568

A PARADIGV FOR REASONNG BY ANALOGY

Robert E. Kling
Stanford Research Institute

Menlo Park, California
U.S.A.

ABSTRACT

A paradigm enabling heuristic problem solving
programs to exploit an analogy between a current
unsolved problem and a similar but previously
solved problem to simplify its search for a solu-
tion is outlined. It is developed in detail for
a first-order resolution logic theorem prover.
Descriptions of the paradigm, implemented LISP
programs, and preliminary experimental results
are presented. This is believed to be the first
system that develops analogical information and
exploits it so that a problem-solving program can
speed its search.

INTRODUCTION

An intelligent man thinks deeply and learns
from his past experiences. Contemporary theorem-
proving and problem-solving systems are continu-
ally designed to think ever more deeply and to
ignore their past completely. A problem solver
designed in any of the contemporary paradigms
(such as resolution (1), G5 (2), and REF-ARF (3))
solves the same problem the same way each time
it is presented. A fortiori, they are unable to
exploit similarities between new and old problems
to hasten the search for a solution to the new
one. Z0ORBA outlined in this paper, is a para-
digm for handling some kinds of analogies. This
is the first instance of a system that derives the
analogical relationship between two problems and
outputs the kind of information that can be use-
fully employed by a problem-solving system to
expedite its search. As such, Z0RBA is valuable
in three ways:

(1) It shows how nontrivial analogical reason-
ing (AR) can be performed with the tech-
nical devices familiar to heuristic pro-
grammers, e.g., tree search, matching,
and pruning.

In Ref. (4), | show that there are several kinds
of analogies from an information-processing
point of view. We should hardly expect one
paradigm to include them all. Restrictions on
the varieties of analogy handled by Z0RBA are
described in the section entitled "Necessary
Conditions for an Analogy."

Session No. 14 Theorem Proving

(2) It provides a concrete information-
processing framework within which and
against which one can pose and answer
questions germain to AR

(3) Since it is implemented (in LISP), it is
available as a research tool as well as
a gedanken tool.

The last two contributions are by far the most
important, although our attention will focus upon
the first. In the 50's and 60's, many researchers
felt that analogical reasoning would be an impor-
tant addition to intelligent problem-solving pro-
grams. However, no substantial proposals were
offered, and the idea of AR remained rather nebu-
lous , merely a hope. ZAORBA may raise more ques-
tions of the "what if?" variety than it answers.
However, now, unlike 1968, we have an elementary
framework for making these questions and their
answers operational.

Z0RBA PARADIGMV

Although prior to Z0RBA there were no concrete
paradigms for AR, there was an unarticulated un-
developed paradigm within the artificial intel-
ligence Zeitgeist. Suppose a problem solver had
solved some problem P and has its solution S. |If
a program is to solve a new, analogous P , it
should do the following:

(1) Examine S and construct some plan (schema)

S that could be used to generate S.
(2) Derive some analogy a p p.

(3) Construct G (s') = S'A.
(4) Execute S) to get S , the solution to P, .

A
If P was solved by executing a plan, then S
would be available and step (1) could be omitted.
Although nobody has explicated this idea in pub-
lications, from various conversations with workers
in the field, | believe that the preceding descrip-
tion is close to the paradigm that many would have
pursued. As such, it constitutes the (late-60's)
conventional wisdom of artificial intelligence.
Certainly this (planning) paradigm is attractively
elegant! However, in 1969, when this research
was begun, it was an inappropriate approach for
two reasons:

(1) There are no planning-oriented problem
solvers that are fully Implemented and
operate in a domain with interesting
nontrivial analogies. This state of

ALANNER at MIT and QM at SRI are two current
planning-oriented problem solvers that are under
development. The first is partially implemented
and the second exists only on paper. It is not
yet clear what problem-solving power PLEANNER will
have, and how effective it will be in domains

with interesting analogies.

Session No. 14 Theorem Proving

569

R E. KLING

affairs probably will change in the next
few years, but it now renders difficult
any research that depends on the existence
of such a system.

(2) Given the plans generated by such a sys-
tem, it is hard to know a priori at what
level of generality the derived analogy
will map into an executable analogous
plan.* If S, fails, is G too strong, or
wrong? Should 6 be modified and a variant
S. computed, or should the system keep
G, and just back up its planner and gene-
rate an alternative subplan using its own
planning logic? At best this is a rather
complex research issue which would in-
volve a good planning-oriented problem
solver as an easily accessible research
tool. At worst, the preceding paradigm
may be too simple and the development of
a suitable a may be interactive with how
much successful problem-solving has pro-
ceeded so far. (A complete a should not
be attempted before some problem solving
begins and is extended as needed in the
course of solving P .)

A

Happily, there is an alternative approach that
circumvents the preceding difficulties. Consider
system that has solved some problem P and is
posed with a new (analogous) P to solve. Clearly,
t must operate on some large data base sufficient
o solve both P and P . (See Figure 1.) In ad-
dition to the subbase for solving P and P there

o, N

THEOREMS TO SOLVE THEOREMS TO SOLVE

DATA BASE D

FGURE 1 VENN DIAGRAM OF THEOREIMS IN DATA BASE

re likely to be even more theorems in the set

D - (D1 U DA)' Now, given P it is impossible to
‘'nfer a minimal D.. In practice, a user may se-
ect some D s.t. D _C_ D C D which the problem
50lver will access %o so%ve P. If one studies
he searches that problem solvers generate when

they work with nonoptimal data bases, it is ob-
vious that many of the irrelevant inferences that
are generated are derived from the data-base as-
sertions (theorems, axioms, facts) in D - D¢ (or
D, - D4). In fact, as the number of theorems ir-
relevant to the solution P becomes large, the
number of irrelevant inferences derived from this
set begins to dominate the number of irrelevant
inferences generated within D and its descendants
alone. In fact, while a problem solver might
solve P given an adequate and small D , it may be
swamped and run out of space before a solution
given a D, that is much larger than needed.
Clearly, one effective use of analogical informa-
tion would be to select a decent subset D_of D
such that size [D] < size [D] << size [D]. For
example, a typical theorem in algebra provable by
QA3 —a resolution logic theorem proof—may re-
quire only 10 axioms (D) while the full alge-
braic data base has 250 axioms. If a system
could select a D, such that size[D,] - 15 axioms,
a massive saving in search could be had. In fact,
the theorem that would be unprovable on a D with
size[D] = 250 would now be provable.

A second kind of information that would be
useful to help solve P would be a set of lemmas
(or subgoals) L , whose a n a IG(LI),. .
G(L) could be solved by the system betore™ at-
tempting P .

A

At this point | will not discuss how to recog-
nize a lemma and generate its analog; instead,
| merely want to note that lemmas may be effec-
tively used without using a planning language

Even given an optimal data base, a problem

solver will generate some irrelevant inferences.

t .
In general, automatic problem solvers and theorem

provers run out of space rather than time when
they fail to solve a problem. Ernst(2) empha-
sizes this point with regard to GPS, and | have
had similar experiences with QA3(5), a resolu-
tion logic theorem prover.
+
Recognizing lemmas depends upon the problem-
solving system. For example, in resolution
logic, some good criteria for lemmahood are:
(1) A ground unit used more than twice (or
kK times) in a proof.
(2) A unit that is a merge.
(3) A clause that is the "least descendant”
of more than 2 (or k) units.

§Generating a lkemma depends upon the system's
ability to associate variables with variables

e —

. and that may be tricky when skolem functions are
See Ref. 4 for a discussion of this issue. Introduced.

570

Session No. 14 Theorem Proving

R. E. KLING

that forces backup in case of failure. Suppose we
somehow get G(L,), . G(LJ) A typical planner
would order the G(L;),e.g., G(L)), G(L,) ... etc.,
attempt to solve them in sequence, and stop if any
emma fails to be solved. In contrast, we merely
need to attempt each G.(Li). If we get a solution,
add G-(Ll) to the data base (like a theorem) and
continue with the next lemma. |If we fail, con-
tinue anyway. At worst, we wasted some computation
time. Each useful G(L;) decreases the number of
steps in the solution of P, and may decrease the
depth of the solution tree. Thus, lemmas are
helpful in getting a faster solution. Note, how-
ever, that a successG(LJ)eed not be used In
the solution of Pa. It is merely available.

Thus, we are not bound by the fail-backup orienta-
tion of sequential planning logics.

In summary, if we use analogical information
to modify the environment in which a problem
solver operates, we can effectively abbreviate the
work a problem solver must perform. Of course, a
well-chosen environment will always lead to a more
efficient search. Usually, we have no idea how to
tailor a subenvironment automatically to a par-
ticular problem. Here we do it by exploiting its
analogy with a known solved problem. Now, the
representations used, the analogy-generating pro-
grams, and the types of additional information
output will depend upon the problem-solving system
(and even the domain of application). Any further
discussion needs to specify these two items.

APPLICATIONS TO RESOLUTION LOGIC

The preceding discussion referred to an
problem solver and is just a proposal. Computer
programs have been implemented to apply this para-
digm to a resolution logic theorem prover, QA3.(5)
For the class of analogies these programs handle,
this is an accomplishment. When we begin to focus

In fact, under some conditions, the axioms used
to solve (L;) may be deleted from D, so that
size [D,] IS decreased, and (L;) is not at-
tempted again inadvertently during the solution

of PA'

Here environment is synonymous with data base.

But it can also include permissible function
orderings (in predicate calculus) and other kinds
of restrictive information. Each rule restricting
the "environment" could be translated into an
equivalent new decision rule restricting the ap-
plication of the inference procedures of the
problem solver. However, | find it easier to
think of Z0RBA in terms of modified environments
rather than (the equivalent) modified decision

upon a particular paradigm, two issues are more
easily resolved:

(1) What kinds of information are most useful
to provide to the problem solver?

(2) Which representations shall we use to
describe the analogies and handle the
necessary data?

Resolution logic is an inference rule whose
statements are called clauses.*(1),(5) Thus, a

resolution-oriented analogizer will deal with
clauses and their descriptions. In contrast, G5
uses sets of objects to describe its states, and
we would expect that an analogy system devoted to
&S would deal with (complex) objects and their
attributes. Table 1 contrasts the kinds of in-
formation helpful to QA3 and GPS. An analogy
facility developed for (&S would be oriented to

its peculiar information structures instead of
clauses and axioms indigenous to resolution.

Table 1
KINDS OF INFORMATION HELPFUL TO QA3 and G5

QA3 (Resolution) Cxs!

Relevant axioms Relevant operators

Expected predicates Abbreviated difference

table
Lemmes Subgoals
Admissible function Restrictions on operator
nestings applications

| want to digress briefly and describe the
kinds of theorems that the implemented system,
ZORBA-I, tackles. Briefly, they are theorem pairs
In domains that can be axiomatized without con-
stants (e.g., mathematics) and that have one-one
maps between their predicates. The theorems are
fairly hard for QA3 to solve. For example,
ZORBA{ will be given proof of the theorem

Tl. The intersection of two abelian groups
IS an abelian group
and is asked to generate an analogy with

T2. The intersection of two commutative rings
IS a cummutative ring.

A clause is an element in the conjunctive normal
form of a skolemized wff in the predicate cal-
culus. For example: — person [X]

V father [g(x); X] is the clause associated with:

Vx person [x] — 3y father [y;x] (every person
has a father).

Session No. 14 Theorem Proving

571

R. E KLING

Given

T3. A factor group G/H is simple iff H is a
maximal normal subgroup of G.

Generate an adequate analogy with

T4. A quotient ring A/IC is simple iff C is a
maximal ideal in A.

None of these theorems are trivial tor contemporary

theorem provers. (See Table 2, in a later section,
lor a listing oi additional theorem pairs.) T;
has a 35-step prool and T; has a 50-step proof in
a decent axiomatization. A good theorem prover
(QA3) generates about 200 mlerences in searching
for either prool when its data base is miaimized
to the 13 axioms required lor the proof of T, or
to the 12 axioms required for the proof of Ts.

If the data base is increased to 20-30 reasonable
axioms, the theorem prover may generate 600
clauses and run out of space before a proof is
found. Note also that the predicates in the prob-
lem statement of these theorems contain only a lew
ol the predicates used in any prool. Thus, T

can be stated using only fINTERSECTION; ABELIAN],
but a proof requires {GROUP, IN; TIMES, SUBSET,
SUBGROUP, COMMUTATIVE] in addition. Thus, while
the first set is known to map into {INTERSECTION,
COMMUTATVERING} , the second set can map into
anything.

Figure 2 shows a set P including all the
predicates in the data base.

ALL

PREDICATES

IN DATA BASE
o’

FIGURE 2 VENN DIAGRAMS OF RELATIONS
IN STATEMENTS T, Tx AND D'

We know P, and P,, the sets of predicates in the
statements of the new and old theorems, Tp and T.
In addition, we know the predicates P4 in some
proof of T (since we have a proof at hand). We
need to find the set P, that contains the rela-

tions we expect in some proof of Tp, and we want
amp G GP) =P .

Clearly, a wise method would be to find some
G , a restriction ol G to P4y such that a' (P,) -

P2 Then incrementally extend G to a; ay,
each on larger domains until some G (P) - P,
ZORBA- does this in such a way that each incre-
mental extension picks up new clauses that could
be used in a proof of T.. In tact, if we get no
new clauses from an extended aj, that may be rea-

son to believe that a4 is faulty. The next sec-
tions will describe the generation algorithm in a

Tt ez SASHBRESENTATION OF AN ANALOGY

In the preceding sections | have implied that
an analogy is some kind of mapping. The ZA0RBA
paradigm—e.g., using an analogy to restrict the
environment in which a theorem prover works—does
not restrict this mapping very much. For differ-
ent intuitively analogous theorem pairs, this
mapping would need to be able to associate predi-
cates (and axioms) in a one-one, one-many, oOr
many-many fashion, possibly dependent upon con-
text. For other theorem pairs, one-one mappings
and context-free mappings are adequate. ZORBAd
Is a particular sot of algorithms that restricts
its acceptable analogies to those which map
predicates one-one with no context dependence.

It allows one-many associations between axioms;
e.g., one axiom ol the proved theorem is asso-
ciated with one or more axioms that will be used
to prove the new, analogous theorem. More ex-
plicitly, a ZORBA1 analogy G is a relation
aP X A° x a’ , where:

(1) o® is a one-one mep between the predi-

cates used in the proof oi the proved

theorem T and the predicates used Iin the
proof of the unproved theorem T, .

(2) * is a one-many mapping between clauses
Each clause used in the prool oi T is
associated with one or more clauses from
the data base D that ZORBA-l expects to
use in proving T..

(3) G is a many-many mapping between the
variables that appear in the statement
of T and those that appear in the state-

ment of T .
A

Different sections of ZORBA- use these
various maps, e.g., a’' and/or G° and/or o".
Usually | will drop the superscript and simply
refer to "the analogy G." Thus "the analog of an
axiom ax under analogy G" should be understood
to mean “°fax 1, and will often be mentioned
simply as "the analog oi ax .

In the previous section | refer to a sequence

of analogiesa;,..... ak. ZORBA-l usually does
not develop a° in one step. Rather, it

572 Session No. 14 Theorem Proving

R. E. KLING
incrementally extends some limited analogy into In addition, ZORBA-l can make up a description
one that maps a few more variables, predicates, descr[c] of any clause c¢ according to the fol-
or clauses. This process is described in full lowing rules regarding the predicates of c.
detail in th_e next few sections. Here, | jUS’F (1) V s.t. p and - p appear in ¢, impcond|p]
want to define several terms that refer to this ¢ descr[c]
process. " When | refer to the analogy between (2) V s.t. p appears in ¢, pos[p] C descrc].
T and TA" 1 refer to a mapping that includes :
_ _ (3) V s.t. — p appears in ¢, neg[p]

every variable in the statement of T, and every

. . c descrjc].
predicate and clause used in the proof of T.
This "complete" mapping is obtained as the final Thus, the axiom, every abelian group is a group,
step c_)f a sequence of mappings that contain the e.g.. V(x*) abelian [x; *1 =» group [X; *] |
associations of some predicates and some clauses.
| refer to these incomplete mappings as "partial is expressed by the clause
ana_logies," In ad_dition_, we are concerned v_vith ¢ i abelian fx; *] V group Tx *1 |
an important relationship between two (partial)
analogies. A (partial or complete) analogy ak. is which is described by

an extension of a partial analogy aqj if some of

beli !
aj, e.g., af , a° G ; is a submap restriction of neg [abelian], pos [group

the corresponding submap u? to a smaller domain. Each element of a description, e.g., pos[group],
Intuitively, when we add a new predicate or s a "feature" of the description. Each feature
clause association to aj so as to create a, we corresponds to one predicate, so the number of
say that a, has been extended to G. . We are now features in a clause equals the number of predi-
ready to survey ZORBA-I. cates in the clause. The theorem, the homomorphic

image of a group is a group, e.g.,
Vi(xy ™17 2w)

| want to describe the ZORBA-{ algorithm in hom [w>x:y] » group Ix; * 1
two stages, first briefly in this section and
then in greater detail in the following two sec-
tions. | will precede these descriptions by some is expressed by the clause
background on the representations and information
available to the system.

AN OVERVEW OF THE ANALOGY-GENERATING ALGORITHM

=> group Ty; *.J

c :-i hom [cp;x;y| V -igroup Ix; * 1 V group [y; *]

ZORBA-l is presented with the following:
and is described by

(1) A new theorem to prove, Ta.
(2) An analogous theorem T (chosen by the

user) that has already been proved. Two different clauses may have the same description
(3) Proof[Tl that is an ordered set of Let -

clauses ck s.t. Vk c? is either

(a) A clause in ~i T
(b) An axiom

negl horn], impcond[group]

c : -i.ntersecuonfxjy;*] V subsetfx;y]

intersection[x;y;z] V subset[x;z]

(c) Derived by resolution from two ¢
clauses Then:
¢ and c j T kad 1° k descrlc] = descr[c] = neglintersection],
These three items of information are problem posisubset|

dependent. In addition, the user specifies a Clause descriptions are used to characterize
"semantic template" for each predicate in his the axioms whose analogs we seek. ZORBA-1 selects
language. This template associates a semantic as analogs clauses that have descriptions that are
category with each predicate and predicate-place close to the analogs of the descriptions of axioms
and Is used to help constrain the predicate in the known axiom set. Although in a special
mappings to be meaningful. For example, context ZORBA-1 actually uses an ordering relation
STRUCTURE[SET; OPERAIOR) is associated with the on a set of descriptions to find a "best clause,”
predicate "group.” Thus, ZORBA-I knows that "A" it usually exploits a simpler approach. We will
s a set and """ is an operator when it sees say that a clause c satisfies a description d iff
group[A;*]. Currently, the predicate types (for d c descric]. Thus, several clauses may satisfy
algebra) are STRUCTURE, RELATION, MAP, and REL- the same description.

STRUCTURE; the variable types are SET, OPERATOR
FUNCTION, and OBJECT. The "analog of a description" is defined later.

Session No. 14 Theorem Proving

573

R E KNG

et
C intersectionfx; y; 7 J V - grouply; *J
V —i grouplz; *] V groupiX; *]
Cq
Then, the following statements are true:

-n subgrouplXx; y; *] V ~i subsetfx;yl

(1) {c>°s5 } satisfy impocondfgroupl

(2) {c4,co,c5 } satisiy poslgroup]

(3) satisiies neg[abelian], pos|group]
(4) {cs,c4,Cs } satisiy posisubset]

(5) GCg satisfies neglsubgroupj, poslsubset
(6) No cdlause of these six satisfies

pos [intersect ion]

Clearly, if a description contains only a few
features, then several clauses nay satisfy it.

The semantic templates are used during both
the INITIALAVMIAP When the predicates and variables
In the theorem statements are ngoped) as well as
N the EXTHNCEHR which adds additional predicates
needed lor the prooi oi T. ad finds a set of

axoms to use In proving Ta. The clause descrip-
tions are used only by EXIENCER

| intend the brief description that follows
to provide an overview of ZORBAI in preview to
the next two sections of text, which describe it
INn considerable detail. In addition, this preview
section ney be a helpful rmadmap’ for reference
when the reader nmearses himself in the details
that follow later on.

ZORBA] operates in wo stages. INITIALMAP
IS applled to the statements of T axd Ta to create
an A;" which is used by EXENCER to start its sc-

quence of a® and A which terminate in a complete
u. INIMAL-MAP starts without a priori informa-
tion about the analogy it iIs asked to help create.
Both & ard a are enply when it begins. It uses
the system of the wifs that express T ad T. as
well as the restrictions mposed by the semantic
categories to generate OP ad a4’ that include all
the predicates axd variables that appear In the
two wiffs. For example, the statements of T, - T,
can contain three of the nine predicates used in
proollTj] ad the statements of T - T. can con-
tain five of the 12 predicates used in proof[T,,].
In brief, it provides a starting point from which
EXIHNHR can develop a complete O.

The INIMIAL-MAP uses a rule of inference
called ATOVIVATCHaomEom 0], which extends
analogy by adding the predicates and nmgopso
variables of atom® and aton® to analogy (L. Thus,
AIOWAICH rowv limits Z0RBA] to analogies where
aoms in the statements of T ard T. ng one-one.
INITIALIMAP is a sophisticated search program

Atoms, not predicates.

that sneeos AIMVAIGH over likely pairs o atoms,
oe of which is from the statement ol T, the other
Tom the statement ol T.. Alternative analogies
are kept in parallel (no backup), ad INITIAL-MAP
terminates when it has found sore analogy that in-
cludes all the predicates In the theorem state-
ments. This ae is output as 7.

EXIHNER accepts a partial analogy generated
by INIMMALAMAP ad uses it as the first tem in a
sequence of successive analogies O The axioms
usedinproof\T]Jarefewincaoymar1sontothe sr/e
o the large data base axd comprnse the "domain”
for a complete O . For eech axiom used in prooflT1,
we wat to find a clause from the data base that
IS analogous to it. e axomns used In prooll T
are called AT ad are used by EXIHNLER In a
special way. Eadch partial analogy a® is used to
partition AXEI into three disjoint subsets called
ALLIOJ, SOME[Oj, anrd NONED].

If all the predicates in an axiom ax, C ACET
K
are in OP, then ax. is In Allla], f sore of its

predicates are in a;” then axc is in SOVED 1J;
ad if none of its predicates are in a,,° then ax.
IS In NONEHoy |. For brevity, these sets will be
called ALL, SOVE anrd NONE ad their dependence
on a; will be implicit. This partition is trivial
to compute, ad initially, noe or a iew axyx are

n ALL goct nogeteas gﬁ%@a%@g@gﬁe

talne((g8 A\Egp ﬂi%ﬁ%mho%%%?{hz ﬁg:

logs of each of its predicates. It cannot assist
us In learning about rew predicate associations.
In contrast, we kow nothing about the analogs of
any of the predicates used In axomns contained In
NCNE Analog clauses for these axoms are hard
to deduoe since we have no relevant information to
start a search. Unlike these \Wwo exteme cases,
the axoms in SME are especially helpful ad will
sooe the focus of our attention. For each such
axiom we kow the analogs o sore of its predi-
cates from O . These provide sufficient inlorma-
tion to begin a search for the clauses that are
analogous to hem. Wen we finally associate an
axom with its analog, we can match their respec-
tive descriptions and associate the predicates of
each that do not appear on oy . We can extend o
to a ad thus the analogs of axiomns on SIME
provide a bridge between the koM and the un-
known, between the current O and a descendent
G ,j. Waen EXIHNR has satisfactorily terminated,
ALl = ACSET SIME = NN = 0. So the gare beacores
finding sore way to systematically noe axoms
from NONE to SME to ALL in such a way that for
each axx moved, sore analog O,[axk] - axx is found
that can be used in the proof of T . Moreover,

A

574

each new association of clauses should help us
extend (1J - GHI by providing information about

predicates not contained in 'GJ.

A DETAILED DESCRIPTION OF INITIAL-MAP

At heart, ZORBA-l is a heuristic program de-
signed to generate analogies between theorem pairs
stated in a subset of predicate calculus. It has
been designed and implemented in a fairly modular
manner to facilitate understanding and ease of
generalization. Thus, much of the system can be
described in algorithmic terms. In this section
| hope to blend some appreciation of the heuristic
foundations of the program while describing its
operation with algorithmic clarity. ZORBA-l uses
an interesting set of searching and matching rou-
tines, which have been empirically designed,
generalized, and tested on a set of problem pairs
(T, - T, and T, - T4 are fair representatives of
this set). The control structures of INITIAL-MAP
and EXTENDER have been designed to pass fairly
similar structures to the various match routines
(described below). Thus, the following descrip-
tions will cover cases where the structures to be
mapped are fairly similar. For example, most of
the routines that match sets of items assume that
the sets are of equal cardinality and that they
will map one-one. Such assumptions are valid tor
a large class of interesting analogies (such as
the group-ring analogy in abstract algebra) and
simplify the description ot the various proce-
dures. Analogies that require weaker assumptions
and more complex procedures arc described else-
where. (6)

In the previous section | motivated the design
of INITIAL-MAP and EXTENDER, which generate a re-
stricted analogy and expand it to cover all the
relations and axioms necessary for the now proof.
ZORBA-l can be easily expressed in terms ot these
two functions as follows:

zorba |[newwff;oldwff,AXSET J. -

(1) Set analogies to the list of analogies
generated by initial map[nowwlt;oldwffl.
(2) Apply extcnderTanalogy; AXSET] to each

analogy or analogies. *
(3) Return the resultant set of analogies.

The preceding description allows that there may
be more than one analogy generated by either
INITIAL-MAP or EXTENDER In practice, however,
each tends to generate but one (good) analogy.
In the following paragraphs | will describe

AXSET is the set ot axioms that appears in
proof[T].

Session No. 14 Theorem Proving

INITIAL-MAP in some detail. BEXTENDER will be dis-

cussed Iin the next section.

INITIAL-MAP is designed to take two first-
order predicate calculus wffs and attempt to gene-
rate a mapping between the predicates and variablee
that appear in them. The variable mapping infor-
mation is used to assist INITIAL-MAP in mapping
predicates in cases of seeming ambiguity; INITIAL-
MAP outputs a set of associated predicates that
appear in the statements of T" and T. This re-
stricted mapping is used as a starting analogy by
EXTENDER, which finds a complete mapping for all
the predicates used in proof[T]. As a byproduct
EXTENDER finds analogs for each of the axioms on
AXSET. INITIAL-MAP (unlike EXTENDER) does not
reference AXSET, the set of axioms used to prove
T, and is symmetric with respect to caring which
wff represents the proved or unproved theorem.
INITIAL-MAP uses atommatch[atorn]/, atom ; 6] as a
rule of inference to add the predicate/variable
information to analogy Ci. As its nmame hints,
ATOVMAICH matches the predicates and variables of
its atomic arguments and adds the resultant mapping
to the developing analogy (k).

ATOVMAICH is used as an elementary operation
by every matching routine in the INITIAL-MAP
system (Figure 3). Thus, we will discuss it first

ATOMMATCH H INITIAL-MAP

[

ATOMMATCI‘THSINGLEMATCHH SETMATCH

1 L

TEMPSIFT MULTIMATCH

| Il

[ATOMMATCH MULTIMATCH1HATOMMATCH

|

TEMPSIFTY]

[

ATOMMATCH

FGURE 3 HERARCHY OF MATCHING ROUTINES
CALLED BY INITIAL-MAP

and then consider how INITIAL-MAP is organized to
apply it intelligently. Consider how we might
write an ATOMMAICH Suppose, atomj and aton” are
of the same order (same number oi variables) and
each variable place in each atom has the same se-
mantic type. For example, let

1 1+ Xy Xgl

atom = 1ntersection|y ;v ;v |
2 Y Yo Yy

atom, - 1ntersection{x

Session No. 14 Theorem Proving

R E. KLING

Clearly, we want

intersection * intersection
¥

and x "y, o, i=1,2,3.
So, if atom; = plxy; ... x_]
and atom, = qly.; ... y]
1 m
and p = q (thus, n = m)
we will set P q
and X, - Y s 1 =1,2,...,n

So far ATOMMATCH is quite trivial. Suppose, how-
ever, p # q or n # m.

For example, let atom1 = groupl[x; *1]

and atom = rin I I
n 0 g [y 5 2]

Clearly we want to associate the set x with the
set y and the operator *1, with either or both of
*» and + . AIOMVAICH can know which variables
represent sets, etc., by checking the semantic
templates associated with group and ring. Now,
the template associated with group is structure
[set;operator] while that associated with ring is
structure[set; operator; operator]. We will map
variables with each other so as to preserve
predicate place ordering and semantic type. To
handle the unequal number of variables, we will
temporarily expand the atom group [x; *4] to in-
clude a dummy variable of type operator,
"dummyop,” and will rewrite it as group[x,”;
dummyop]. The symbol "dummyop” is used to expand
either (or both) atoms to be of the same order
and a variable (possibly dummy) of the same se-
mantic type In corresponding places in each atom.
Then we can mgp the variables one-one in order of
appearance. For example we can associate

x Ty
and

* o dummyo *v(* +

Then we c¢an remove dummon and rewrite
* o (x -}-
1 2’ 2)

We can describe this process formally in two
stages.

(1) Make the two atoms type-compatible and
of the same order by adding dummy
variables whencver necessary.

Let atom, = plx_.; ...x]
1 1 n

atom = S e e
) q[y1 ym]

*
I will use a double-headed arrow as in

"x * y" to mean "x is associated with (analogous
to) y."

!“H

575
template [atomI] = typelp] [type[xll ... type
[x]]
n
template [atom2] = typelq] [type[yll ... type

(y 1)
m

Furthermore, suppose that the ordering of the types
IS the same Iin each template, even though the
number of variables of each particular type need
not be identical for corresponding "type blocks."
Thus, in the preceding example, in both "group"
and ring" the type set precedes the type operator.
Each template has one set variable, but a differing
number of operator variablos. Thus, we could par-
tition the ordered set of variables in atom; and
atorn, by letting some x, and x ,, belong to the
same partition if type[x = type[x .,]* Now there
are an equal number of partitions in both atom,
and atonU). Returning to our example, we partition
group[x; *j] into ("Cx], ['] 1] and the ringfy; *,; +]
into I[y], r*2;+2]]. (The brackets indicate that
the order of elements is preserved.)

(2) Map the partitioned subsets into each
other, preserving their order within the
partitions, and map elements into elements
if the two subsets have an equal number
of elements.

This completes our brief description of
ATOMMAICH From now on, we will consider AIOVMAICH
as an elementary operation that will expand the de-
veloping analogy to include a (possibly) new predi-
cate pair and (possibly) new pairs of variable
associations. We need to know how to select pairs
of atoms from the statements of T and T to be
ATOVIVATCHed.

We have two wifs representing T and T as
arguments of INITIAL-MAP, and we want to find some
way to slide ATOMMAICH over pairs of atoms se-
lected from the wffs. First, note that the syntax
of the wffs may be a helpful guide in selecting
potential matches.

Suppose T:A => p(x)
Ty:B = aly)
where A and D arc any wffs.

We would presume that p ™ q (predicates)

%

X ** y (variables)

and A" B (sub-wffs) -

where we expect that wits A and B would be decom-
posed down to atoms for ATOMMVAICH If A and B

had implication signs in them, we could decompose
them similarly. There are many possibilities for
the forms of T and To. We find that if T and Ta
are closely analogous, then their syntactic forms
are likely to be very similar. ZORBA considers

576

Session No. 14 Theorem Proving

R E KNG

T ad T. to hae the fomats that can be ropre
sented by the generative garmar below

T=A=A
A->pIx ... X] A p[XXn]
INITIAL-MAP is designed to dsoonpose the In
put wits T axd Ta into associated syntactic sub

structures until a subwff is either an aom

p[x1 ch xn] or a conjunction of atoms

At this point it enters a hierarchy of selecting
ad matching routines (Figure 3) to decde which
pairs of aonms shall be AIUMVAIG-E] Naturally,
if the subwiis are just aoms it calls AKWAGH
directly. Otherwise, it enters a pogam hier-
archy headed by a routine renmsed SEIVAIUH which
selects appropriate aom pairs from the sets of
conjuncted aoms in the subwiffs.

In the following discussion, the rnurber of
adoms conjuncted In eadh set are assumed equal
k=SL). EINVAIH can be described in terms of
Iits subfunctions as follows:

Selhnatch [set ; sety; anal: =

(1) Partition the ans in set; ad set,

INto subsels that have identical semantic

templates (a "semantic partition™).
Ths If sety is grouptx; *] A abelian
[V: *] A intersection! z; x; y] the se-
mantic partition will be
{{intersectionfz;x;y]j{grouplx; *],
abelianly; *]} since goup ad abelian
are both of type struct[set;op].

(2) Select the partitions of set; ad set;
that have but ae eement ad call these
sing ad sing, , respectively.

(3) The remaining partitions have noe than
ae element, call tem multy ad mult,,,
respectively.

4) Madch the a&ms in sing, with those in
sing, by executing singlematch[smg ;
sing,;anal.

(5) Makdh the remaining aons by executing
mulimatch[mult ; mult ; anal.

FIVAIAH INABHVAICH ad M_LLIVAICH are all

heunst ically designed onejass malching strate-
gies that nde strong assumptions about the na-
ture ot the theoem statements T ad T# for an

analogous theoem pair.

VWren an andlogy a. is referenced within the de-

scription of an algorithm, it will be represented
as a variable aa wherever that iIs nae convenient.

FINVAIGH asaunes that the a@ons N set-, ad
set; will mgp oneone ad that the semantic parti-
tions will mgp one-one. Suppose, we have a se-
mantic partition thus:

partltlon {{a1om aom } {alom akom]} {alom }

|sart|t|on2 {{atom 6aom ;7{alom g:m éJ {atom]OJ

FEIVAIGH assures that fatom ad {atora,J will
comrespond, rather than iatom.J and, say [atomy
atom;}. It calls SNAHVAIUH to ngp the single-
agom partitions onto the single-atom partitions.

In addition, it calls MLIMAICH to mgp, Iin
pairs, the partitions containing several aoms
each.

M_LIVAICH assumes that the analogy will pre-
serve semantic type sufficiently well so that
dors within a particular partition will corre-
sood only to aoms In ae other partition.

Thus, if {atom alorrb] <-> [atom 6alc)m7}
then alom %Jm or am7
alom2 aom6 or aom7
It forbids makdhes acoss partitions, such as
agom ™ aom
1 6
abm2 eiom8
agom ™ atom, etc.
3 7’

INAHVAIUH ad M_LIVAIUH also share a aamn
default condition. If all but ae of the eements
ot a set X are ngyad with all but ae of the ele-
mers of a set Y, then those wwo eements are as-
sociated by dciault without any further decision
making. In INAHVAIGH the sets X ad Y arc sets
ot aons or partitions of atoms.

INAHVAICH [set ; set.,; anal nmey be easily de-
scribed In terms of this default condition ad a
function called tempsift[s,;s ;testfn;anal.
TBHVFESFT applies testfnjx;y] to the first eement
of S; axd eadh successive eement y of s, until
it finds ay € sg such that testtn|x;y] - T

It then executes
atommatch; y ;ang] :

increments to the next eement of x of si, ad
Il
seeks another y e s,, sudh that testfrux ;y | -
T, etc. Thus, for every x e s , it finds the
first y € s, such that testfn[x;y] - T axd exe-
cutes atommatchxyy] = T. Typical testfihs dedk
whether X ad y have the sare semantc template
or are analogs of eadh other according to the de-
veloping analogy, ana. Singlematch[set,; sct,;
anaj: =
(1) I set} ad set, have but ae eoment
("terminal default condition"), go to 8.

Session No. 14 Theorem Proving

o577

R E KNG

(2) Execute tempsif t[set,; set,; testin..; ang] ,
where testfintxjyj is true iff x ad y
have the sse semantic template.

(3) |If set; ad set,, are empty, go to 9.

If the terminal default condition is
true, go to 8.

(4) Execute tempsif t[set-p set,; tcstfn,; anal,
where testfMtxjy] is true iff the pre-
dicate letter in aom y is the analog
of the predicate letter of that In
aom X according to analogy ana.

(5) If sety ad set;, are empty, go to 9.

If terminal default conditions holds,
go to 8.

(6) BExeaute tempsift[set ;set,;testfns analj,
where testfns[x;yj is true iff the type
of the predicate appeanng In aom X is
the sare as the semantc type of the
predicate appearnng in aom V.

(7) If sety ad set, are empty, go to 9.

If the terminal default condition holds,
go to 8. Otherwise print an error
message ad halt.

(8) Apply AKIMVAIKH to the remaining aoms
of set ad set..

(9) SICP.

To illustrate the preceding algorithm with a
simple example, let

set, = fintersection[x;y;z], abeliangroup[x;*1J

set, = {intersection|u;v;w],
commutativeringlu; *; 1] J

Step 2 associates
Intersectionlx;y;zj <-> intersection|u;v;w]
ad the terminal default condition associates
abeliangroup[x; *] = commutativennglu; *; -/ J

M_LIVAICH is a little noe compex than
INAHVAIGH First we need to decde which par-
titions are to be associated before associating
aoms within partitions. Sygoose we have two
sets of partitions set, ad set,. If both sets
heve but ae partition each (@ coymon case),
then we expect these to be associated by default
and declare tem accordingly. Secondly, if in
sore partition of sety there is an aobm with
predicate p which is komn to be analogous to
predicate q, then the partition in set, that con-
tains q should be associated with that which con-
tains p. Rararba that these partitions wee
constructed on the basis of semantic templates.
Thus, while several aoms containing a predicate
p ey be in a particular partition, there will
be only ae partition that contains akbnms with
predicate p. Lastly, if in set; ad set, there
Is but oe partition that contains aoms whose

predicates have the sare type, e.g., SIRUCIUE
then we expect these partitions to be associated.
Let M_LIVAIOH rare the function that actually
associates aoms within a partition according to

analogy ana.
MULTIMATCHs ;set,;anal.=

(1) If the terminal default condition for
partitions holds, go to 7.

(2) Let pred[x] - the predicate letter of
aom X. For eadch partition y, sequence
through each atomx e y. If pred[x] is
on analogy aa 1 md the partition z c
set, such that the analog of prcd[x] ap-
pears N z BExeacue M_LIVAIGH
[y;z;ana] for each sudh pair y,z.

(3) If the terminal default condition holds,
go to 7. If set. ad set, are emply, go
to 8.

(4) For eadch partition y e set-., select the
first aom x. Find a partition z € set,
such that the type of predicates in z
equals type [x]. If there is only ae
such z C set,, execute MULTIMATCHIyZ
anay.

(5) If the terminal default condition holds,
go to 7. If set, ad setg are emply, go
to 8.

©6) Ili set, or set is still not exhausted,
print an error message ad halt.

(7) Apply M_LLIVAIGH to the remaining parti
tions INn set ad set .

(8) SICP.

Eadh set of aons in a partition has the sare
semantic template. This property defines a par-
tition. Thus, at the level of abstraction pro-
vided by the templates, all of these a@ms are
alike ad ay differences need to be discriminated
by other criteria. Let us consider an exanpe to
motivate the design of MLLTMVAICHL. The theoem
pair T3 - T can be written as:

/

T3 Y (g,m,x,*l) group[g; *11 A
propernormal[m;g;*ll N factorstructure[x;g;m)
N simplegroup[x;*l] = max1ma1group[m;g;*1]

‘
CV(r;n;y; * + ing x4+ 1A

2

proper1dea1[n;r;*2;+2] N factorstructurel[y;r;n]

A 51mplering[y;*2;+21 = max1ma1r1ng[n:r;*2;+2l

First ZORBA-] associates:

maximalgroup * maximalring

578

Session No. 14 Theorem Proving

R E KNG

when it deconposes T3'- T4 into subwifs dis-
tinguished by the syntax of the implication sign.
Later an application of SNAHVAICH adds:

propemormal ** proper ideal
lactorstructure ** factorstructure
x vy

M_LIVAICH is passed ane partition from each wif

T3 contributes

{grouplLg;*], simplegroup[x; *]},

ad T4 contributes

[ring[r; *,;+5], simpleringly; *> ; +2]}.

if we apply the M_LLTMAICH algorithm just
described to each of these partitions, we find:

Step 1 We do not satisfy the terminal de-
fault condition.

Step 2 Noe of the predicates that appear
In these partitions appear on the
current analogy. VWe gather no new
information here.

Step 3 We still do not satisfy the terminal
default condition.

Step 4 We want o use MLLIVAIGH o asso-
ciate the atoms in these partitions.

Of these two partitions, the former pair have the
template structure[set; operator] and the latter
pair have structureTset;operator;operator].
Fortunately, our analogy has variable mapping in-
formation that is quite relevant here. We kow
that:

g~r

We can assure that if ssme variable appears in
only ae atom in a partition, the analogous atom
Is ae that contains its analog variable, if it
too appears In only one atom. For example, the
variable "g" appears only in group! gj*], ad its
analog "r" appears only in nngfr; *;+>]. So, we
deduce:
grouplg; *] ~ ring[r; * ~J]

A similar agument based upon
X"y
leads us to deduce:
simplegroupfx; *] simplenngly; * ';+ 5]

although we could have also deduced this last
association by our terminal default condition.
Notice that "* " is not a discriminating variable
since it appears in both groupfg;*4,] and simple-
grouplLx; *]. After each atom pair is associated,
we apply AIUMVAICH to it to deduce moe variable
associations and update our analogy.

The preceding description of MULIIMAIOHT can
be simplified and generalized by realizing that
we are just using a specialized suorep of the de-
veloping analogy to extend it further. his
special sdorgp is just that mapping of variables
where each variable appears in only one atom of
the partition. In the preceding example, the

stbmegp wes just:

g "r
x Ty
MultimatchlCpartition ;partition, ;anal: -
(1) Set £1 to a list of variables that appear
in only ane atom of partition .
(2) Set i2 to similar list computed on

partitionz-

(3) Set anaprs = {x

g y"x' € £1, y' € £2
and y' 1s the analog of x' E; ana} . R
(4) Execute tempsift{partition,;partition,;
testfng; ana], where testfn4[u;v],is ’
true iff for some variable pair x © y €

/
anaprs variable x appears in atom u and

variable y' appears 1n atom v.
(5) STOP.

INITIAL-MAP has been completely described.
At this point we havwe sufficient machinery to
generate a mapping between the predicates ad
variables that appear in the statements of theorem
pairs such as T1 - Toad T3 - T . Next we want
to extend this mapping to include all the predi-
cates that appeared in the proof of the proved
theorem T and are likely to appear in the proof
of the new theorem T.. In addition, we would like
to pick up a small set of axoms adequate ior
proving T . EXIHNER performs both functions

A DETALED DESCRIPTON OF EXIHNCHR

In the last section 1 described INITIAL-MAP
IN substantial detail. In comparnson, EXIHN.HR
Is a far moe ocomplex and subtle system which |
will explicate here less completely. 1 intend to
accomplish several simple ams with this limited
exposition:

(1) Bqose the reader to the motivation and
rationale underlying the EXIHNLER design.

(2) Cowey sore appreciation for the flavor
of sore well-specified computational al-
gorithms for creating an analogy.

(3) Provide an intelligible, self-contained,
introductory account of EXIHENCHR adequate
for the general reader, ard motivate the
more sophisticated specialist to consult
a moe complete exposition. (6)

Session No. 14 Theorem Proving

579

R. E. KLING

The rationale of EXTENDER depends upon a few
simple related ideas. | will begin by explicating
these, then develop MAPDESCR—the clause descrip-
tion mapping operation—and conclude with a dis-
cussion of two simple versions of EXTENDER.

In the last section | suggested that our com-
plete analogy could be seen as the last map aq,
iIn a series a; of increasingly more complete
analogies. Although we may be developing several
such series in parallel, they all begin with the
same ai—the analogy produced by INITIAL-MAP.
Each G maps some subset of the predicates that
appear in the proof of theorem T. Each distinct
subset will, in general, lead to a different par-
tition of AXSET into [ALL, SCME, NONE}. When we
search for the analog oi an axiom (clause), we
will look for some clause that satisfies the
analog of its description under the current
analogy. Each clause has a unique description,
descrlc], which has been introduced in a previous
section. We will denote the analog of descrfc]
by some analogy GJ as GJ[descr[c]]. G, rdescrTc]]
iIs equal to a copy of descr[c] in whicF{ every
predicate that appears in a; is replaced by its
analogous predicate. Predicates that are absent
from G are left untouched. For example, suppose
we have a trivial Gj:

G1 . abelian " commutativering
c . ~1abeliunlx; *] V group [r, *]
d7: negfabelianl,pos[group]. - descrlc7]

G1 [CI7] -neg commutat Ivering] ,pos[group] .

Suppose we are seeking to extend G* by finding
the analog of C7. It is quite unlikely that we
will find a clause that satisfies this descrip-
tion, (G*fd_]), since it would be derived from
some (rare) theorem that relates a condition on
commutative rings to a group structure. In any
event, it would not be an analog of c~. It we
sought all the clauses that satisfied neg[commu-
tativering], we would be sure to include c» and
Cq, Which at least include c,, the clause we
desire,

C,i Y commutativering[x; *; f] ¥

c : ~i commutativcringlx; *;(] V commutativeT™; x]

ringlx; *; 1J

Thus, somctimet» we want to search for clauses that
satlsly descriptions with leatures, e.g.,
neglcommutativering], that contain only prcdicates
that appear on a particular analogy Ci Now,

what we arc doing is a four-step process:

(1) Make a description d for an axiom
clause c, descric].

(2) Create an analog description C fdescr[c]l
for the current analogy, G

(3) Delete from G,[descr[c]] any feature that
contains a predicate that does not appear
iIn 6 . Denote this restriction of
Qu[descr(c)] to Ci by 6 [descr(c)].

(4) Search the data base for clauses that
satisfy CL [descr(c)].

In our example, 6,[descrfc]] = G,[d7] =
neg[commutetivenng] . Ci [descr(c)] is a "restric-
tion of the analog of the description of ¢ to
analogy 6P." Since this phrase is quite cumber-

some, we will simply call it a restricted descrip-
tion" and implicitly understand its dependence on
J

At different times EXTENDER may seek clauses
that satisfy a complete analogous description

G [descr] or /just a restricted one G [descr]. In
summary, EXTENDER relies upon four key notions:

(1) An ordered sequence of partial analogies

a.i_

(2) A partition of the axioms used in proof
[T] (AXSET) into three disjoint sets:
ALL, SOME, and NONE

(3) A search for clauses that satisfy the
analogs ot the description of the clauses
in proof[T].

(4) A restriction of our descriptions rela-
tive to an analogy Gj by including only
those ieatures with predicates that ap-

pear in G-.

INITIAL-MAP used an operation called
ATOMMATCH in a rather clever way to extend its
current analogy. Likewise, EXTENDER uses an
operation called MAPDESCR for a similar purpose.
Both operations use abstract descriptions in order
to associate their data: AITOMMAICH uses the se-
mantic template associated with a predicate, and
MAPDESCR uses the description oi the clauses it
Is associating. EXTENDER and INITIAL-MAP differ
iIn that EXTENDER generates a new partial analogy
each time it activates MAPDESCR (and the resultant
mapping is new) while INITIAL-MAP uses ATOMMAICH
to expand one growing analogy.

Each partial analogy GJ IS derived Irom its

antecedent G * by adding

(1) An association of one clause ax € SOME
with one or more clauses Irom the data
base.

(2) An association oi the predicates in
those clauses.

A simple example will illustrate this amply. 11
G. is the initial analogy generated by INITIAL-
MAP applied to the pair of theorems Tj-T", its

predicate map is

580

Session No. 14 Theorem Proving

R E KLING

abelian commutat Ivering

Intersection<=>intersection.

Suppose we know that ¢ «* Cy. We would like to
extend G to G by adding:

(1) Cr» * Cg
(2) abelian = conunutat Ivering
group * ring.

To motivate the structure of MAPDESCR let
us design a version of it that would enable us
to extend 0. to G in this example. MAPDECH is
charged with mapping neg[abelianl, posjgroupl
(d_) with negtcommutatlveringl, posfnngj, when
it knows that:

G : abelian «= commutatlvering

iIntersect ion = intersection.

First, we can eliminate negfabelian] from d and
neg[commutativeringd from d on the basis of G
which associates "abelian” and "commutatlvering.”

G|[neglabelian]] - negtcommutatlvering]1.
Now we are simply left with associating pos[group)
and pos[ring]. Since these are the only two
elements lett, have the same semantic type
(STRUCTURE), and have the same feature (pos), we
can map them by default and add

group ring
to GZ'
Now, we can write a version of MAPDESCR

which accepts as arguments two clause descriptions

and an analogy G :
mapdescr(descr_;descr_ ;0 1:-=
1 2)

(1) Yx x € descr1 s.t. G {x] e descrz,
J

delete x from descr1 and GJ[x] from

descrz. Thus, we exclude all those

features we know about from GJ.

(2) VYx x ¢ descrl and x € descr,, map the

predicate that appcecars in x into 1tseltl

and delete x from descr1 and descrz.

(3) In the remnants of descr1 and descrz:

(a) 1f there are unique elements of

descr1 and descr2 that have the

same feature, e.g., pos, and se-

mantically compatible predicates,
associate those terms and delete
them from the remnant descriptions.
Here "semantic compatibility” means
"same semantic type."

(b) If more than one element of descr

and descr have the same feature.
2]

e.g., pos, then discriminate within
these elements on the basis of the
semantic types of their predicates.

(4) Return the resultant list of paired
predicates.

Most often in my algebra data base a clause de-
scription consists of two, three, or four features.
EXTENDER ensures that some of the predicates in
any pair of clauses passed on to MAFDECR are on

G Thus, by the time we reach step 3 of the
MAPDESCR algorithm we often have descriptions of
length one, which map trivially by default, or
descriptions oi length two with different features,
e.g., pos and neg. Thus, step 3b, which requires
disambiguation based upon predicate types, occurs
rarely in this domain (abstract algebra).

When MAFDESCR returns a list of predicates
pairs that result from mapping the description of
a clause c (descr , above) with the description

of a clause c¢ (descr , above) according to analogy

G,, it creates a new analogy G G is the

same as G except that

(1) Its predicate map is the union of the
one returned by MAPDESCR and the one
appearing on G .

(2) Its clause mapping is the union of the
one appearing on Gj andc; <=>c,.

Thus, when EXTENDER is attempting to extend
G , it creates a new analogy G G , etc. for
each clause pair it maps when those clauses were
selected on the basis of information in G . Of
course, there is a procedure to see whether the
predicate associations of a new analogy have ap-
peared in some previously generated analogy and
thus prevent the creation of redundant analogies.
In this case the two corresponding clauses are
added to each existing analogy for which the
predicate pairs returned by MAFDESCR are a subset
of its clause map.

After | explicate one additional idea | can
describe a simple version of EXTENDER \When
EXTENDER is extending G. it is searching the
large data base for some clause that is the analog
of an axiom ¢, C SOME Now we could search for
the set of clauses that satisfy Gj[descrCc”]],
but we will run into the difficulty described
earlier in this section. Thus, we search for
clauses that satisfy G\ [descr[ck]]. If G, con-
tains the correct analog for each predicate that
appears on it, then the set of clauses C that
satisfy Ga[descr|[cjJ] is guaranteed to contain
the desired analog of ¢ ("image" of ¢). We

Session No. 14 Theorem Proving

581

R E KINC

will reier to C as the "candidate mege set.
Suopose that C has but ae menbe;, € . Then we
kowv that ¢ is the analog (mage) of ¢ ad
shoud ext¢ =0 bycinting

| | /

C ¢

k
VW the set of clauses that satisfies a re-

st ricted description contains only ag, we are
guaranteed that it is the mage dause we seek
1 OP does not contain any enmoneous associations
Nown, if C is emply, we have reason to suspect
t he correctness of &P ad we ougit to s top de-
veloping this branch of the analogy search
space. On the other hand, if C has noe than
ae menbe;, axd GP s correct, we kow that our
desired mage is in C. [If we have a clause c
with description descricl ad sore ama logy G
that contains only ae of the predicates in c,
then Ci Tdescric] | w 11 have but one f ea ture ad
may clauses will satisfy it. If sore later
analogy ti® AP — &Y) includes another predicate
from c in addition to the ae on G then
G.fdescrfc]] will have two features ad will be
satisfied by fewer clauses than G . [descr[c]1.
Thus, as sequenoe ol analogies evolve, each
clause wi11 have decreasingly fewer Candda t e
mages t ha t sa t isty its rest ricted description.

To search for the clauses that satisfy the
analog of a restricted (short) description,
EXTENCER invokes an operator shortdescr{G].
J{RIER is dependert on G in three ways:

(1) It searches 1 or the amalogs of clauses
t hat appear on SME (which is ditierent
for each G).

(2) It generates descript)ons that include
only the predicates that appear expli-
citly in G1.

r
(3) It uses the predicate ngp G .
1

J{RIER returns a (possibly empty) list of
axoms (from SOVE) each of which is paired with
a set of clauses from the data base which satisty
the analog of its restricted description. Eadh
axiom is guaranteed to have its analog under G
in its associated "candidate image set." If we
find no candidates at all, for any ax. € 3SAVE
then we kow that G contains sore wong predi-
cate associations, add we ought to mak it as
'infertile" and discont mue attempting to extend
it. Of the mages we find, we prefer those
axiom-candidate associations with but ae candi-
date linage. f we apply MAER to each such
pair, we can be sure that we have a consistent
extension of G,. Let us consider a primitive
version of EXTHNDER EXTEHNDER which exploits
these few ideas.

EXTENO |G AXLIST]=

(1) Let analist - (Q]), the set of active
analogices.,

(2) 1t 0] 1s complete, STOP.

(3) Partition AXLIST 1nto {ALL,SOME, NONE}
relative to U].

(4) Set i1mlist to shorldoscrlﬁ]]. It
imlist = f, mark QJ as BARREN and go to 7.

(5) Set unimages to the subsetl of imlist that

has only one candidatle analog for each

axiom. Ii{ unimages - f, go to 7,
(6) Apply MAPDESCR to cach axiom and 1ts
analog that appears on unimages. I

MAPDESCR adds a new analogy, add 1t to
the end of analaist.
(7) I1{f analist 1s empty, STOP. Otherwisc,

set Q] to the next clement on analist.
Go to 2,

The suoccess of EXTEHND is highly dependent
uoon the clauses In the data base. If there are
few clauses then it is likely that sore ax. €
SME will have but onre mage under SHRIESR at
each iteration ad that EXIHND will be successlul

As the data base Increases In size with ever naoe

clauses involving predicates that will appear In
proof n\], then It becomes noe likely for

J{RIEIR to generate several maees for every
ax, € SIM in sme iteration. At this point it

will fail to EXIHND & ad miss the analogy al-
t ogether- To remedy this situation, we need a
way tor dealing with cases wen SG{RIER returns
several candidate mages for each ax. € SVE We
need sore way to select the clause from the can-
didate set that is most likely to be the analog
we seek. Wen EXIHNER meels a situation of this
sort, it orders all the mages according to their
likelihood of being analogous to the ax. C ACET
with which they are paired. | will mi11ate the
description of one such ordering relation by a
simple example.

Consider, 1 or example, the clause ¢ ad an
am logy Gy that includes

1intersection ® 1ntersection
subgroup * subring
abcliangroup © commutativering

¢ 10 subgroup[x;y:; *] V = grouplx; *] V -
grouply; *] V — subset|x; y]
d10 - neglgroup], neglsubset], pos[subgroup]
G,[d 1 = pos|[subring].
2ld o p g)

Suppose our data base contains two clauses ¢

11
and c¢ that satisfy G [d :
12 y ,ld00!
Cll: subr1ng[m;r;*;+] vV — 1deal [m;r; *; +]
dll = neglideall, poslsubringl
c_ ¢ subringl[x;a; *;+]1 V = ringla; *; +]
12
V. = ringl[x; *;4] V — subset[x;a]
d = neglringl], neg(subset], pos[subring].

12

582

R. £ KLING

We can compare ci; and cq» by comparing di; and

dq, with d1d° (relative t G,)N e want a partial

ordering of a set of descriptions relative to a

target description and a particular analogy, e.g.,

ay.[d,;dg;d;6] that orders description d
o 1 + J 1
with respect to d,-

as fmlpwa{ =d_ -G (d]

/
- U [d
d2 d2 J[]

/

d" = d- G [d]
J

For d, and d compute the number of features,
eg*> P°s, in common with d . The description

with the most features in common is closest to d.

In our example, we have

d = neg[group], neg[subset]
d" - neglideal]

d = neglring], negfsubset].

Clearly d12 Is closer to d ,~than d

select d our closest description and c
12 12

image of ¢ under C . After MAPDESCK maps
** 10 - .
C10 qz it will ad%.
group ° ring

upset ° subset
5

to 62 to create ag

Gq: intersection intersection

3 8

subgroup subgroup

group ring

subset.

a g

subset

A more sophisticated '4* can look at the semantic-
types of predicate that share common leatures if
two descriptions are equivalent under the simple
¢4 described above. EXTEHNDER uses an operator
called MULTIMAP to select the best image (using
P q) for a clause that has several candidates
Images with a restricted description under
Exploiting this notion, we can write a more
powerful EXTENDER called EXTENDZ2.

EXTEND2 [Q ;AXSET]: -

1 (G) |
active analogies. Start with analist

(2) If Q is complete, STOP.

(3) Partition AXSET into [ALL, SOVE, NONE)
relative to Ct

(4) Set Imlist to shortdescrTCi]. If
Imlist - 0, mark CL as "infertile" and
go to 8.

(5) Set unimages to the subset of Imlist
that has only one candidate analog for
each axiom. If unimages 0, go to 7.

A simple oo* can be developed

SO we
as the

(6)

(8)

Session No. 14 Theorem Proving

Apply MAFDECR to each axiom and its
analog that appears on unimages. |If
MAPDESCR adds a new analogy, add it to
the end of anallst. Go to 8.

Apply MULTIMAP to imlist to select an
optimal candidate image under cp . for
each axiom. Set unimages to this list
of axioms paired with best candidates.
Co to 6.

If analist is empty, STOP. Otherwise,
set d to the next element on analist.
Go to 2.

This version of EXTENDER is quite powerful
and will handle a wide variety of theorem pairs.
The reader who is interested in the behavior of

EXTENDE

R In generating the sequency 6

IS referred

to a more detailed report (6) for case studies and

further explication.

EXTENDE

The implemented versions oi

R are far more complex than these simpli-
filed tutorial versions.

They (1) allow backup,

(2) have operations for combining a set of partial
analogies into a "larger"” analogy consistent with
all of them, (3) have a sophisticated evaluation
for deciding which particular axiom-candidate set
to pass to MULTIMAP (in lieu of step 7 above), and
(4) can often localize which predicate associa-
tions are contributing to an infertile analogy

when one Is generated.

Table 2B contains a brief

summary of ZORHA-I's behavior when it is applied
to live T-TA pairs drawn from abstract algebra.
The number of partial analogies generated in-
cludes (J. generated by INITIAL-MAP.

Tl.

T2.

T3.

14.

t>.

T6.

T7.

18.

T9.

T10.

Table 2A
THEOREMS REE D IN TABLE 2B

The intersection of two abellan groups
IS an abelian group.

The intersection of two commutative
rings is a cummutative ring.

A lactor group GH is simple ill H is a
maximal normal subgroup ol G.

A quotient ring A/IC is simple Ifl C is a
maximal ideal In A.

The intersection of two normal groups is
a normal group.

The Intersections oi two ideals is an
idea 1.

The homomorphic image oi a subgroup is
a subgroup.

The homomorphic image ol a subring is a
subring.

The homomorphic image of an abelian
group is an abelian group.

The homomorphic image of a commutative
ring is a commuintive ring.

Session No. 14 Theorem Proving 583

R. E. KLING

T1': abelian [AA; *4] A abelian [b; *y] A
iIntersection|c;a;b] = abelian|c; *1]

—i
- T5': abelian[x; *2] A cring[y;*,;+>] A
4 . . .
E - intersection”; x;y] - abelian[z; ?]
-
o & K 5 R T ATOVMATCH can mep
5 5 £8
E 5 8 abelian[c; *] ™ abelian|[z; *]
p] "
g and abelian[b; *] ** cring[y; * ;4-]
- 4
o at different times and handle many-one predicate
- 55 N maps. However, the EXTENDER would need to know
°c 208 X (and It does not yet) how to handle this ambiguous
§ a Bl ©w ~ @& & © = information.
: ey - & ° S
g 3 i The second restriction is created by the ex-
o L > tension of the analogy by finding image clauses
g ?é_ that satisfy the incrementally improved analogy.
o B o A ;l 5 To state this condition on the image clauses in a
~ E g;: n e o oo < formal way, | need to introduce some simple termi-
s : g g - - « — = nology. Let us say that a clause c bridges a set
r 3 z < & ° of predicates P to another set of predicates P
S] N e X 2
5 B2 ® i
a = PSPy
: o -2 8 . ™ Te) (4p) b4 (o)] &
2 c:.§ P !l preds[C] = P
3 sE:l 5 1 2
5 Z & = ; P1 N preds[C} # ©
- 0 uE; 1 and (redundantly)
° 5 b 2
-~ O > ™ a0 0 = P (preds[C) # ©
g D = ~ 2 2 #
P P
Z, é: - % 2 2
* * Now consider two clauses, ¢, and ¢,. We will say
b o | 2 ,
E o o that ¢, and c, bridge from P, to P, if 4 P and
. - E g ?-?. 'E: qE) €, bridges from P1 to P’ and <, bridges from p’
ol ' ' ! ! ! S to P2. P, cp’' C P,. In general, we will say
© - g 1o e g E that an unordered set C of k clauses bridges from
i = (I f /
= " P, to P, 1ff 4 pl, p2 o Pl
such that:
(1) d c] € C and Cl bridges from Pl to P;
(2) V x =2 ... k-1land c € C
AN J
NECESSARY CONDITIONS FOR AN ANALOGY ¢ bridges from P; to P;H
/
. (3) 4 c¢c € C and ¢ bridges from P to P .
ZORBA-1 has three necessary conditions for k k k-1 2
creating an analogy. The first, created by the Now let:

form of ATOMMAICH pertains to the form of the

statements of Tand T preds[T] - predicates used in proof of T.

(1) In the staterr'?ents of T and Ta atoms Pr[T] = predicates used in statement of T
must mgp one-one from T to TA' kK - analogy from T to TA.
Notice that we do not insist that predicates map descr[cl = description of clause c.
one-one. Consider an INITIAL-MAP between CL[descr[c]] - analog description of the
Tl: The intersection of two abelian groups description of ¢ under Ci
Is an abelian group AXSET - axioms used in proof of T.

and
T5: The intersection of an abelian group
and a commutative ring is an abelian

group

584

Session No. 14 Theorem Proving

R. E. KLING

(2) A necessary condition for the EXTENDER
to work 18 that:

(a) d ¢ © AXSET and ¢ bridges Pr(T) to
preds[T].

(b) and if G[c] {c”, ¢ satisfies
Gidescr[c’]) tor some ¢’ ¢ ¢

i

G{c] bridges from Pr[TA] to preds[TA].

More verbally, some subset of the axioms in
the proof of T that bridge R the domain of
INITIAL-MAP to preds[Ta] has a set of image
clauses under G that bridge the images of
INITIAL-MAP to predsfT]. Thus, the proofs need
not be isomorphic, merely that some subset of the
axioms have a nearly isomorphic set of image
axioms, similarly restricted to the bridging
condition.

This bridging condition may seem rather non-
mtuitivc from the vantage point of choosing a

data base, but it should be clear that EXTENDER
Imposes this condition.

To develop analogies in domains that are de-
scribed by predicate calculus with constants
would require wholly different analysis algorithms
Consider a robot that is instructed to go from
SRI to (1) an office on its floor, (2) Stanford
University, (3) San Francisco, (4) New York City,

(5) Chicago. These five problems could be stated
to QA3 as
T . 4 1 bot; office ; s
10 sf at [ro 0 05 f]
.4 at [robot; Stanford; s
Ty sg et l £
SRC 1 bot; San F i ; S
112 S{ at [robo n Francisco f]

T . Us at [robot; NYC; s]
13 f f
T14. Hsf at [robot; Chicago; Sf]

By trivial syntactic matching we could asso-
ciate officed with Chicago, Stanford with San
Francisco, etc. The robot's actions to get from
SRl to Stanford or San Francisco, New York City,
or Chicago are pairwiee similar. But the
INITIAL-MAP or extender would have to know the
"semantics" of these (geographic) constants
(with respect to SRI) and the robot's actions to
assess which problems are adequately analogical
and which action rules should be extrapolated to

the unsolved problem.

RELATIONSHIP BETWEEN ZORBA- AND QA3

In the preceding section, | have discussed
the organization and use of ZORBA-l independently
of QA3. In this section, | merely want to note

how change in QA3 can affect the way in which the
analogical information output by ZORBA-1 can be
used.

The present version of ZORBA-1 outputs a set
of clauses that it proposes as a restricted data

base for proving T.. |If every clause in proof[T]
has at least one image clause, then simply modi-
fying the QA3 data base is magnificently helpful.
However, if the analogy is weak and we have only
a partial set of images, what can we do? If every
predicate used in the proof[T] has an image, we
could restrict our data base to just those clauses
containing the image predicates. Could we do
better? And what do we do with a partial analogy
In which some clauses and some predicates have
images, but not all of either? At this point we
meet limitations imposed by the design of QAS.

All contemporary theorem provers, including QAS,
use a fairly homogeneous data base. QA3 does give
preference to short clauses, since it is built
around the unit-preference strategy. But it has
no way of focusing primary attention upon a select
subset of axioms A*, and attending to the re-
maining axioms in D - A* only when the search is
not progressing well. One can contrive various
devices, such as making the clauses in A* pseudo-
units" that would be attended to early. Or, with
torch and sword, one could restructure QA3 around
a "graded memory." (7) Basically we have to face
the fact that our contemporary strategies for
theorem proving are designed to be as optimal as
possible in the absence of a priori problem-
dependent information. And these optimal strate-
gies are difficult to reform to wisely exploit a
priori hints and guides that are problem dependent.
This is not to say that various kinds of a priori
information cannot be added. Rather, it is a
separate and sizable research task to decide how
to do it. | presume, but do not know, that these
comments extrapolate to other problem-solving pro-
cedures, and a system that is organized around a,
priori hints, heretofore user supplied, may look
very different than one which is designed to do
its best on its own. QA3 was chosen because it
was available and saved years of work developing
a (new) suitable theorem prover. However, further
research in AR may well benefit from relating to
a more flexible theorem-proving system.

WHATS NaW?

What does AORBA add to our understanding of
AR? What does Z0RBA leave unanswered? Pre-ZORBA,
most researchers believed that analogies would
relate to plans and (possibly to probably) include
some sort of semantic information. Z0RBA adds the
following insights to our understanding of AR

(1) Some fairly interesting AR can be handled
by modifying the environment in which a
problem solver operates rather than
forcing the use of a sequential planning
language.

Session No. 14 Theorem Proving

R. E. KLING

(2) Each problem solver/theorem prover will
use different a priori information and
consequently will require different
analogy-generation programs.

(3) A good analogy generator will output
some information helpful to speeding up
a problem search as a byproduct of a
successfully generated analogy.

(4) Part of the problem of AR is to specify
precisely how the derived analogical in-
formation is to be used by the problem
solver.

(5) An effective, nontrivial analogy genera-
tor can be adequately built that uses a
simple theory and primitive semantic
selection rules.

(6) Although analogies are nonformal and are
semantically oriented, nontrivial analo-
gies can be handled by a special system
wrapped around a highly formal theorem
prover.

In contrast, AJRBA neglects:

(1) Methods for handling those analogies
that absolutely require a planning level
generalization and sequential informa-
tion.

(2) Very weak analogies.

(3) What to do with many rules of inference.

(4) How to describe the "structure of an

analogy.”

ARBA makes a substantial contribution to our
pale understanding of AR, and in the process
helps articulate additional questions that reveal
our vast ignorance of analogical ways of knowing.

1. N. J. Nilsson, Problem Solving Methods in
Artificial Intelligence (McGraw-Hill, to be
published 1971).

2. G. W. Ernst and A. Newell, "Some Issues of
Representation in a General Problem Solver,"”
AFIPS Conference Proceedings, Vol. 30 (1967),
pp. 583-600.

3. R. E. Fikes, "REF-ARF: A System for Solving
Problems Stated as Procedures,” Artificial
ntelligence, Vol. 1, pp. 27-120 (1970).

4. R. E. Kling, "An Information Processing Ap-
proach to Reasoning by Analogy," Artificial
Intelligence Group TN10, Stanford Research
Institute, Menlo Park, California (June 1969)

5.

585

C. Green, Theorem Proving by Resolution as a
Basis for Question Answering Systems," in
Machine Intelligence, Vol. 4, D. Michie and
B. Meltzer, eds. (Edinburgh Univ. Press,
Edinburgh, Scotland, 1969).

R. E. Kllng, "Reasoning by Analogy with Ap-
plications to Heuristic Problem Solving: A
Case Study," Stanford University Ph.D. Thesis

forthcoming.

R. E. Kling, 'Design Implications of Theorem
Proving Strategies," Al Group Technical
Note 44, Stanford Research Institute, Menlo
Park, California (1970).

