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Abstract

In this paper, we propose a novel algorithm—parallel adaptive quantum genetic algorithm—

which can rapidly determine the minimum control nodes of arbitrary networks with both con-

trol nodes and state nodes. The corresponding network can be fully controlled with the

obtained control scheme. We transformed the network controllability issue into a combina-

tional optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of

canonical networks and a list of real-world networks were experimented. Comparison

results demonstrated that the algorithm was more ideal to optimize the controllability of net-

works, especially those larger-size networks. We demonstrated subsequently that there

were links between the optimal control nodes and some network statistical characteristics.

The proposed algorithm provides an effective approach to improve the controllability optimi-

zation of large networks or even extra-large networks with hundreds of thousands nodes.

Introduction

The real world consists of ubiquitous intricate and intertwined networks. Some are tangible,

such as traffic networks [1, 2], power networks [3], and financial networks [4], whereas others

are invisible networks that penetrate into every aspect of our lives, such as interpersonal rela-

tionship networks [5, 6], wireless networks [7, 8], and ecological networks [9]. The expected

goal of research into a complex network is to be able to regulate and control it from the out-

side, achieve the desirable state or performance by injecting outward control signals to some

network nodes (called driver nodes), and ultimately achieve the real controllability of a com-

plex network.

Many studies have been conducted on the relationship between network topology and net-

work controllability [10–13]. Researchers have proposed that all hub nodes with a high degree

or betweenness centrality could be chosen as driver nodes [14]. Jalili et al. [15] found that an

optimum driver node could not always be a hub node. To elucidate the configuration of driver

nodes for the optimum network pinning control, a differential evolution method was used.

The method worked well, but it was only suitable for undirected networks. Assuming that the
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objective network had finite-dimensional linear dynamics [16], the network could be structur-

ally controlled by applying one time-varying input to the power dominating set. In the practi-

cal applications with economical and physical constraints, driver nodes can not always be

freely selected to be injected to network nodes. In this context, Lo et al. [17] addressed a geo-

metrical framework for the partial controllability issue of networks by solving an integer linear

programme. The approach was also suitable to optimize the complete controllability of net-

works. The network permeability index provided a quantitative understanding of the challenge

of controlling a network partially or completely.

The dynamics of the network could be expressed as a linear time-invariant system
_xðtÞ ¼ AxðtÞ þ BuðtÞ, where x(t) is the state vector of the network. Assuming a network has N

state nodes and P control nodes, A�RN×N is the coupled matrix between state nodes, u(t) is the

control or input vector forced on the network, and B�RN×P is the input matrix. The general

approach for the controllability problem _xðtÞ ¼ AxðtÞ þ BuðtÞ is to determine a proper input

matrix based on the Kalman rank condition such that the pair (A, B) is controllable [10]. How-

ever, this controllability problem has a large computational load with 2N possibilities assuming

each node can be either driven or not driven [11], and this exponential growth is especially

rapid when the network size is large. To overcome this difficulty, Liu et al. [10] introduced the

structural controllability concept [18], which ensured that the Kalman rank condition was ver-

ified. They first found that the number of driver nodes for the full controllability of a complex

network mainly depended on the network degree distribution. The process controllability of

network dynamics was explored by transforming node dynamics into edge switch dynamics

[19] and resulted in similar controllability conclusions to those obtained by Liu et al. [10].

The structural controllability methods based on graphical analysis of pair (A, B) for the sys-

tem _xðtÞ ¼ AxðtÞ þ BuðtÞ [18] could identify nD for arbitrary directed networks [10]. Several

effective methods have been proposed to identify the minimum number of driver (control)

nodes (nD), for example, the maximum matching (MM) method [20], the cavity method [21],

and an extremal optimization (EO) algorithm [22]. The computational load of determining nD
could be effectively reduced based on the MMmethod, which has the computational complex-

ity ofOð
ffiffiffiffi

N
p

LÞ, where L is the number of linked edges between state nodes. EO [22] was pro-

posed based on the Kalman rank condition to identify nD for the full controllability of directed

networks with the computational complexity of O(N4P3). However, this structural controlla-

bility framework [10] is not applicable to undirected networks for the symmetric characteristic

of the network matrix or networks with exact link weights [11, 23, 24]. These limitations

prompt the development of exact network controllability theory, which is an exact controlla-

bility framework for the controllability of complex networks with arbitrary network structures

and link weights. It optimizes the complete controllability of networks based on the Popov–

Belevitch–Hautus (PBH) rank condition [25], which is an alternative criterion that is equiva-

lent to the Kalman rank condition [26]. The PBH controllability method requires the sequen-

tial computation of the eigenvalues of the N ×Nmatrix A and the rank of the N × (N + P)

PBHmatrix. The computational complexity of the eigenvalue computation of matrix A and

the PBHmatrix rank is O(N3), O((N + P)3), respectively [27]. Thus, the computational com-

plexity of the PBHmethod is O((N + P)3). The Kalman controllability method does not require

an eigenvalue computation. However, it requires the rank computation of the N ×NP Kalman

matrix with the computational complexity of O(N3P3), which is larger than that of the PBH

controllability method. Representative exact structural controllability methods consist of a

maximummultiplicity theory (MMT) [11] and an effective self-adaptive genetic algorithm

(GA) [28]. nD was computed based on the MMT to be equal to the maximum geometric

multiplicity of all eigenvalues of the network [11], and the computational complexity is O

A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

PLOSONE | https://doi.org/10.1371/journal.pone.0193827 March 19, 2018 2 / 23

50. Batagelj V, Mrvar A. Pajek datasets. <URL:
http://vlado.fmf.uni-lj.si/pub/networks/data/>.
2006. 51. Milo R, Itzkovitz S, Kashtan N, Levitt R,

Shenorr S, Ayzenshtat I, et al. Superfamilies of

designed and evolved networks. Science. 2004;303

(5663): 1538-1542. 52. Burt RS. Social Contagion

and Innovation: Cohesion versus Structural

Equivalence. American Journal of

Sociology.1987;92(6):1287-1335. 53. Newman

MEJ. Finding community structure in networks

using the eigenvectors of matrices. Phys. Rev. E.

2006;74(3): 036104. 54. https://sparse.tamu.edu/.

55. Leskovec J, Lang KJ, Dasgupta A, Mahoney

MW. Community structure in large networks:

Natural cluster sizes and the absence of large well-

defined clusters. Internet Mathematics. 2009;6

(1):29-123. 56. Leskovec J, Kleinberg J, Faloutsos

C. Graph evolution: Densification and shrinking

diameters. ACM Transactions on Knowledge

Discovery from Data(TKDD). 2007;1(1):2.

Funding: This research is supported by the

National Science Foundation of China with granting

No.61773032.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0193827
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://sparse.tamu.edu/


(N2(logN)2). The GA [28] was studied to identify nD of arbitrary networks, and the computa-

tional complexity is O(2m × (N + P)3 × l), where 2m is the population size and l is the number

of different eigenvalues of the controlled network.

The authors demonstrated the evolution process of network topology of two networks

(Erdős–Rényi (ER) and scale free (SF)) [28], i.e., the dynamic change of network topology with

different number of control nodes being injected to network state nodes. The GA algorithm

[28] exceeded the EO [22] much in terms of the convergence speed and iterations. However,

networks with the more complexity than the scale 150 were not studied in [28] and the maxi-

mum network scale that EO processed was 200 [22]. And the convergence speed and iterations

were still not satisfactory, for example, for ER, with both 150 state nodes and 150 control

nodes, and the average degree 5.0, nD converged at the 101st generation after 398.03 s [28].

The results showed that it remained a challenge for the two algorithms to optimize networks

with hundreds of thousands or even larger networks. Additionally, almost all real networks

have small-world (SW) properties with a large cluster coefficient and short average distance

[29] (e.g., power grids, transportation networks, and social networks). The addition of the SW

network controllability study is also significant for better mimicking reality.

Therefore, based on the PBH rank condition, we propose a parallel quantum genetic algo-

rithm (PAQGA) to more rapidly determine the minimum number of control nodes. The pro-

posed algorithm is suitable for arbitrary networks that comprise both control nodes and state

nodes. The simulation results for a series of benchmark networks demonstrate the effective-

ness of the algorithm. Furthermore, we demonstrate the relationship between the controlla-

bility of a network and its network properties such as network average degree, degree

heterogeneity, power-law index, and clustering coefficient.

The remainder of this paper is organized as follows: In Section 2, we provide a description

of the issue in which a network can be controlled through a small amount of control nodes. In

Section 3, we introduce the PAQGA for the solution of the minimum number of control

nodes to exactly control arbitrary networks. In Section 4, we analyze and discuss the perfor-

mance and experimental results of the proposed framework by studying popular ER, SW, SF,

and some real-life networks. We draw conclusions and suggest future work in Section 5.

Problem definition

In this paper, we provide a descriptive definition of the entire controllability problem of a

directed weighted network.

Definition 2.1 [22]. A network that contains P control nodes and N state nodes can be

expressed as a triple tuple G = (V,E,W), where V = Vs [ Vc, Vs = {v1,v2,. . .,vN} = {x1,x2,. . .,xN} is

the set of state nodes, and Vc = {vN+1,vN+2,. . .,vN+P} = {u1,u2,. . .,uP} is the set of control nodes;

E = Es [ Ec, Es 2 Vs × Vs is the set of the linked edges between state nodes, and Ec 2 Vc × Vs is

the set of linked edges between control nodes and state nodes, where each state node can only

be connected to one control node; andW 2 R(N + P) × (N + P) is the set of edge weights, wij = 0 if

there is not a link between vi and vj; otherwise, wij (wji) represents the strength that vi (vj) could

affect vj (vi), wij (wji)> 0 if the direction is i! j (j! i). Fig 1 shows an illustration of the

definition.

Remark 2.1 [22]. The set W can be expressed by the representation of a block matrix that

contains A and B as follows:

W ¼
A B

0 0

" #

; ð1Þ
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Definition 2.2 [10, 22]. The network G = (V,E,W) can be represented by

_xðtÞ ¼ AxðtÞ þ BuðtÞ; ð2Þ

where x(t) = (x1(t),x2(t),. . .,xN(t))
T is the state vector of the network, A�RN×N is the coupled

matrix between state nodes, u(t) = (u1(t),u2(t),. . .,uP(t))
T is the control or input vector forced

on the network, B�RN×P is the input matrix, and B = {bij}, bij is the weight of a directed link that

the input signal uj(j = 1,2,. . .,P) points to the network state node xi (i = 1,2,. . .,N). For simplic-

ity, hereafter the time symbol (t) will be omitted. Fig 2 shows the equation expression of the

network in Fig 1.

Definition 2.3 [22]. A control scheme D of a network G = (V,E,W) is determined by the

selected control nodes with definite number and their acting position. D could be represented

by a binary diagonal matrix as D = diag{d1,d2,. . .,dP}, where di(i = 1,2,. . .,P) is a variable of

value zero or one, and di = 1 means that the control node ui is chosen to be a component of the

network control strategy; otherwise, ui is removed together with its associated links.

Remark 2.2 [22]. Based on Definition 2.3, a novel control scheme D� is determined for

which a different set of control nodes is selected. Then a novel network topology is generated

Fig 1. Example of a directed network, where Vs = {x1,x2,x3,x4,x5,x6,x7}, Vc = {u1,u2,u3}, Es = {(x1,x2),(x1,x3),(x2,x4),
(x2,x5),(x3,x6),(x3,x7),(x4,x2),(x5,x6),(x7,x7)}, Ec = {(u1, x1),(u2, x2),(u3, x3)}, aij (i = 1,2,. . .,7; j = 1,2,. . .,7) 2 Vs ×Vs,
bij(i = 1,2,3; j = 1,2,. . .,7) 2 Vc ×Vs., w24> 0 and w42> 0.

https://doi.org/10.1371/journal.pone.0193827.g001

Fig 2. Corresponding dynamics equation of the network in Fig 1, where x = {x1, x2, x3,x4,x5,x6,x7}, u = {u1,u2,u3}, aij
(i = 1,2,. . .,7; j = 1,2,. . .,7) is the connection weight from state node i to state node j, and bij(i = 1,2,3; j = 1,2,. . .,7)
is the connection weight from control node i to state node j.

https://doi.org/10.1371/journal.pone.0193827.g002
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as G� = (V�,E�,W�), where V� 2 V, E� 2 E, and W� 2 R(N + r) × (N + r), where r is the number of

selected control nodes. Accordingly, the network dynamics are also changed as

_x ¼ Ax þ B�u�; ð3Þ

where B� 2 RN×r is the new input matrix that represents the connections between new chosen

control nodes and network state nodes, and u� 2 Rr is a time-variable input vector that con-

tains r control nodes.

Definition 2.4 [22]. M�RP×r is the index set of the selected control nodes, M = {mij}, and

mij = 1 means that the jth chosen control node is ui, i = 1,2,. . .,P, j = 1,2,. . .,r, r� P.

Remark 2.3 [22]. M is constructed by the nonzero columns of the control scheme D�. For
example, if u� = {u1,u2,u3} is chosen from a previous control node set u = {u1,u2,u3, u4} to be a

new control scheme D� = diag{1,1,1,0}, then M is obtained from this D� as

M ¼

1 0 0

0 1 0

0 0 1

0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

; ð4Þ

Remark 2.4 [22]. The evolving input matrix and input vector can be revised as B� = BD�M
and u� = MTu, respectively. Then Eq (3) can be rewritten as

_x ¼ Axþ BD�MðMTuÞ; ð5Þ

Fig 3 shows a simple case that illustrates how a control scheme influences the network

topology.

Remark 2.5. Based on the PBH rank condition [25], the network G = (V,E,W) (Eq. (2)) can

be steered to any desired state within a finite time, that is, G is fully controllable if and only if

rankðliIN � A;BÞ � N ¼ 0; ð6Þ

and the new system (Eq. (5)) is fully controlled if and only if

rankðliIN � A;BD�MÞ � N ¼ 0; ð7Þ

is satisfied for each different eigenvalue λi of the state matrix A, where IN 2 RN×N is an identity

matrix.

For an arbitrary network G = (V,E,W), our purpose is to determine the minimum control

nodes to guarantee its full control. Based on the above analysis, the controllability problem can

be transformed into a single target restricted optimization problem as

minD

PP

j¼1
dj; ð8Þ

subject to

rankðliIN � A;BDMÞ � N ¼ 0; 8li 2 eigðAÞ; ð9Þ

dj ¼ f0; 1g; j ¼ 1; 2; . . . ; P; ð10Þ

where A is the state matrix, B is the original input matrix, D is the original control scheme, M

is the indicator matrix that is derived from the nonzero column of D, N and P are the dimen-

sions of A and B, respectively, λi is the eigenvalue that belongs to A, eig(A) is the set of different

eigenvalues of A, dj is the element of D, and dj = 1 when uj is selected and dj = 0 otherwise.

A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks
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Solution framework

Overview of the QGA

GA is a global optimization method that can optimize problems with multiple parameters to

reach near the global optima [30–33]. However, in some practical applications, it often

requires multiple iterations because of the slow convergence speed and prematurity features,

and easily falls into the local minima [34, 35]. Additionally, for many complex problems, a

large population is required to obtain the optimal solution. The convergence of GA mainly

depends on the selecting operation, which largely affects the convergence speed. Additionally,

its searching capability mainly relies on crossover and mutation operations, which primarily

affect the occurrence of the premature phenomenon. Therefore, regarding enhancing GA

search performance, the approach used to choose suitable selecting, crossover, and mutation

strategies has been always an urgent and pivotal issue in the study and application of GA [33,

36].

For small and medium-sized applications, the solution could be achieved within a tolerance

range using GA. However, a gene (typically encoded with a 0–1 string) in a GA chromosome

typically delivers certain information, which limits the population diversity. It performs worse

in multivariate issues, for example, the controllability study of complex networks, which

mostly has complex structures, and large-size nodes and links.

Combining quantum computing and GA, and adopting qubits as the representation of

chromosome genes [37], QGA is a proper intelligent optimization algorithm for solving the

network controllability problem [38]. These QGA qubits cover all possibilities for the linear

superposition property of quantum information, which could reduce the algorithm’s complex-

ity and promote the achievement of the optimal solution under a smaller population [37].

In quantum computing, |0i and |1i signify two basic states of microscopic particles.

According to the principle of the superposition property, the superposition state of quantum

information could be the linear combination of the two basic states [39], which can be written

as

jφi ¼ aj0i þ bj1i; jaj2 þ jbj2 ¼ 1; ð11Þ

Fig 3. Illustration of how new control scheme D� functions in the network topology. (a) Original network with
seven state nodes and five candidate control nodes. (b) Input matrix changes into B� = BD�M after choosing u� = {u1,
u2,u3} as new control nodes. New network has seven state nodes and three control nodes.

https://doi.org/10.1371/journal.pone.0193827.g003
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where α and β are the state probability amplitudes of a qubit, and α2 and β2 are the probability
that a qubit changes to be state |0i and state |1i, respectively. One qubit also can be expressed

as
a

b

" #

.

Assume the number of optimization variables is n and the population size is 2m. The ith
chromosome is denoted by Gi(i = 1,2,. . .,m) as

Gi ¼
ai1 ai2 . . . ain

bi1 bi2 bin

" #

; ð12Þ

where a2
i1 þ a2

i2 þ b
2

i1 þ b
2

i2 ¼ 1; i ¼ 1; 2; . . . ;m. Gi contains two parallel gene chains or indi-

viduals (αi1,αi2,. . .,αin and βi1,βi2,. . .,βin). Each individual is a candidate solution of an optimi-

zation problem:

Gi ¼
Gi1

Gi2

" #

;
Gi1 ¼ ½ai1; ai2; ::; aij; ::; ain�
Gi2 ¼ ½bi1; bi2; . . . ; bij; ::;bin�

; ð13Þ
(

QGA and enhanced QGA have already been studied to optimize many combinational prob-

lems [40–42]. For example, QGA overmatches classic GA with less complexity and higher per-

formance in 0–1 combinational optimization problems [39]. Adaptive QGAmodels were

proposed and tested on classical combinational problems, such as knapsack, maxcut and one-

max [38], the multi-aircraft cooperative target allocation problem, and constrained engineer-

ing design problems [43]. However, the time efficiency was not seriously stressed. To increase

the speed, a parallel QGA was developed and effectively applied to a knapsack problem [44]. It

divided the entire population into subpopulations on different parallel processors and used the

migration rate for the information exchange of these subpopulations. However, the Q-gate

rotation was implemented according to a fixed lookup table, which did not take full advantage

of the dynamic differences between individuals during the iterating process.

Inspired by current achievements, to quickly and efficiently solve the controllability prob-

lem of complex networks, we investigated a PAQGA scheme, in which: 1) partial programs of

the algorithm are executed in parallel; 2) a set of adaptive Q-gate rotation rules are proposed

and adaptive crossover operation are used; and 3) population catastrophe is implemented to

accelerate convergence.

Workflow of the PAQGA for network controllability

Based on the above, each control scheme D is a diagonal matrix, whose elements on the pri-

mary diagonal are either zero or one. Therefore, we adopt the binary mechanism to encode the

algorithm chromosome Gi(i = 1,2,. . .,m), and each binary gene chain can represent a control

scheme, as shown in Fig 4.

Fig 4. Chromosome encoding in quantum genetic algorithm.

https://doi.org/10.1371/journal.pone.0193827.g004
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To apply PAQGA conveniently, a penalty term Peni(D) is defined to convert the optimiza-

tion problem described in Eqs (8), (9) and (10) into an unconstrained optimization problem.

Peni(D) is used to evaluate the ith perturbation for a specific control scheme D:

PeniðDÞ ¼ si � ðrankðliIN � A;BDMÞ � NÞ2; i ¼ 1; 2; . . . ; l; ð14Þ

where σi is the penalty coefficient defined as σi = {cσi−1} (σ1 = 10P, c> 0) is a strictly increasing

positive sequence to reduce the calculation burden of minimizing the penalty function, and l is

the total number of distinct eigenvalues of A. The overall penalty of D is the sum of Peni(D)

expressed as

PenðDÞ ¼ Pl

i¼1
PeniðDÞ; ð15Þ

According to the PBH rank condition, when the network G = (V,E,W) is fully controllable,

Pen(D) should be zero and vice versa. Therefore, the fitness function can be achieved by merg-

ing the penalty term into the optimization Eqs (8), (9) and (10):

fðDÞ ¼
X

P

j¼1

dj þ PenðDÞ

¼
PP

j¼1
dj þ

Pl

i¼1
si � ðrankðliIN � A;BDMÞ � NÞ2;

ð16Þ

For the optimization problem, our objective is to minimize f(D) based on the 0–1 integer

values of dj (j = 1,2,. . .,P). Fig 5 shows the fitness evaluation of different control schemes on a

simple network.

After defining the chromosome representation and fitness function, the network controlla-

bility problem can be optimized using the following steps. Fig 6 shows the flow chart of the

proposed PAQGA for the optimization problem.

Step 1: The population at the tth generation is denoted asQðtÞ ¼ fGt
1
;Gt

2
; . . . ;Gt

mg;

Gt
i ¼

at
i1 at

i2 . . . at
iP

b
t

i1 b
t

i2 b
t

iP

" #

; i ¼ 1; 2; . . . ;m; t ¼ 0; 2; . . . ;maxgen � 1; ð17Þ

where N is the number of qubits, that is, the number of network state nodes, and maxgen is the

maximum iterating generation.

Initialize the initial population as

Qðt0Þ ¼ fG0

1
;G0

2
; . . . ;G0

mg; ð18Þ

where G0
i ¼

a0i1 a0i2 . . . a0iP

b
0

i1 b
0

i2 b
0

iP

" #

; i ¼ 1; 2; . . . ;m.

All the quantum states (αik and βik) in the PAQGA are initialized in parallel with the value
1
ffiffi

2
p , i = 1,2,. . .,m, k = 1,2,. . .,N. Additionally, set Dbest = D0, the iterative generation t = 1, and

σ1 = 10P.

When we set the initial control scheme D0 = diag{dj = 1},j = 1,2,. . .,P, the initial best fitness

value is f(Dbest) = P + 0 = P. It is easily proved that with σi = {cσi−1} (σ1 = 10P, c > 0), the fitness

f(D)� P if and only if the control scheme D always satisfies the constraint Eq (9). With the ini-

tialization f(Dbest) = P, whenever Dbest is updated by Di, we have f(Di)< f(Dbest) = P, which

means Di meets the constraint Eq (9). Thus, Dbest always evolves in the feasible region that

makes the network entirely controllable.
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Step 2:Observe the qubits of each individual of Q(t0) in parallel following the rules in Sec-

tion 3.3 and obtain the binary strings.

Step 3: Evaluate each individual of Q(t0) in parallel and save the optimal individual as the

evolving goal in the next generation.

Step 4:

While (maxgen is not reached), do the following:

(a) Observe the qubit value of each individual of Q(t) in parallel following the rules in Sec-

tion 3.3.

(b) To increase the diversity of the population and inherit the excellent genes from the

previous population, the adaptive crossover operation is performed in parallel in accor-

dance with Section 3.4.

(c) Evaluate each individual of Q(t) in parallel and store the optimal individual as the

evolving goal in the next generation.

(d) Perform the Q-gate rotation operation in parallel and obtain the offspring population

Q (t+1).

For each individual, two parallel gene chains update simultaneously. Rotation angle θ is

first computed based on Section 3.5 and then the qubits are updated by Q-gate rotation. The

Fig 5. Illustration of the fitness evaluation for different control schemes on a directed weighted network with self-
loop. (a) Initial network with seven state nodes and five control nodes. Connecting weights are randomly assigned between
zero and one. Fitness of initial D = diag{1,1,1,1,1} is f(D) = 5 and the penalty term is zero; thus, the network is entirely
controllable. (b) When D changes to new D = diag{1,1,1,0,1}, f(D) is four, the penalty is zero, and the network is still fully

controllable. (c) u4 is removed from (b). For simplicity, c is set to 1, and the penalty term penðDÞ ¼ 10P �
P

l

i¼1

PeniðDÞ ¼

50 � 1 6¼ 0 indicates that the network with this topology cannot be fully controlled.

https://doi.org/10.1371/journal.pone.0193827.g005
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Q-gate is expressed as [45]

Q�gate ¼
cosy �siny

siny cosy

" #

; ð19Þ

The Q-gate rotation operation is

atþ1
ik ¼ cosy � at

ik
0 � siny � bt

ik
0

b
tþ1

ik ¼ siny � at
ik
0 þ cosy � bt

ik
0

ð20Þ
(

where i = 1,2,. . .,m, k = 1,2,. . .,N, t = 1,2,. . .,maxgen − 1, and θ = δ � s, where δ is the rotation
angle value and s is its sign.

(e) Record Dbest and f(Dbest).

(f) If the optimal values of the past several successive generations are the same, then per-

form the parallel population catastrophe operation.

The fitness function evaluation and the crossover operation are the two most time-consum-

ing steps in the process of the flow execution. Assume that η parallel processors are used, the

cost isO m�ðNþpÞ3�l

Z

� �

andO m�ðNþpÞ3�l

Z2

� �

, respectively, where l is the number of different

Fig 6. Flow chart of the PAQGA.

https://doi.org/10.1371/journal.pone.0193827.g006
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eigenvalues of the controlled network. Therefore, the computational complexity of the

PAQGA isO m�ðNþpÞ3�l

Z

� �

.

Observing operation

Each qubit of the chromosome can be adjusted to be at a stationary state using an observation

operation. We adopt a random observing method by running the following pseudocode in

parallel:
start

ifðrankðkÞ � ðbt

ikÞ
2Þ; i ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;N

return binary at
ik ¼ 1;

else
return binary at

ik ¼ 0;
end

where rand(k) is a random digit. If rand(k) is not less than ðbt

ikÞ
2
(the probability to be state

|1i), then the observed value of the qubit at
ik is 1 and 0 otherwise.

Crossover operation

The crossover operator is an important operation of GA. Information about individuals can be

exchanged using the operation. Subsequently, excellent genes could be reserved for population

evolution to move in a better direction. To increase the diversity of the population and

improve the optimization performance of PAQGA, the crossover operator is introduced. We

obtain novel binary values a0ik by crossing each binary qubit value αik,i = 1,2,. . .,m, k = 1,2,. . .N

with corresponding information on the historically best control scheme, that is, Dbest(k,k),

based on a certain crossover probability. The specific crossover mode is

a0ik ¼
Dbestðk; kÞ; if randðkÞ < pc

aik; otherwise; i ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;N;
ð21Þ

(

where i is the ith individual, rand(k) is a random number between [0, 1], and pc is the crossover

probability. Fig 7 shows a simple crossover example with 10 qubits to explain the rule (21).

In the early days of population evolution, there existed relatively big differences between

individuals. Therefore, the crossover possibility to produce better offspring should have been

bigger. Moreover, if we increased the crossover probability at this time, the evolution process

would have been accelerated. By contrast, in the late stages of evolution, differences between

individuals became smaller as the best solution was approaching. The crossover probability

should have been correspondingly diminished to reserve the good genes. We design an adap-

tive crossover operator as

pcðiÞ ¼

m

Qi

pc0exp � jfmax � f ðGiÞj
fmax � fmin

� �

; fmax 6¼ fmin

m

Qi

pc0; fmax ¼ fmin

; i ¼ 1; 2; . . . ;m; ð22Þ

8

>

>

<

>

>

:

where pc(i) is the crossover probability of the ith current individual, Qi is the number of those

individuals whose fitness is better than that of the historically best individual, pc0 is the initial

crossover probability, fmax and fmin are the previous worst fitness and best fitness, respectively,

and f(Gi) is the fitness of the ith current individual.

We can observe that pc(i) becomes bigger when the control scheme Gi becomes worse and

vice versa. Moreover, pc(i) is inversely proportional to Qi, which means that if there are not so

A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

PLOSONE | https://doi.org/10.1371/journal.pone.0193827 March 19, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0193827


many good individuals, pc(i) should be bigger to produce a greater number of better individu-

als; otherwise, it should be smaller because the evolving individuals are becoming better. The

improved adaptive crossover operation from Eq (20) is

a0
ik ¼

Dbestðk; kÞ; if randðkÞ < pcðiÞ
aik; otherwise

; i ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . .N; ð23Þ
(

A better population is determined after the crossover operation following the pseudocode.
start

obtain fitness(i) in parallel;
find f(max) and f(min);
obtain pc(i) according to formula (22) in parallel;
obtain new binary population;

end
where fitness(i) is the fitness value of the ith individual.

Rotation angle updating rules

Learning from the solid lookup rules [39], we present a set of adaptive rotation angle updating

rules in Table 1. The rotation angle θi (θi = δi
� s(αi,βi)), i = 1,2,. . .,m dynamically varies accord-

ing to the evolution process.

If Dc(i) 6¼Dbest(i), the rotation angle δi is adaptively proportional to
fðDcÞ
fðDbestÞ

. If f(Dc)< f

(Dbest), the angle will be smaller; otherwise, it will be bigger. Initially, a big initial angle is set.

Fig 7. Simple crossover example.

https://doi.org/10.1371/journal.pone.0193827.g007

Table 1. Rotation angle updating rules.

Dc(i) Dbest(i) f(Dc)< f(Dbest) s(αi,βi)

δi αiβi>0 αiβi<0 αi = 0 βi = 0

0 0 false 0 0 0 0 0

0 0 true 0 0 0 0 0

0 1 false fðDcÞ
fðDbestÞ

� 0:03p +1 −1 0 ±1

0 1 true fðDcÞ
fðDbestÞ

� 0:01p −1 +1 ±1 0

1 0 false fðDcÞ
fðDbestÞ

� 0:03p −1 +1 ±1 0

1 0 true fðDcÞ
fðDbestÞ

� 0:01p +1 −1 0 ±1

1 1 false 0 0 0 0 0

1 1 true 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0193827.t001
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As the iteration proceeds, the differences between individuals decrease and δi becomes smaller.

In this way, the probability amplitude evolves in the direction of the optimal solution.

Population catastrophe

When the best individuals in several successive generations are identical, it shows that the algo-

rithm falls into a local minimum. At this moment, catastrophe operations for the current pop-

ulation should be performed to take it out of the constraint and start a new search. Specifically,

the successive best individual is retained in the new population Q(t + 1) and the remaining

individuals in Q(t + 1) are regenerated as a large disturbance. The pseudocode of the catastro-

phe operation is as follows:
start

obtain the best individual corresponding to the optimal fitness;
keep this best individual;
rebuild the rest in parallel;

end
The strategy would prefer that the population eliminate its dull state rather than make it

degenerate, which is an effective means to commence a new search.

Simulations and analyses

We used the orthodox ER random [46], SF [47], SW networks of NW type [48] and some real-

world networks as benchmarks to illustrate the feasibility of the PAQGA for optimizing the

controllability of arbitrary networks that encompass control nodes and state nodes. Addition-

ally, we also conducted an analysis of the relationship between the network topology and num-

ber of control nodes. ER and SF networks were obtained from the static model [49] with N

state nodes and P candidate control nodes (N = P). Each control node pointed to state nodes

with uniform probability and the weights of all edges were randomized between zero and one.

SW networks were generated from randomized adding edges [48, 49]. The characteristics of

random regular networks, ER, SF, and SW networks are illustrated in Fig 8.

We define the number of selected control nodes that correspond to the current best control

scheme as nc and the density of these selected control nodes as Nc, where Nc = nc/N. The mini-

mum number of selected control nodes after the optimization process is denoted as ncm, and

the minimum control node density is Ncm = ncm/N. To implement the parallel strategy, we per-

formed the following simulations on eight MATLAB1 workers. The parameters of the

PAQGA were set to 2m = 30, maxgen = 100, and pc0 = 0.06. All the following experimental

results are the average of 10 independent simulations and the standard deviation is 0.01.

Performance of the PAQGA

To show that the optimal solution (Dbest) at each generation always evolves in the feasible

region, that is, Peni(Dbest) = 0, we conducted experiments on different networks. All these net-

works were directed with 100 state nodes and 100 candidate control nodes. The experimental

results are shown in Fig 9. The figure shows that the best fitness quickly converged to the mini-

mum value after approximately the first few generations. The mean current fitness fluctuated

dramatically because of the operations of qubit cross, qubit catastrophe, and Q-gate rotation.

The penalty was always equal to zero, which means that Dbest always met the PBH rank condi-

tion throughout the entire optimization process.

We compare the performance of PAQGA of optimizing network controllability with that of

EO [22] and adaptive GA [28] on a list of popular networks and real-life networks. The com-

parison results are tabulated in Table 2.
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From the columns of ncm, it can be observed that the three algorithms almost converged to

the same value, which demonstrates that PAQGA, GA, and EO all had a good ability to deter-

mine the optimal control nodes. When the size of the network was small (e.g., N = P� 50),

Fig 8. Characteristics of the addressed networks. Red stars represent the node in-degree denoted by hkini and the green
diamonds represent the node out-degree denoted by hkouti. (a) Random regular networks with homogeneous degree
distribution of hkini = hkouti = 4. (b) ER random networks with Poisson degree distribution; the degree heterogeneities rely on
the average degree denoted by hki. (c) SF networks with power-law degree distribution, which results in large degree
heterogeneities. (d) SW networks with long-tail degree distribution, which decreases much slower than the SF distribution.

https://doi.org/10.1371/journal.pone.0193827.g008

Fig 9. Fitness and penalty curves as a function of iterating generation for (a) ER with hki = 4.0, (b) SF with hki = 4.0 and γ = 2.1,
and (c) SW with hki = 4.0. The red dotted line with a square is the best fitness corresponding to Dbest at the current generation, the
blue dashed line with a circle is the mean fitness of all control schemes at each generation, and the black line with a triangle is the
penalty term corresponding to Dbest at each generation.

https://doi.org/10.1371/journal.pone.0193827.g009
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PAQGA took slightly more time than GA and EO to determine the best solution. This para-

doxical phenomenon is attributed to the launching of the MATLAB1 distributed server, and

the launching time was approximately 2s. However, once the server started, PAQGA showed a

greater advantage in processing large-size networks over GA and EO. For example, for the ER

network with hki = 6.0 and N = P = 200, PAQGA obtained ncm at the fifth generation and took

12.49s; for the same network, GA took 873.05s at the 128th generation and, and EO required

29 generations and 1545.84 s. By comparing the computational time, PAQGA saved 98.57%

more than GA and 99.19% more than EO.

A parallel version of GA was transformed from the adaptive GA [28] using η MATLAB1

workers with the computational complexity ofO 2m�ðNþPÞ3�l

Z

� �

, where 2m is the population

size, l is the number of different eigenvalues of the controlled network. We compared it with

the proposed PAQGA, and the results are shown in Table 3.

It can be inferred from Table 3 that the parallel computation (allowing for multiple proces-

sors) contributes to the performance of algorithms. However, it is not the only important fac-

tor. The computational efficiency of EO, GA, parallel GA and PAQGA could be reflected by

their computation complexity. First, the computation of the PBH rank matrix in GA, parallel

GA and PAGQA and the Kalman rank matrix in EO is the most time-consuming. This is the

main factor affecting their speedability. The rank computation of Kalman matrix takes much

Table 2. Performance comparison of PAQGA, GA, and EO on different networks in terms of ncm, the minimum iterating generations, and computational time.
Power-law index of SF networks in these experiments was γ = 2.1. ‘/’ indicates that the corresponding results were not available for the computational time limit. For data
sources, see Supplementary information S1 Dataset.

network N/P <k> PAQGA Adaptive GA [28] EO [22]

ncm iterations time (s) ncm iterations time (s) ncm iterations time (s)

ER 25 1.5 2 3 1.86 2 30 0.23 3 22 0.45

ER 50 3 3 4 4.03 3 34 4.19 3 22 7.79

ER 100 4 5 5 7.38 5 75 266.26 6 24 121.62

ER 200 6 31 5 12.49 31 128 873.05 31 29 1545.84

ER 300 8 22 11 18.31 25 44 1708.81 / / /

ER 500 10 43 17 31.82 / / / / / /

ER 1000 16 64 26 65.05 / / / / / /

SF 25 1.5 3 5 2.36 3 20 0.43 4 22 0.75

SF 50 3 5 6 5.38 5 32 4.83 5 21 8.37

SF 100 4 10 7 8.22 10 69 278.55 10 21 134.54

SF 200 6 35 5 13.06 35 116 892.16 36 34 1623.13

SF 300 8 83 11 19.57 83 132 1823.12 / / /

SF 500 10 192 17 34.92 / / / / / /

SF 1000 16 416 26 68.04 / / / / / /

Rhode [50] 20 2.65 2 5 2.76 2 20 0.52 2 22 0.86

Maspalomas [50] 24 3.417 3 6 5.56 3 32 5.24 3 21 8.93

Michigan
[50]

39 5.667 13 7 6.45 13 69 5.52 14 21 12.62

Circuit-s208 [51] 122 3.126 29 9 18.22 29 116 913.14 30 34 1745.83

Friend-rev
[52]

228 4.01 52 10 20.45 52 121 1201.54 54 45 2733.61

Circuit-s420 [51] 252 3.21 59 13 23.65 59 132 1962.92 / / /

Circuit-s838
[51]

512 3.44 119 18 39.03 / / / / / /

Roget [50] 1022 4.966 396 27 75.66 / / / / / /

https://doi.org/10.1371/journal.pone.0193827.t002
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more time than that of PBHmatrix. Second, PAQGA adopts qubits representation, where

each chromosome contains two individuals. This expands the space of feasible solution. And

the adaptive Q-gate rotation operation and crossover operation help to improve the algorithm

efficiency.

Moreover, comparison tests among the PAQGA, MMT and MM are conducted to observe

the performance of the PAQGA on much larger real networks. The experimental results are

shown in Table 4.

It can be seen that Ncm of PAQGA agrees with that of MMT on these real-world networks,

and is slightly greater than or equal to that of MM. The experimental results show the

Table 3. Performance comparison of PAQGA and parallel GA on different networks using eight MATLAB1 workers in terms of ncm, the minimum iterating gen-
erations, and computational time. For data sources, see Supplementary information S1 Dataset.

network N/P <k> PAQGA parallel GA

ncm iterations time (s) ncm iterations time (s)

ER 25 1.5 2 3 1.86 2 19 2.71

ER 50 3 3 4 4.03 3 28 5.19

ER 100 4 5 5 7.38 5 35 53.31

ER 300 8 22 11 18.31 25 37 89.54

SF 25 1.5 3 5 2.36 3 18 3.52

SF 50 3 5 6 5.38 5 27 6.65

SF 100 4 10 7 8.22 10 34 42.73

SF 300 8 83 11 19.57 83 126 243.12

Rhode [50] 20 2.65 2 5 2.76 2 18 3.51

Maspalomas [50] 24 3.417 3 6 5.56 3 28 8.32

Michigan
[50]

39 5.667 13 7 6.45 13 66 11.47

Circuit-s208 [51] 122 3.126 29 9 18.22 29 98 220.78

Friend-rev
[52]

228 4.01 52 10 20.45 52 107 275.67

Circuit-s420 [51] 252 3.21 59 13 23.65 59 116 295.63

Circuit-s838
[51]

512 3.44 119 18 39.03 119 122 413.41

Roget [50] 1022 4.966 396 27 75.66 396 135 511.76

https://doi.org/10.1371/journal.pone.0193827.t003

Table 4. Performance comparison of PAQGA, MMT, and MM on several large real-directed, -weighted and–unweighted networks in terms of Ncm and computa-
tional time. For data sources, see Supplementary information S1 Dataset.

network class N/P PAQGA MMT [11] MM [10]

Ncm time (s) Ncm time (s) Ncm time (s)

Coauthorships
[53]

Directed
weighted

1461 0.3436 85.12 0.3436 67.03 0.3425 34.16

SciMet [54] Directed
unweighted

2729 0.4251 126.35 0.4251 83.29 0.4236 52.91

Kohonen [54] Directed
unweighted

3772 0.562 173.46 0.562 106.62 0.5604 73.85

Wiki-Vote [55] Directed
unweighted

7115 0.6656 392.44 0.6656 228.73 0.6656 167.59

P2P-3 [56] Directed
unweighted

8717 0.5778 473.19 0.5778 279.15 0.5774 206.52

P2P-1 [56] Directed
unweighted

10876 0.5531 685.78 0.5531 359.83 0.552 268.96

https://doi.org/10.1371/journal.pone.0193827.t004
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efficiency of PAQGA in identifying the minimum control nodes. Nevertheless, PAQGA is at a

disadvantage in computational time compared with MMT and MM, although such defect

could be improved by adding the number of processors or using computer groups. For exam-

ple, the cost of calculating Ncm of Wiki-vote network is reduced to 301.34s with 12 processors.

PAQGA is an intelligent probabilistic optimization algorithm that provides approximate

solutions. The optimal solution cannot be guaranteed to be found. Moreover, the optimal solu-

tion of a problem is typically unknown in advance. We used the structural controllability the-

ory [10, 18] as the benchmark to compute ncm to test the validation of PAQGA. The results are

shown in Fig 10.

We can observe that for ER, SF, and SW, the obtained ncm is the same as the benchmark

result, which indicates that the proposed PAQGA was effective in determining the minimum

control nodes of complex networks.

Discussion and analysis of results

Applying PAQGA, the optimization results and evolution process of network topology can be

achieved. The results are intuitively displayed in Fig 11.

From Fig 11(A), Nc of different networks quickly converged to a steady minimum value,

which indicates the effectiveness of the PAQGA. For example, Nc of ER with<k> = 4.0 con-

verged to 0.05 at the fifth generation, which demonstrates that five control nodes were suffi-

cient to maintain network controllability. For SF with<k> = 6.0 and γ = 2.1, Nc rapidly

decreased to a minimum value of 0.07 at the seventh generation, which means that at least

seven control nodes were required to fully control the network. Fig 11(B)–11(D) together cap-

ture the evolution of the SW network with<k> = 6.0 at the zeroth, fifth, and seventh iteration,

and the convergence trend of the control nodes can be acquired.

We also found that two networks with different<k> required different Ncm. For example,

for ER with<k> = 4.0 and<k> = 6.0, Ncm of the network with<k> = 4.0 was 0.05 and with

<k> = 6.0, Ncm = 0.02. Additionally, Ncm of SW networks with<k> = 4.0 and<k> = 6.0 was

0.25 and 0.22, respectively. Second, for networks with the same<k> and different γ, Ncm also

differed. For example, consider SF with same<k> = 6.0, and different γ = 2.1 and γ = 3.0. The

two networks had Ncm = 0.06 and Ncm = 0.04, respectively. Third, for networks with the same γ
and different<k>, Ncm was also different, which can be determined from Table 2. These

results led us to conjecture that Ncm had a relationship with<k> and γ.
To confirm our hypothesis, we performed simulations on a set of different networks and

plotted Ncm as the function of<k> and γ. The results are shown in Fig 12.

From Fig 12(A), it is obvious that Ncm of networks with fixed γ decreased monotonically

with<k> until Ncm became slowly flat. Additionally, the downward trend was of asymptotic

exponential dependence, which suggests that the sparse network required more control nodes

to maintain full controllability. From Fig 12(B), we can observe that Ncm with fixed<k>

decreased as γ increased. The results indicate that Ncmmay be influenced by the degree hetero-

geneity, denoted by H, which is the standard deviation of the network node degree distribution

[57]. In this paper, H is defined as

H ¼ ðPiðki � hkiÞ2Þ=NÞ1=2; i ¼ 1; 2; . . . ;N; ð24Þ

where ki is the degree of state node i.

To determine the relationship between Ncm and H, we examined Ncm as a function of H

and obtained the results shown in Fig 13.

From Fig 13(A), it can be observed that a larger Ncm always corresponded to a larger H and

smaller γ. Fig 13(B) shows that the network with a smaller hki and larger H typically required a

A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks

PLOSONE | https://doi.org/10.1371/journal.pone.0193827 March 19, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0193827


larger Ncm. The results suggest that the larger the differences between node degrees, the more

control nodes were required to entirely control the network.

SW networks have the remarkable characteristics of a large clustering coefficient, denoted

by C, which represents the overlapping degree of friend circles of two adjacent state nodes and

is defined as

C ¼ 1

N

P

i

Ei

1

2
ki ki � 1ð Þ ; i ¼ 1; 2; . . . ;N; ð25Þ

Fig 10. ncm comparison between the structural controllability theory and PAQGA on (a) ER with hki = 4.0, (b) SF with hki = 4.0
and γ = 2.1, and (c) SW with hki = 4.0.

https://doi.org/10.1371/journal.pone.0193827.g010

Fig 11. PAQGA optimization results and network topology evolution. (a) Convergence trend of Nc of directed ER, SF, and
SW with N = P = 100. (b) Initial network topology (at the zeroth generation) of SW with hki = 6.0. Yellow circles represent the
candidate control nodes and green squares represent the state nodes. Selected control nodes are connected to state nodes with a
row from circles to squares. Links between state nodes are arrowed lines between squares. (c) Network topology guided by 31
control nodes at the fifth generation. (d) Network topology with 22 control nodes at the first convergence generation (seventh
generation).

https://doi.org/10.1371/journal.pone.0193827.g011
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where i is node i, ki is the number of edges between node i and other nodes, and Ei is the num-

ber of edges among the ki nodes. For SW networks, Ncmmay be affected by C. To explore the

relationship between Ncm and C, we plot Ncm as a function of hki and C,shown in Fig 14.

From Fig 14(A) and 14(B), we can determine that a larger C corresponded to a smaller Ncm,

which indicates that the more interconnected the network, the fewer control nodes were

required to control the network. For other networks, such as ER, SF, the conclusion also holds.

Considering the aforementioned analysis results together, we can determine that for a

given network with both control nodes and state nodes: 1) the sparser the network, the more

control nodes were required to control it; and 2) the more heterogeneous the network, the

more control nodes were required to guarantee its full control. We reflect that the sparse and

heterogeneous network is the most difficult for guiding its dynamic evolution (see Tables 2

and 4 and Figs 10(A) and 12(B)). The consistency between the results from our approach and

from these existing methods [10, 11, 22, 28] confirms the similarity between them for directed

networks, which not only further validate these existing methods, but also reflect the effective-

ness of our method.

To evaluate the controllability of directed networks, the structural controllability frame-

work based on the MMmethod is still the best for its error-free feature [11]. Like the MMT,

the PAQGA also relies on the eigenvalues and the rank of the network matrix, the computation

Fig 12. Impact of<k> and γ on Ncm. (a) Ncm as a function of<k> with fixed γ. (b) Ncm as a function of γ with fixed
<k>. Networks are directed with N = P = 500.

https://doi.org/10.1371/journal.pone.0193827.g012

Fig 13. Ncm as a function of H. (a) Ncm as a function of H for ER and SF networks with fixed γ and variable hki. (b) Ncm as
a function of H for ER, SF, and SW networks with variable γ and fixed hki. The networks are directed with N = P = 500.

https://doi.org/10.1371/journal.pone.0193827.g013
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of which inevitably introduces numerical errors. Further, MM and MMT both surpass

PAQGA in computational efficiency in identifying both the minimum set of driver nodes and

the number of these driver nodes. However, the PAQGA can have a wider range of applica-

tions. For example, the PAQGA is valid for networks containing a number of self-loops with

identical or different weights, and networks with bidirectional connections between two

nodes. The PAQGA is also applicable to undirected networks, where the structural matrix

assumption is slightly violated because of the network symmetry. Further, combined with

advantages of computer hardware and the adaptive strategies itself, PAQGA has great room

for improvement. Taken together, the PAQGA as an alternative exact structural controllability

framework provides us deeper understanding of the controllability of complex networked

systems.

Conclusions

In this paper, we introduced a PAQGA to optimize the controllability of arbitrary networks

with control nodes and state nodes under the PBH rank condition. In addition to MATLAB1

workers, more parallel mechanisms can be flexibly embedded in the PAQGA, for which more

threads concurrently processing could further promote the time efficiency of generating a

solution. Analyses and simulation comparisons demonstrated the effectiveness and applicabil-

ity of the proposed PAQGA. Furthermore, we found that the minimum control nodes were

affected by the network degree distribution, degree heterogeneity, and clustering coefficient.

The sparse and heterogeneous network is the most difficult to be fully controlled.

In our study, the topology that comprises state nodes remained static during the entire evo-

lution process. However, networks normally evolve over time, which manifests as the increas-

ing or decreasing of different nodes and their links. In the future, we will focus on the

controllability of dynamic networks. Furthermore, we hope to explore how to use the obtained

minimum control nodes to steer an intermediate network to evolve into our desired network

considering realistic energy constraints.

Supporting information

S1 Dataset. Canonical and real-world network datasets for comparison experiments.

(RAR)

Fig 14. Impact of<k> and C on Ncm of SW networks. (a) Ncm as a function of<k> with fixed C. When C = 1, the
network is fully connected and can be steered to any state with only one controller. (b) Ncm as a function of C with fixed
hki. Networks are directed with N = P = 500.

https://doi.org/10.1371/journal.pone.0193827.g014
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