
A parallel adaptive tabu search approach

E.G. Talbi *, Z. Ha®di, J-M. Geib

LIFL URA-369 CNRS, Universit�e de Lille 1, Bâtiment M3 59655, Villeneuve d'Ascq Cedex, France

Received 15 April 1997

Abstract

This paper presents a new approach for parallel tabu search based on adaptive parallelism.

Adaptive parallelism was used to dynamically adjust the parallelism degree of the application

with respect to the system load. Adaptive parallelism demonstrates that high-performance

computing using a hundred of heterogeneous workstations combined with massively parallel

machines is feasible to solve large optimization problems. The parallel tabu search algorithm

includes di�erent tabu list sizes and new intensi®cation/diversi®cation mechanisms. Encour-

aging results have been obtained in solving the quadratic assignment problem. We have im-

proved the best known solutions for some large real-world problems. Ó 1998 Elsevier

Science B.V. All rights reserved.

Keywords: Tabu search; Adaptive parallelism; Quadratic assignment problem

1. Motivation and goals

Many interesting combinatorial optimization problems are NP-hard, and then
they cannot be solved exactly within a reasonable amount of time. Consequently,
heuristics must be used to solve real-world problems. Tabu search (TS) is a general
purpose heuristic (meta-heuristic) that has been proposed by Glover [1]. TS has
achieved widespread success in solving practical optimization problems in di�erent
domains (such as resource management, process design, logistic and telecommuni-
cations). Promising results of applying TS to a variety of academic optimization
problems (traveling salesman, quadratic assignment, time-tabling, job-shop sched-
uling, etc.) are reported in the literature [2]. Solving large problems motivates the
development of a parallel implementation of TS.

Parallel Computing 24 (1998) 2003±2019

* Corresponding author. E-mail: talbi@li¯.fr

0167-8191/98/$ ± see front matter Ó 1998 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 ( 9 8 ) 0 0 0 8 6 - 6



The proliferation of powerful workstations and fast communication networks
(ATM, Myrinet, etc.) with constantly decreasing cost/performance ratio have shown
the emergence of heterogeneous workstation networks and homogeneous clusters of
processors (such as DEC Alpha farms and IBM SP/2) [3,4]. These parallel platforms
are generally composed of an important number of machines shared by many users.
In addition, a workstation belongs to an owner who will not tolerate external ap-
plications degrading the performance of his machine. Load analysis of those plat-
forms during long periods of time showed that only a few percentage of the available
power was used [5,6]. There is a substantial amount of idle time. Therefore, dynamic
adaptive scheduling of parallel applications is essential.

Many parallel TS algorithms have been proposed in the literature. In general, they
don't use advanced programming tools (such as load balancing, dynamic recon®g-
uration and checkpointing) to e�ciently use the machines. Most of them are de-
veloped for dedicated parallel homogeneous machines.

Our aim is to develop a parallel adaptive TS strategy, which can bene®t greatly
from a platform having combined computing resources of massively parallel ma-
chines (MPPs) and networks of workstations (NOWs). For this purpose, we use a
dynamic scheduling system (MARS 1) which harnesses idle time (keeping in mind the
ownership of workstations), and supports adaptive parallelism to dynamically re-
con®gure the set of processors hosting the parallel TS.

The testbed optimization problem we used is the quadratic assignment problem
(QAP), one of the hardest among the NP-hard combinatorial optimization prob-
lems. The parallel TS algorithm includes di�erent tabu list sizes and intensi®cation/
diversi®cation mechanisms based on frequency based long-term memory and re-
stricted neighborhood.

The remainder of the paper is organized as follows. In Section 2, we describe
existing parallel TS algorithms. The parallel adaptive TS proposed will be detailed in
Section 3. Finally, Sections 4 and 5 will present respectively the application of the
proposed algorithm to the QAP and results of experiments for several standard
instances from the QAP-library.

2. Classi®cation of parallel TS algorithms

We present in this section, respectively the main components of a sequential TS
algorithm, and a classi®cation of parallel TS algorithms. A new taxonomy dimension
has been introduced.

2.1. Sequential tabu search

A combinatorial optimization problem is de®ned by the speci®cation of a pair
�X ; f �, where the search space X is a discrete set of all (feasible) solutions, and the

1 Multi-user Adaptive Resource Scheduler.

2004 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



objective function f is a mapping f : X ! R: A neighborhood N is a mapping
N : X ! P�X �, which speci®es for each S 2 X a subset N�S� of X of neighbors of S.

The most famous local search optimization method is the descent method. A de-
scent method starts from an initial solution and then continually explores the
neighborhood of the current solution for a better solution. If such a solution is
found, it replaces the current solution. The algorithm terminates as soon as the
current solution has no neighboring solution of better quality. Such a method
generally stops at a local but not global minimum.

Unlike a descent method, TS uses an adaptive memory H to control the search
process. For example, a solution S0 in N�S� may be classi®ed tabu, when selecting a
potential neighbor of S, due to memory considerations. N�H ; S� contains all
neighborhood candidates that the memory H will allow the algorithm to consider.
TS may be viewed as a variable neighborhood method: each iteration rede®nes the
neighborhood, based on the conditions that classify certain moves as tabu.

At each iterations, TS selects the best neighbor solution in N�H ; S� even if this
results in a worst solution than the current one. A form of short-term memory
embodied in H is the tabu list T that forbid the selection of certain moves to prevent
cycling.

To use TS for solving an optimization problem, we must de®ne in the input the
following items:
· An initial solution S0:
· The de®nition of the memory H .
· The stopping condition: there may be several possible stopping conditions [7]. A

maximum number nbmax of iterations between two improvements of f is used
as the stopping condition.
The output of the algorithm represents the best solution found during the search

process. The following is a straightforward description of a sequential basic TS al-
gorithm (Fig. 1) [8].

A tabu move applied to a current solution may appear attractive because it gives,
for example, a solution better than the best found so far. We would like to accept the
move in spite of its status by de®ning aspiration conditions. Other advanced tech-
niques may be implemented in a long-term-memory such as intensi®cation to en-
courage the exploitation of a promising region in the search space, and
diversi®cation to encourage the exploration of new regions [2].

2.2. Parallel tabu search

Many classi®cations of parallel TS algorithms have been proposed [9,10]. They
are based on many criteria: number of initial solutions, identical or di�erent pa-
rameter settings, control and communication strategies. We have identi®ed two main
categories (Fig. 2).

Domain decomposition: Parallelism in this class of algorithms relies exclusively on:
(i) The decomposition of the search space: the main problem is decomposed into a

number of smaller subproblems, each subproblem being solved by a di�erent TS
algorithm [11].

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2005



(ii) The decomposition of the neighborhood: the search for the best neighbour at
each iteration is performed in parallel, and each task evaluates a di�erent subset of
the partitioned neighborhood [12,13].

A high degree of synchronisation is required to implement this class of algorithms.
Multiple tabu search tasks: This class of algorithms consists in executing multiple

TS algorithms in parallel. The di�erent TS tasks start with the same or di�erent
parameter values (initial solution, tabu list size, maximum number of iterations,
etc.). Tabu tasks may be independent (without communication) [14,15] or cooper-
ative. A cooperative algorithm has been proposed in [10], where each task performs a

Fig. 1. A basic sequential tabu search algorithm.

Fig. 2. Hierarchical classi®cation of parallel TS strategies.

2006 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



given number of iterations, then broadcasts the best solution. The best of all solu-
tions becomes the initial solution for the next phase.

Parallelizing the exploration of the search space or the neighborhood is problem-
dependent. This assumption is strong and is met only for few problems. The second
class of algorithms is less restrictive and then more general. A parallel algorithm that
combines the two approaches (two-level parallel organization) has been proposed in
[16].

We can extend this classi®cation by introducing a new taxonomy dimension: the
way scheduling of tasks over processors is done. Parallel TS algorithms fall into three
categories depending on whether the number and/or the location of work (tasks,
data) depend or not on the load state of the parallel machine (Table 1):

Non-adaptive: This category represents parallel TS in which both the number of
tasks of the application and the location of work (tasks or data) are generated at
compile time (static scheduling). The allocation of processors to tasks (or data) re-
mains unchanged during the execution of the application regardless of the current
state of the parallel machine. Most of the proposed algorithms belong to this class.

An example of such an approach is presented in [17]. The neighborhood is par-
titionned in equal size partitions depending on the number of workers, which is equal
to the number of processors of the parallel machine. In [13], the number of tasks
generated depends on the size of the problem and is equal to n2; where n is the
problem size.

When there are noticeable load or power di�erences between processors, the
search time of the non-adaptive approach presented is derived by the maximum
execution time over all processors (highly loaded processor or the least powerful
processor). A signi®cant number of tasks are often idle waiting for other tasks to
complete their work.

Semi-adaptive: To improve the performance of the parallel non adaptive TS al-
gorithms, dynamic load balancing must be introduced [17,16]. This class represents
applications for which the number of tasks is ®xed at compile-time, but the locations
of work (tasks, data) are determined and/or changed at run-time (as seen in Table 1).
Load balancing requirements are met in [17] by a dynamic redistribution of work
between processors. During the search, each time a task ®nishes its work, it proceeds
to a work-demand. Dynamic load balancing through partition of the neighborhood
is done by migrating data.

However, the parallelism degree in this class of algorithms is not related to load
variation in the parallel system: when the number of tasks exceeds the number of idle

Table 1

Another taxonomy dimension for parallel TS algorithms

Tasks or Data

Number Location

Non-adaptive Static Static

Semi-adaptive Static Dynamic

Adaptive Dynamic Dynamic

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2007



nodes, multiple tasks are assigned to the same node. Moreover, when there are more
idle nodes than tasks, some of them will not be used.

Adaptive: A parallel adaptive program refers to a parallel computation with a
dynamically changing set of tasks. Tasks may be created or killed function of the
load state of the parallel machine. Di�erent types of load state dessimination
schemes may be used [18]. A task is created automatically when a processor becomes
idle. When a processor becomes busy, the task is killed. 2 As far as we know, no work
has been done on parallel adaptive TS.

3. A parallel adaptive tabu search algorithm

In this paper, a straightforward approach has been used to introduce adaptive
parallelism in TS. It consists in parallel independent TS algorithms. This requires no
communication between the sequential tasks. The algorithms are initialized with
di�erent solutions. Di�erent parameter settings are also used (size of the tabu list).

3.1. Parallel algorithm design

The programming style used is the master/workers paradigm. The master task
generates work to be processed by the workers. Each worker task receives a work
from the master, computes a result and sends it back to the master. The master/
workers paradigm works well in adaptive dynamic environments because:
· when a new node becomes available, a worker task can be started there,
· when a node becomes busy, the master task gets back the pending work which was

being computed on this node, to be computed on the next available node.
The master implements a central memory through which passes all communica-

tion, and that captures the global knowledge acquired during the search. The
number of workers created initially by the master is equal to the number of idle
nodes in the parallel platform. Each worker implements a sequential TS task. The
initial solution is generated randomly and the tabu list is empty.

The parallel adaptive TS algorithm reacts to two events (Fig. 3):
Transition of the load state of a node from idle to busy: If a node hosting a worker

becomes loaded, the master folds up the application by withdrawing the worker. The
concerned worker puts back all pending work to the master and dies. The pending
work is composed of the current solution, the best local solution found, the short-
term memory, the long-term memory and the number of iterations done without
improving the best solution. The master updates the best global solution if it's worst
than the best local solution received.

Transition of the load state of a node from busy to idle: When a node becomes
available, the master unfolds the application by staring a new worker on it. Before

2 Note that before being killed, a task may return its pending work (best known solution, short and long-

term memory).

2008 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



F
ig

.
3
.

A
rc

h
it

ec
tu

re
o

f
th

e
p

a
ra

ll
el

a
d

a
p

ti
v
e

T
S

.

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2009



starting a sequential TS, the worker task gets the values of the di�erent parameters
from the master: the best global solution and an initial solution which may be an
intermediate solution found by a folded TS task, which constitute a ``good'' initial
solution. In this case, the worker receives also the state of the short-term memory,
the long-term memory and the number of iterations done without improving the best
solution.

The local memory of each TS task which de®nes the pending work is composed of
(Fig. 3): the best solution found by the task, the number of iterations applied, the
intermediate solution and the adaptive memory of the search (short-term and long-
term memories). The central memory in the master is then composed of (Fig. 3): the
best global solution found by all TS tasks, the di�erent intermediate solutions with
the associated number of iterations and adaptive memory.

3.2. Parallel algorithm implementation

The parallel run-time system to be used has to support dynamic adaptive
scheduling of tasks, where the programmer is totally preserved from the complex
task of managing the availability of nodes and the dynamics of the target machine.
Piranha (under Linda) [19], CARMI/Wodi (under PVM/Condor) [20], and MARS
[21] are representative of such scheduling systems. We have used the MARS dynamic
scheduling system.

The MARS system is implemented on top of the UNIX operating system. We use
an existing communication library which preserves the ordering of messages: PVM. 3

Data representations using XDR are hidden for the programmer. The execution
model is based on a preemptive multi-threaded run-time system: PM2. 4 The basic
functionality of PM2 is the Lightweight Remote Procedure Call (LRPC), which
consists in forking a remote thread to execute a speci®ed service.

It is very important for the MARS scheduling system to quantify node idleness or
node availability. This is highly related to both load indicators chosen to de®ne it
and owner behavior. Several load indicators are provided: CPU utilization, load
average, number of users logged in, user memory, swap space, paging rate, disk
transfer rate, /tmp space, NFS performance, etc. Owner activity is detected by
controlling its keyboard and mouse idle times. For our experiments based on many
parallel applications, a node is considered idle if the one, ®ve and ten minutes load
average are below 2.0, 1.5 and 1.0 respectively and the keyboard/mouse are inactive
for more than ®ve minutes. Two con¯icting goals emerge when setting the thresh-
olds: minimize the overhead of the evaluation and the ¯uctuation of the load state,
and exploit a node as soon as it becomes idle.

A MARS programmer writes a parallel application by specifying two multi-
threaded modules: the master module and the worker module. The master module is
composed mainly of the work server thread. The worker module acts essentially as

3 Parallel Virtual Machine.
4 Parallel Multi- threaded Machine.

2010 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



a template for the worker threads. When the parallel application is submitted, the
master module is executed on the home node. The number of ``worker threads'' is
function of the available idle nodes. The MARS run-time scheduling system
handles transparently the adaptive execution of the application on behalf of the
user.

In the application, we have to de®ne two coordination services: get_work and
put_back_work. The ®rst coordination service speci®es the function to execute when
an unfolding operation occurs and the second one for the folding operation.

When a processor becomes idle, the MARS node manger communicates the state
transition to the MARS scheduler, which in turn communicates the information to
the application through the master using the RPC mechanism. Then, the master
creates a worker task. Once the worker is created, it makes a LRPC to the get_work
service to get the work to be done. Then, the worker creates a thread which execute a
sequential TS algorithm (Fig. 4).

When a processor becomes busy or owned, the same process is initiated in the
MARS system. In this case, the worker makes a LRPC to the put_back_work service
to return the pending work and dies (Fig. 5).

4. Application to the QAP

The parallel adaptive TS algorithm has been used to solve the quadratic assign-
ment problem (QAP). The QAP represents an important class of combinatorial
optimization problems with many applications in di�erent domains (facility location,
data analysis, task scheduling, image synthesis, etc.).

Fig. 4. Operations carried out when a processor becomes idle.

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2011



4.1. The quadratic assignment problem

The ®rst formulation was given by Koopmans and Beckmann in 1957 [22]. The
QAP can be de®ned as follows:

Given:
· a set of n objects O � fO1;O2; . . . ;Ong;
· a set of n locations L � fL1;L2; . . . ; Lng;
· a ¯ow matrix C, where each element cij denotes a ¯ow cost between the objects Oi

and Oj,
· a distance matrix D, where each element dkl denotes a distance between location Lk

and Ll,
®nd an object-location bijective mapping M : O! L; which minimizes the objective
function f,

f �
Xn

i�1

Xn

j�1

cij dM�i�M�j�:

The QAP is NP-hard [23]. Finding an �-approximate solution is also NP-complete
[24]. This fact has restricted exact algorithms (such as branch and bound) to small
instances �n < 22� [25]. An extensive survey and recent developments can be found in
[26].

4.2. Tabu search for the QAP

To apply the parallel adaptive TS to the QAP, we must de®ne the neighborhood
structure of the problem and its evaluation, the short-term memory to avoid cycling
and the long-term memory for the intensi®cation/diversi®cation phase.

Fig. 5. Operations carried out when a processor becomes busy or owned.

2012 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



4.2.1. Neighborhood structure and evaluation
Many encoding schemes may be used to represent a solution of the QAP. We have

used a representation which is based on a permutation of n integers:

s � �l1; l2; . . . ; ln�;
where li denotes the location of the object Oi. We use a pair exchange move in which
two objects of a permutation are swapped. The number of neighbors obtained by
this move is �n�nÿ 1��=2:

We use the formulae reported in [27] to e�ciently compute the variation in the
objective function due to a swap of two objects. The evaluation of the neighborhood
can be done in O�n2� operations.

4.2.2. Short-term memory
The tabu list contains pairs (i,j) of objects that cannot be exchanged (recency-

based restriction). The e�ciency of the algorithm depends on the choice of the size of
the tabu list. Our experiments indicate that choosing a size which varies between n=2
and �3n�=2 gives very good results. The number of parallel TS tasks is set to the
problem size n, and each TS task is initialized with a di�erent tabu list size from n=2
to �3n�=2 with an increment of 1.

The aspiration function allows a tabu move if it generates a solution better than
the best found solution. The total number of iterations depends on the problem size,
and is limited to 1000n.

4.2.3. Long-term memory
We use as a long-term memory a frequency-based memory which complements

the information provided by recency-based memory. A matrix F � �fi;k� represents
the long-term memory. Let S denote the sequence of all solutions generated. The
value fi;k represents the number of solutions in S for which s�i� � k: This quantity
identi®es the number of times the object i is mapped on the location k. The di�erent
values are normalized by dividing them by the average value which is equal to
�1� nb iterations�=n; given that the sum of the n2 elements of the matrix F is equal to
n�1� nb iterations�:

If no better solution is found in 100n iterations, the intensi®cation phase is started.
The intensi®cation phase starts from the best solution found in the current region
and an empty tabu list. The use of the frequency-based memory will penalize non-
improving moves by assigning a larger penalty to swaps with greater frequency
values.

A simulated-annealing like process is used in the intensi®cation phase. The rele-
vance of our approach compared to pure simulated-annealing is that it exploits
memory of TS for selecting moves. For each move m � �i; j�; an incentive value Pm is
introduced in the acceptance probability to encourage the incorporation of good
attributes (Fig. 6). The value of Pm is initialized to Max�fi;s�i�; fj;s�j��: Therefore, the
probability that a move will be accepted diminishes with small values of Pm.

The diversi®cation phase is started after 100n iterations are performed without any
improvements of the restarted TS algorithm. Diversi®cation is performed in 10n

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2013



iterations. The search will be forced to explore new regions by penalizing the solu-
tions often visited. The penalty value associated to a move m � �i; j� is
Im �Min�fi;s�i�; fj;s�j��: A move is tabu-active if the condition Im > 1 is true. There-
fore, we will penalize moves by assigning a penalty to moves with greater frequency.
The number of iterations is large enough to drive the search out of the current re-
gion. When the diversi®cation phase terminates, the tabu status based on long-term
memory is dropped.

5. Computational results

For our experimental study, we collected results from a platform combining a
network of heterogeneous workstations and a massively parallel homogeneous
machine (Fig. 7). The network is composed of 126 workstations (PC/Linux, Sparc/
Sunos, Alpha/OSF, Sparc/Solaris) owned by researchers and students of our Uni-
versity. The parallel machine is an Alpha-farm composed of 16 processors connected
by a crossbar switched interconnection network. The parallel adaptive TS competes
with other applications (sequential and parallel) and owners of the workstations.

5.1. Adaptability of the parallel algorithm

The performance measures we use when evaluating the adaptability of the parallel
TS algorithm are execution time, overhead, the number of nodes allocated to the

Fig. 6. Simulated annealing for the intensi®cation phase.

2014 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



application, and the number of fold and unfold operations. The overhead is the total
amount of CPU time required for scheduling operations. Table 2 summarizes the
results obtained for 10 runs.

The average number of nodes allocated to the application does not vary signi®-
cantly and represents 71% of the total number of processors. However, the high
number of fold and unfold operations shows a signi®cant load ¯uctuation of the
di�erent processors. During an average execution time of 2 h 25 mn, 79 fold oper-
ations and 179 unfold operations are performed. This corresponds to one new node
every 0.8 mn and one node loss every 2 mn. These results demonstrate the signi®-
cance of the adaptability concept in parallel applications.

The parallel algorithm is e�cient in terms of the scheduling overhead due to the
adaptability. The overhead is low comparing to the total execution time (0.09% of
the total execution time). We see also that the deviation of the overhead is very low
(0.24% for 10 runs). The classical speedup measure cannot be applied to our ap-
plication which executes on a heterogeneous multi-user non-dedicated parallel

Fig. 7. The meta-system used for our experiments.

Table 2

Experiment results obtained for 10 runs of a large problem (Sko100a) on 100 processors (16 processors of

the Alpha-farm, 54 Sparc/Solaris, 25 Sparc/SunOs, 5 PC/Linux)

Mean Deviation Min Max

Execution time (mn) 145.75 23.75 124 182

Overhead (sec) 8.36 0.24 8.18 8.75

Number of nodes allocated 71 15.73 50 92

Number of fold operations 79 49.75 24 149

Number of unfold operations 179 45.55 120 248

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2015



platform. Unfortunately, quantitative analysis of heterogeneous dynamic parallel
systems still in its infancy [28].

5.2. QAP results

To evaluate the performance of the parallel TS in terms of solution quality and
search time, we have used standard QAP problems of di�erent types (QAP library):
· random and uniform distances and ¯ows: Tai35a, Tai100a,
· random ¯ows on grids: Nug30, Sko100a-f, Tho150, Wil100,
· real-life or real-life like problems: Bur26d, Ste36b, Esc128, Tai150b, Tai256c.

The parallel TS algorithm was run 10 times to obtain an average performance
estimate. Table 3 shows the best known, best found, worst, average value and the
standard deviation of the solutions obtained for the chosen small instances (n < 50).
The search cost was estimated by the wall-clock time to ®nd the best solution, and
hence account for all overheads. Considering that the best solution may not be the
last visited solution, the measured time is not necessarily the time of the complete
execution of the algorithm.

We always succeed in ®nding the best known solutions for small problems. This
result shows the e�ciency and the robustness of the parallel TS.

Table 4 shows the best results obtained for large problems. For random-grid
problems, we found the best known solutions (for Sko 100c) or solutions very close
to best known solutions. Our results in terms of search time are smaller than those
presented in [29] with better solution quality. The most di�cult instance for our
algorithm is the random-uniform Tai100a, in which we obtain a gap of 0.32% above
the best known solution. For this class of instances, it is di�cult to ®nd the best
known solution but simple to ®nd ``good'' solutions.

For the third class of instances (real-life or real-life like), the best known solutions
for Tai150b and Tai256c (generation of grey patterns) have been improved.

According to the results, we observe that the algorithm is well ®tted to a large
number of instances but its performance decreases for large uniform±random in-
stances (Tai100a). Work is still to be done to improve the e�ciency of the algorithm
by introducing intensi®cation mechanisms based on path relinking, where S repre-
sents a small subset of elite solutions [2].

Table 3

Results for small problems (n < 50) of di�erent types

Instance Best known Best found Worst Average Standard

deviation

Average

search time

(s)

Tai35a 2 422 002 2 422 002 2 422 002 2 422 002 0 566

Nug30 6124 6124 6124 6124 0 337

Bur26d 3 821 225 3 821 225 3 821 225 3 821 225 0 623

Ste36b 15 852 15 852 15 852 15 852 0 763

2016 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



6. Conclusion and future work

The dynamic nature associated to the load of a parallel machine (cluster of
processors and network of workstations) makes essential the adaptive scheduling of
tasks composing a parallel application. The main feature of our parallel TS is to
adjust, in an adaptive manner, the number of tasks with respect to available nodes,
to fully exploit the availability of machines. The parallel algorithm can bene®t
greatly from a platform having combined computing resources of MPPs and NOWs.

An experimental study has been carried out in solving the QAP. The parallel TS
algorithm includes di�erent tabu list sizes and intensi®cation/diversi®cation mecha-
nisms (frequency based long-term memory, etc.). The performance results obtained
for several standard instances from the QAP-library are very encouraging in terms
of,

Adaptability: The overhead introduced by scheduling operations is very low, and
the algorithm reacts very quickly to changes of the machines load. It's a worthwhile
parallelization because the parallel TS application is coarse-grained.

E�ciency and robustness: The parallel algorithm has always succeeded in ®nding
the best known solutions for small problems (n < 50). The best known solutions of
large real-life problems ``charts of grey densities'' (Taixxxc) and the real-life problem
Tai150b have been improved. The parallel algorithm often produces best known or
close to best known solutions for large random problems. Other sophisticated in-
tensi®cation and diversi®cation mechanisms to improve the results obtained for large
random±uniform problems (Taixxa) are under investigation.

The parallel adaptive TS may be used to solve other optimization problems: set
covering, independent set, multiconstraint knapsack. We plan to improve our

Table 4

Results for large problems (n P 50) of di�erent types

Instance Best known Best found Gap Search time

(mn)

Tai100a 21 125 314 21 193 246 0.32% 117

Sko100a 152 002 152 036 0.022% 142

Sko100b 153 890 153 914 0.015% 155

Sko100c 147 862 147 862 0% 132

Sko100d 149 576 149 610 0.022% 152

Sko100e 149 150 149 170 0.013% 124

Sko100f 149 036 149 046 0.006% 125

Wil100 273 038 273 074 0.013% 389

Tho150 8 134 030 8 140 368 0.078% 287

Esc128 64 64 0% 230

Tai150b 499 348 972 499 342 577 )0.0013% 415

Tai256c 44 894 480 44 810 866 )0.19% 593

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2017



framework to provide adaptive parallelism to other metaheuristics (genetic algo-
rithms and hybrid algorithms) and for exact algorithms (IDA� and branch and
bound).

Solving very large optimization problems can take several hours. The aspects of
fault tolerance must be taken into account. A checkpointing mechanism which pe-
riodically save the context of the application is under evaluation [30].

References

[1] F. Glover, Tabu search ± Part I, ORSA Journal of Computing 1 (3) (1989) 190±206.

[2] F. Glover, M. Laguna, Tabu search, in: C.R. Reeves (Ed.), Modern Heuristic Techniques for

Combinatorial Problems, Blackwell Scienti®c Publications, Oxford, 1992, pp. 70±150.

[3] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz, J. Seizovic, W. Su, Myrinet ± A gigabit-

per-second local-area network, IEEE Micro (1995) 29±36.

[4] P.R. Woodward, Perspectives on supercomputing: Three decades of change, IEEE Computer (1996)

99±111.

[5] D.A. Nichols, Using idle workstations in a shared computing environment, ACM Operating System

Review 21 (5) (1987) 5±12.

[6] M.M. Theimer, K.A. Lantz, Finding idle machines in a workstation-based distributed system, IEEE

Transactions on Software Engineering 15 (11) (1989) 1444±1458.

[7] F. Glover, E. Taillard, D. de Werra, A user's guide to tabu search, Annals of Operations Research 41

(1993) 3±28.

[8] A. Hertz, D. de Werra, The tabu search metaheuristic: How we use it? Annals of Mathematics and

Arti®cial Intelligence (1989) 111±121.

[9] S. Voss, Tabu search: Applications and prospects, Technical report Technische Hochshule

Darmstadt, Germany, 1992.

[10] T.D. Crainic, M. Toulouse, M. Gendreau, Towards a taxonomy of parallel tabu search algorithms,

Technical Report CRT-933, Centre de Recherche sur les Transports, Universit�e de Montreal, 1993.

[11] E. Taillard, Parallel iterative search methods for vehicle routing problem, Networks 23 (1993)

661±673.

[12] E. Taillard, Robust taboo search for the quadratic assignment problem, Parallel Computing 17 (1991)

443±455.

[13] J. Chakrapani, J. Skorin-Kapov, Massively parallel tabu search for the quadratic assignment

problem, Annals of Operations Research 41 (1993) 327±341.

[14] M. Malek, M. Guruswamy, M. Pandya, H. Owens, Serial and parallel simulated annealing and tabu

search algorithms for the traveling salesman problem, Annals of Operations Research 21 (1989)

59±84.

[15] C. Rego, C. Roucairol, A parallel tabu search algorithm using ejection chains for the vehicle routing

problem, in: Proc. of the Metaheuristics Int. Conf., Breckenridge, 1995, pp. 253±295.

[16] P. Badeau, M. Gendreau, F. Guertin, J.-Y. Potvin, E. Taillard, A parallel tabu search heuristic for the

vehicle routing problem with time windows, RR CRT-95-84, Centre de Recherche sur les Transports,

Universit�e de Montr�eal, 1995.

[17] S.C.S. Porto, C. Ribeiro, Parallel tabu search message-passing synchronous strategies for task

scheduling under precedence constraints, Journal of heuristics 1 (2) (1996) 207±223.

[18] T.L. Casavant, J.G. Kuhl, A taxonomy of scheduling in general-purpose distributed computing

systems, IEEE Transactions on Software Engineering 14 (2) (1988) 141±154.

[19] D.L. Kaminsky, Adaptive parallelism in Piranha, Ph.D. thesis, Department of Computer Science,

Yale University, RR-1021, 1994.

[20] J. Pruyne, M. Livny, Parallel processing on dynamic resources with CARMI, in: Proc. of the

Workshop on Job Scheduling for Parallel Processing IPPS'95, Lecture Notes On Computer Science,

No.949, Springer, Berlin, 1995, pp. 259±278.

2018 E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019



[21] Z. Ha®di, E.G. Talbi, J.-M. Geib, MARS: Adaptive scheduling of parallel applications in a multi-user

heterogeneous environment, in: European School of Computer Science ESPPE'96: Parallel

Programming Environments for High Performance Computing, Alpe d'Huez, France, 1996, pp.

119±122.

[22] T.C. Koopmans, M.J. Beckmann, Assignment problems and the location of economic activities,

Econometrica 25 (1957) 53±76.

[23] M. Garey, D. Johnson, Computers and Intractability: A guide to the theory on NP-completeness,

Freeman, New York, 1979.

[24] S. Sahni, T. Gonzales, P-complete approximation problems, Journal of the ACM 23 (1976) 556±565.

[25] A. Brungger, A. Marzetta, J. Clausen, M. Perregaard, Joining forces in solving large-scale quadratic

assignment problems in parallel, in: A. Gottlieb (Ed.), 11th Int. Parallel Processing Symposium,

Geneva, Switzerland, Morgan Kaufmann, Los Altos, CA, 1997, pp. 418±427.

[26] P.M. Pardalos, F. Rendl, H. Wolkowicz, The quadratic assignment problem: A survey and recent

developments, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 16 (1994)

1±42.

[27] E. Taillard, Comparison of iterative searches for the quadratic assignment problem, Location Science

3 (1995) 87±103.

[28] M.M. Eshagian, Heterogeneous computing, Artech House, MA, 1996.

[29] C. Fleurent, J.A. Ferland, Genetic hybrids for the quadratic assignment problem, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science 16 (1994) 173±188.

[30] D. Kebbal, E.G. Talbi, J.-M. Geib, A new approach for check pointing parallel applications, in: Int.

Conf. on Parallel and Distributed Processing Techniques and Applications PDPTA'97, LasVegas,

USA, 1997, pp. 1643±1651.

E.G. Talbi et al. / Parallel Computing 24 (1998) 2003±2019 2019


