SLAC-PUB--4120
DEB 005798

A PARADIGM FOR DISCRETE PHYSICS*

H. Pierre Noyes and David Mcgovern ${ }^{\dagger}$
 Stanford Linear Accelerator Center
 Stanford University, Stanford, California 04505

TOM STER
25 Elena Vista, Mill Valley, CA 04941

MICHAEL J, MANTHEY
Department of Computer Science, New Mexico State Univeraily, Lat Cruces, NM 8800 S
and
ChRISTOFFD GEFWERT
Academy of Finland, Helainta

Accepted for Section B: Foundations of Physical Sciences of the
$8^{\text {th }}$ Intarnationd Congress
of Logic, Methodoloqyand Philosophy of Steience
Moscow, USSR, August 17-8F, 1987

[^0]For close to a century quantum mechanics has been trying to tell us that events are discrete, indivisible and non-local. Yet few attempts have been made to start with this basic insight and then reconstruct physics. We outline here an example - perhaps even a paradigm - for constructing such a discrete physics.

We start by postulating finiteness, discreteness, finite computability, absolute nonuniqueness (ie., homogeneity in the absence of specific cause) and additivity." So far as we can owe, any measurable world satisfying ti.ese postlates is restricted to three dimensions. Here "dimensions" refer to the cardinal number of independent generators of ordered (our postulates allow us to constrict the usual ordinal sequence of natural numbers by recursion) sequences of symbols. it is necessary to have two or mere distinct symbols [eeg., 0 and 1] and two suffice. Tagging these sequences by a, b, c, \ldots and representing them by bit strings $S^{d}=\left(\ldots, b_{i}^{a}, \ldots . .\right)_{n}, b_{i} \in 0,1, i \in 1,2, \ldots, n$ we can synchronize these strings by using the universal ordering parameter; n; for example, we can look along all the strings a, b, c, \ldots, until we find some n such that for a finite sequence of length $s b_{n+i}^{4}=b_{n+i}^{b}=b_{n+i}^{c}=\ldots, i \in 1,2, \ldots$, . Such a synchronization will always occur with Bite probability. However, as Feller has pointed out, ${ }^{[8]}$ repasted possibilities for homogeneous synchronization is limited by the number of independent sequence generators (which we have shown can be identiled as the number of dimensions) available. The care he examines is the probability that the accumulated numiser of $1^{\prime} s\left(k^{a}=\Sigma_{i=1}^{n} b_{j}^{e}\right)$ is the same for all sequences after n symbols have been generated. Clearly, if \boldsymbol{z} is the number of dimensions, this probability is

$$
u_{n}=\frac{1}{2^{a r}}\left[\int_{0}^{n}\right)^{\prime}+\left(\left\{_{1}^{n}\right)^{t}+\ldots+\left.\left.\left(\left\{_{n}^{n}\right)^{\prime}\right) \sim \frac{1}{\sqrt{r}}\right|_{\pi n} ^{2}\right|^{1(r-1)}\right.
$$

It follows that if we use these ordered recurrences as a finite metric, for any finite number of them we can construct a "space" of two or three dimensions which is both homogeneous and isotropic, but that for four or more dimensions, the probability of synchronization across all dimensions becomes vanishingly small

for large recurrences. As one of $u \boldsymbol{0}$ (DMcG) has pointed out, the theorem id more general than this specific instance. For instance, we can talk of recurrences of a sequence of any finite length of any finite number of aymbola aynchronized across dimensions, and the theorem still holds.

We now define a distance function in this opace. We first define an ensemote which, under our postulates, must have finite cardinality but differs from a finite set in that it need not necesserily be completely ordered, - or orderable. In this respect our ensemble is what Parker- Rhodes would call a sort. ${ }^{\text {Di }}$ Such ensembles will have attributes resulting from how they are generated and/or examined, eg. permutations with respect to a reference ensemble and an ordering operator which generates permutations or a specific oub-ensemble with respect to the sub-ensemble and the identity ordering operator. Call the sperific generation of an attribute a state. Then we define attribute fitatance ss the messure dependent soiely on the number of states between two ensembles diatinguishable by a sper.jic attribute, normalized by the total number of states possible. This is similar to the statistital (in the frequency theory of probability sense) distance defined by Woottere ${ }^{141}$ as the "maximum number $|N|$ of distinguishable orientations between" two measured attribute valuen divided by the square root of N. Clearly zero distance implies indistinguishability from an information-theoretic point of view.

Given any discrete space constructed consistent with our postulates, we require that there exist a tolal ordering operator T (suth as that produced by the Program Universe ordering operator TICK) ${ }^{\mid 81}$ The univergal ordering operator T on which the generations of this ordering operator are based provides a local total ordering for the evolution of each ensemble.

We now diefine the increment aize If of an enaembic as the number of generations of some ordering operator t needed to describe (establish local isomorphism with) the increases in attribute distance between an enaemble and some reference ensemble. Similatly we define the decrement size D of an ensemble as the number
of generations of the ordering operator t needed to describe the decreases in attribute distance between an ensemble and tie aame reference ensende. The total size $I+D$ of an ensemble is defined as the arithmetic sum of I and D. Attribute velocily v is defined as the mathematical rate of change in attribute distance of an ennemble with respect to the ordering operator t; hence $v=(I-$ D) $/(I+D)$. Clearly for any apecific attribute and ordering operator v is bounded, defining a limiting velocity. It is now straightforward ${ }^{[1]}$, although a bit tedious when due attention is paid to sigor, to show that these definitions allow us to derive the usual "relativistic" composition law for velocities and the "relativistic doppler shift" for the rational fractions provided as velocities by this disercte defnition of velocity. The usual Lorentz transformations in $3+1$ space follow, adding minimaj postulates about "analyticity"; fortunately our discrete physics can be developed in "momentumspace" " requiting only the tational fractions for comparison with experiment. Indeed, if one sticks to the discrete statistical space and agks for the connection between the "coordinate systems" referred to diflerent reference ensembles in terms of the standard deviation of the velocities, one is able to provide a rigorous derivation of the "Lorentz transicrmation" between biased random walks pioneered by Stein. ${ }^{[7]}$ Further, consistent examination of the effect of the finite r, dering of generation in this discrete space allows one to derive commutation relations which vanish between commensurate attributes and generate the conventional commutation relations between "d-momentum", "d-position" and the components of "d-angular mome .um" which lie at the heart of quantum mechanics. This derivation includea, of course, the introduction of complex numbers.

To take this mathematical structure over into a basis for discrete physic, we must relate these numerical results to measurement of mass, length and time (or three dimensionally independent combinations of them) referred to labora* tory standards. We have seen that the construction provides us with a limiting velocity" for any attribute, but no guarantee that these will be the same for different attributes. Since we know from experiment that any measurement can
be affected, directly or indirectly, by electromagnetism, we conclude that this phenomenon must refer to all physical attributes, and hence that (sisce it requires the most information to cotablish), the smallest of the attribute limiting velocities is to be identified with the limiting velocity c of physics. Since that implies the existence of "supralı minal" velocities which cannot be used for signaling (information transfer) but which can provide synchronization or aupraluminal correfation we claim to have provided a simple way to have a rational understanding of Aspect's and other EPR-Bohm type distant correlation experimenta. In the work we summarize below ${ }^{|6|}{ }^{\text {. Plarck's constant was introduced by identify- }}$ ing the step length in Stein's random walk with the deBroglie phate wavelength he/E. Now that we can get it directly from the angular momentum commutation relations, we must prove consistency with the other approach, -- a task in which
 ical considerations we have presented so far, and the specific metric generator has been left unsperified. To establish the unit of mass we use the combinatorial hierarchy ${ }^{[0]}$ and generate both it and the statea by means of Program Universe ${ }^{[5]}$.

For a more detailed discussion of earlier work we refer the reader to the extended version ${ }^{[0]}$ of our report to the $7^{\text {th }}$ Congress in this series, and for mbbergurnt progress to Ref. 6 . The discrete modeling of "eventa" pioneered by Amson, Bastin, Kilmister and Parker-Rhode9 ${ }^{(8)}$ was based on the discrimination operation $S^{a} \oplus S^{b}=\left(\ldots, b_{i}^{a}+2 b_{i}^{b}, \ldots\right)_{n}=\left(\ldots,\left(b_{i}^{a}-b_{i}^{b}\right)^{2}, \ldots\right)_{n}$, the observation that j linearly independent strings support $2^{j}-1$ subsets which close under disctimination $\{e . g .,\{a\},\{b\},\{c\},\{a, b, a+b\},\{b, c, b+e\},\{c, a, c+a\}$, $\{a, b, c, a+b, b+c, c+a, a+b+c\}$ where we have used " + " for discrimination and $a+a=0$, etc.,) and the mapping of auch sets (atarting with 2 basis strings) Lo generate the unique 4 -level combinatorial hierarchy with cumulative cardinala $3,10,137,2^{127}+136 \simeq 1.7 \times 10^{38}$ terminating at the fourth level. The connection between 137 and $h c / e^{2}$ and between 1.7×10^{39} and $h e / G r \pi p=\left(m_{\text {Planck }} / m_{\text {Protan }}\right)^{2}$ is numerically obvious; in order to justify the identification, these numbers must
occur in a dynamics where they represent inverse probabilities for scattering calculated as one case out of the appropriate number of atates that have equal prior probabilities. We now claim to have provided this dynamica ${ }^{[6]}$.

The approach presented at the $7^{\text {th }}$ Congress was to construct a growing universe of bit atringe by a computer algorithm called Program Univerge in auch a way that the first N_{L} bits in any atring close in anme representation of the combinatorial hicra-chy and thereafter provide tags (in the sense defined sbove) or as we call them in this context labels for growing ensembles of address strings. The algorithm takes two string, discriminates them and adjoins the result to the universe if it is not already there; if it is, the program TlCKs, i.e., it concatenates an arbitrary bit arbitrarily rhosen for each atring at the growing end. We have proved that this does indeed automatically generate some representation of the combinatorial hierarchy in the labels. Once the labels close, they have an invariant significance so long as the program runs. Hence we can assume that each is associated with a parameter that we will call mass, which it then beromes the task of the theory to compute in its ratio to the proton (or Planck) mass.

Now that we have tagged ensembles of the type discussed in the firat part of this abstract, we see that for each addreas there is an attribute velocity which, referred to the tnost probable address atring (which has a equal number of zeros and ones), is bounded by ± 1. The dipzussion in this abstract now justifies our previous identification of the parameter $\beta^{a}=\frac{2 k^{*}}{n}-1$ with velocity of a mass state measured relative to the limiling velocity in a frame at rest with respect to the cosmic background radiation. Further, thanks to the Feller theorem, we see that any three strings which have the same velocity can zcatter conserving 3-momentum. We therefore extend ous previous definition of "event" to include all such ecatterings which occur at each TICK. One major advance since the $7^{\text {th }}$ Congress is the derivation of the "propagator" in this acattering theory by a simple probability calculatior in the bit string universe. This allowi us to put these events together as scattering amplitudes with a pole at the mass of the intermediate particle and use them as the driving terms for of finite particle
number relativistic ocattering theory. Connection with laboratory space and time is then provided, an before, by our basic epistemological postulate called the counter paradigl.:

Any elementary event, under circumotances which it is the task of the experimental physicist to investigate, can lead to the firing of a eounter.

Then the connction between the ateps in the random walke and the deBroglic phase and group wavelengthe go through as before, and our contact with experiment is as firm of that of any S-matrix theory.

Another advance made recently is x firm identification of the labela which oscur in the firat three levels of the combinatorial hierarchy with the quantum numberg of the etandard model for quarks and leptons. Level one gives as a two-component chiral neutrino, level two electrons, positrone transverse gamma rayf and the coulomb interaction, while level three can be identifed with two flavors of quarks ned the associated gluons in a color cetet; the color singlet states corrspond to noutron, proton, their antiparticles, and the appropriate charge and angular momentum states of the π, ρ, and ω. Weak-electromagnetic mification, nad the higher generations will have to come in at level four, if we are on the right track. The structures are there, all right, and the coupling to the firat gencration will be weak because of the combinatorial explosion which occurs at level four ($2^{17 T} \cdot 1$ quantum atates). We are now faced with the formidable romputational task of computing QED, low energy hadron physics, QCD and getting everything right, or close enough so that we can estimate wheic the approximations are not rood enough.

REFERENCES

1. D. McGoveran, H. P. Noyes and T. Etter, "A Discrete Basis for Phyaica" (in preparation).
2. W. Feller, An Infroduction to Probability Theary and its Applieotions, Vol. I, $3^{\text {ra }}$ Edition (1968), p. 316; for more detail see the first edition, p. 247 et seq.
3. A. F. Parker-Rhodes, The Theory of Indiatinguishablea, Synthese Library 150, Reidel, Dordrecht, 1981.
4. William K. Woothert, "The Acquisition of Information from Quantum Measurements", Ph.D. Thesis, University of Texas, Austin, 1980.
5. M. J. Manthey, in Proc. of ANPA 7, available from Prof. F. Abdullah, Sec., Alternative Natural Philosophy Ass'n, Room A517. The City University, Lalington, London ECIV DIIB. England.
6. H. P. Noyes, in Proc. of ANPA 7; ef. Ref. 5 for availability.
7. I. Stein, presented at ANPA 2 and 3, King'a College, Cambriftr, 19 R . 1981.
8. T. Bastin, Studic Philosophiea Gandersan 4.77 (1966).
9. H. P. Nejps. C. Gefwert, and M. J. Manthry. "Toward a C'nis'rurtive Physics", SLAC PUB-3116 (Rev), Sept. 1983

DISCIAMMER

 ence herem to anv yecife commectal product. piness, ur werne hy trade name. wademark.

 and opmons of athore cepressed herem do not necessartly hate or reffect those of the Uniled Siples (ibernment or any agence thereot

[^0]: -Work supported by the Department of Energy, contract DE-AC03-76SF005L5.
 \dagger Permanent address: Alternative Technologies, 150 Felker St., Suite E, Santa Cruz, CA 95060

