Editors	 Texts and Monographs in Computer
Science	 Springer�Verlag� New York� ����	

���� M	 J	 Rochkind	 The source code control system	 IEEE Transactions on Soft�
ware Engineering� SE������#���� ����	

���� Mahadev Satyanarayanan� James J	 Kistler� Puneet Kumar� Maria E	 Okasaki�
Ellen H	 Siegel� and David C	 Steere	 Coda� A highly available �le system
for a distributed workstation environment	 IEEE Transactions on Computers�
��
������#���� April ����	

���� Yoichi Shinoda and Takuya Katayama	 Towards formal description and auto�
matic generation of programming environments	 In Fred Long� editor� Software
Engineering Environments International Workshop on Environments� number
��� in Lecture Notes in Computer Science� pages ���#���	 Springer�Verlag� Chi�
non� France� September ����	

���� Izhar Shy� Richard Taylor� and Leon Osterweil	 A metaphor and a concep�
tual architecture for software development enviornments	 In Fred Long� editor�
Software Engineering Environments International Workshop on Environments�
volume ��� of Lecture Notes in Computer Science� pages ��#��	 Springer�Verlag�
Chinon� France� September ����	

���� Peter D	 Skopp	 Process centered software development on mobile hosts	 Tech�
nical Report CUCS�������� Columbia University Department of Computer Sci�
ence� October ����	 MS Thesis Proposal	

���� Peter D	 Skopp and Gail E	 Kaiser	 Disconnected operation in a multi�user soft�
ware development environment	 In Bharat Bhargava� editor� IEEE Workshop
on Advances in Parallel and Distributed Systems� pages ���#���� Princeton NJ�
October ����	

����� Michael H	 Sokolsky and Gail E	 Kaiser	 A framework for immigrating existing
software into new software development environments	 Software Engineering
Journal� �
������#���� November ����	

����� Ian Sommerville	 Software Engineering	 Addison�Wesley� Reading� MA� ����	

����� Nandit Soparkar� Henry F	 Korth� and Abraham Silberschatz	 Failure�resilient
transaction management in multidatabases	 Computer� ��
������#��� December
����	

����� Robert E	 Strom� David F	 Bacon� Arthur P	 Goldberg� Andy Lowry� Daniel M	
Yellin� and Shaula Alexander Yemini	 Hermes A Language for Distributed Com�
puting	 Prentice�Hall� Englewood Cli�s NJ� ����	

����� Stanley M	 Sutton� Jr	 APPL�A	 A Prototype Language for Software�Process
Programming	 PhD thesis� University of Colorado� ����	

���

����� Carl D	 Tait and Dan Duchamp	 Detection and exploitation of �le working sets	
In ��th International Conference on Distributed Computing Systems� pages �#��
Arlington TX� May ����	 IEEE Computer Society Press	

����� Walter F	 Tichy	 RCS
 a system for version control	 Software � Practice �
Experience� ��
������#���� July ����	

����� Andrew Z	 Tong� Gail E	 Kaiser� and Steven S	 Popovich	 A �exible rule�chaining
engine for process�based software engineering	 In �th Knowledge�Based Software
Engineering Conference� pages ��#��� Monterey CA� September ����	

����� Giuseppe Valetto	 Expanding the repertoire of process�based tool integration	
Master�s thesis� Columbia University� Department of Computer Science� Decem�
ber ����	 CUCS�������	

����� Wilhelm Sch�afer� Burkhard Peuschel and Stefan Wolf	 A knowledge�based
software development environment supporting cooperative work	 International
Journal on Software Engineering � Knowledge Engineering� �
�����#���� March
����	

���

Appendix A

Con�guration Process Sources

A�� Registration Strategy

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

� Registration process� This is a system built�in strategy

strategy register

imports data�model�

exports all�

objectbase

�

� Tool Declarations

�

REGISTER 		 superclass TOOL�

register�subenv 	 string
 register�subenv�

deregister�subenv 	 string
 deregister�subenv�

send�connection�db 	 string
 send�connection�db�

change�subenv�name 	 string
 change�subenv�name�

end

end�objectbase

rules

���

���������

�

� register�subenv	

�

� collect static information about the new subenv�

� and replicate it in all existing subenvs

�

���������

register�subenv �
new�name	LITERAL�	

�and

� collect all remote SubEnv objects

�forall GROUP
se suchthat �
se�local
 false��

� and the local one

�exists GROUP
lse suchthat �
lse�local
 true���

	

� this envelope actually does the replication in remote subenvs

� REGISTER register�subenv
new�name
se�subenv�name
se�site�name

se�has�nfs
lse�subenv�name

return
new�subenv�id

new�subenv�name

new�site�name

new�ip�addr�

� now add the object locally with the information entered

� by the administrator

�and

no�chain �
new	GROUP
 add �NULL NULL
new�name GROUP��

�
new�subenv�id

new�subenv�id�

�
new�subenv�name

new�subenv�name�

�
new�site�name

new�site�name�

�
new�site�ip�addr

new�ip�addr�

�
new�local
 false�

�
new�state
 New���

���������

�

� init�remote�subenv	

�

� called from within the resister�subenv envelope �in batch mode��

� from all remote SubEnvs� to assign the proper values to the

� objects which were just added by register�subenv

�

���������

hide init�remote�subenv �
env�obj�name	LITERAL�
env�name	LITERAL�

env�id	LITERAL�
subenv�id	LITERAL�

subenv�name	LITERAL�
site�name	LITERAL�

���

site�ip�addr	LITERAL�	

	

��

�and

no�chain �
new	GROUP
 add �NULL NULL
env�obj�name GROUP��

�
new�env�name

env�name�

�
new�env�id

env�id�

�
new�subenv�id

subenv�id�

�
new�subenv�name

subenv�name�

�
new�site�name

site�name�

�
new�site�ip�addr

site�ip�addr�

�
new�state
 New�

�
new�local
 false���

���������

�

� send�connection�db	

�

� initialize the newly created subenv� by sending to it the

� connection database

�

���������

send�connection�db �
nse	GROUP�	

� collect all SUB�ENV objects except the new one

�forall GROUP
s suchthat �
s�subenv�name ��
nse�subenv�name��

	

no�chain�
nse�state
 New�

� this envelope actually copies the connection db to the new SubEnv

�

REGISTER send�connection�db

� new subenv�s identification and location

nse�has�nfs

nse�Name
nse�env�name
nse�env�id

nse�subenv�id
nse�subenv�name

nse�site�name
nse�site�ip�addr

� all information of all subenvs�

s�Name
s�env�name
s�env�id
s�subenv�id
s�subenv�name

s�site�name
s�site�ip�addr

�

�
nse�state
 Initialized��

���������

�

� init�subenv�map	

�

���

�

� called from within the envelope �by invoking a batch client�

� of send�connection�db� this assigns to all objects of the

� connection db the proper values�

�

���������

hide init�connection�db �
new	GROUP�
env�name	LITERAL�
env�id	LITERAL�

subenv�id	LITERAL�
subenv�name	LITERAL�

site�name	LITERAL�
site�ip�addr	LITERAL�
local	LITERAL�	

� no condition

	

� no activity

� �

�and �
new�env�name

env�name�

�
new�env�id

env�id�

�
new�subenv�id

subenv�id�

�
new�subenv�name

subenv�name�

�
new�site�name

site�name�

�
new�site�ip�addr

site�ip�addr�

�
new�local

local�

�
new�state
 Initialized���

���������

�

� deregister�subenv	

�

� Remove a subenv� by removing its root object from all remote

� subenvs and removing all subenvs from the subenv that is removed�

� Leave the subenv �disconnected�� but don�t remove it�

�

���������

deregister�subenv �
lse	GROUP�	

� collect all remote SubEnv objects

�forall GROUP
se suchthat �
se�local
 false��

	

no�chain �
lse�local
 true�

� REGISTER deregister�subenv
se�Name
se�subenv�name
lse�Name�

�delete �
se NULL� ��

���������

�

� change�subenv�location	

�

� Move the physical location of a subenv�

���

� ASSUMES NFS �

�

���������

change�subenv�location �
se	GROUP�
new�se�name	LITERAL�	

	

no�chain �
se�active
 false�

� �

�
se�subenv�name

new�se�name��

change�subenv�location �
se	GROUP�	

	

no�chain �
se�active
 false�

� REGISTER change�subenv�name return
new�se�name �

�
se�subenv�name

new�se�name��

A�� A Sample Oz Envelope

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

� add a site

ENVELOPE register�subenv�

SHELL ksh�

INPUT

� the input matches the paramters specified in the register�subenv rule

string 	 new�name�

set�of string 	 subenv�name�

set�of string 	 site�name�

set�of integer 	 has�nfs�

set�of string 	 local�subenv�name�

OUTPUT

string 	
new�subenv�id�

���

string 	
new�subenv�name�

string 	
new�site�name�

string 	
new�ip�addr�

BEGIN

� get the new subenv�name

trap ��bin�rm �f �tmp�ping�out �tmp�oz�batch �tmp�host�out� � � � � � ��

echo �Enter New SubEnv Name �Currently path name��

read new�subenv�name

if � �x�new�subenv�name�
 �x� �

then

echo �Must enter new path name�

RETURN ���	��� ��� ��� ���

fi

echo �Enter SubEnv ID �increment the largest subenv�id in the environment��

read new�subenv�id

if � �x�new�subenv�id�
 �x� �

then

echo �Must enter new subenv id�

RETURN ���	��� ��� ��� ���

fi

echo �Enter the name of the primary host �usually where the SubEnv resides��

read new�site�name

�usr�etc�ping �new�site�name � �tmp�ping�out ����

if � �
 �
 � �

then

cat �tmp�ping�out

RETURN ���	��� ��� ��� ���

fi

host �new�site�name � �tmp�host�out

if � �
 �
 � �

then

cat �tmp�host�out

RETURN ���	��� ��� ��� ���

fi

awk �� if �NR
 �� �print ����� �tmp�host�out � read new�ip�addr

if � �x�ip�addr�
 �x� �

���

then

echo �Ip address could not be resolved��

echo �Please enter the address or �return� to abort�

read new�ip�addr

if � �x�new�ip�addr�
 �x� �

then

echo �Registration process aborted�

RETURN ���	��� ��� ��� ���

exit

fi

fi

echo ���oz script� � �tmp�oz�batch

echo �init�remote�subenv ��new�name � �oz� � �� � ��new�subenv�id � ��new�subenv�name � ��n

rm �tmp�subenv�name � �dev�null ����

rm �tmp�site�name � �dev�null ����

rm �tmp�has�nfs � �dev�null ����

rm �tmp�combined � �dev�null ����

for i in �subenv�name

do

echo �i �� �tmp�subenv�name

done

for i in �site�name

do

echo �i �� �tmp�site�name

done

for i in �has�nfs

do

echo �i �� �tmp�has�nfs

done

� if only the local site exists skip this� because shuffle will

� bark on this

if � �x�subenv�name� �
 �x� �

then

shuffle �tmp�subenv�name �tmp�site�name �tmp�has�nfs � �tmp�combined

if � �
 �
 � �

then

echo �register�subenv failed during shuffle�

RETURN ���	��� ��� ��� ���

fi

nr
!awk �END �print NR�� �tmp�combined!

else

nr
�

fi

���

ctr
�

� add the new root object to all other SubEnvs

while � �ctr �le �nr �

do

cur�subenv�name
!awk ��if �NR

 ��ctr�� print ��� � �tmp�combined!

cur�site�name
!awk ��if �NR

 ��ctr�� print ��� � �tmp�combined!

cur�has�nfs
!awk ��if �NR

 ��ctr�� print ��� � �tmp�combined!

if � �cur�has�nfs
 ��� �

then

oz�tty �a �b �tmp�oz�batch �cur�subenv�name

else

oz�tty �a �r �cur�site�name �b �tmp�oz�batch �cur�subenv�name

fi

ctr
!expr �ctr " �!

done

rm �tmp�ping�out �tmp�oz�batch �tmp�host�out

echo �##�

echo � First step of registration succeeded��

echo � The registration process does not set the has�nfs attribute��

echo � Set its value in all SubEnvs using the set�has�nfs rule��

echo � Then proceed with the send�subenv�map rule�

echo �##�

RETURN ���	��new�subenv�id�� ��new�subenv�name�� ��new�site�name����new�ip�addr��

END

���

Appendix B

The ISPW�
 Problem� De�nition

and Solution in Oz

B�� The ISPW�
 Example

Life�cycle
Sub� Process Demonstration Scenario
�th International Software Process Workshop
ISPW��

March ����
Maria H	 Penedo
ISPW� Example Chair�

Base Scenario for Demonstration
Problem Reporting and Change Process

� A software project is on�going� with �parts� of the system already designed�
codi�ed� tested and baselined
i	e	� under con�guration management control�	

� A problem is reported by a tester on the testing of a piece of the system
under development	 The project�s problem reporting and analysis procedures
are then followed and a person is assigned the task of the analysis of the
problem	
Note� these procedures can be formal or informal� depending on
the type of project	 Noti�cation can be e�ected by mail� by forms� by a
tool	 The procedures may include rules or guidelines telling who assigns
people resources to study which problems and what kind of steps need to be
followed	�

� A developer�analyst analyzes the problem and proposes a solution	 After the
analysis
which can be illustrated via automated process support or assumed
to have been done manually�� the developer identi�es that the problem a�ects
one software module which has been coded� tested and baselined� and possi�
bly also a�ects some documentation
e	g	� design and�or testing documents�	

Note� the related documentation can be identi�ed explicitly with help from
the system� or implicitly via existing prede�ned rules in the system�	

���

� After some analysis� it is noted that the module to be �xed is currently being

re��used by two separate users or teams
again how this is accomplished may
vary� i	e	� the system may �ag this issue or this fact may be found explicitly
by inspection by a con�guration manager or the developer�	 Those users are
noti�ed of the problem and that the module will be changed	

� The change process starts according to pre�established change procedures

which entail assignment of resources� code and�or documentation modi��
cation� analysis�testing�review� approval�rejection and new baseline of the
module and associated documentation�	

� The module is checked out of the baseline according to the con�guration
management procedures for change but reuse of the old version continues	

� The module is changed to �x the problem	
Optionally� the �x could be done
by two or more separate developers and their cooperation may be illustrated
via process support�	

� The module is tested
formally or informally�	 Once the problem is �xed�
procedures for acceptance�rejection are followed	 Once the module is ac�
cepted
i	e	� the change does �x the problem and it does not violate any
of the requirements�� appropriate regression testing on the modules�systems
which reuse a prior version of this module can be performed	

� Once all is done� the change process is �nalized	

B���� Sub�scenarios

�	 Specify and demonstrate one or more speci�c procedures�policies to comple�
ment the scenario
preferably performed with automated process support��

� problem reporting and�or analysis

� testing procedure�method

� analysis of a problem using data in system

� con�guration control� retrieval� storage

� code �x

� problem approval�rejection

� resource allocation

�	 User role support
 Demonstrate implicit�explicit support for project user
roles�
multiple�user�to�
multiple� role assignment
static�dynamic�� the im�
pact of actions of one role upon another
i	e	� automated cooperation among
roles based on process de�nition�� and how roles a�ect the interaction styles
and other aspects of the process	

���

�	 Individual Support
 Demonstrate how individuals are guided about what
task to do next� how users are made aware of the state of the process� or how
the system performs actions as a result of the users� actions	 Demonstrations
should clearly illustrate how users are aware of the process� how the envi�
ronment and individuals interact� and what variables control the di�erent
modes of interaction	

�	 Multi�user Coordination
 Demonstrate coordination of multiple people�
including any support for resolution and tolerance of inconsistency	 In par�
ticular� demonstrations can illustrate which aspects of these policies� if any�
are hard�wired into their systems� and which can be altered by the particular
model� and when the policy selections are made	

�	 Con�guration Management
 Demonstrate how software and�or documents
are controlled for the purpose of change� and how individuals using a module
in their development are made aware of problems and�or changes to that
module	

�	 Project�Central vs individual coordination
 Demonstrate how the execut�
ing process supports both individual and project activities� and how the
interactions of those activities are supported�mediated by the system	

�	 Process changes while in execution
 Dynamically demonstrate changing
any of the process de�nitions supporting the scenario and points ��� above�
and the e�ects of those changes	

���

B�� Solution in Oz

The following section lists the source code of the solution processes	 It is organized as
follows� Section B	�	� contains the data de�nitions for all processes
to avoid duplication it
is presented only once� with annotations for the local de�nitions�� Section B	�	� lists the QA
process� Section B	�	� lists the Coding process� starting with the Treaty strategies followed
by the local strategies� Section B	�	� lists the local strategies in Design� and Section B	�	�
lists a few selected envelopes	

B���� The Schema

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy data�model

imports protection�

exports all�

objectbase

������ THE CODING TREE �������

� PROJECT is an entity that defines much of the structure of a typical

� software project� PROJECTs can contain libraries� binaries

� documents header files and source code modules�

PROJECT 		 superclass ENTITY�

archive�status 	 �Archived� NotArchived� Initialized�
 Initialized�

build�status 	 �Built� NotBuilt� Initialized�
 Initialized�

build�log 	 text�

libs 	 set�of LIBS�

bins 	 BINS�

docs 	 set�of DOC�

incs 	 set�of INC�

srcs 	 set�of MODULE�

end

LIBS 		 superclass ENTITY�

archive�status 	 �Archived� NotArchived� Initialized�
 Initialized�

libs 	 set�of LIB�

end

���

� LIB is a shared archive type library� The ultimate representation of a

� library is a �a file� that is� an archive format file�

LIB 		 superclass ENTITY�

archive�status 	 �Archived� NotArchived� Initialized�
 Initialized�

afile 	 binary
 ��a��

end

� MODULE organizes CFILES based upon some higher order� Each module knows

� which library �possibly more than one� it will be archived to� MODULES

� can recursively contain other MODULES� and sets of CFILES�

MODULE 		 superclass ENTITY�

library 	 set�of link LIB�

archive�status 	 �Archived� NotArchived� Initialized�
 Initialized�

modules 	 set�of MODULE�

cfiles 	 set�of CFILE�

external�doc 	 link DOCFILE�

end

� FILE is the generic class for anything that is represented as a unix

� file� There are specializations �subtypes� for CFILE� HFILE and DOCFILE�

� the reservation status is for configuration managemnet purposes

FILE 		 superclass ENTITY�

owner 	 user�

timestamp 	 time�

reservation�status 	 �CheckedOutShared� CheckedOut� Available�

Initialized�
 Initialized�

contents 	 text�

locker 	 user�

end

� This is a specialization of FILE to C source files�

� Several status attributes are added to record the status of

� compilation� analysis� change� and review�

� And additional product�related artifacts are added to contain

� object code� change requests� bug reports� etc�

� finally a CFILE contains links to various HFILEs that it includes�

� and to branching information�

CFILE 		 superclass FILE�

compile�status 	 �Compiled� NotCompiled� Initialized�
 Initialized�

compile�log 	 text�

analyze�status 	 �Analyzed� NotAnalyzed� Initialized�
 Initialized�

analyze�log 	 text�

change�status 	 �Idle� StartChange� CompleteChange� Inspected�
 Idle�

change�request 	 text
 ��chg��

modified�change�request 	 text
 ��mod�chg��

���

bug�status 	 �Clean� Suspected� Defected�
 Clean�

bug�report 	 text
 ��bug��

review�status 	 �NotReviewed� ReviewRequested� Approved� Rejected�

RevisionRequested� Revised�
 NotReviewed�

review�rc 	 �Succeeded� Failed� None�
 None�

contents 	 text
 ��c��

object�code 	 binary
 ��o��

ref 	 set�of link HFILE�

maintained�by 	 link PROGRAMMER�

branches 	 set�of BRANCH�

end

� For different rcs versions

BRANCH 		 superclass ENTITY�

locker 	 user�

file 	 link CFILE�

end

� For HFILEs� we only want to know if they have been modified recently�

� which will cause a global recompilation�

HFILE 		 superclass FILE�

recompile�mod 	 boolean
 false�

contents 	 text
 ��h��

end

� DOCFILEs specialized FILEs with their artifacts that contain the

� various files which are used by latex� and some status attributes for

� monitoring the state of the change� review etc� are added�

DOCFILE 		 superclass FILE�

reformat�doc 	 boolean
 false�

plain 	 text
 ��txt��

tex�file 	 binary
 ��tex��

dvi�file 	 binary
 ��dvi��

ps�file 	 binary
 ��ps��

review�status 	 �Idle� ReviewRequested� ChangeRejected�

ChangeApproved�
 Idle�

review�rc 	 �Succeeded� Failed� None�
 None�

change�request 	 text
 ��chg��

modified�change�request 	 text
 ��mod�chg��

maintained�by 	 link PROGRAMMER�

bug�report 	 text
 ��bug��

end

� DOC is a class that represents an entire set of documents� typically for

� a PROJECT or PROGRAM� A DOC can contain individual documents� and files

� of it�s own�

���

DOC 		 superclass ENTITY�

documents 	 set�of DOCUMENT�

files 	 set�of DOCFILE�

end

� DOCUMENT represents a complete individual document� such as a

� user�s manual or technical report�

DOCUMENT 		 superclass ENTITY�

docfiles 	 set�of DOCFILE�

end

� INC represents a set of include ��h� files�

INC 		 superclass ENTITY�

archive�status 	 �Archived� NotArchived� Initialized�
 Initialized�

hfiles 	 set�of HFILE�

end

BINS 		 superclass ENTITY�

build�status 	 �Built� NotBuilt� Initialized�
 Initialized�

bins 	 set�of BIN�

end

� BIN represents a place where binaries for PROGRAMs �parts of a

� PROJECT� are kept�

BIN 		 superclass ENTITY�

build�status 	 �Built� NotBuilt� Initialized�
 Initialized�

executable 	 binary�

end

������ THE TEST TREE �������

TEST�PROJECT 		 superclass ENTITY�

test�status 	 �Tested� NotTested� Initialized�
 Initialized�

test�suites 	 set�of TEST�SUITE�

test�results 	 set�of TEST�RUN�SET�

end

TEST�SUITE 		 superclass ENTITY�

test�status 	 �Tested� NotTested� Initialized�
 Initialized�

test�cases 	 set�of TEST�CASE�

shared�data 	 binary�

end

���

TEST�CASE 		 superclass FILE�

test�input 	 text
 ��test�in��

expected�output 	 text
 ��test�out��

maintained�by 	 set�of link PROGRAMMER�

number 	 integer
 ��

run�status 	 boolean
 false�

test�failed 	 boolean
 false�

end

TEST�RUN�SET 		 superclass ENTITY�

test�runs 	 set�of TEST�RUN�

number 	 integer
 ��

end

TEST�RUN 		 superclass ENTITY�

performed�by 	 user�

timestamp 	 time�

test�output 	 text�

report 	 text�

report�status 	 �NotReported� Reported� Notified� Confirmed�

 NotReported�

number 	 integer�

test�status 	 integer� � � � successful

� � � minor errors

� � � moderate errors

� � � quite serious errors

� � � severe errors

new 	 boolean
 true�

test�suites 	 link TEST�SUITE�

bin 	 link BIN�

end

������ THE USER TREE �������

�� modification of the default user tree

PROGRAMMER 		 superclass USER�

fname 	 string�

lname 	 string�

role 	 string�

group 	 string�

at�office 	 boolean�

user�id 	 user�

bonus 	 integer�

end

������ THE DESIGN TREE �������

DESIGN�PROJECT 		 superclass ENTITY�

documents 	 set�of DESIGN�DOCUMENT�

���

end

DESIGN�DOCUMENT 		 superclass ENTITY�

docfiles 	 set�of DOCFILE�

end

����� THE CODING TREE �george� �����

LOCAL�AREA 		 superclass ENTITY�

workspaces 	 set�of WORKSPACE�

project 	 link PROJECT�

end

WORKSPACE 		 superclass BIN� PROGRAMMER�

files 	 set�of FILE�

module 	 link MODULE� �� link to its MODULE

doc 	 link DESIGN�DOCUMENT� �� link to its DESIGN

owner 	 user�

end

end�objectbase

B���� The QA Process

B������ test

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

�

�

�

�

�

strategy test

imports data�model�

exports all�

objectbase

���

� Tool definitions

TEST�TOOLS 		 superclass TOOL�

create�test�run 	 string
 create�test�run�

run�test 	 string
 run�test�

notify�bug 	 string
 notify�bug�

report�bug 	 string
 report�bug�

add�bonus 	 string
 add�bonus�

edit�test 	 string
 edit�test�

view�result 	 string
 view�report�

generate�report 	 string
 generate�report�

store�notify�bug 	 string
 store�notify�bug�

end

end�objectbase

rules

���������

�

� start�test�run	

�

� add a test run� link it to test�suite and the binary and trigger

� chain of tests�

�

���������

start�test�run�
tr	TEST�RUN�SET�
ts	TEST�SUITE�
b	BIN�	

�forall TEST�CASE
tc suchthat �member �
ts�test�cases
tc���

	

� prompt the user for the name of the test run and return

� it in the envelope

� TEST�TOOLS create�test�run return
name �

� the link effects trigger the run�test rules�

�and

�
new	TEST�RUN
 add �
tr test�runs
name TEST�RUN��

� assign run number and increment the �global� counter at the parent

�
new�performed�by
 CurrentUser�

�
new�number

tr�number�

�
tc�test�failed
 false�

�link �
new test�suites
ts��

�link �
new bin
b��

�
tr�number "
 ����

no�assertion�

���

���������

�

� run�test	

�

� run automatically test on a test�case�

�

���������

run�test�
tc	TEST�CASE�	

�and

�exists TEST�SUITE
ts suchthat �member �
ts�test�cases
tc���

�exists TEST�RUN
tr suchthat �and �linkto �
tr�test�suites
ts��

�
tr�new
 true���

�exists BIN
b suchthat �linkto �
tr�bin
b����

	

� TEST�TOOLS run�test
tc�test�input
tc�expected�output
b�executable

ts�shared�data
tr�test�output return
stat�

�and

�
tr�timestamp
 CurrentTime�

�
tr�performed�by
 CurrentUser�

�
tc�run�status
 true�

�
tc�test�failed
 false���

�and

�
tr�timestamp
 CurrentTime�

�
tr�performed�by
 CurrentUser�

�
tc�run�status
 true�

�
tr�test�status "
 ��

�
tc�test�failed
 true���

���������

�

� complete�test

�

� this rule is fired when all indivial runs have finished� either

� sucessfully or not

�

���������

complete�test�
ts	TEST�SUITE�	

�and

�forall TEST�CASE
tc suchthat �member �
ts�test�cases
tc���

�forall TEST�RUN
tr suchthat �and �linkto �
tr�test�suites
ts��

�
tr�new
 true����	

�
tc�run�status
 true�

���

� �

�and

�
tc�run�status
 false�

�
tr�new
 false���

���������

�

� report�bug	

�

� when a test run fails� chain to this rule

�

���������

report�bug�
tr	TEST�RUN�	

	

�
tr�test�status � ��

� TEST�TOOLS generate�report
tr�performed�by
tr�timestamp

tr�test�output
tr�report �

�
tr�report�status
 Reported��

���������

�

� notify�bug	

�

� chained off report�bug� delegated to a user which is notified

� of the problem

�

���������

notify�bug�
tr	TEST�RUN�	

�forall PROGRAMMER
p suchthat �and

�
p�group
 �CODING��

�
p�role
 �Manager����

	

delegate�
p�user�id�	

�
tr�report�status
 Reported�

� this tool should generate a message with the input parameters as

� �fill�in blanks� style

� TEST�TOOLS notify�bug
tr�report �

�
tr�report�status
 Notified��

���

���������

�

� store�notify�bug	

�

� chained off report�bug� in case notification is impossible

�

���������

notify�bug�
tr	TEST�RUN�	

�forall PROGRAMMER
p suchthat �and

�
p�group
 �CODING��

�
p�role
 �Manager����

	

�
tr�report�status
 Reported�

� this tool should generate a message with the input parameters as

� �fill�in blanks� style

� TEST�TOOLS store�notify�bug
p�fname
p�lname
p�user�id �

no�assertion�

� Local chain off summit rule analyze�bug � add bonus to tester�

� depending on the severity of the bug

���������

�

� bug�found	

�

� chained off summit analyze�bug rule

�

���������

bug�found�
tr	TEST�RUN�	

�forall PROGRAMMER
p suchthat �
p�user�id
 CurrentUser��

	

�
tr�report�status
 Confirmed�

�TEST�TOOLS add�bonus
tr�performed�by return
bonus �

�
p�bonus "

bonus��

���������

���

�

� edit�test	

�

���������

edit�test�
tc	TEST�CASE�	

�exists TEST�SUITE
ts suchthat �member �
ts�test�cases
tc���

	

� TEST�TOOLS edit�test
tc�test�input
tc�expected�output �

�
tc�timestamp
 CurrentTime��

���������

�

� view�result	

�

���������

view�result�
tr	TEST�RUN�	

	

�TEST�TOOLS view�result
tr�test�output�

�

���������

�

� find�unnotified�bug	

�

� if notification was impossible� this rule is invoked by a batch

� file of the notifiee

���������

find�unnotified�bugs��	

�exists TEST�RUN
tr suchthat �
tr�report�status
 Reported��

	

�
tr�report�status
 Reported�

� TEST�TOOLS notify�bug
tr�report �

�
tr�report�status
 Notified��

B���� The CODING Process

Treaty Strategies

B������ Analyze

���

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy analyze �Treaty�

imports data�model�

exports all�

objectbase

���������

�

� TOOL Definitions

�

���������

ANALYZE�TOOLS 		 superclass TOOL�

analyze�bug 	 string
 analyze�bug�

analyze�cfile�bug 	 string
 analyze�cfile�bug�

end

end�objectbase

rules

���������

�

� analyze�bug	

�

� This Summit rule starts up the analyze�task� done in CODING and QA�

� It is performed at the CODING process� and is intended to find

� �suspected� cfiles that might be the reason for the bug found at

� the QA process

�

���������

analyze�bug�
tr	TEST�RUN�
p	PROJECT�	

�and �forall TEST�SUITE
ts suchthat �linkto �
tr�test�suites
ts���

�forall CFILE
c suchthat �ancestor�
p
c����	

���

�and

no�chain �
tr�test�status � ��

no�chain �
tr�report�status
 Notified��

� This envelope returns a subset� which is the �bad�

� sources need to send more
tr attributes

� ��

� ANALYZE�TOOLS analyze�bug
tr�report
tr�test�status

tr�performed�by
tr�timestamp

c�contents return subset
bad�c	CFILE�

�
bad�c�bug�status
 Suspected��

���������

�

� analyze�bug �on a cfile�

�

� This Summit rule chains off the above rule� and is delegated to the

� owner of the cfile� The owner determines whether the bug was realy in

� that CFILE� or not� In the former case� the bug�status becomes

� defected� meaning that a change task should be performed on it� The

� latter means this file is �clean�� Also� generate a change request�

���������

analyze�bug�
tr	TEST�RUN�
c	CFILE�	

�and

�forall MODULE
m suchthat �member �
m�cfiles
c���

�exists WORKSPACE
w suchthat �linkto �
w�module
m����

	

delegate�
w�owner�	

�
c�bug�status
 Suspected�

� Prompt the user whether the bug is here �so return �� or not �Return ��

� also� generate a change request in the CFILE�

� ANALYZE�TOOLS analyze�cfile�bug
tr�report
c�change�request
c�contents

c�bug�report �

�and no�chain �
c�bug�status
 Defected�

� chain locally at TEST site

�
tr�report�status
 Confirmed���

�
c�bug�status
 Clean��

���������

�

� reset�analyze�atts	

� This rule is for debugging purposes only�

���

� initialize attributes to start the analyze phase

�

���������

hide reset�analyze�atts�
tr	TEST�RUN�
c	CFILE�	

	

� �

�and

no�chain �
c�bug�status
 Clean�

no�chain �
tr�report�status
 Notified���

B������ review

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy review

imports data�model�

exports all�

objectbase

���������

�

� TOOL Definitions

�

���������

REVIEW�TOOLS 		 superclass TOOL�

init�review 	 string
 init�review�

revise�doc 	 string
 revise�doc�

end

MU�TOOLS 		 superclass TOOL�

� protocol 	 SEL�

multi�flag 	 MULTI�QUEUE � �

confer 	 string
 confer�

end

���

end�objectbase

rules

���������

�

� setup�review	

�

� This Summit rule starts up the review task� done in CODING and DESIGN�

� It forward chains to local review at both CODING and DESIGN processes

�

���������

setup�review�
p	PROJECT�
design�doc	DESIGN�DOCUMENT�	

�and �forall MODULE
m suchthat �member �
p�srcs
m���

�forall CFILE
c suchthat �and �member �
m�cfiles
c��

�
c�bug�status
 Defected���

�forall DOCFILE
d suchthat �member �
design�doc�docfiles
d����

	

�or

�
c�review�status
 Revised�

�
c�bug�status
 Defected��

� this envelope simply copies the contents of the change request

� and the bug�report to the same fields

� in the design doc object� and the bug�report

� could possibly use the copy operation instead

� REVIEW�TOOLS init�review
c�change�request
c�bug�report

d�change�request
d�bug�report �

�and

�
d�review�status
 ReviewRequested�

�
c�review�status
 ReviewRequested���

���������

�

� approve	

�

� This Summit rule completes the Review Phase

�

���������

approve�
c	CFILE�
design�doc	DESIGN�DOCUMENT�	

���

�forall DOCFILE
d suchthat �member �
design�doc�docfiles
d���

	

�and

no�backward �
d�review�status
 ReviewRequested�

no�backward �
c�review�status
 ReviewRequested�

no�backward �
d�review�rc
 Succeeded�

no�backward �
c�review�rc
 Succeeded��

� �

�and

�
d�review�status
 ChangeApproved�

�
c�review�status
 Approved���

���������

�

� confer	

�

� This Summit rule is invoked when local reviews fail�

� it is a multi�user conference rule

� it forward chains to local revise at CODING

�

���������

confer�
c	CFILE�
design�doc	DESIGN�DOCUMENT�	

� collect multiple users to same variable to get

� delegation to multiple people for multi�user tool invocation

�and

�forall GROUP
coding suchthat �ancestor �
coding
c���

�forall GROUP
design suchthat �ancestor �
design
design�doc���

�forall MODULE
m suchthat �member �
m�cfiles
c���

�forall DOCFILE
d suchthat �member �
design�doc�docfiles
d���

�forall WORKSPACE
p suchthat �or

�linkto �
p�module
m��

�linkto �
p�doc
design�doc�����

	

delegate�
p�owner�	

�and

no�backward �
d�review�status
 ReviewRequested�

no�backward �
c�review�status
 ReviewRequested�

�or

no�backward �
d�review�rc
 Failed�

no�backward �
c�review�rc
 Failed���

� start white�board here to discuss design� prepare working files

� this is a multi user activity

� MU�TOOLS confer
c�contents
d�contents

coding�site�ip�addr
design�site�ip�addr�

���

� �� ok� go to revise� and enable setup�review if revise succeeds

� �and

�and

�
c�review�status
 RevisionRequested�

� this double assertion enables to chain back to setup�review

�
c�bug�status
 Suspected�

�
c�bug�status
 Defected���

� �� no hope� go to reject� needs to start all over again�

�and

�
d�review�status
 ChangeRejected�

�
c�review�status
 Rejected���

���������

�

� reset�atts	

�

� This Summit rule is for debugging� initializing attributes

� for starting the review on a single cfile �from CODING� and a single

� docfile �from DESIGN�

�

���������

reset�atts�
c	CFILE�
d	DOCFILE�	

	

� �

�and

no�chain �
c�bug�status
 Defected�

no�chain �
c�review�rc
 None�

no�chain �
c�review�status
 NotReviewed�

no�chain �
d�review�status
 Idle�

no�chain �
d�review�rc
 None���

B������ change

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy change

���

imports data�model�

exports all�

objectbase

���������

�

� TOOL Definitions

�

���������

CHANGE�TOOLS 		 superclass TOOL�

install�bin 	 string
 install�bin�

end

� Synchronous Multi�user tool

MU�INSPECTION 		 superclass TOOL�

� protocol	SEL� multi�flag	MULTI�QUEUE � �

code�inspect 	 string
 code�inspect�

end

end�objectbase

rules

���������

�

� code�inspect	

�

� This multi�user Summit rule is called manually� i�e�� it is not

� chained off any other rule� and at the moment doens�t chain

� to any other rule either�

� it has no condition� so it can be called at any time�

� but deposit cannot occur unless the file has been inspected

� It calls the multi�media inspection program developed in�house�

�

���������

code�inspect�
c	CFILE�
d	DOCFILE�	

�and

�forall GROUP
c�site suchthat �ancestor �
c�site
c���

�forall GROUP
d�site suchthat �ancestor �
d�site
d���

�forall MODULE
m suchthat �member �
m�cfiles
c���

�forall DESIGN�DOCUMENT
dm suchthat �member �
dm�docfiles
d���

�forall WORKSPACE
w suchthat �or

�linkto �
w�module
m��

�linkto �
w�doc
dm�����

	

���

delegate�
w�owner�	

� MU�INSPECTION code�inspect
c�contents
c�change�request
d�contents

c�site�site�ip�addr
d�site�site�ip�addr

w�owner �

�
c�change�status
 Inspected��

�
c�change�status
 StartChange��

���������

�

� install�bin	

�

� A simple rule that copies the binary from the CODING site to the

� QA site� it does so by copying contents of object� as opposed to

� copying the whole object�

�

���������

install�bin�
coding�bin	BIN�
test�bin	BIN�	

� Enforce to allow only a coding bin to be installed�

� ��

�exists PROJECT
p suchthat no�chain�ancestor �
p
coding�bin���

	

� CHANGE�TOOLS install�bin
test�bin�executable
coding�bin�executable �

�
test�bin�build�status
 Built��

Local Strategies

B������ Build

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy build

� This strategy provides a rule to build a PROGRAM� It also provides two

� inferences rules that will build an entire PROJECT or GROUP�

imports data�model�

exports all�

objectbase

���

���������

�

� TOOL Definitions

�

���������

BUILD 		 superclass TOOL�

build�program 	 string
 build�

build�workspace 	 string
 build�workspace�

archive 	 string
 archive�

archive�module 	 string
 archive�module�

list�archive 	 string
 list�archive�

end

end�objectbase

rules

�

� Build the project when all BINS are built�

�

build �
proj	PROJECT�	

�exists BINS
b suchthat �member �
proj�bins
b���	

�
b�build�status
 Built�

� �

�
proj�build�status
 Built��

�

� Force each BIN to be built�

�

build �
bs	BINS�	

�exists BIN
b suchthat �member �
bs�bins
b���	

�
b�build�status
 Built�

� �

�
bs�build�status
 Built��

�

� Build the BIN from libraries

�

build�
b	BIN�	

�and �exists PROJECT
p suchthat �ancestor �
p
b���

�forall LIB
l suchthat �ancestor �
p
l����	

�
l�archive�status
 Archived�

� BUILD build�program
b�executable
p�build�log
l�afile �

�
b�build�status
 Built��

���

�
b�build�status
 NotBuilt��

�

� Build a WORKSPACE

�

build�
w	WORKSPACE�	

�and

�exists LOCAL�AREA
la suchthat no�chain �member �
la�workspaces
w���

�exists PROJECT
p suchthat no�chain �linkto �
la�project
p���

�forall CFILE
c suchthat no�chain �member �
w�files
c���

�forall LIB
l suchthat no�chain �ancestor �
p
l����	

�and �
l�archive�status
 Archived�

�
c�compile�status
 Compiled��

� BUILD build�workspace
w�executable
l�afile
c�object�code �

�
w�build�status
 Built��

�
w�build�status
 NotBuilt��

�

� Archive a MODULE

�

archive �
m	MODULE�	

�and �forall CFILE
c suchthat �member �
m�cfiles
c���

�exists LIB
l suchthat �linkto �
m�library
l����	

�
c�compile�status
 Compiled�

� BUILD archive
l�afile
c�object�code �

�
m�archive�status
 Archived��

�

� Archive a LIB

�

archive �
l	LIB�	

�and �forall MODULE
m suchthat �linkto �
m�library
l���

�forall CFILE
c suchthat �ancestor �
m
c����	

�
m�archive�status
 Archived�

� �

�
l�archive�status
 Archived��

�

� Archive the LIBS

�

archive �
ls	LIBS�	

���

�forall LIB
l suchthat �member �
ls�libs
l���	

�
l�archive�status
 Archived�

� �

�
ls�archive�status
 Archived��

view �
l	LIB�	

	

� BUILD list�archive
l�afile �

�

� �������������������� CONSISTENCY CHAINS ��������������������

touch�
l	LIB�	

�exists MODULE
m suchthat �linkto �
m�library
l���	

�
m�archive�status
 NotArchived�

� �

�
l�archive�status
 NotArchived��

touch�
ls	LIBS�	

�exists LIB
l suchthat �member �
ls�libs
l���	

�
l�archive�status
 NotArchived�

� �

�
ls�archive�status
 NotArchived��

touch�
p	PROJECT�	

�exists LIBS
ls suchthat �member �
p�libs
ls���	

�
ls�archive�status
 NotArchived�

� �

�
p�build�status
 NotBuilt��

touch�
bs	BINS�	

�exists PROJECT
p suchthat �member �
p�bins
bs���	

�
p�build�status
 NotBuilt�

� �

�
bs�build�status
 NotBuilt��

touch�
b	BIN�	

�exists BINS
bs suchthat �member �
bs�bins
b���	

�
bs�build�status
 NotBuilt�

� �

�
b�build�status
 NotBuilt��

touch�
h	HFILE�	

�exists INC
i suchthat �member �
i�hfiles
h���	

�
h�recompile�mod
 true�

� �

�and �
h�recompile�mod
 false�

�
i�archive�status
 NotArchived���

���

touch�
i	INC�	

�and �exists PROJECT
p suchthat �member �
p�incs
i���

�forall CFILE
c suchthat �ancestor �
p
c����	

�
i�archive�status
 NotArchived�

� �

�and �
c�compile�status
 NotCompiled�

no�chain �
i�archive�status
 Archived���

touch�
m	MODULE�	

�exists CFILE
c suchthat �member �
m�cfiles
c���	

�
c�compile�status
 NotCompiled�

� �

�
m�archive�status
 NotArchived��

B������ coding review

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

�

� Local review at the CODING group

�

strategy coding�review

imports data�model�

exports all�

objectbase

DESIGN�REVIEW�TOOLS 		 superclass TOOL�

review�doc 	 string
 review�doc�

end

end�objectbase

rules

���

���������

�

� review	

�

� local review at coding site� chained off setup�review summit

�

���������

review�
c	CFILE�	

	

�
c�review�status
 ReviewRequested�

� DESIGN�REVIEW�TOOLS review�doc �review�
c�contents

c�change�request�

�
c�review�rc
 Succeeded��

�
c�review�rc
 Failed��

���������

�

� revise	

�

� local revision of change at coding site� chained off confer summit

�

���������

revise�
c	CFILE�	

	

�
c�review�status
 RevisionRequested�

� DESIGN�REVIEW�TOOLS review�doc �revise�
c�contents

c�change�request �

�
c�review�status
 Revised��

B�����	 compile

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

���

strategy compile

� This strategy contains rules to compile and analyze CFILE type objects�

� Compilation is done with cc� and analysis with lint� In our example�

� a file must successfully be analyzed before it is compiled�

imports data�model�

exports all�

objectbase

COMPILER 		 superclass TOOL�

compile 	 string
 �compile CFILE�contents S CFILE�compile�log S

CFILE�object�code S HFILE�contents S��

analyze 	 string
 �analyze CFILE�contents S CFILE�analyze�log S

HFILE�contents S HFILE�contents S��

end

end�objectbase

rules

� Compile a file in the master area

� ���

compile �
c	CFILE�	

�and �exists PROJECT
p suchthat �ancestor �
p
c���

�forall INC
inc suchthat �member �
p�incs
inc���

�forall HFILE
h suchthat �member �
inc�hfiles
h����	

� If the CFILE has been analyzed successfuly but not yet compiled� it can

� be compiled�

� ��

�and �
c�analyze�status
 Analyzed �

no�chain �
c�compile�status
 NotCompiled��

� COMPILER compile
c�contents
c�compile�log
c�object�code

h�contents emptyset �

�
c�compile�status
 Compiled ��

�
c�compile�status
 NotCompiled ��

� Compile a file in the local area

� ���

compile �
c	CFILE�	

�and �exists LOCAL�AREA
l suchthat �ancestor �
l
c���

���

�forall PROJECT
p suchthat �linkto �
l�project
p���

�forall INC
inc suchthat �member �
p�incs
inc���

�forall HFILE
rh suchthat �member �
inc�hfiles
rh���

�exists WORKSPACE
w suchthat �member �
w�files
c���

�forall HFILE
lh suchthat �member �
w�files
lh����	

� If the CFILE has been analyzed successfuly but not yet compiled� it can

� be compiled�

� ��

�and �
c�analyze�status
 Analyzed �

no�chain �
c�compile�status
 NotCompiled��

� COMPILER compile
c�contents
c�compile�log
c�object�code

rh�contents
lh�contents �

�
c�compile�status
 Compiled ��

�
c�compile�status
 NotCompiled ��

� Analyze a file in the local area�

� �����������������������������������

analyze�
c	CFILE�	

�and

�exists LOCAL�AREA
l suchthat no�chain �ancestor �
l
c���

�forall PROJECT
p suchthat no�chain �linkto �
l�project
p���

�forall INC
inc suchthat no�chain �member �
p�incs
inc���

�forall HFILE
rh suchthat no�chain �member �
inc�hfiles
rh���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
c���

�forall HFILE
lh suchthat no�chain �member �
w�files
lh����	

� If the CFILE has been Not yet been analyzed it can be analyzed�

� ���

�
c�analyze�status
 NotAnalyzed �

� COMPILER analyze
c�contents
c�analyze�log
rh�contents
lh�contents �

�
c�analyze�status
 Analyzed��

�
c�analyze�status
 NotAnalyzed ��

B������ edit

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

���

�

strategy edit

� This strategy defines the editor tool and a viewer tool which displays

� the errors associated with a particular C file� The rules for editing

� are overloaded� they set appropriate attributes depending upon the

� type of object being edited�

imports data�model�

exports all�

objectbase

EDITOR 		 superclass TOOL�

edit 	 string
 editor�

edit�h 	 string
 editor�h�

end

VIEWER 		 superclass TOOL�

viewErr 	 string
 viewErr�

viewBuildErr 	 string
 viewBuildErr�

view 	 string
 view�

end

end�objectbase

rules

� this edit rule is for editing c files� Note that all these rules have

� the same activities� but different postconditions� If there were

� special editors� they could be invoked by calling edit rules with

� different activities�

edit�
c	CFILE�	

� Only allow this rule to fire in the local area�

�exists LOCAL�AREA
l suchthat �ancestor �
l
c���

� Documents can only be edited if they have been approved to be changed

� by the init�change �
t	TEST�PROJECT�
p	PROJECT�
d	DESIGN�PROJECT�

� rule�

	

� what about the requirement to be checked out

no�chain �
c�review�status
 Approved�

� EDITOR edit
c�contents
c�analyze�status
c�analyze�log

c�compile�status
c�compile�log�

���

�and �
c�analyze�status
 NotAnalyzed�

no�chain �
c�compile�status
 NotCompiled�

no�chain �
c�timestamp
 CurrentTime���

no�chain �
c�reservation�status
 CheckedOut ��

� this edit rule is for editing document files�

edit�
f	DOCFILE�	

� if the file has been reserved� you can go ahead and edit it

	

�and �
f�owner
 CurrentUser �

�
f�reservation�status
 CheckedOut��

� EDITOR edit
f�contents �

�and �
f�reformat�doc
 true�

�
f�timestamp
 CurrentTime���

no�chain �
f�reservation�status
 CheckedOut ��

� this edit rule is for editing include files�

edit�
h	HFILE�	

� Only allow this rule to fire in the local area�

�exists LOCAL�AREA
l suchthat �ancestor �
l
h���

� if the file has been reserved� you can go ahead and edit it

	

�and �
h�owner
 CurrentUser �

�
h�reservation�status
 CheckedOut��

� EDITOR edit�h
h�contents �

�and �
h�recompile�mod
 true�

�
h�timestamp
 CurrentTime���

no�chain �
h�reservation�status
 CheckedOut ��

� The following rule views output from the compiler and analyzer for a

� particular file�

viewErr�
f	CFILE�	

	

� VIEWER viewErr
f�analyze�log
f�compile�log �

�

view�
f	FILE�	

���

	

� VIEWER view
f�contents�

�

B������ rcs

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

� This strategy contains rules for doing revision control on FILE

� type objects�

strategy rcs

imports data�model�

exports all�

objectbase

RCS 		 superclass TOOL�

reserve 	 string
 check�out�

deposit 	 string
 check�in�

deposit�first 	 string
 check�in�first�

view�rcs 	 string
 view�rcs�

branch 	 string
 branch�

merge�code 	 string
 merge�code�

create�rcs 	 string
 create�rcs�

move�file 	 string
 move�file�

start�chain 	 string
 start�chain�

end

end�objectbase

rules

� Implication of summit rule� When the change is initiated �i�e� the

� change�status attribute of a CFILE is set to StartChange�� a forward

� chain commences to reserve the appropriate files into the appropriate

� WORKSPACES�

�

hide setup�reserve�
mc	CFILE�	

�and �exists MODULE
m suchthat �member �
m�cfiles
mc���

���

�exists WORKSPACE
w suchthat �linkto �
w�module
m����	

� Delegate to appropriate person

� ������������������������������

delegate�
w�owner�	

� ��� This predicate causes chaining�

� ��� Simple case of already available�

� ��������������������������������������

�and �
mc�change�status
 StartChange�

�
mc�review�status
 Approved�

no�chain �
mc�reservation�status
 Available��

� RCS reserve
mc�contents �

�and no�forward �
mc�reservation�status
 CheckedOut �

no�forward �
mc�owner
 CurrentUser �

�
new	CFILE
 copy �
mc
w files ����

no�assertion�

hide setup�branch�
mc	CFILE�	

�and �exists MODULE
m suchthat �member �
m�cfiles
mc���

�exists WORKSPACE
w suchthat �linkto �
w�module
m����	

� Delegate to appropriate person

� ������������������������������

delegate�
w�owner�	

� ��� This predicate causes chaining

� ��� More complex case of already checkedout by someone else

� ���

�and �
mc�change�status
 StartChange �

�
mc�review�status
 Approved �

�or

no�chain �
mc�reservation�status
 CheckedOut �

no�chain �
mc�reservation�status
 CheckedOutShared ���

� RCS branch
mc�contents �new� return
rev �

� Create duplicate copy of CFILE in local WORKSPACE and link from BRANCH

� ��

�and no�forward �
mc�reservation�status
 CheckedOutShared�

�
new	CFILE
 copy �
mc
w files ��

�
b	BRANCH
 add �
mc branches
rev BRANCH��

�link �
b�file
new����

no�assertion�

���

� Reserve an HFILE into WORKSPACE

� �������������������������������

hide reserve�
h	HFILE�
w	WORKSPACE�	

	

�or �
h�reservation�status
 Available �

�
h�reservation�status
 Initialized ��

� RCS reserve
h�contents �

�and no�forward �
h�reservation�status
 CheckedOut �

no�forward �
h�owner
 CurrentUser �

�
new	HFILE
 copy �
h
w files ����

no�assertion�

� Make a version of a HFILE available �first time�

� ��

deposit�
h	HFILE�
i	INC�	

�and �forall HFILE
mh suchthat �and �member �
i�hfiles
mh��

�
mh�Name

h�Name���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
h����	

�and no�chain �
mh�Name
 �� �

no�chain �
h�owner
 CurrentUser �

no�chain �
h�reservation�status
 CheckedOut ��

� RCS deposit�first
h�contents
i�Name �

�and no�forward �
h�reservation�status
 Available �

no�chain � move �
h
i hfiles
w� �

no�chain �
h�recompile�mod
 false�

�
h�recompile�mod
 true���

no�assertion�

� Make a version of a HFILE available �second and future times�

� ��

deposit�
h	HFILE�
i	INC�	

�and �exists HFILE
mh suchthat �and �member �
i�hfiles
mh��

�
mh�Name

h�Name���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
h����

	

�and no�chain �
h�owner
 CurrentUser �

no�chain �
h�reservation�status
 CheckedOut ��

� RCS deposit
h�contents
mh�contents
mh�reservation�status

i�Name empty �

�and no�forward �
mh�reservation�status
 Available �

���

� delete �
h
w� �

no�chain �
mh�recompile�mod
 false�

�
mh�recompile�mod
 true���

no�assertion�

� Reserve a CFILE to local WORKSPACE

� ����������������������������������

reserve�
c	CFILE�
w	WORKSPACE�	

	

�or �
c�reservation�status
 Available �

�
c�reservation�status
 Initialized ��

� RCS reserve
c�contents �

�and no�forward �
c�reservation�status
 CheckedOut �

no�forward �
c�owner
 CurrentUser �

�
new	CFILE
 copy �
c
w files ����

no�assertion�

� Make branch on current RCS tree� but only if not current owner�

� ���

reserve�
c	CFILE�
w	WORKSPACE�	

	

�and no�chain �
c�owner �� CurrentUser�

�or no�chain �
c�reservation�status
 CheckedOut�

no�chain �
c�reservation�status
 CheckedOutShared���

� RCS branch
c�contents �new� return
rev �

� Create duplicate copy of CFILE in local WORKSPACE and link from BRANCH

� ��

�and no�forward �
c�reservation�status
 CheckedOutShared�

�
new	CFILE
 copy �
c
w files ��

�
b	BRANCH
 add �
c branches
rev BRANCH��

�
b�locker
 CurrentUser�

�link �
b�file
new����

no�assertion�

hide get�version�
c	CFILE�	

�and �exists BRANCH
b suchthat �linkto �
b�file
c���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
c����

	

� RCS move�file
c�contents
w�Name �

no�assertion�

���

� Make a version of a CFILE available �first time�

� ��

deposit�
c	CFILE�
m	MODULE�	

�and �forall CFILE
mc suchthat �and �member �
m�cfiles
mc��

�
mc�Name

c�Name���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
c����	

�and no�chain �
mc�Name
 �� �

no�chain �
c�owner
 CurrentUser �

no�chain �
c�change�status
 Inspected �

no�chain �
c�reservation�status
 CheckedOut ��

� RCS deposit�first
c�contents
m�Name �

�and no�forward �
c�reservation�status
 Available �

�
c�compile�status
 NotCompiled �

no�chain � move �
c
m cfiles
w� �

�
m�archive�status
 NotArchived ���

no�assertion�

� Make a version of a CFILE available �second and future times�

� ��

deposit�
c	CFILE�
m	MODULE�	

�and �exists CFILE
mc suchthat �and �member �
m�cfiles
mc��

�
mc�Name

c�Name���

�forall BRANCH
b suchthat �member �
mc�branches
b���

�exists WORKSPACE
w suchthat no�chain �member �
w�files
c����

	

�� No branches yet�

�and no�chain �
b�Name
 �� �

no�chain �
c�owner
 CurrentUser �

no�chain �
mc�owner
 CurrentUser �

no�chain �
c�change�status
 Inspected �

no�chain �
mc�reservation�status
 CheckedOut ��

� RCS deposit
c�contents
mc�contents
mc�reservation�status

m�Name empty �

�and no�forward �
mc�reservation�status
 Available �

�
mc�compile�status
 NotCompiled �

� delete �
c
w� �

�
m�archive�status
 NotArchived ���

no�assertion�

� Deposit earlier version of code that someone had already locked�

� ��

���

deposit�
c	CFILE�
m	MODULE�	

�and �exists WORKSPACE
w suchthat no�chain �member �
w�files
c���

�exists BRANCH
b suchthat no�chain �linkto �
b�file
c���

�exists CFILE
mc suchthat

�and no�chain �member �
mc�branches
b��

no�chain �
mc�Name

c�Name����	

�and no�chain �
c�owner
 CurrentUser �

no�chain �
c�change�status
 Inspected �

no�chain �
mc�reservation�status
 CheckedOutShared ��

� RCS deposit
c�contents
mc�contents
mc�reservation�status

m�Name
b�Name �

�and �
mc�compile�status
 NotCompiled �

� delete �
c
w� � � this will also delete link from
b��
c

�
m�archive�status
 NotArchived ���

no�assertion�

� Deposit version of the code that someone has an existing branch from�

� ��

deposit�
c	CFILE�
m	MODULE�	

�and �exists WORKSPACE
w suchthat no�chain �member �
w�files
c���

�exists CFILE
mc suchthat

�and no�chain �member �
m�cfiles
mc��

no�chain �
mc�Name

c�Name���

�exists BRANCH
b suchthat no�chain �member �
mc�branches
b���

�exists CFILE
oc suchthat no�chain �linkto �
b�file
oc����	

�� �� Am owner of original lock on
mc

�� �� Am not owner of branch file

�� �� CheckOutShared

�� ��

�and no�chain �
mc�owner
 CurrentUser �

no�chain �
oc�owner �� CurrentUser �

no�chain �
c�change�status
 Inspected �

no�chain �
mc�reservation�status
 CheckedOutShared ��

� RCS deposit
c�contents
mc�contents
mc�reservation�status

m�Name
b�Name �

�and

�
mc�compile�status
 NotCompiled �

�� Notify future depositer that they�ll have to merge

no�chain �
mc�reservation�status
 CheckedOut �

� delete �
c
w� � � this will also delete link from
b��
c

�
m�archive�status
 NotArchived ���

no�assertion�

���

� Someone else has deposited early version� Need to incorporate before

� allowing a deposit�

� ��

deposit�
c	CFILE�
m	MODULE�	

�and

�exists WORKSPACE
w suchthat no�chain �member �
w�files
c���

�exists CFILE
mc suchthat �and

no�chain �member �
m�cfiles
mc��

no�chain �
mc�Name

c�Name���

�exists BRANCH
b suchthat no�chain �member �
mc�branches
b���

�forall CFILE
none suchthat no�chain �linkto �
b�file
none����	

�� �� BRANCH object doesn�t link to anything	 Already been deposited�

�� �� Am owner of original lock on
mc

�� �� CheckOutShared

�� ��

�and no�chain �
none�Name
 �� �

�or no�chain �
mc�owner
 CurrentUser � � hack for ispw

no�chain �
w�owner
 CurrentUser ��

no�chain �
c�change�status
 Inspected �

no�chain �
mc�reservation�status
 CheckedOutShared ��

� RCS merge�code
c�contents
mc�contents
m�Name
b�Name �

�and no�chain �
mc�reservation�status
 Available �

�
mc�compile�status
 NotCompiled �

� delete �
c
w� �

� delete �
b
mc� �

�
m�archive�status
 NotArchived ���

no�assertion�

� Original CheckOut has deposited early version�

� Need to incorporate before allowing a deposit�

� ��

deposit�
c	CFILE�
m	MODULE�	

�and �exists WORKSPACE
w suchthat no�chain �member �
w�files
c���

�exists CFILE
mc suchthat

�and

no�chain �member �
m�cfiles
mc��

no�chain �
mc�Name

c�Name���

�exists BRANCH
b suchthat no�chain �linkto �
b�file
c����	

�� �� Am owner of original lock on
mc

�� �� CheckOutShared

���

�� ��

�and no�chain �
c�owner
 CurrentUser �

no�chain �
c�change�status
 Inspected �

no�chain �
mc�reservation�status
 CheckedOut ��

� RCS merge�code
c�contents
mc�contents
m�Name
b�Name �

�and no�chain �
mc�reservation�status
 Available �

�
mc�compile�status
 NotCompiled �

� delete �
c
w� �

� delete �
b
mc� �

�
m�archive�status
 NotArchived ���

no�assertion�

� View the rcs history for a file

view�rcs�
f	FILE�	

	

� RCS view�rcs
f�contents �

�

� overload the default add rule

hide

add�rule �
parent	WORKSPACE�
att	LITERAL�
name	LITERAL�
class	LITERAL�	

	

� �

�add �
parent
att
name
class���

hide create�rcs�
c	CFILE�	

�exists WORKSPACE
w suchthat �member �
w�files
c���	

�and no�chain �
c�reservation�status
 Initialized�

no�chain �
c�change�status
 Idle��

� RCS create�rcs
c�contents �

�and �
c�reservation�status
 CheckedOut�

�
c�change�status
 StartChange���

no�assertion�

hide create�rcs�
h	HFILE�	

�exists WORKSPACE
w suchthat �member �
w�files
h���	

no�chain �
h�reservation�status
 Initialized�

� RCS create�rcs
h�contents �

�
h�reservation�status
 CheckedOut��

���

no�assertion�

B���� The DESIGN Process

B������ design review

�

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

strategy design�review

imports data�model�

exports all�

objectbase

DESIGN�REVIEW�TOOLS 		 superclass TOOL�

review�doc 	 string
 �review�doc DOCFILE�change�request S

DOCFILE�modified�change�request S

DOCFILE�bug�report S��

view�ps 	 string
 �view�ps DOCFILE�ps�file S��

edit�doc 	 string
 �edit�doc DOCFILE�contents S��

end

end�objectbase

rules

� local review� there�s one also in the CODING team�

� delegated rule

review�
doc	DOCFILE�	

	

delegate�
doc�owner�	

�
doc�review�status
 ReviewRequested�

� DESIGN�REVIEW�TOOLS review�doc
doc�change�request

doc�modified�change�request

doc�bug�report �

�
doc�review�rc
 Succeeded��

�
doc�review�rc
 Failed��

�
doc�review�rc
 None��

���

edit�
doc	DOCFILE�	

	

�DESIGN�REVIEW�TOOLS edit�doc
doc�contents�

�

view�ps�
doc	DOCFILE�	

	

�DESIGN�REVIEW�TOOLS view�ps
doc�ps�file�

�

B���	 Selected Envelopes

B������ store notify bug

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

�

ENVELOPE store�notify�bug�

SHELL ksh�

INPUT

set�of string 	 fname�

set�of string 	 lname�

set�of string 	 user�id�

OUTPUT

none �

BEGIN

echo ��fname �lname with user id �user�id is not logged in currently�

echo �The notification will be sent to him when he loggs�in�

echo ���marvel script� � tmp�notify

echo �find�unnotified�bugs� �� tmp�notify

destination
!echo $�user�id � tr �d � �!

eval cp tmp�notify �destination��ozrc

echo �notification is sent to �user�id�

rm tmp�notify

���

RETURN ����

END

B������ analyze bug

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

�

� usage	

�

ENVELOPE template�

SHELL ksh�

INPUT

text 	 report�

integer 	 test�status�

string 	 performer�

string 	 timestamp�

set�of text 	 cfiles�

OUTPUT

set�of object 	 bad�cfiles�

BEGIN

rm �f FILE�LIST���

for i in �cfiles

do

B
!basename �i!

echo �B �i �� FILE�LIST���

done

� call an in�house tool that aids in locating the bug

bad�cfiles
!bug�report FILE�LIST��� �report ��timestamp� ��performer�!

rm FILE�LIST���

� bad�cfiles is a subset of files which are pissibly faulty

RETURN ��� 	 �bad�cfiles�

END

���

B������ branch

�

� Oz Process Centered Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

� branch envelope

�

�

ENVELOPE branch�

SHELL sh�

INPUT

text 	 contents�

string 	 new�or�extend�

OUTPUT

string 	 REV�

BEGIN

BASENAME
!basename �contents!

DIRNAME
!get�dirname �contents!

rcsdirectory
�DIRNAME�RCS

� If the current RCS directory doesn�t exist� ERROR��

� ���

if � � �d �rcsdirectory �

then

echo �RCS file doesn�t exist��

echo �Unable to make a branch�

RETURN ���	���

fi

� Have user select a locked version to branch on�

� ��

REV
!select�version�sh �rcsdirectory���BASENAME��v!

if � �n ��REV� �

then

� Check out �but don�t lock� that particular branch into a special file

� ���

USER
!whoami!

if � � �d �DIRNAME���USER �

then

���

mkdir �DIRNAME���USER

else

rm �f �DIRNAME���USER��BASENAME

fi

co �r�REV �rcsdirectory���BASENAME��v �DIRNAME���USER��BASENAME

else

echo �No branch made�

RETURN ���	���

fi

RETURN ���	��REV��

END

B������ white board

� Oz Software Development Environment

�

� Copyright ����

� The Trustees of Columbia University

� in the City of New York

� All Rights Reserved

�

�

� usage	

�

ENVELOPE white�board�

SHELL ksh�

INPUT

text 	 cfile�

set�of text 	 design�

set�of string 	 coding�site�ip�address�

set�of string 	 design�site�ip�address�

OUTPUT

none �

BEGIN

role
!get�rule �PWD!

if � �role
 �CODING� �

then

FILE�LIST
�tmp�wb�file�list

���

FILE
!basename �design!

echo �FILE �design � �FILE�LIST

wb�static �design�site�ip�address�%��� �

sleep �

wbimport �FILE�LIST

wait ��

echo �What�s the verdict
 type � for Revise and � for Reject�

read res

if � �res
 ��� �

then

RETURN ����

else

RETURN ����

fi

� if DESIGN

else

sleep �

wb�static �coding�site�ip�address�%���

RETURN ����

fi

END

Index

Ada� ��� ��
accept� ��

in Oz� ���
administrator� �� ��
APPL�A� ��
atomicity chains� ���
automation chains� ���

cancel� ��
cache in oz� ���

validity invariant� ���
common sub�process� ��

invariant� ���
common sub�schema� ��

in Oz� ��� � ���
con�guration process� ���
connection database� ���
connection server� ���
context hierarchy� ��

activity� ��
step� ��
task� ��

context�switch� ���
coordinating process� ��
coordinating server� ���
coordinating site� ��
core requirements� ��� ��
CSCW� �� see groupware

DEPCE� �
decentralized environment� see DEPCE
delegation� ��
delegation in Oz� ��� � ���
deny� ��
derived parameters� ���
domain� �
domain SubEnv table� ���

environment
interconnectivity� ��� ���
instantiated� ��

envelope� ��
export� ��

in Oz� ���
export data� ��

in Oz� ��� � ���

groupware
in Summit model� ��
support in Oz� ���

grammar�based PMLs� ��

HDDB� ��
heterogeneous processes� ��

import� ��
in Petri�nets� ��
in grammars� ��
in Oz� �������

instantiated environment� ��
Internet domain� �
ISPW�� example� ���
ISTAR� ��

Marvel� �� � ��
activity� ��
atomicity in� ��
automation in� ��
data model� ��
derived parameter� ��
envelope� ��
evolution in� ��
inversion algorithm� ��
process model� ��
rules� ��
rule binding� ��

���

���

rule property�list� ��
rule e�ects� ��
rule network� ��
rule chaining� ��
transactions in� ���

module interconnection languages� ��
multi�process decentralized environment�

��
multi�site activity� ��

Oz � ��� ��� ��� ��� ��
administrator� ��
architecture� �������
cache� �������
context�switch� �������
client� ���
common sub�schema� ��� � ���
connection server� ���
con�guration process� ���
environment server� ���
export in� ���
export data in� ��� � ���
groupware in� ��� � ���
import in� ��� � ���
objectbase� �� � ��
overview� ��� ��
refresh policy� ���
registration� ���
scheduler� ���
session� ���
Summit in� ��� � ���
Treaty in� �� � ���
task manager� ���
unimport in� ���
unexport in� ���

PCE� �� ��� ��
Petri�net� ��
PML� �� ��� ��
process� �

activity� �� ��
administrator� �� ��
automation� �
autonomy� ��
consistency� ��

coordinating� ��
process data� �
constraints� �
decentralization� �
evolution� ��
enactment� �
enforcement� �
guidance� �
instantiation� ��
interoperability� ��
local� ��
locality� ��
model� ��
modeling� �
monitoring� �
step� ��
task� ��

ProcessWEAVER� ��
process centered environment� see PCE
process modeling language� see PML
product data� �

request� ��
in Oz� ���

rule
activity� ��
bindings� ��
chaining� ��
derived parameter� ��
e�ects� ��
inversion algorithm� ��
network� ��
property�list� ��

rule�based PMLs� ��

SDE� �
SEL� ��
site� �
single�process environment� ��

schema� ��
tool� ��

software development environment� �
software process� see process
strategy� ��
sub�environment� see SubEnv

���

SubEnv� �� ��
Summit� ��

activity� ��
completion� ��
composite� ��
example in Petri�nets� ��
in APPL�A� ��
in grammars� ��
in Oz� ��� � ���
in Petri�nets� ��
in rules� ��
Initialization� ��
metaphor� ��
Pre�Summit� ��
in rules� ��
in Petri�nets� ��
in grammars� ��
example� ��

Post�Summit� ��
in Petri�nets� ��
in rules� ��
in grammars� ��
example� ��

rule� ���
stack� ���

toaster model� ��
transactions�

in Marvel� ���
in Oz� ��� � ���
SLAT� ���
SLAU� ���
SSAT� ���
SSAU� ���

Treaty ��
evolution� ��
full� ��
invalidation� ��
in grammars� ��
in Oz rules� ��� � ���
in Petri�nets� ��
metaphor� ��
multi�site� ��
simple� ��
symmetric� ��

withdrawal� ��

unexport� ��
in Oz� ���

unimport� ��
in Oz� ���

