
568 

A PARADIGM FOR REASONING BY ANALOGY 

Robert E. Kling 
Stanford Research Inst i tu te 

Menlo Park, California 
U.S.A. 

ABSTRACT 

A paradigm enabling heurist ic problem solving 
programs to exploit an analogy between a current 
unsolved problem and a similar but previously 
solved problem to simplify i t s search for a solu­
t ion is outl ined. It is developed in deta i l for 
a f i rs t -order resolution logic theorem prover. 
Descriptions of the paradigm, implemented LISP 
programs, and preliminary experimental results 
are presented. This is believed to be the f i r s t 
system that develops analogical information and 
exploits it so that a problem-solving program can 
speed i t s search. 

INTRODUCTION 

An in te l l igent man thinks deeply and learns 
from his past experiences. Contemporary theorem-
proving and problem-solving systems are continu­
a l l y designed to think ever more deeply and to 
ignore their past completely. A problem solver 
designed in any of the contemporary paradigms 
(such as resolution (1), GPS (2), and REF-ARF (3)) 
solves the same problem the same way each time 
it is presented. A f o r t i o r i , they are unable to 
exploit s imi la r i t ies between new and old problems 
to hasten the search for a solution to the new 
one. ZORBA, outlined in this paper, is a para-
digm for handling some kinds of analogies. This 
is the f i r s t instance of a system that derives the 
analogical relationship between two problems and 
outputs the kind of information that can be use­
f u l l y employed by a problem-solving system to 
expedite i t s search. As such, ZORBA is valuable 
in three ways: 

(1) It shows how nontr iv ia l analogical reason­
ing (AR) can be performed with the tech­
nical devices fami l iar to heurist ic pro­
grammers, e .g. , tree search, matching, 
and pruning. 

In Ref. (4), I show that there are several kinds 
of analogies from an information-processing 
point of view. We should hardly expect one 
paradigm to include them a l l . Restrictions on 
the variet ies of analogy handled by ZORBA are 
described in the section ent i t led "Necessary 
Conditions for an Analogy." 

Session No. 14 Theorem Proving 

(2) It provides a concrete information-
processing framework within which and 
against which one can pose and answer 
questions germain to AR. 

(3) Since it is implemented ( in LISP), it is 
available as a research tool as well as 
a gedanken too l . 

The last two contributions are by far the most 
important, although our attention w i l l focus upon 
the f i r s t . In the 50's and 60's, many researchers 
f e l t that analogical reasoning would be an impor­
tant addition to in te l l igent problem-solving pro­
grams. However, no substantial proposals were 
offered, and the idea of AR remained rather nebu­
lous , merely a hope. ZORBA may raise more ques­
tions of the "what i f ? " variety than it answers. 
However, now, unlike 1968, we have an elementary 
framework for making these questions and their 
answers operational. 

ZORBA PARADIGM 

Although prior to ZORBA there were no concrete 
paradigms for AR, there was an unarticulated un­
developed paradigm within the a r t i f i c i a l i n t e l ­
ligence Zeitgeist. Suppose a problem solver had 
solved some problem P and has i t s solution S. If 
a program is to solve a new, analogous P , it 
should do the following: 

(1) Examine S and construct some plan (schema) 
S that could be used to generate S. 

(2) Derive some analogy a p p. 
(3) Construct G (s ' ) = s' . 

A (4) Execute S to get S , the solution to P . A A 
If P was solved by executing a plan, then S 
would be available and step (1) could be omitted. 
Although nobody has explicated this idea in pub-
l icat ions, from various conversations with workers 
in the f i e l d , I believe that the preceding descrip­
tion is close to the paradigm that many would have 
pursued. As such, it constitutes the ( late-60's) 
conventional wisdom of a r t i f i c i a l intel l igence. 
Certainly this (planning) paradigm is at t ract ive ly 
elegant! However, in 1969, when this research 
was begun, it was an inappropriate approach for 
two reasons: 

(1) There are no planning-oriented problem 
solvers that are f u l l y Implemented and 
operate in a domain with interesting 
nontr iv ia l analogies. This state of 

PLANNER at MIT and QA4 at SRI are two current 
planning-oriented problem solvers that are under 
development. The f i r s t is par t ia l l y implemented 
and the second exists only on paper. It is not 
yet clear what problem-solving power PLANNER w i l l 
have, and how effect ive it w i l l be in domains 
with interesting analogies. 



Session No. 14 Theorem Proving 569 

R. E. KLING 

af fa i rs probably w i l l change in the next 
few years, but it now renders d i f f i c u l t 
any research that depends on the existence 
of such a system. 

(2) Given the plans generated by such a sys­
tem, it is hard to know a p r io r i at what 
level of generality the derived analogy 
w i l l map into an executable analogous 
p lan.* If SA f a i l s , is too strong, or 
wrong? Should 6 be modified and a variant 
S. computed, or should the system keep 
G, and just back up i ts planner and gene­
rate an alternative subplan using i t s own 
planning logic? At best this is a rather 
complex research issue which would i n ­
volve a good planning-oriented problem 
solver as an easily accessible research 
too l . At worst, the preceding paradigm 
may be too simple and the development of 
a suitable α may be interactive with how 
much successful problem-solving has pro­
ceeded so far. (A complete α should not 
be attempted before some problem solving 
begins and is extended as needed in the 
course of solving P .) 

A 
Happily, there is an alternative approach that 

circumvents the preceding d i f f i c u l t i e s . Consider 
system that has solved some problem P and is 

posed with a new (analogous) P to solve. Clearly, 
t must operate on some large data base suff ic ient 
o solve both P and P . (See Figure 1.) In ad-

dit ion to the subbase for solving P and P there 

they work with nonoptimal data bases, it is ob­
vious that many of the irrelevant inferences that 
are generated are derived from the data-base as­
sertions (theorems, axioms, facts) in D - D1 (or 
D2 - D1). In fact, as the number of theorems i r ­
relevant to the solution P becomes large, the 
number of irrelevant inferences derived from this 
set begins to dominate the number of irrelevant 
inferences generated within D and i ts descendants 
alone. In fact , while a problem solver might 
solve P given an adequate and small D , it may be 
swamped and run out of space before a solution 
given a D2 that is much larger than needed. 
Clearly, one effective use of analogical informa­
tion would be to select a decent subset D of D 

2 such that size [D ] size [D ] size [D]. For 
example, a typical theorem in algebra provable by 
QA3 —a resolution logic theorem proof—may re­
quire only 10 axioms (D ) while the f u l l alge­
braic data base has 250 axioms. If a system 
could select a D2 such that size[D2] - 15 axioms, 
a massive saving in search could be had. In fact, 
the theorem that would be unprovable on a D with 
size[D] = 250 would now be provable. 

A second kind of information that would be 
useful to help solve P would be a set of lemmas 
(or subgoals) L , . . . whose a n a l o g s . . . 
G(L ) could be solved by the system before at­
tempting P . 

A 
At this point I w i l l not discuss how to recog­

nize a lemma and generate i ts analog; instead, 
I merely want to note that lemmas may be effec­
t ive ly used without using a planning language 

FIGURE 1 VENN DIAGRAM OF THEOREMS IN DATA BASE 

Even given an optimal data base, a problem 
solver w i l l generate some irrelevant inferences. 
In general, automatic problem solvers and theorem 
provers run out of space rather than time when 
they f a i l to solve a problem. Ernst(2) empha­
sizes this point with regard to GPS, and I have 
had similar experiences with QA3(5), a resolu­
tion logic theorem prover. 

Recognizing lemmas depends upon the problem-
solving system. For example, in resolution 
logic, some good cr i te r ia for lemmahood are: 

(1) A ground unit used more than twice (or 
k times) in a proof. 

(2) A unit that is a merge. 
(3) A clause that is the "least descendant" 

of more than 2 (or k) units. 
Generating a lemma depends upon the system's 
ab i l i t y to associate variables with variables 
and that may be tr icky when skolem functions are 
introduced. 



570 Session No. 14 Theorem Proving 

R. E. KLING 

that forces backup in case of fa i lu re . Suppose we 
somehow get . . . . A typical planner 
would order the , e . g . , . . . e tc . , 
attempt to solve them in sequence, and stop if any 
lemma fa i l s to be solved. In contrast, we merely 
need to attempt each If we get a solut ion, 
add to the data base ( l i ke a theorem) and 
continue with the next lemma. If we f a i l , con­
tinue anyway. At worst, we wasted some computation 
time. Each useful decreases the number of 
steps in the solution of PA and may decrease the 
depth of the solution tree. Thus, lemmas are 
helpful in getting a faster solution. Note, how­
ever, that a s u c c e s s f u l n e e d not be used in 
the solution of PA. It is merely available. 
Thus, we are not bound by the fail-backup orienta­
t ion of sequential planning logics. 

In summary, if we use analogical information 
to modify the environment in which a problem 
solver operates, we can ef fect ively abbreviate the 
work a problem solver must perform. Of course, a 
well-chosen environment w i l l always lead to a more 
e f f ic ient search. Usually, we have no idea how to 
ta i l o r a subenvironment automatically to a par­
t icu lar problem. Here we do it by exploit ing i t s 
analogy with a known solved problem. Now, the 
representations used, the analogy-generating pro­
grams, and the types of additional information 
output w i l l depend upon the problem-solving system 
(and even the domain of appl ication). Any further 
discussion needs to specify these two items. 

APPLICATIONS TO RESOLUTION LOGIC 

upon a part icular paradigm, two issues are more 
easily resolved: 

(1) What kinds of information are most useful 
to provide to the problem solver? 

(2) Which representations shall we use to 
describe the analogies and handle the 
necessary data? 

Resolution logic is an inference rule whose 
statements are called clauses.*(1),(5) Thus, a 
resolution-oriented analogizer w i l l deal with 
clauses and their descriptions. In contrast, GPS 
uses sets of objects to describe i t s states, and 
we would expect that an analogy system devoted to 
GPS would deal with (complex) objects and their 
at t r ibutes. Table 1 contrasts the kinds of i n ­
formation helpful to QA3 and GPS. An analogy 
f a c i l i t y developed for GPS would be oriented to 
i t s peculiar information structures instead of 
clauses and axioms indigenous to resolution. 

Table 1 

KINDS OF INFORMATION HELPFUL TO QA3 and GPS 

QA3 (Resolution) 

Relevant axioms 

Expected predicates 

GPS 

Lemmas 

Admissible function 
nestings 

Relevant operators 

Abbreviated difference 
table 

Subgoals 

Restrictions on operator 
applications 

The preceding discussion referred to an 
problem solver and is just a proposal. Computer 
programs have been implemented to apply this para­
digm to a resolution logic theorem prover, QA3.(5) 
For the class of analogies these programs handle, 
this is an accomplishment. When we begin to focus 

In fact , under some conditions, the axioms used 
to solve (L i ) may be deleted from D2 so that 
size [ D 2 ] IS decreased, and (L i ) is not at ­
tempted again inadvertently during the solution 
of P . A 
Here environment is synonymous with data base. 
But it can also include permissible function 
orderings ( in predicate calculus) and other kinds 
of res t r ic t ive information. Each rule res t r ic t ing 
the "environment" could be translated into an 
equivalent new decision rule res t r ic t ing the ap­
pl icat ion of the inference procedures of the 
problem solver. However, I f ind it easier to 
think of ZORBA in terms of modified environments 
rather than (the equivalent) modified decision 

I want to digress br ie f ly and describe the 
kinds of theorems that the implemented system, 
ZORBA-I, tackles. Br ie f ly , they are theorem pairs 
in domains that can be axiomatized without con­
stants (e .g . , mathematics) and that have one-one 
maps between their predicates. The theorems are 
f a i r l y hard for QA3 to solve. For example, 
ZORBA-I w i l l be given proof of the theorem 

T l . The intersection of two abelian groups 
is an abelian group 
and is asked to generate an analogy with 

T2. The intersection of two commutative rings 
is a cummutative r ing. 

A clause is an element in the conjunctive normal 
form of a skolemized wff in the predicate ca l ­
culus. For example: — person [x] 
V father [g(x); x] is the clause associated with: 
Vx person [x] → 3y father [y;x] (every person 
has a father) . 



Session No. 14 Theorem Proving 571 

R. E. KLING 

Given 
T3. A factor group G/H is simple i f f H is a 

maximal normal subgroup of G. 

Generate an adequate analogy with 

T4. A quotient ring A/C is simple iff C is a 
maximal ideal in A. 

None of these theorems are t r i v i a l tor contemporary 
theorem provers. (See Table 2, in a later section, 
lor a l i s t i ng oi additional theorem pairs.) T1 
has a 35-step prool and T3 has a 50-step proof in 
a decent axiomatization. A good theorem prover 
(QA3) generates about 200 mlerences in searching 
for either prool when i ts data base is miaimized 
to the 13 axioms required lor the proof of T1 or 
to the 12 axioms required for the proof of T3. 
If the data base is increased to 20-30 reasonable 
axioms, the theorem prover may generate 600 
clauses and run out of space before a proof is 
found. Note also that the predicates in the prob­
lem statement of these theorems contain only a lew 
ol the predicates used in any prool. Thus, T 
can be stated using only fINTERSECTION; ABELIAN], 
but a proof requires {GROUP; IN; TIMES, SUBSET; 
SUBGROUP; COMMUTATIVE] in addit ion. Thus, while 
the f i r s t set is known to map into {INTERSECTION, 
COMMUTATIVERING} , the second set can map into 
anything. 

Figure 2 shows a set P including a l l the 
predicates in the data base. 

FIGURE 2 VENN DIAGRAMS OF RELATIONS 
IN STATEMENTS T, TA' AND D' 

We know P1 and P2, the sets of predicates in the 
statements of the new and old theorems, TA and T. 
In addit ion, we know the predicates P1 in some 
proof of T (since we have a proof at hand). We 
need to f ind the set P2 that contains the re la­
tions we expect in some proof of TA, and we want 
a map G: G(P ) = P . 

Clearly, a wise method would be to f ind some 
G , a res t r ic t ion ol G to P1 such that α' (P,) -

P2 Then incrementally extend G to α1' α2, 
each on larger domains un t i l some G (P ) - P2 
ZORBA-I does this in such a way that each incre­
mental extension picks up new clauses that could 
be used in a proof of T. . In tact , if we get no 
new clauses from an extended α'j, that may be rea-

son to believe that α1' is faul ty . The next sec-
tions w i l l describe the generation algorithm in a 
l i t t l e more de ta i l . ZORBA'S REPRESENTATION OE AN ANALOGY 

In the preceding sections I have implied that 
an analogy is some kind of mapping. The ZORBA 
paradigm—e.g., using an analogy to res t r i c t the 
environment in which a theorem prover works—does 
not res t r i c t this mapping very much. For d i f fe r ­
ent i n tu i t i ve l y analogous theorem pairs, this 
mapping would need to be able to associate predi­
cates (and axioms) in a one-one, one-many, or 
many-many fashion, possibly dependent upon con­
text . For other theorem pairs, one-one mappings 
and context-free mappings are adequate. ZORBA-I 
is a part icular sot of algorithms that rest r ic ts 
i t s acceptable analogies to those which map 
predicates one-one with no context dependence. 
It allows one-many associations between axioms; 
e .g . , one axiom ol the proved theorem is asso­
ciated with one or more axioms that w i l l be used 
to prove the new, analogous theorem. More ex­
p l i c i t l y , a ZORBA-1 analogy G is a relat ion 
αP X Αc x αv , where: 

(1) αp is a one-one map between the predi­
cates used in the proof oi the proved 
theorem T and the predicates used in the 
proof of the unproved theorem TA . 

(2) αc is a one-many mapping between clauses 
Each clause used in the prool oi T is 
associated with one or more clauses from 
the data base D that ZORBA-I expects to 
use in proving T.. 

(3) G is a many-many mapping between the 
variables that appear in the statement 
of T and those that appear in the state­
ment of T . 

A 
Different sections of ZORBA-I use these 

various maps, e.g. , α v and/or Gp and/or αc. 
Usually I w i l l drop the superscript and simply 
refer to "the analogy G." Thus "the analog of an 
axiom ax under analogy G" should be understood 
to mean αcfax 1, and w i l l often be mentioned 
simply as "the analog oi ax . 

In the previous section I refer to a sequence 
of analogies α1 , .. . . . αk. ZORBA-I usually does 
not develop αc in one step. Rather, it 



572 Session No. 14 Theorem Proving 

R. E. KLING 

incrementally extends some l imited analogy into 
one that maps a few more variables, predicates, 
or clauses. This process is described in f u l l 
detai l in the next few sections. Here, I just 
want to define several terms that refer to this 
process. When I refer to "the analogy between 
T and TA" 1 refer to a mapping that includes 
every variable in the statement of T, and every 
predicate and clause used in the proof of T. 
This "complete" mapping is obtained as the f ina l 
step of a sequence of mappings that contain the 
associations of some predicates and some clauses. 
I refer to these incomplete mappings as "par t ia l 
analogies," In addit ion, we are concerned with 
an important relationship between two (par t ia l ) 
analogies. A (par t ia l or complete) analogy αk. is 
an extension of a par t ia l analogy αj if some of 
αj, e .g . , αj

p , αc G f is a submap res t r ic t ion of 
the corresponding submap u.̂  to a smaller domain. 
I n tu i t i ve l y , when we add a new predicate or 
clause association to αj so as to create αk, we 
say that αj, has been extended to G. . We are now 
ready to survey ZORBA-I. 

AN OVERVIEW OF THE ANALOGY-GENERATING ALGORITHM 

I want to describe the ZORBA-I algorithm in 
two stages, f i r s t b r ie f l y in this section and 
then in greater deta i l in the following two sec­
t ions. I w i l l precede these descriptions by some 
background on the representations and information 
available to the system. 

ZORBA-I is presented with the fol lowing: 

(1) A new theorem to prove, TA. 
(2) An analogous theorem T (chosen by the 

user) that has already been proved. 
Proof[Tl that is an ordered set of (3) 
clauses cK s . t . Vk c^ is either 
(a) 
(b) 
(c) 

A clause in ~i T 
An axiom 
Derived by resolution from two 
clauses 
c and c j < k and 1 < k. 

These three items of information are problem 
dependent. In addit ion, the user specifies a 
"semantic template" for each predicate in his 
language. This template associates a semantic 
category with each predicate and predicate-place 
and is used to help constrain the predicate 
mappings to be meaningful. For example, 
STRUCTURE[SET; OPERATOR) is associated with the 
predicate "group." Thus, ZORBA-I knows that "A" 
is a set and "*" is an operator when it sees 
group[A;*]. Currently, the predicate types (for 
algebra) are STRUCTURE, RELATION, MAP, and REL-
STRUCTURE; the variable types are SET, OPERATOR, 
FUNCTION, and OBJECT. 

In addit ion, ZORBA-I can make up a description 
descr[c] of any clause c according to the f o l ­
lowing rules regarding the predicates of c. 

(1) V s . t . p and - p appear in c, impcond[p] 
c descr[c]. 

(2) V s . t . p appears in c, pos[p] C descr[c]. 
(3) V s . t . — p appears in c, neg[p] 

c descr[c]. 

Thus, the axiom, every abelian group is a group, 

e .g . , V(x*) abelian [x; *1 =» group [x; *] , 

is expressed by the clause 

c :—i abelian fx; *] V group Tx; *1 , 

which is described by 

neg [abel ian], pos [group! 

Each element of a descript ion, e.g. , pos[group], 
is a "feature" of the description. Each feature 
corresponds to one predicate, so the number of 
features in a clause equals the number of predi­
cates in the clause. The theorem, the homomorphic 
image of a group is a group, e .g. , 

V (x y * 1 * 2ω ) 

horn [ω>;x;y] A group lx; * 1 

=> group Ty; *.J 

is expressed by the clause 

c :-i horn [cp;x;y| V -i group lx; * 1 V group [y; * ] 

and is described by 

negI horn], impcond[group] 

Two different clauses may have the same description 
Let : 

c : - i . n te rsecuon fx jy ; * ] V subset fx;y] 

c 
Then : 

intersect ion[x;y;z] V subset[x;z] 

descrlc ] = descr[c ] = neg[intersect ion ] , 
poslsubset| 

Clause descriptions are used to characterize 
the axioms whose analogs we seek. ZORBA-1 selects 
as analogs clauses that have descriptions that are 
close to the analogs of the descriptions of axioms 
in the known axiom set. Although in a special 
context ZORBA-1 actually uses an ordering relat ion 
on a set of descriptions to f ind a "best clause," 
it usually exploits a simpler approach. We w i l l 
say that a clause c sat is f ies a description d i f f 
d c descrlc] . Thus, several clauses may sat isfy 
the same description. 

The "analog of a description" is defined la ter . 



Session No. 14 Theorem Proving 573 

R. E. KLING 

Let : 
c intersectionfx; y; 7 J V - grouply; *J 
V —i grouplz; *] V group[x; *] 

c : -n subgroup[x; y; *] V ~i subsetfx;yl 6 
Then, the following statements are true: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

{c2
,c

5 } satisfy impcondfgroupl 
{c1,c2,c5 } satisiy poslgroup] 

satisiies neg[abelian], pos[group] 
{c3,c4,C6 } satisiy poslsubset] 
C6 satisfies neglsubgroupj, poslsubset 
No clause of these six satisfies 
pos [intersect ion] 

Clearly, if a description contains only a few 
features, then several clauses may satisfy i t . 

The semantic templates are used during both 
the INITIAL-MAP (when the predicates and variables 
in the theorem statements are mapped) as well as 
in the EXTENDER, which adds additional predicates 
needed lor the prooi oi T. and finds a set of 

axioms to use in proving TA. The clause descrip­
tions are used only by EXTENDER. 

I intend the brief description that follows 
to provide an overview of ZORBA-I in preview to 
the next two sections of text, which describe it 
in considerable detail. In addition, this preview 
section may be a helpful roadmap" for reference 
when the reader immerses himself in the details 
that follow later on. 

ZORBA-I operates in two stages. INITIAL-MAP 
is applied to the statements of T and TA to create 
an Α1

P which is used by EXTENDER to start its sc-

quence of α1
p and Α which terminate in a complete 

u. INITIAL-MAP starts without a priori informa­
tion about the analogy it is asked to help create. 
Both αp and α are empty when it begins. It uses 
the system of the wffs that express T and T. as 
well as the restrictions imposed by the semantic 
categories to generate OP and α1

v that include all 
the predicates and variables that appear in the 
two wffs. For example, the statements of T1 - T2 
can contain three of the nine predicates used in 
proollTj] and the statements of T - T. can con­
tain five of the 12 predicates used in proof[T„]. 
In brief, it provides a starting point from which 
EXTENDER can develop a complete 0. 

The INITIAL-MAP uses a rule of inference 
called ATOMMATCH[atomjjatorn ;0], which extends 
analogy by adding the predicates and mapped 
variables of atom̂  and aton^ to analogy OL. Thus, 
ATOMMATCH now limits ZORBA-I to analogies where 
atoms in the statements of T and T. map one-one. 
INITIAL-MAP is a sophisticated search program 

that sweeps ATOMMATCH over likely pairs oi atoms, 
one of which is from the statement ol T, the other 
1rom the statement ol T.. Alternative analogies 
are kept in parallel (no backup), and INITIAL-MAP 
terminates when it has found some analogy that in­
cludes all the predicates in the theorem state­
ments. This one is output as Ci!?. 

EXTENDER accepts a partial analogy generated 
by INITIAL-MAP and uses it as the first term in a 
sequence of successive analogies 0 The axioms 
used in pr oof \ T ] a re f ew in c ompa r 1 s on to the sr/e 
oi the large data base and comprise the "domain" 
for a complete 0 . For each axiom used in proofIT1, 
we want to find a clause from the data base that 
is analogous to i t . The axioms used in proolIT] 
are called AXSET and are used by EXTENDER in a 
special way. Each partial analogy ααp is used to 
partition AXSET into three disjoint subsets called 
ALLIOJ, S0ME[0j, and NONE[0 ]. 

If all the predicates in an axiom ax, C AXSET 
k 

are in OP, then ax. is in ALL[α ]; if some of its 

predicates are in α1,p then axk is in S0ME[0 ]; 
and if none of its predicates are in αJ,p then axk 

is in N0NE[α1 ]. For brevity, these sets will be 
called ALL, SOME, and NONE, and their dependence 
on α1 will be implicit. This partition is trivial 
to compute, and initially, none or a iew axk are 
in ALL, and most ax, belong to SOME and NONE. We 

k 
want to develop a sequence ol analogies α1, j = 1, 

n 
J 

that contain an increasingly larger set of 

Atoms, not predicates. 

predicates and their analogs. If an axiom is con­
tained in ALL, then by definition we know the ana­
logs of each of its predicates. It cannot assist 
us in learning about new predicate associations. 
In contrast, we know nothing about the analogs of 
any of the predicates used in axioms contained in 
NONE. Analog clauses for these axioms are hard 
to deduce since we have no relevant information to 
start a search. Unlike these two extreme cases, 
the axioms in SOME are especially helpful and will 
become the focus of our attention. For each such 
axiom we know the analogs ol some of its predi­
cates from 0 . These provide sufficient inlorma-
tion to begin a search for the clauses that are 
analogous to them. When we finally associate an 
axiom with its analog, we can match their respec­
tive descriptions and associate the predicates of 
each that do not appear on α1

P. We can extend αJ 
to α and thus the analogs of axioms on SOME 
provide a bridge between the known and the un­
known, between the current 0 and a descendent 
G , j . When EXTENDER has satisfactorily terminated, 
ALL = AXSET, SOME = NONE = 0. So the game becomes 
finding some way to systematically move axioms 
from NONE to SOME to ALL in such a way that for 
each axk moved, some analog O,[axkl - axk is found 
that can be used in the proof of T . Moreover, 

A 



574 Session No. 14 Theorem Proving 

each new association of clauses should help us 
extend by providing information about 
predicates not contained in ' 

A DETAILED DESCRIPTION OF INITIAL-MAP 

At heart, ZORBA-I is a heurist ic program de­
signed to generate analogies between theorem pairs 
stated in a subset of predicate calculus. It has 
been designed and implemented in a f a i r l y modular 
manner to f ac i l i t a t e understanding and ease of 
generalization. Thus, much of the system can be 
described in algorithmic terms. In this section 
I hope to blend some appreciation of the heuristic 
foundations of the program while describing i ts 
operation with algorithmic c l a r i t y . ZORBA-I uses 
an interesting set of searching and matching rou­
t ines, which have been empirically designed, 
generalized, and tested on a set of problem pairs 
(T, - T„ and T„ - T4 are f a i r representatives of 
this set) . The control structures of INITIAL-MAP 
and EXTENDER have been designed to pass f a i r l y 
similar structures to the various match routines 
(described below). Thus, the following descrip­
tions w i l l cover cases where the structures to be 
mapped are f a i r l y simi lar. For example, most of 
the routines that match sets of items assume that 
the sets are of equal cardinal i ty and that they 
w i l l map one-one. Such assumptions are val id tor 
a large class of interesting analogies (such as 
the group-ring analogy in abstract algebra) and 
simpli fy the description ot the various proce­
dures. Analogies that require weaker assumptions 
and more complex procedures arc described else­
where. (6) 

In the previous section I motivated the design 
of INITIAL-MAP and EXTENDER, which generate a re­
st r ic ted analogy and expand it to cover a l l the 
relations and axioms necessary for the now proof. 
ZORBA-I can be easily expressed in terms ot these 
two functions as follows: 

zorba |newwff;oldwff;AXSET J: -

(1) Set analogies to the l i s t of analogies 
generated by i n i t i a l map[nowwlt;oldwffI. 

(2) Apply extcnderTanalogy; AXSET] to each 
analogy or analogies. * 

(3) Return the resultant set of analogies. 

The preceding description allows that there may 
be more than one analogy generated by either 
INITIAL-MAP or EXTENDER. In practice, however, 
each tends to generate but one (good) analogy. 
In the following paragraphs I w i l l describe 

AXSET is the set ot axioms that appears in 
proof[T]. 

INITIAL-MAP in some de ta i l . EXTENDER w i l l be d is­
cussed in the next section. 

INITIAL-MAP is designed to take two f i r s t -
order predicate calculus wffs and attempt to gene­
rate a mapping between the predicates and variablee 
that appear in them. The variable mapping infor­
mation is used to assist INITIAL-MAP in mapping 
predicates in cases of seeming ambiguity; INITIAL-
MAP outputs a set of associated predicates that 
appear in the statements of T^ and T. This re­
s t r ic ted mapping is used as a start ing analogy by 
EXTENDER, which finds a complete mapping for a l l 
the predicates used in proof[T]. As a byproduct 
EXTENDER finds analogs for each of the axioms on 
AXSET. INITIAL-MAP (unlike EXTENDER) does not 
reference AXSET, the set of axioms used to prove 
T, and is symmetric with respect to caring which 
wff represents the proved or unproved theorem. 
INITIAL-MAP uses atommatch[atorn]/, atom ; 6] as a 
rule of inference to add the predicate/variable 
information to analogy Ci. As i t s name hints, 
ATOMMATCH matches the predicates and variables of 
i t s atomic arguments and adds the resultant mapping 
to the developing analogy (k) . 

ATOMMATCH is used as an elementary operation 
by every matching routine in the INITIAL-MAP 
system (Figure 3). Thus, we w i l l discuss it f i r s t 

FIGURE 3 HIERARCHY OF MATCHING ROUTINES 
CALLED BY INITIAL-MAP 

and then consider how INITIAL-MAP is organized to 
apply it i n te l l i gen t l y . Consider how we might 
write an ATOMMATCH. Suppose, atomj and aton^ are 
of the same order (same number oi variables) and 
each variable place in each atom has the same se­
mantic type. For example, let 



Session No. 14 Theorem Proving 575 

R. E. KLING 

Clearly we want to associate the set x with the 
set y and the operator *1, with either or both of 
*2 and + . ATOMMATCH can know which variables 
represent sets, etc. , by checking the semantic 
templates associated with group and r ing. Now, 
the template associated with group is structure 
[set;operator] while that associated with ring is 
structure[set; operator; operator]. We w i l l map 
variables with each other so as to preserve 
predicate place ordering and semantic type. To 
handle the unequal number of variables, we w i l l 
temporarily expand the atom group [x; *1] to i n ­
clude a dummy variable of type operator, 
"dummyop," and w i l l rewrite it as group[x,*1; 
dummyop]. The symbol "dummyop" is used to expand 
either (or both) atoms to be of the same order 
and a variable (possibly dummy) of the same se­
mantic type in corresponding places in each atom. 
Then we can map the variables one-one in order of 
appearance. For example we can associate 

Furthermore, suppose that the ordering of the types 
is the same in each template, even though the 
number of variables of each particular type need 
not be identical for corresponding "type blocks." 
Thus, in the preceding example, in both "group" 
and r ing" the type set precedes the type operator. 
Each template has one set variable, but a d i f fer ing 
number of operator variablos. Thus, we could par­
t i t i o n the ordered set of variables in atom1 and 
atorn2 by le t t ing some x, and x ,, belong to the 
same par t i t ion if type[x = type[x . , ] • Now there 
are an equal number of part i t ions in both atom, 
and atonU). Returning to our example, we part i t ion 
group[x; * j ] into ("Cx], [*]_]] and the ringfy; *2; +>,] 
into l [ y ] , r * 2 ;+ 2 ] ] . (The brackets indicate that 
the order of elements is preserved.) 

(2) Map the partit ioned subsets into each 
other, preserving their order within the 
par t i t ions, and map elements into elements 
if the two subsets have an equal number 
of elements. 

This completes our brief description of 
ATOMMATCH. From now on, we w i l l consider ATOMMATCH 
as an elementary operation that w i l l expand the de­
veloping analogy to include a (possibly) new predi­
cate pair and (possibly) new pairs of variable 
associations. We need to know how to select pairs 
of atoms from the statements of T and T to be 
ATOMMATCHed. 

We have two wifs representing T and T as 
arguments of INITIAL-MAP, and we want to f ind some 
way to slide ATOMMATCH over pairs of atoms se­
lected from the wffs. F i rs t , note that the syntax 
of the wffs may be a helpful guide in selecting 
potential matches. 

Suppose T:A => p(x) 

T :B =* q(y) A 
where A and D arc any wffs. 

We would presume that p ** q (predicates) 

x ** y (variables) 

and A m B (sub-wffs) ? 

where we expect that wits A and B would be decom­
posed down to atoms for ATOMMATCH. If A and B 
had implication signs in them, we could decompose 
them simi lar ly. There are many possib i l i t ies for 
the forms of T and TA. We f ind that if T and TA 
are closely analogous, then their syntactic forms 
are l i ke ly to be very similar. ZORBA, considers 



576 Session No. 14 Theorem Proving 

R. E. KLING 

T and T. to have the formats that can be ropre 
sented by the generative grammar below 

A -> pTx ...x ] A p[x ....xn] 

INITIAL-MAP is designed to decompose the in 
put wffs T and TA into associated syntactic sub 
structures until a subwff is either an atom 

At this point it enters a hierarchy of selecting 
and matching routines (Figure 3) to decide which 
pairs of atoms shall be ATOMMATCHed. Naturally, 
if the subwffs are just atoms it calls ATOMMATCH 
directly. Otherwise, it enters a program hier­
archy headed by a routine named SETMATCH, which 
selects appropriate atom pairs from the sets of 
conjuncted atoms in the subwffs. 

In the following discussion, the number of 
atoms conjuncted in each set are assumed equal 
(k = SL). SETMATCH can be described in terms of 
its subfunctions as follows: 

Setmatch [set ; set2; ana]: = 

(1) Partition the atoms in set1 and set2 
into subsets that have identical semantic 
templates (a "semantic partition"). 
Thus if set1 is grouptx; *] Δ abelian 
[y; *] Δ intersection! z; x; y] the se­
mantic partition will be 
{{intersectionfz;x;y]j{grouplx; *] , 
abelian[y; *]} since group and abelian 
are both of type struct[set;op]. 

(2) Select the partitions of set1 and set2 
that have but one element and call these 
sin1 and sing2 , respectively. 

(3) The remaining partitions have more than 
one element; call them mult1 and mult,,, 
respectively. 

(4) Match the atoms in sing, with those in 
sing2 by executing singlematch[smg ; 
sing2;ana]. 

(5) Match the remaining atoms by executing 
multimatch[mult ; mult ; ana|. 

SETMATCH, SINGLEMATCH, and MULTIMATCH are all 
heunst ically designed one-pass matching strate­
gies that make strong assumptions about the na­
ture ot the theorem statements T and T̂  for an 
analogous theorem pair. 

When an analogy α. is referenced within the de­
scription of an algorithm, it will be represented 
as a variable ana wherever that is more convenient. 

SETMATCH assumes that the atoms in set-, and 
set2 will map one-one and that the semantic parti­
tions will map one-one. Suppose, we have a se­
mantic partition thus: 

partition = {{atom atom } {atom atom ]} {atom } 
1 1 2 3 4 L 5 

partition - {{atom atom j {atom atom J J {atom j P 2 6 7 8 9 10 
SETMATCH assumes that {atomc} and {atorairJ will 
correspond, rather than iatom.J and, say [atomfi 
atom7}. It calls SINGLEMATCH to map the single-
atom partitions onto the single-atom partitions. 

In addition, it calls MULTIMATCH to map, in 
pairs, the partitions containing several atoms 
each. 

MULTIMATCH assumes that the analogy will pre­
serve semantic type sufficiently well so that 
atoms within a particular partition will corre­
spond only to atoms in one other partition. 

Thus, if {atom .atom ] <-> [atom ,atom } ' 1 2 6 7 
then atom ** atom or atom 

1 6 7 
atom ** atom or atom 2 6 7 

It forbids matches across partitions, such as 

atom ** atom 
1 6 

atom ** atom 
2 8 

atom ** a t om , etc. 
3 7' 

SINGLEMATCH and MULTIMATCH also share a common 
default condition. If all but one of the elements 
ot a set X are mapped with all but one of the ele­
ments of a set Y, then those two elements are as­
sociated by dciault without any further decision 
making. In SINGLEMATCH the sets X and Y arc sets 
ot atoms or partitions of atoms. 

SINGLEMATCH [set ; set..; anal may be easily de-1 ^ scribed in terms of this default condition and a 
function called tempsift[s,;s ;testfn;ana]. 
TEMPSIFT applies testfnjx;y] to the first element 
of S-, and each successive element y of s2 until 
it finds ay € s9 such that testfn|x;y ] - T. 
It then executes 

atommatch[x; y ;ana] , 

increments to the next element of x of si, and 
II 

seeks another y e s2, such that testfrux ;y | -
T, etc. Thus, for every x e s , it finds the 
first y € s2 such that testfn[x;y] - T and exe­
cutes atommatch[x;y] = T. Typical testfns check 
whether x and y have the same semantic template 
or are analogs of each other according to the de­
veloping analogy, ana. Singlematch[set,; sct2; 
ana]: = 

(1) If set} and set„ have but one eloment 
("terminal default condition"), go to 8. 



Session No. 14 Theorem Proving 577 

R. E. KLING 

(3) 

(6) 

(2) Execute tempsif t[set,; set2; testfn..; ana] , 
where testfn^txjyj is true iff x and y 
have the same semantic template. 
If set1 and set2, are empty, go to 9. 
If the terminal default condition is 
true, go to 8. 

(4) Execute tempsif t[set-p set2; tcstfn2; ana], 
where testf^txjy] is true iff the pre­
dicate letter in atom y is the analog 
of the predicate letter of that in 
atom x according to analogy ana. 

(5) If set1 and set2 are empty, go to 9. 
If terminal default conditions holds, 
go to 8. 
Execute tempsift[set ;set2;testfn3 ana], 
where testfn3[x;yj is true iff the type 
of the predicate appearing in atom x is 
the same as the semantic type of the 
predicate appearing in atom y. 

(7) If set1 and set2 are empty, go to 9. 
If the terminal default condition holds, 
go to 8. Otherwise print an error 
message and halt. 

(8) Apply ATOMMATCH to the remaining atoms 
of set and set2. 

(9) STOP. 

To illustrate the preceding algorithm with a 
simple example, let 

set, = fintersection[x;y;z], abeliangroup[x;*1J 

set2 = {intersection[u;v;w], 
commutativeringlu; *; I] J 

Step 2 associates 

intersectionlx;y;zj <-> intersection[u;v;w] 

and the terminal default condition associates 

abeliangroup[x; *] *=* commutativeringlu; *; -] J 

MULTIMATCH is a l i t t le more complex than 
SINGLEMATCH. First we need to decide which par­
titions are to be associated before associating 
atoms within partitions. Suppose we have two 
sets of partitions set, and set2> If both sets 
have but one partition each (a common case), 
then we expect these to be associated by default 
and declare them accordingly. Secondly, if in 
some partition of set1 there is an atom with 
predicate p which is known to be analogous to 
predicate q, then the partition in set2 that con­
tains q should be associated with that which con­
tains p. Remember that these partitions were 
constructed on the basis of semantic templates. 
Thus, while several atoms containing a predicate 
p may be in a particular partition, there will 
be only one partition that contains atoms with 
predicate p. Lastly, if in set1 and set2 there 
is but one partition that contains atoms whose 

predicates have the same type, e.g., STRUCTURE, 
then we expect these partitions to be associated. 
Let MULTIMATCH1 name the function that actually 
associates atoms within a partition according to 
analogy ana. 

MULTIMATCH(set ;set,;ana|:= 

(1) If the terminal default condition for 
partitions holds, go to 7. 

(2) Let pred[x] - the predicate letter of 
atom x. For each partition y, sequence 
through each atomx e y. If pred[x] is 
on analogy ana 1 md the partition z c 
set2 such that the analog of prcd[x] ap­
pears in z. Execute MULTIMATCH1 
[y;z;ana] for each such pair y,z. 

(3) If the terminal default condition holds, 
go to 7. If set. and set2 are empty, go 
to 8. 

(4) For each partition y e set-., select the 
first atom x. Find a partition z € set0 
such that the type of predicates in z 
equals type [x]. If there is only one 
such z C set2, execute MULTIMATCHl[y;z; 
ana]. 

(5) If the terminal default condition holds, 
go to 7. If set, and set9 are empty, go 
to 8. 

(6) Ii set, or set is st i l l not exhausted, 
print an error message and halt. 

(7) Apply MULTIMATCH1 to the remaining parti 
tions in set and set . 

(8) STOP. 

Each set of atoms in a partition has the same 
semantic template. This property defines a par­
tition. Thus, at the level of abstraction pro­
vided by the templates, all of these atoms are 
alike and any differences need to be discriminated 
by other criteria. Let us consider an example to 
motivate the design of MULTIMATCH1. The theorem 
pair T3 - T can be written as: 



578 Session No. 14 Theorem Proving 

R. E. KLING 

when it decomposes T 3' - T4' into subwffs dis­
tinguished by the syntax of the implication sign. 
Later an application of SINGLEMATCH adds: 

propernormal ** proper ideal 

iactorstructure ** factorstructure 

MULTIMATCH is passed one partition from each wff 
T contributes 3 

{groupLg;* ], simplegroup[x; * ] } , 

and T contributes 4 
[ring[r; *2;+2], simplering[y; *2 ; +2]}. 
If we apply the MULTIMATCH algorithm just 

described to each of these partitions, we find: 

Step 1 

Step 2 

Step 3 

Step 4 

We do not satisfy the terminal de­
fault condition. 
None of the predicates that appear 
in these partitions appear on the 
current analogy. We gather no new 
information here. 
We s t i l l do not satisfy the terminal 
default condition. 
We want to use MULTIMATCHI to asso­
ciate the atoms in these partitions. 

Of these two partitions, the former pair have the 
template structure[set; operator] and the latter 
pair have structureTset;operator;opera tor]. 
Fortunately, our analogy has variable mapping in­
formation that is quite relevant here. We know 
that: 

g ~ r 

We can assume that if some variable appears in 
only one atom in a partition, the analogous atom 
is one that contains its analog variable, if it 
too appears in only one atom. For example, the 
variable "g" appears only in group! gj* ], and its 
analog "r" appears only in nng[r; * ;+2 ]. So, we 
deduce: 

group!g; * ] ~ ring[r; * ;-J ] 

A similar argument based upon 

leads us to deduce: 
simplegroupfx; * ] simplenng[y; * ';+ 2] 

although we could have also deduced this last 
association by our terminal default condition. 
Notice that "* " is not a discriminating variable 
since it appears in both groupfg;*1,] and simple-
groupLx; * ]. After each atom pair is associated, 
we apply ATOMMATCH to it to deduce more variable 
associations and update our analogy. 

The preceding description of MULTIMATCH1 can 
be simplified and generalized by realizing that 
we are just using a specialized submap of the de­
veloping analogy to extend it further. This 
special submap is just that mapping of variables 
where each variable appears in only one atom of 
the partition. In the preceding example, the 
submap was just: 

MultimatchlCpartition ;partition, ;ana]: -

(1) Set to a l ist of variables that appear 

in only one atom of partition . 

(2) Set i to similar l ist computed on 

INITIAL-MAP has been completely described. 
At this point we have sufficient machinery to 
generate a mapping between the predicates and 
variables that appear in the statements of theorem 
pairs such as T1 - T2 and T3 - T . Next we want 
to extend this mapping to include all the predi­
cates that appeared in the proof of the proved 
theorem T and are likely to appear in the proof 
of the new theorem T.. In addition, we would like 
to pick up a small set of axioms adequate ior 
proving T . EXTENDER performs both functions 

A DETAILED DESCRIPTION OF EXTENDER 

In the last section 1 described INITIAL-MAP 
in substantial detail. In comparison, EXTENDER 
is a far more complex and subtle system which I 
wil l explicate here less completely. 1 intend to 
accomplish several simple aims with this limited 
exposition: 

(1) Expose the reader to the motivation and 
rationale underlying the EXTENDER design. 

(2) Convey some appreciation for the flavor 
of some well-specified computational al­
gorithms for creating an analogy. 

(3) Provide an intelligible, self-contained, 
introductory account of EXTENDER adequate 
for the general reader, and motivate the 
more sophisticated specialist to consult 
a more complete exposition. (6) 



Session No. 14 Theorem Proving 579 

R. E. KLING 

The ra t iona le of EXTENDER depends upon a few 
simple re la ted ideas. I w i l l begin by exp l i ca t i ng 
these, then develop MAPDESCR—the clause descr ip­
t i o n mapping operation—and conclude w i th a d i s ­
cussion of two simple versions of EXTENDER. 

In the las t sect ion I suggested that our com­
p le te analogy could be seen as the las t map αn 

in a ser ies αJ of increasingly more complete 
analogies. Although we may be developing several 
such ser ies in p a r a l l e l , they a l l begin w i th the 
same α1—the analogy produced by INITIAL-MAP. 
Each G maps some subset of the predicates that 
appear in the proof of theorem T. Each d i s t i n c t 
subset w i l l , in general , lead to a d i f f e r e n t par­
t i t i o n of AXSET in to [ALL, SCME, NONE}. When we 
search fo r the analog oi an axiom (c lause) , we 
w i l l look f o r some clause that s a t i s f i e s the 
analog of i t s descr ip t ion under the current 
analogy. Each clause has a unique desc r ip t ion , 
descrTc], which has been introduced in a previous 
sec t ion . We w i l l denote the analog of descrfc] 
by some analogy G as G [ d e s c r [ c ] ] . G rdescrTc]] 

J J J 
is equal to a copy of descr[c] in which every 
predicate that appears in α1 is replaced by i t s 
analogous predicate. Predicates that are absent 
from G are l e f t untouched. For example, suppose 
we have a t r i v i a l Gj : 

G : abel ian r commutativering 
1 

c : ~"i abe l iun lx ; *] V group [ r , *] 

d : negfabel ian l ,pos[group] . - descrlc ] 
7 7 

G [ cl ] -neg commutat l ve r ing ] ,pos[group] . 
1 7 

Suppose we are seeking to extend G^ by f i nd ing 
the analog of C7. It is qu i te un l i ke l y that we 
w i l l f i n d a clause that s a t i s f i e s th i s descr ip­
t i o n , (G^fd_] ) , since it would be derived from 
some ( rare) theorem that re la tes a condi t ion on 
commutative r ings to a group s t ruc tu re . In any 
event, it would not be an analog of c~. It we 
sought a l l the clauses that s a t i s f i e d neg[commu-
tat i v e r i n g ] , we would be sure to include c» and 
cq , which at least include c „ , the clause we 
des i re , 

c : -y commutat i ve r ing [x ; *; f] v r i n g l x ; *; 1J o 
c : ~i commutat i vc r i ng l x; * ; ( ] V commutativeT*; x] 

Thus , somct imet» we want to search fo r clauses that 
sa t l s l y descr ipt ions wi th leatures, e . g . , 
negIcommutat i v e r i n g ] , t hat conta in only prcdica tes 
that appear on a pa r t i cu l a r analogy Ci Now, 
what we arc doing is a four-s tep process: 

(1) Make a descr ip t ion d fo r an axiom 
clause c, desc r l c ] . 

(2) Create an analog descr ip t ion C fdesc r [ c ] l 
for the current analogy, G . 

(3) Delete from G, [descr [c ] ] any feature that 
contains a predicate that does not appear 

(4) 

in 6 . Denote t h i s r e s t r i c t i o n of 
Qu[descr(c)] to Ci by 6 [descr (c) ] . 
Search the data base fo r clauses that 
sa t i s f y CL [descr(c) ] . 

In our example, 6 , [descr fc ]] = G,[d7 ] = 
neg[commutetivenng] . Ci [descr(c) ] is a " r e s t r i c ­
t i on of the analog of the descr ip t ion of c to 
analogy 6P." Since th i s phrase is qu i te cumber-
some, we w i l l simply c a l l i t a r es t r i c t ed descr ip­
t i o n " and i m p l i c i t l y understand i t s dependence on 

j 
At d i f f e r e n t times EXTENDER may seek clauses 

that sa t i s f y a complete analogous descr ip t ion 
G [descr] or /just a r e s t r i c t e d one G [descr] . In 
summary, EXTENDER re l i es upon four key not ions: 

(1) An ordered sequence of p a r t i a l analogies 
a . i -

(2) A p a r t i t i o n of the axioms used in proof 
[T] (AXSET) i n to three d i s j o i n t sets: 
ALL, SOME, and NONE 

(3) A search for clauses that sa t i s f y the 
analogs ot the descr ip t ion of the clauses 
in p roo f [T ] . 

(4) A r e s t r i c t i o n of our descr ipt ions r e l a ­
t i v e to an analogy Gj by inc luding only 
those ieatures wi th predicates that ap­
pear in G-j. 

INITIAL-MAP used an operation ca l led 
ATOMMATCH in a rather c lever way to extend i t s 
current analogy. Likewise, EXTENDER uses an 
operation ca l led MAPDESCR for a s im i la r purpose. 
Both operations use abstract descr ipt ions in order 
to associate t h e i r data: ATOMMATCH uses the se­
mantic template associated wi th a predicate, and 
MAPDESCR uses the descr ip t ion oi the clauses it 
is assoc ia t ing. EXTENDER and INITIAL-MAP d i f f e r 
in that EXTENDER generates a new p a r t i a l analogy 
each time it ac t ivates MAPDESCR (and the resul tant 
mapping is new) whi le INITIAL-MAP uses ATOMMATCH 
to expand one growing analogy. 

Each p a r t i a l analogy G is derived lrom i t s 
antecedent G ^ by adding 

J 

(1) An associat ion of one clause ax € SOME 
wi th one or more clauses lrom the data 
base. 

(2) An associat ion oi the predicates in 
those clauses. 

A simple example w i l l i l l u s t r a t e th is amply. 11 
G. is the i n i t i a l analogy generated by INITIAL-
MAP appl ied to the pa i r of theorems Tj-T^, i t s 
predicate map is 



580 Session No. 14 Theorem Proving 

R. E. KLING 

abelian commutat lvering 

intersection <=> intersection. 

Suppose we know that c_ •* Cy. We would l ike 
extend G to G by adding: 

(1) c? c8 
(2) abelian conunutat lvering 

group r ing. 

(b) If more than one element of descr 

to 

To motivate the structure of MAPDESCR, let 
us design a version of it that would enable us 
to extend 0. to G in this example. MAPDESCH is 
charged with mapping neg[abelianl, posjgroupl 
(d_) with negtcommutatlveringl, pos fnng j , when 
it knows that: 

G : abelian •• commuta t lvering 

intersect ion intersection. 

F i rs t , we can eliminate negfabelian] from d and 
neg[commutativeringJ from d on the basis of G 
which associates "abelian" and "commutatlvering." 

G|[neglabelian]] - negtcommutatlvering]1. 
Now we are simply l e f t with associating pos[group) 
and pos[r ing] . Since these are the only two 
elements l e t t , have the same semantic type 
(STRUCTURE), and have the same feature (pos), we 
can map them by default and add 

group ring 

to G . 2 

(4) 

and descr have the same feature. 
2 ' 

e .g . , pos, then discriminate within 
these elements on the basis of the 
semantic types of their predicates. 

Return the resultant l i s t of paired 
predicates. 

Most often in my algebra data base a clause de­
scr ipt ion consists of two, three, or four features. 
EXTENDER ensures that some of the predicates in 
any pair of clauses passed on to MAPDESCR are on 
G Thus, by the time we reach step 3 of the 
MAPDESCR algorithm we often have descriptions of 
length one, which map t r i v i a l l y by default , or 
descriptions oi length two with di f ferent features, 
e .g . , pos and neg. Thus, step 3b, which requires 
disambiguation based upon predicate types, occurs 
rarely in this domain (abstract algebra). 

When MAPDESCR returns a l i s t of predicates 
pairs that result from mapping the description of 
a clause c (descr , above) with the description 

of a clause c (descr , above) according to analogy 

G,, it creates a new analogy G G is the 
same as G except that 

(1) I ts predicate map is the union of the 
one returned by MAPDESCR and the one 
appearing on G . 

(2) I ts clause mapping is the union of the 
one appearing on Gj and c1 <=> c2. 

Thus, when EXTENDER is attempting to extend 
G , it creates a new analogy G G , etc. for 
each clause pair it maps when those clauses were 
selected on the basis of information in G . Of 
course, there is a procedure to see whether the 
predicate associations of a new analogy have ap­
peared in some previously generated analogy and 
thus prevent the creation of redundant analogies. 
In this case the two corresponding clauses are 
added to each exist ing analogy for which the 
predicate pairs returned by MAPDESCR are a subset 
of i t s clause map. 

After I explicate one addit ional idea I can 
describe a simple version of EXTENDER. When 
EXTENDER is extending G. it is searching the 
large data base for some clause that is the analog 
of an axiom c, C SOME. Now we could search for 
the set of clauses that sat is fy Gj[descrCc^]], 
but we w i l l run into the d i f f i c u l t y described 
ear l ier in th is section. Thus, we search for 
clauses that sat is fy G\, [descr[ck ] ] . If G, con­
tains the correct analog for each predicate that 
appears on i t , then the set of clauses C that 
sat isfy Ga[descr[cjJ] is guaranteed to contain 
the desired analog of c ("image" of c ). We 

Now, we can write a version of MAPDESCR 
which accepts as arguments two clause descriptions 
and an analogy G : 

mantically compatible predicates, 
associate those terms and delete 
them from the remnant descriptions. 
Here "semantic compat ibi l i ty" means 
"same semantic type." 



Session No. 14 Theorem Proving 581 

R. E. KLINC 

" will reier to C as the candidate image set. 
Suppose that C has but one member, e' . Then we 
know that c is the analog (image) of ck and 
should e x t e n d a s s o c i n t i n g 

/ 

When the set of clauses that satisfies a re-
st ricted description contains only one, we are 
guaranteed that it is the image clause we seek 
i1 OP does not contain any erroneous associations 
Now, if C is empty, we have reason to suspect 
t he correctness of &P and we ought to s top de­
veloping this branch of the analogy search 
space. On the other hand, if C has more than 
one member, and GP is correct, we know that our 
desired image is in C. If we have a clause c 
with description descrlcl and some ana logy G 
that contains only one of the predicates in c, 
then Ci Tdescr[c] ] wi 11 have but one f ea ture and 
many clauses will satisfy i t . If some later 
analogy ti^ (CLP — &Y) includes another predicate 
from c in addition to the one on G then 
G.fdescrfc]] will have two fea t ures and will be 
satisfied by fewer clauses than G . [descr[c]1. 
Thus, as sequence ol analogies evolve, each 
clause wi11 have decreasingly fewer Candida t e 
images t ha t sa t isfy its rest ricted description. 

To search for the clauses that satisfy the 
analog of a restricted (short) description, 
EXTENDER, invokes an operator shortdescr[G ]. 
SHORTDESCR is dependent on G in three ways: 

(1) It searches 1 or the ana logs of clauses 
t hat appear on SOME (which is ditierent 
for each G ). 

(2 ) It generates descript)ons that inc lude 
only the predicat es that appear expli-
citly in G . 

1 r 
(3) It uses the predicate map G . 

1 
SHORTDESCR returns a (possibly empty) list of 

axioms (from SOME), each of which is paired with 
a set of clauses from the data base which satisfy 
the analog of its restricted description. Each 
axiom is guaranteed to have its analog under G 
in its associated "candidate image set.n If we 
find no candidates at al l , for any ax. € SOME, 
then we know that G contains some wrong predi­
cate associations, and we ought to mark it as 
1 infertile" and discont mue attempting to extend 
i t . Of the images we find, we prefer those 
axiom-candidate associations with but one candi­
date linage. If we apply MAPDESCR to each such 
pair, we can be sure that we have a consistent 
extension of G,. Let us consider a primitive 
version of EXTENDER, EXTENDERl, which exploits 
these few ideas. 
EXTENDI [G ;AXLIST]:= 

The success of EXTENDI is highly dependent 
upon the clauses in the data base. If there are 
few clauses then it is likely that some ax. € 
SOME will have but one image under SHORTDESCR at 
each iteration and t hat EXTENDI will be successlul 
As the data base increases in size with ever more 
clauses involving predicates that will appear in 
proof n \ ] , then It becomes more likely for 
SHORTDESCR to generate several imaees for every 
ax, € SOME in some iteration. At this point it 
will fail to EXTEND & and miss the analogy al-
t ogether- To remedy this situation, we need a 
way tor dealing with cases when SHORTDESCR returns 
several candidate images for each ax. € SOME. We 
need some way to select the clause from the can­
didate set that is most likely to be the analog 
we seek. When EXTENDER meets a situation of this 
sort, it orders all the images according to their 
likelihood of being analogous to the ax. C AXSET 
with which they are pai red . I will mi 11ate the 
description of one such ordering relation by a 
simple example. 

Consider, 1 or example, the clause c and an 
ana logy G9 that includes 



582 Session No. 14 Theorem Proving 

R. £. KLING 

We can compare c11 and c12 by comparing d11 and 
d 1 2 with d 1 0 ( re lat ive t o W e want a par t ia l 10 
ordering of a set of descriptions re lat ive to a 
target description and a part icular analogy, e .g . , 
a . [d , ;d9 ;d ;6 ] that orders description d 

o 1 +• J 1 
with respect to d2- A simple cp̂  can be developed 
as follows: 

For d, and d compute the number of features, 
eg•> P°s, in common with d . The description 
with the most features in common is closest to d. 

In our example, we have 
d = neg[group], neg[subset] 

d' - neglidealj 

d = negTring], negfsubset]. 

Clearly d is closer to d than d , so we 7 12 1Q l T select d our closest description and c as the 
12 12 

image of c under C . After MAPDESCK maps 
10 2 

c ** C it w i l l add: 10 12 
group ° r ing 

subset ° subset 

A more sophisticated '4^ can look at the semantic-
types of predicate that share common leatures if 
two descriptions are equivalent under the simple 

described above. EXTENDER uses an operator 
called MULTIMAP to select the best image (using 

for a clause that has several candidates 
images with a restr icted description under . 
Exploiting this notion, we can write a more 
powerful EXTENDER called EXTEND2. 

EXTEND2 

(1) 

(2) 
(3) 

[Q ;AXSET]: -

active analogies. Start with ana l i s t 

If Q is complete, STOP. 
Part i t ion AXSET into [ALL, SOME, NONE) 
re lat ive to Ct 

(4) Set lml ist to shortdescrTCi ]. If 
lml ist - 0, mark CL as " i n f e r t i l e " and 
go to 8. 

(5) Set unimages to the subset of lml ist 
that has only one candidate analog for 
each axiom. If unimages 0, go to 7. 

(6) Apply MAPDESCR to each axiom and i t s 
analog that appears on unimages. If 
MAPDESCR adds a new analogy, add it to 
the end of anal ls t . Go to 8. 

(7) Apply MULTIMAP to iml is t to select an 
optimal candidate image under cp . for 
each axiom. Set unimages to this l i s t 
of axioms paired with best candidates. 
Co to 6. 

(8) If analist is empty, STOP. Otherwise, 
set d to the next element on anal is t . 
Go to 2. 

This version of EXTENDER is quite powerful 
and w i l l handle a wide variety of theorem pairs. 
The reader who is interested in the behavior of 
EXTENDER in generating the sequency 6 is referred 
to a more detailed report (6) for case studies and 
further expl icat ion. The implemented versions oi 
EXTENDER are far more complex than these s impl i ­
f ied tu to r ia l versions. They (1) allow backup, 
(2) have operations for combining a set of pa r t ia l 
analogies into a " larger" analogy consistent with 
a l l of them, (3) have a sophisticated evaluation 
for deciding which part icular axiom-candidate set 
to pass to MULTIMAP ( in l ieu of step 7 above), and 
(4) can often localize which predicate associa­
tions are contributing to an i n f e r t i l e analogy 
when one is generated. Table 2B contains a brief 
summary of ZORHA-I's behavior when it is applied 
to l ive T-TA pairs drawn from abstract algebra. 
The number of par t ia l analogies generated i n ­
cludes (J. generated by INITIAL-MAP. 

Table 2A 

THEOREMS REFERENCED IN TABLE 2B 

T l . The intersection of two abell an groups 
is an abelian group. 

T2. The intersection of two commutative 
rings is a cummutative r ing. 

T3. A lac tor group G/H is simple i l l H is a 
maximal normal subgroup ol G. 

14. A quotient ring A/C is simple l f l C is a 
maximal ideal in A. 

'lt>. The intersection of two normal groups is 
a normal group. 

T6. The intersections oi two ideals is an 
idea 1. 

T7. The homomorphic image oi a subgroup is 
a subgroup. 

T8. The homomorphic image oi a subring is a 
subring. 

T9. The homomorphic image of an abelian 
group is an abelian group. 

T10. The homomorphic image of a commutative 
ring is a commulntive r ing. 



Session No. 14 Theorem Proving 583 

R. E. KLING 

T 1 ' : abelian [AΑ; *1] Δ abelian [b; *1 ] Δ 
intersection[c;a;b] = abelian[c; *1 ] 

T5': abelian[x; *2 ] Δ cr ing[y ;* 2 ;+ 2 ] Δ 
in tersect ion^ ; x;y] - abelian[z; ^ ] 

ATOMMATCH can map 

abelian[c; * ] ** abelian[z; * ] 

and abelian[b; * ] ** cring[y; * ; 4- ] 

at di f ferent times and handle many-one predicate 
maps. However, the EXTENDER would need to know 
(and It does not yet) how to handle this ambiguous 
information. 

The second rest r ic t ion is created by the ex­
tension of the analogy by finding image clauses 
that satisfy the incrementally improved analogy. 
To state this condition on the image clauses in a 
formal way, I need to introduce some simple termi­
nology. Let us say that a clause c bridges a set 
of predicates P to another set of predicates P 

X 2 
i f f : 

NECESSARY CONDITIONS FOR AN ANALOGY 

ZORBA-1 has three necessary conditions for 
creating an analogy. The f i r s t , created by the 
form of ATOMMATCH, pertains to the form of the 
statements of T and T . A 

(1) In the statements of T and TA, atoms 
must map one-one from T to T . r A 

Notice that we do not insist that predicates map 
one-one. Consider an INITIAL-MAP between 

T l : 

and 
T5: 

The intersection of two abelian groups 
is an abelian group 

The intersection of an abelian group 
and a commutative ring is an abelian 

preds[T] - predicates used in proof of T. 

Pr[T] = predicates used in statement of T 

k - analogy from T to T . 
A 

descr[cl = description of clause c. 
CL[descr[c]] - analog description of the 
description of c under Ci. 

AXSET - axioms used in proof of T. 

group 



584 Session No. 14 Theorem Proving 

R. E. KLING 

More verbally, some subset of the axioms in 
the proof of T that bridge R the domain of 
INITIAL-MAP to preds[TA] has a set of image 
clauses under G that bridge the images of 
INITIAL-MAP to predsfT ]. Thus, the proofs need 
not be isomorphic, merely that some subset of the 
axioms have a nearly isomorphic set of image 
axioms, s imi lar ly restr icted to the bridging 
condition. 

This bridging condition may seem rather non-
mtu i t i vc from the vantage point of choosing a 
data base, but it should be clear that EXTENDER 
imposes this condition. 

To develop analogies in domains that are de­
scribed by predicate calculus with constants 
would require wholly di f ferent analysis algorithms 
Consider a robot that is instructed to go from 
SRI to (1) an of f ice on i t s f loor , (2) Stanford 
University, (3) San Francisco, (4) New York City, 
(5) Chicago. These f ive problems could be stated 
to QA3 as 

By t r i v i a l syntactic matching we could asso­
ciate office5 with Chicago, Stanford with San 
Francisco, etc. The robot's actions to get from 
SRI to Stanford or San Francisco, New York City, 
or Chicago are pairwiee simi lar. But the 
INITIAL-MAP or extender would have to know the 
"semantics" of these (geographic) constants 
(with respect to SRI) and the robot's actions to 
assess which problems are adequately analogical 
and which action rules should be extrapolated to 
the unsolved problem. 

RELATIONSHIP BETWEEN ZORBA-I AND QA3 

In the preceding section, I have discussed 
the organization and use of ZORBA-I independently 
of QA3. In this section, I merely want to note 
how change in QA3 can affect the way in which the 
analogical information output by ZORBA-1 can be 
used. 

The present version of ZORBA-1 outputs a set 
of clauses that it proposes as a restr icted data 
base for proving T.. If every clause in proof[T] 
has at least one image clause, then simply modi­
fying the QA3 data base is magnificently helpful . 
However, if the analogy is weak and we have only 
a par t ia l set of images, what can we do? If every 
predicate used in the proof[T] has an image, we 
could res t r ic t our data base to just those clauses 
containing the image predicates. Could we do 
better? And what do we do with a par t ia l analogy 
in which some clauses and some predicates have 
images, but not a l l of either? At this point we 
meet l imitat ions imposed by the design of QA3. 
A l l contemporary theorem provers, including QA3, 
use a f a i r l y homogeneous data base. QA3 does give 
preference to short clauses, since it is bu i l t 
around the unit-preference strategy. But it has 
no way of focusing primary attention upon a select 
subset of axioms A*, and attending to the re­
maining axioms in D - A* only when the search is 
not progressing wel l . One can contrive various 
devices, such as making the clauses in A* pseudo-
units" that would be attended to early. Or, with 
torch and sword, one could restructure QA3 around 
a "graded memory." (7) Basically we have to face 
the fact that our contemporary strategies for 
theorem proving are designed to be as optimal as 
possible in the absence of a p r io r i problem-
dependent information. And these optimal st rate­
gies are d i f f i c u l t to reform to wisely exploit a 
p r i o r i hints and guides that are problem dependent. 
This is not to say that various kinds of a p r io r i 
information cannot be added. Rather, it is a 
separate and sizable research task to decide how 
to do i t . I presume, but do not know, that these 
comments extrapolate to other problem-solving pro­
cedures, and a system that is organized around a, 
p r i o r i hints, heretofore user supplied, may look 
very dif ferent than one which is designed to do 
i t s best on i t s own. QA3 was chosen because it 
was available and saved years of work developing 
a (new) suitable theorem prover. However, further 
research in AR may well benefit from relat ing to 
a more f lex ib le theorem-proving system. 

WHAT'S NEW? 

What does ZORBA add to our understanding of 
AR? What does ZORBA leave unanswered? Pre-ZORBA, 
most researchers believed that analogies would 
relate to plans and (possibly to probably) include 
some sort of semantic information. ZORBA adds the 
following insights to our understanding of AR: 

(1) Some f a i r l y interesting AR can be handled 
by modifying the environment in which a 
problem solver operates rather than 
forcing the use of a sequential planning 
language. 



Session No. 14 Theorem Proving 585 

R. E. KLING 

(2) Each problem solver/theorem prover w i l l 
use dif ferent a p r io r i information and 
consequently w i l l require dif ferent 
analogy-generation programs. 

(3) A good analogy generator w i l l output 
some information helpful to speeding up 
a problem search as a byproduct of a 
successfully generated analogy. 

(4) Part of the problem of AR is to specify 
precisely how the derived analogical i n ­
formation is to be used by the problem 
solver. 

(5) An effect ive, nontr iv ia l analogy genera­
tor can be adequately bu i l t that uses a 
simple theory and primit ive semantic 
selection rules. 

(6) Although analogies are nonformal and are 
semantically oriented, nontr iv ia l analo­
gies can be handled by a special system 
wrapped around a highly formal theorem 
prover. 

In contrast, ZORBA neglects: 

(1) Methods for handling those analogies 
that absolutely require a planning level 
generalization and sequential informa­
t ion. 

(2) Very weak analogies. 
(3) What to do with many rules of inference. 
(4) How to describe the "structure of an 

analogy." 

ZORBA makes a substantial contribution to our 
pale understanding of AR, and in the process 
helps art iculate additional questions that reveal 
our vast ignorance of analogical ways of knowing. 

5. 

6. 

7. 

C. Green, Theorem Proving by Resolution as a 
Basis for Question Answering Systems," in 
Machine Intell igence, Vol. 4, D. Michie and 
B. Meltzer, eds. (Edinburgh Univ. Press, 
Edinburgh, Scotland, 1969). 
R. E. Kllng, "Reasoning by Analogy with Ap­
plications to Heuristic Problem Solving: A 
Case Study," Stanford University Ph.D. Thesis 
forthcoming. 

R. E. Kling, 'Design Implications of Theorem 
Proving Strategies," Al Group Technical 
Note 44, Stanford Research Inst i tu te , Menlo 
Park, California (1970). 

REFERENCES 

1. N. J. Nilsson, Problem Solving Methods in 
A r t i f i c i a l Intell igence (McGraw-Hill, to be 
published 1971). 

2. G. W. Ernst and A. Newell, "Some Issues of 
Representation in a General Problem Solver," 
AFIPS Conference Proceedings, Vol. 30 (1967), 
pp. 583-600. 

3. R. E. Fikes, "REF-ARF: A System for Solving 
Problems Stated as Procedures," A r t i f i c i a l 
Intel l igence, Vol. 1, pp. 27-120 (1970). 

4. R. E. Kling, "An Information Processing Ap­
proach to Reasoning by Analogy," A r t i f i c i a l 
Intell igence Group TN10, Stanford Research 
Inst i tu te , Menlo Park, California (June 1969) 


