
A Parallel Algorithm Development Model for the GPU Architecture

J. Steven Kirtzic, Ovidiu Daescu
Department of Computer Science

University of Texas at Dallas
Richardson, TX USA

{jsk061000, daescu}@utdallas.edu

Abstract— Parallel computing has been in use for decades,
and throughout many researchers have sought to define a
model for algorithm design for such a platform. Valiant
developed a model for parallel computing, which was later
extended to later include multi-core processors, but it still
may not be best suited for the unique GPU architecture. With
the current advances in high performance computing, it is
easy to see the role that GPUs can play, and even easier to
see the need for a model for GPU algorithm development.
Here we propose a parallel GPU model which offers both
a general design and a fine-grained approach, intended to
accommodate nearly any GPU architecture. We show how
our model can result in significant increases in performance
when algorithms are designed based on its principles.

Keywords: GPU, parallel processing, algorithm design

1. Introduction
The rapid advancement of the Graphics Processing Unit,

or GPU, over the last few years has opened up a new
world of possibilities for high-speed computation, ranging
from biomedical to computer vision applications. Recent
examples include [1], [2], and [3]. However, the GPU
architecture is unlike that of any other, and designing al-
gorithms to fully harness the capabilities of a GPU is not
an easy task, especially when one considers the advantages
and disadvantages of the various resources that a GPU has
available to it. In this paper we introduce a parallel algorithm
design model for the GPU architecture which addresses these
issues. In Section 2 we discuss related work; in Section 3 we
present a brief overview of the GPU architecture, focusing
on NVIDIA’s CUDA architecture; in Section 4 we present
the model in its entirety; in Section 5 we illustrate the use
of our model as we apply it to template and shape matching
algorithms; in Section 6 we discuss the results of our model
as applied to these template and shape matching algorithms;
and finally in Section 7 we conclude and remark on future
work.

1.1 Contribution
We believe that our main contribution with this work is

to provide an easily accessible parallel algorithm design
model for the GPU architecture. Our model addresses the

limitations of other parallel models in that it accounts for
the unique architecture of the GPU, in particular the various
types of memory that the GPU possesses and their individual
attributes. Our model is also designed to include single
or multi-core CPUs as part of the system, if the designer
chooses to do so. Finally, our model is intended to be easily
accessible for a wide variety of reseachers from all scientific
fields interested in GPU algorithm design, ranging from the
novice to the experienced.

2. Related work
We present the following parallel model designs in suc-

cession to demonstrate the evolution of our Parallel GPU
Model (PGM) and give it proper context.

2.1 The PRAM model
The PRAM model is generally regarded as one of the orig-

inal parallel algorithm design models. The main shortcoming
of the PRAM model lies in its unrealistic assumptions of
zero communication overhead and instruction-level synchro-
nization. Another drawback of with the PRAM model is that
the time complexity of a PRAM algorithm is often expressed
in big-O notation, which is often misleading because the ma-
chine size n is usually small in existing parallel computers.
Consequently, the PRAM model is generally not used as a
machine model for real-life parallel computers.

2.2 The BSP model
The BSP, or bulk-synchronous parallel model, was pro-

posed by Leslie Valiant [4] to overcome the limitations
of the PRAM model [5], while maintaining its simplicity.
In the BSP model, a BSP computer consists of a set of
n processor/memory pairs (nodes) that are interconnected
by a communication network. The BPS model is Multiple
Instruction Multiple Data (MIMD) in nature, and uses the
concept of a superstep, which is comprised of a computation
step, a communication step, and a synchronization step. The
BSP model is also variable grained, loosely synchronous,
has non-zero overhead, and uses message passing or shared
variables for communication.

The program executes as a strict sequence of supersteps.
In each superstep, a process executes the computation oper-
ations in at most w cycles, a communication operation that



takes gh cycles, and a barrier synchronization that takes l
cycles. Note that in the communication overhead gh, g is
the proportional coefficient for realizing a h relation. The
value of g is platform-dependent, but independent of the
communication pattern. In other words, gh is the time that
it takes to execute the most time-consuming h relation.

Within a superstep, each computation operation uses only
data in its local memory. This data is put into the local
memory, either at the program start-up time or by the
communication operations of previous supersteps. Therefore,
the communication operations of a process are independent
of other processes.

The BSP model is more realistic than the PRAM model
because it accounts for all overheads except for the paral-
lelism overhead for process management. The time for a
superstep is estimated by the sum

w + gh+ l (1)

This model is highly regarded and has formed the basis for
other parallel models, such as the parallel phase model [5],
which we will briefly discuss next. However, its generality
is its shortcoming when one attempts to apply it to more
specific architectures, such as that of the GPU. Valiant
recently extended his model to include multi-core CPUs [6].
While this model is much more akin to the architectural
nature of the GPU, it still does not take into considera-
tion the complexities of the typical GPU architecture, in
particular the various types of memory, which as we will
demonstrate in later sections have a tremendous impact on
the performance of a given GPU algorithm.

2.3 The parallel phase model
Kai Hwang and Zhiwei Xu [7] proposed a phase parallel

model for parallel computation that is further refined from
the above two abstract models. This model is similar to
the BSP model with the following distinctions: a parallel
program is executed as a sequence of phases: the parallelism
phase, the computation phase, and the interaction phase.
The total execution time of the superstep on n processors
is expressed by

Tn = Tcomp + Tinteract + Tpar

= (w + σ
√
2logn)tf + t0(n) + α ∗ w ∗ tc(n) + tp(n)

(2)

where w is the number of cycles, as with the BSP model,
α is the communication-to-communication ratio (CCR) of
each superstep, and tf is the average time to execute a flop
by a processor.

Improved from the PRAM and the BSP models, the phase
parallel model is closer to covering real machine/program
behavior. In this model, all types of overheads are accounted
for, as shown in Eq. (2): the load imbalance overheads, the

interaction overhead (t0 and tc terms), and the parallelism
overhead (tp term).

While these models represent the evolution of parallel
algorithm design in general terms, they are limited in scope
as they ultimately fall short when applied to the unique
architecture of the modern GPU. The need for a model suited
to this architecture was vocalized in a paper from MIT [8]
in which the authors identify that official documentation for
CUDA from NVIDIA was rather sparse, the forums required
a lot of searching to find an answer to a particular problem,
and the trade-offs between various programming options
were difficult to discern. We attempt to address these issues
by providing a model which was designed to not only include
the more general models identified above, but to also take
into consideration the unique nature of the GPU architecture,
as it differs considerably from the CPU architecture.

3. GPU architecture
In this paper we will often refer to the machine containing

the GPU as the “host" and the GPU itself as the “device”.
The NVIDIA GeForce 8800 series is an example of a typ-
ical GPGPU (General Purpose GPU) device, which utilizes
NVIDIA’s CUDA (Compute Unified Device Architecture
GPU design. The GeForce 8800 contains 16 multiprocessors,
each containing 8 semi-independent cores for a total of 128
processing units. Each of the 128 processors can run as
many as 96 threads concurrently, for a maximum of 12,288
threads executing in parallel. The computing model is SIMD
(Single Instruction Multiple Data), and the memory model
is NUMA (Non-Uniform Memory Access) with a semi-
shared address space. This stands in contrast to a modern
CPU, which is typically either SISD (Single Instruction
Single Data) or MIMD, in the case of a multi-processor
or multi-core machine. Additionally, from the perspective of
the programmer, all memory is explicitly shared (in multi-
threading environments) or explicitly separate (in multi-
processing environments) on a desktop machine.

3.1 GPU instruction throughput versus mem-
ory access

The GPU architecture is much more optimized for per-
forming calculations than for memory accesses. Therefore,
considering the multiple types of memory that the GPU
architecture typically includes, it is important to keep this in
mind when accessing these types of memory, particularly the
slower, off-chip ones such as the GPU’s global and the host’s
main memory. The most costly memory access is by far the
host-to-device (CPU to GPU) data transfer, and reducing
that transfer can have a tremendous impact on the overall
performance of any algorithm that is implemented in part or
fully on a GPU.

As an example of our research, we present the case of a
typical Full Search Method of template matching, which is
otherwise known as a “brute force" method. A naïve GPU



implementation of this algorithm is relatively easy, as the
underlying architecture (such as CUDA) will handle most
of the scheduling, thread allocation, memory management,
etc. for you. In this case, a naïve, straightforward GPU
implementation should run in O(mn/p + log m) time, where
p is the number of processors, assuming that 1� n. We
present the results of the implementation of this naïve GPU
algorithm using several different types of GPU memory
(discussed below) versus the serial implementation in Table
1.

Table 1: Run time for Full Search Method template matching
for a 512x512 image and a 64x64 template. Times are in ms.

Run Time Copy Time

CPU 23290 N/A
GPU 3042 217.7
GPU Shared Memory 200.68 217.7
GPU Texture Memory 107.38 2.361

Table 2: Average results over 1000 trials of basic CUDA
memory operations. The first column refers to the amount
of data used for this experiment, in bytes. “malloc” and
“malloc 2D” refer to allocating an array and a byte aligned
2 dimensional array on the GPU, respectively. “copy” and
“copy 2D” refer to copying data from the CPU’s global
memory to the GPU’s global memory. All times are in ms.

size malloc copy malloc 2D copy 2D

4 ∗ 103 0.067567 0.005253 0.116700 0.014929
4 ∗ 105 0.118616 0.291486 0.122187 0.296680
4 ∗ 106 0.141160 2.576290 0.180513 2.713126
4 ∗ 107 0.241793 23.344471 0.629537 24.801236

Given the considerable differences in architecture between
the GPU and CPU, one can see that the ratio of overall
run-times of the CPU to naïve GPU implementation (which
we define as “speedup", S) is only 23290/3042 = 7.66.
Given the number of processing cores p in our GPU is
128, this is clearly not an optimal solution, as it yields
an efficiency of .060 (we define ‘’efficiency" as E = S/p
). The majority of this is due to communication overhead
(data transfer), as global memory on the GPU is uncached.
Experimentation confirms that the instruction throughput is
only .034, indicating that 96.6%≈97% of the total run time
was due to host-device data transfer.

In addition to the host-device memory read/write, there
are several other types of memory that a GPU may have
and access, either on-chip or as part of the graphics card,
including (in order of typical size) global memory, L2 cache
memory, texture memory, shared (local) memory, and the
processor registers. The type of memory that a programmer
uses for a particular operation depends upon the size and
nature of the data structures to be used, whether or not these
data structures can be broken up (and if so how), and whether

they are read/write data or simply read-only. In Table 2 we
present the results of our experimentation with host-device
data transfer times for different sizes of data to illustrate the
importance of proper data partitioning.

4. Parallel Algorithm Design Procedure
for GPUs

As discussed earlier, Valiant’s multi-core parallel algo-
rithm model falls short when one attempts to apply it to
many-core GPUs. In designing our Parallel GPU Model, we
opted to refer back to Valiant’s original BSP model as a
basis, and build out our model from there.

4.1 General model
GPU Superstep:

maxpi=1wi +maxpi=1(hi ∗ g) + l (3)

where p = number of processors (cores) on the GPU
wi = cost of local computation in process i
hi = number of messages sent and received and/or vari-

ables accessed by process i
l = cost of synchronization
g = message speed (bandwidth)
Algorithm total cost:

CGPU =

S∑
i=1

superstepi

=W +H ∗ g + S ∗ l

=

S∑
s=1

w ∗ s+ (

S∑
s=1

hs)g + S ∗ l

(4)

where S = number of supersteps
W = total cost of local computations in all processes
H = total number of messages sent and received and/or

variables accessed by all processes

CPU Superstep:

The CPU component of this general model is very similar
to the GPU component above, with the exception that the
variables apply to the CPU (i.e. p applies to the number of
CPU cores, processes are executed on the CPU cores, etc.)

Total

Ctotal =

n∑
i=1

CGPUi
+

n∑
i=1

CCPUi
+ (

m∑
i=1

Ti)b (5)

where C = cost
n = number of algorithms or parts of algorithms executed
m = number of data transfers between CPU and GPU

(usually an even number)
T = one-way data transfer
b = CPU to GPU data transfer bandwidth



In the simplest, single algorithm situation, this can be
represented as:

Ctotal = CGPU + CCPU + 2 ∗ T ∗ b (6)

Reducing the number of Ts along with the size of T(the
amount of data transferred) are two coarse-grained methods
of reducing an algorithm’s overall run time and thereby
increasing performance.

4.2 Fine-grained model for parallel GPU algo-
rithm design

If the algorithm designer is experienced in parallel algo-
rithm design principles, they can typically skip to Step 3
below, otherwise they should continue with the following
steps.

Step 1: Once a serial implementation of a given algorithm
has been either acquired or originally designed, the first
consideration is what types of instructions (operations) are to
be performed on the given data set or sets of the algorithm.
This will help in determining data dependency (as discussed
below), as well as to help determine what operations must
be performed on which processor.

Step 2: The goal is to reduce the total data transfer
time as much as possible, meaning reducing the amount
of data that is transferred back and forth between the host
and device. Furthermore, this round trip may be performed
multiple times for one algorithm depending on the structure
of the algorithm and/or the size of the data sets. The
various types of GPU memory are of varying sizes, but
are all generally very small compared to modern host main
memory. Therefore, in some parallel applications a data
set may have to be broken up and sent to the GPU for
computation through several round-trips. Consequently, as
discussed briefly in Section 3.1, sending large amounts of
data to and from the GPU unnecessarily may lead to a longer
run time than the original serial algorithm (especially if it is
optimized and/or implemented on a multi-core CPU).

With this type of trade-off of data and operations between
the CPU and GPU, the most important aspect in determining
what should be transferred to the GPU is data dependency.
This essentially refers to identifying what operations require
the data that is the result of previous operations. If an
operation must wait for the resulting data from a previous
operation, then these operations must be performed serially.
They can still be performed serially on the GPU, but that
would defeat the purpose of using the GPU and would
require unnecessary data transfers. Furthermore, in most
cases the CPU would be able to complete these serial
operations faster than a GPU would, even without taking
into consideration the costly host-device transfer time.

At this point, more experienced parallel GPU algorithm
designers can proceed to Step 4 where we discuss opti-
mizations specific to the GPU architecture. Otherwise it is

recommended to take the following step of designing and
implementing a naïve parallel algorithm before continuing
to the optimization step.

Step 3: Implementing a naïve parallel GPU algorithm is
a relatively straight-forward task. Most GPU architectures,
such as CUDA, include a thread scheduler which will
automatically distribute computations to threads and handle
other high level functions of the GPU for you. What this
results in is a simple port of a serial algorithm to a GPU
with little or no consideration for the various aspects of a
GPU’s architecture that can be leveraged to create an optimal
parallel algorithm. While a naïve parallel implementation
can be accomplished rather quickly and easily resulting
in a notable speedup of the algorithm’s performance, this
speedup will not be as great as it could be when the
GPU architecture optimizations are performed, as discussed
below.

Once the data dependencies within the algorithm have
been identified, the designer is then able to break the up
algorithm into the various parts that have to be done in serial
and the parts that can be done in parallel. From that point,
the designer can implement the serial parts on the CPU using
typical CPU code (i.e. C/C++, Java, etc.) and implement the
parallel parts using GPU code (i.e., C for CUDA, Brook+,
etc.). With architectures such as CUDA, you can implement
the CPU and GPU code in the same program, with the GPU
code written simply as individual kernels that are called
from within the CPU code, which simplifies the writing of
the code a great deal. Also, recently many CPU and GPU
manufacturers have adopted a language known as OpenCL,
which allows algorithms to be implemented in a single
language that can run on both the CPU and GPU, eliminating
the need for separate languages for each architecture [9].

As far as GPU memory manipulation goes, with a naïve
implementation it is usually easy to simply load the data set
(or as much as possible at one time) into the GPU’s global
memory. The GPU will handle transferring the data from the
host’s RAM into the GPU’s memory whenever a kernel is
invoked. The designer just specifies, in the case of CUDA
for example, which memory type is being used for which
kernel when the kernel is defined in the code. The global
memory, while being the largest type of memory and read-
write capable, is also the slowest memory. Therefore it is
one of the first areas to avoid, if possible, when performing
algorithm optimizations, as is described in the next step.

To achieve optimal or near-optimal performance, we must
take into consideration the unique architecture of the GPU
and exploit this architecture to its fullest. It may take even the
most experienced GPU algorithm designer several attempts
to achieve optimal results, as often time optimality is best
determined through experimentation. But careful analysis of
the algorithm along with the GPU architecture can help
to greatly reduce the need for experimentation to achieve
optimality.



One basic yet effective step toward optimality is to elim-
inate unnecessary computations. As discussed above, naïve
brute force parallel algorithms simply perform the same
computation on an entire data set in one step (or several steps
depending upon the size of the data set and the number of
available threads). Our implementation of a naïve template
matching algorithm searched the entire image for a match
to the template, which required the transfer of the entire
image data from the host’s main memory to the GPU’s global
memory, a very costly operation. However, by redesigning
our algorithm to first perform a “pruning step", we were able
to reduce the overall runtime by as much as 99%, depending
upon the amount of noise in the original image [12]. This
is an example of placing “smart" bounds on the dataset to
greatly reduce the amount of data that has to be transferred
from the host to the device.

The next step in creating optimal parallel algorithms for
the GPU is to determine what type and size of data structures
your algorithm will use. These considerations are closely
associated with what types of memory the algorithm will
utilize, both within and outside of the GPU. As discussed
in Section 3.1, the GPU architecture is unique in its design
and varies considerably from that of a CPU. Indeed, it’s
fair to say that a GPU is analogous to being “a computer
within a computer". Thus the various types of memory that
a GPU contains and has access to certainly complicates
considerations when designing parallel GPU algorithms.
Following, we will discuss the various types of CPU/GPU
accessible memory and their advantages/disadvantages.

4.2.1 GPU memory considerations
We denote a system’s RAM as M, and note that it has the

following attributes: it is read/write capable, is the largest
sized memory overall (typically in the order of GB by
current standards), its transfer speed (host to device) is the
slowest by far, and it is not directly accessible by kernel
threads. Global memory, which we denote with G has the
following attributes: it is read/write capable, is the largest
GPU (on card) memory, its transfer speed is the slowest for
a given GPU and graphics card, and it is accessible by all
threads. The L2 cache, denoted by L, is an example of a
high capacity, high speed component that may or may not
be available on a particular GPU, depending upon the model
that one is using, such as in the case of the Fermi architecture
(see [10]). The texture memory, which we denote as x,
has the following attributes: it is read only, is smaller than
global memory, but larger than shared memory, it is much
faster than global memory but not as fast as shared memory,
and is accessible by all kernel threads. The next type of
memory is the shared local memory/L1 cache (in the cases
where shared local memory also includes an L1 cache [10]).
Shared local memory has the following attributes: it is
read/write capable; is much smaller than texture memory but
larger than the registers; and is somewhat faster than texture

Fig. 1: The host(CPU)-device(GPU) memory hierarchy
available to programmers (note that registers are excluded
as they are not directly addressable by GPU programmers).
We can see how the GPU must go through the host to load
data from the RAM into the GPU’s global, texture, or shared
memories, the latter of which can communicate through SMs
(Streaming Multiprocessors).

memory, but is accessible only by threads on a Streaming
Multiprocessor (SM). Finally, we denote the register usage
byr, where registers have the following attributes: they are
read/write capable, they are the smallest and fastest of all
memory types, and they are typically one register per core.
We illustrate the various types of memory available to the
GPU programmer with their relative sizes in Figure 1.

With this in mind, however, we will omit the following
terms from the final PGM for the following reasons: the
RAM transfer time (i.e. host-to-device) is accounted for by
the term Tb in Equation (1). Further, we consider the fact that
the registers are simply used by the cores as “scratch pads"
to temporarily hold the data to be used by the processors
and thus are not able to be directly manipulated by the
programmer. Therefore, with the exception of bank conflict
concerns, the register use should not be of consequence to
the designer, and can then be eliminated from consideration.

Naturally, we wish to use the fastest type of memory
available in all occasions. However, due to limitations im-
posed by the size and nature (i.e. read only or read/write) of
the data structures that we use for a given algorithm, along
with the sizes of the various types of memory as discussed
above, a designer may choose different types of memory
for various data structures. For example, with our template
matching algorithm, we chose to use the texture memory
to load our initial query image into, due to the fact that the
texture memory is large, fast, and the image does not require
write capabilities [12].

Obviously, with the goal being to take as much advantage
of the fastest types of memory as possible, a designer’s
data structures may need to be altered to adhere to the size



limitations of certain forms of memory. As an example, if
image data can be streamed into the shared memory blocks
at a faster rate than transferring the entire image into global
or even texture memory, (without disrupting the computation
being performed in those blocks) then using the faster shared
local memory is preferable.

Once the algorithm designer has an understanding of
the various types of memory that the GPU provides, they
can proceed to design the data structures that their parallel
algorithm utilizes accordingly. This includes deciding how to
break up the data itself, so that the size and the nature of the
data structures allow them to be grouped into logical blocks
that can be mapped into thread blocks of one, two, or three
dimensions, where the threads can maximize their intercom-
munication through variable sharing within the SM’s shared
local memory. With our GPU template matching algorithm
(discussed in Section 5), we demonstrate the advantages of
not only breaking up of the data into logical blocks, (or
"strips" in this case) but also the smart use of the GPU’s
texture memory instead of the GPU global memory, with
the former being much faster.

It is important at this point to reinforce that the naïve par-
allel implementation will typically be subject to the under-
lying system’s automatic (typically non-optimal) scheduling
system, which will typically distribute threads on a first-
come-first-serve basis, which is generally not optimal.

Another important technique toward achieving optimality
with a given parallel GPU algorithm is identifying and reduc-
ing (or even eliminating) algorithm execution bottlenecks.
As we have discussed above, the execution bottlenecks
primarily are memory transfers, in particular the host to
device transfer. This issue is being addressed with the new
generation of CUDA architecture (Fermi [10]), but for the
present the average algorithm designer and implementer
dealing with commodity GPUs needs to consider the massive
host-device bottleneck.

Above we discussed several ways to reduce the amount
of data transfer between the host and device, as well as
ways to design your data structures to fully take advantage
of common GPU architectures. Following we shall formally
define our Parallel GPU Model based upon the above con-
siderations.

Previously, we defined a GPU operation in the following
manner:

CGPU =

S∑
i=1

superstepi

=W +H ∗ g + S ∗ l

=

S∑
s=1

ws + (

S∑
s=1

hs)g + S ∗ l

(7)

where S = number of supersteps, W = total cost of local
computations in all processes, H = total number of messages

sent and received and/or variables accessed by all processes,
ws = cost of local computation in process s, hs = number
of messages sent and received and/or variables accessed by
process s, l = cost of synchronization, and g = message speed
(bandwidth)

Generally parallel algorithms work toward computing a
result from a large number of simpler calculations performed
in parallel on the various processors/cores in the system. This
requires a reduction step, which as discussed above typically
runs in O(log m) time. We represent this step as R and add
it to Equation (7), which gives us:

S∑
s=1

ws + (

S∑
s=1

hs)g + S ∗ l +R (8)

The PGM is essentially an extension/adaptation of existing
parallel algorithm models, including the PRAM, BSP, and
Parallel Phase Model. However, our model is focused on the
GPU architecture, which requires the redefinition of certain
terms from the original BSP/Parallel Phase Model. In our
model, we equate a BSP/Parallel Phase Model superstep with
the execution of a GPU “kernel", which is essentially a GPU
function or method which handles the importing of the data
set, the computations to be performed on said data set, and
the exporting of the resulting data to the CPU (i. e. RAM).
Therefore we shall now denote a kernel/superstep as k, with
the total number of kernels executed as K. This gives us an
updated version of Equation (8) as:

K∑
k=1

wk + (

K∑
k=1

hk)g + S ∗ l +R (9)

4.2.2 Message/variable passing
The term (

∑K
k=1 hk)g, which describes the total number

of messages and/or variables transmitted multiplied by the
bandwidth of the transfer medium, is perhaps the most
important of the terms and deserves more consideration. As
we expand this term to include the various types of memory
that a GPU can read from and write to, we get

(

K∑
k=1

hk)g =(

A∑
a=1

ha)G+ (

B∑
b=1

hb)L

+ (

C∑
c=1

hc)x+ (

D∑
d=1

hd)y

(10)

where a = an individual global memory read/write
A = the total global memory reads/writes
b = an individual L2 cache memory read/write
B = the total L2 cache reads/writes
c = an individual texture memory read/write
C = the total texture memory reads/writes
d = an individual shared memory read/write
D = the total shared memory reads/writes



When we substitute this more accurate representation of
memory reads/writes into Equation (2), we get:

K∑
k=1

wk + (

A∑
a=1

ha)G+ (

B∑
b=1

hb)L

+ (

C∑
c=1

hc)x+ (

D∑
d=1

hd)y) + S ∗ l +R

(11)

It should be noted that with memory transfers we do not
take into consideration the size of a word for the particular
system, so we are utilizing the uniform cost criterion, as
is commonly done with parallel algorithm design and analy-
sis [11]. Also, based upon the ratios of run times between the
global, texture, and shared local memories, we can calculate
coefficients to represent the approximate cost of using each
type of memory and add these coefficients to Equation (5).
Normalized with respect to global memory we get ratios
of 0.035 and 0.066 for the texture and shared memories,
respectively. Note that these two values are roughly in a
ratio of 1 to 2 in relation to each other. Applying this to
Equation (5) then gives us the following:

K∑
k=1

wk + (

A∑
a=1

ha)G+ (

B∑
b=1

hb)L+ 0.035(

C∑
c=1

hc)x

+ 0.066(

D∑
d=1

hd)y + S ∗ l +R

(12)

Which can be generalized to:

K∑
k=1

wk + (

A∑
a=1

ha)G+ (

B∑
b=1

hb)L+
1

32
(

C∑
c=1

hc)x

+
1

16
(

D∑
d=1

hd)y + S ∗ l +R

(13)

Thus, with the above equation we can see the relative
costs of using various types of memory addressable by the
GPU programmer. This model is intended to be applicable
to most, if not all GPU architectures: indeed, if a particular
architectural feature is not available with the model of GPU
being employed (i.e. L2 cache memory), then that term is
simply zeroed out or removed from the above equation.

Step 5:The last step of this Parallel GPU Model design
procedure is more advanced and involves a more intimate
knowledge of the specifics of the architecture of the particu-
lar GPU the algorithm is designed for. It should be noted that
this step is not necessary to achieve near-optimality, as that
can typically be achieved by adhering to the above steps.
However, for the designer desiring as much optimality as
possible, they should identify and understand several phys-
ical aspects of the particular device. These physical aspects
include the following: the number of processors/cores that

the GPU has; the number of SMs the GPU has; the number
of processors/cores per SM; the amount of global, texture,
and shared local memory the GPU has; the type and speed
of the connection between the host and the device (i.e. PCI,
PCIe, etc.); the availability and size of the L1 and the L2
caches (as with Fermi GPUs); whether or not the particular
GPU architecture supports IEEE 754-2008 (which includes
full double precision support); the nature of the GPU’s warp
scheduler (i. e. whether or not it is a single or dual warp
scheduler); whether or not the device has Error Correcting
Code (ECC) memory support; whether the device is 32 or
64 bit-based; and what programming languages the device
supports, such as C/C++ for CUDA, OpenCL, etc. (and to
what degree).

By knowing hardware-specific details, such as the number
of processors/cores in the particular GPU, we can augment
our abbreviated PGM with the above substitution, which
yields the following version of the PGM:

K∑
k=1

mn

p
+ (

K∑
k=1

hk)g + S ∗ l +R (14)

where mn/p = wk

m = number of computations to perform
n = number of data elements
p = number of processors/cores

5. Applications of the PGM
We first applied our GPM to the field of template matching

in [12]. Here we developed a GPU-accelerated template
matching algorithm from the ground up based upon the
PGM. Template matching essentially involves searching an
image I attempting to find the match for a template x among
all possible candidates yi in a sort of “sliding window"
fashion. The searches are independent of each other and
therefore are highly subject to parallel processing on the
GPU. Furthermore, we employed a pruning step to eliminate
unnecessary data transfer to the GPU, as discussed in Step
3 of Section 4 above.

In our second application of the PGM, we chose to apply
it to a shape matching algorithm that we had developed
[13] previously. In this case, a 3D shape is given a unique
“signature" which is calculated by computing the distances
between each vertex of the shape and every other vertex,
as long as that vertex is “visible" to the original vertex.
The result is a large number of calculations which are
then formulated into a histogram, which then forms the
shape’s unique signature. Obviously, these calculations are
completely independent of each other and therefore this al-
gorithm is also a very good candidate for parallel processing
on the GPU.



6. Results and discussion
The experimental design for our template matching al-

gorithm consisted of averaging the results of running our
algorithm over a number of trials with a variety of images of
different sizes and resolutions, which yielded the following
performance results: when comparing the performance of
our template matching algorithm to the Full Search Method
discussed earlier on small images (512x512) at zero to
low noise levels, our algorithm has better performance than
the Full Search Method. When comparing our algorithm’s
performance to that of a standard brute-force Full Search
Method implemented serially on the CPU on medium to
large images one can see the tremendous performance in-
crease of our algorithm. With an image size of 1024x1024
and a template size of 256x256, our algorithm experiences
a 8700x performance increase over the Full Search Method.
Further, when we implemented the Full Search Method in a
naïve parallel manner on the GPU, our optimized algorithm
performed 39x faster.

Similarly we observed a considerable speedup in run-time
in our shape matching algorithm when applying the PGM to
it. Serially, this algorithm has a run-time of:

O(n2 λ(n)log(n/ε)/ε4+n2 log(np) log(n log p)

However, with the application of the PGM, we observe
the following: if the number of data items equals n and the
number of processors equals p, then the total computation
time for the above shape matching algorithm is:

n/p+ logn (15)

where log n is the reduction step. This is assuming that at
each timestep a processor p is calculating the distance from
a query point to another point. The reduction step results in
the shortest distance from the query point to the signature
point. Therefore, this algorithm could perform in near-linear
time, depending upon the number processors in the parallel
system.

In comparison with other parallel design models, we
observe the following: the PRAM model, while being a fun-
damental and an “all-encompassing" parallel design model,
is rather inadequate when applied to modern GPGPU design,
due to its generality. Valiant’s BSP model is a MIMD model
consisting of node/memory pairs interconnected through a
network. This is not very analogous to modern GPU archi-
tectures. The parallel phase model attempts to make up for
this shortcoming by accounting for all overhead costs, but is
still based on a model which does not account for the various
types of memory that the GPU possesses, nor their individual
advantages and disadvantages. Valiant’s more recent multi-
core model is much more akin to the many-core GPU
architecture, however it still falls short when one considers
the various types of GPU memory, including their attributes

and design concerns. We believe that our model is well-
suited to the GPU architecture by accounting for all possible
types of memory and their associated costs that a GPU can
access, both with current commodity GPUs and new, more
advanced architectures. Furthermore, we provide a thorough
analysis of the various considerations that one must keep in
mind when designing algorithms for any GPU architecture,
and we believe that our model provides an opportunity to
do so that other models don’t.

7. Conclusion and future work
Overall, we believe that our parallel GPU method is very

effective in allowing parallel GPU algorithm designers, rang-
ing from the novice to the expert, to design and implement
optimal (or nearly optimal) algorithms that take advantage of
the GPU architecture. We noted that while previous models
have been adequate for general parallel architectures (which
can vary considerably), they fall short when addressing the
unique architecture of GPUs. Indeed, the degree of perfor-
mance that can be achieved with the application of other
parallel models, such as the BSP and phase parallel model,
is not optimal for the GPU architecture, and we showed
how the PGM can achieve a greater degree of optimality.
Therefore, depending upon the degree of optimality desired,
our model seems superior to other existing parallel models
when applied to the GPU architecture.

Future work with our model will include applying it
to simulations involving radiation therapy, such as Volume
Modulated Arc Therapy (VMAT) and Intensity Modulated
Radiation Therapy (IMRT). In such simulations, various
computations need to be made in real-time or near real-time
and the use of GPUs would certainly be a great advantage.
Also, more practical experience with a Fermi GPU would
allow for the implementation of various algorithms to quan-
titatively measure the speedup that a particular architecture
allows over other parallel and serial architectures. Finally,
the development of software which employs an “automated"
version of this model would make it accessible to even
more researchers by aiding them in making more informed
with their algorithm designs, thereby producing even more
optimal results.

References
[1] D. Qiu, S. May, and A. Nüchter, “GPU-accelerated nearest neighbor

search for 3d registration,” Computer Vision Systems, pp. 194–203,
2009.

[2] P. Noël, A. Walczak, K. Hoffmann, J. Xu, J. Corso, and S. Schafer,
“Clinical evaluation of GPU-based cone beam computed tomography,”
Proc. of High-Performance Medical Image Computing and Computer-
Aided Intervention (HP-MICCAI), 2008.

[3] J. Huang, S. Ponce, S. Park, Y. Cao, and F. Quek, “GPU-accelerated
computation for robust motion tracking using the CUDA framework,”
in Visual Information Engineering, 2008. VIE 2008. 5th International
Conference on. IET, 2008, pp. 437–442.

[4] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990. [Online]. Available:
http://portal.acm.org/citation.cfm?id=79181



[5] K. Hwang and Z. Xu, Scalable parallel computing: technology,
architecture, programming. WCB/McGraw-Hill, 1998.

[6] L. Valiant, “A bridging model for multi-core computing,” Journal of
Computer and System Sciences, vol. 77, no. 1, pp. 154–166, 2011.

[7] Z. Xu and K. Hwang, “Early prediction of mpp performance: the sp2,
t3d, and paragon experiences,” Parallel Computing, vol. 22, no. 7, pp.
917–942, 1996.

[8] Massachusetts Institute of Technology, “IAP09
CUDA@MIT 6.963,” MIT, 2009. [Online]. Available:
http://sites.google.com/site/cudaiap2009/home

[9] “Opencl programming guide for the cuda architecture v2.3.”
[10] NVIDIA Corp., “NVIDIA’s next generation CUDA com-

pute architecture: Fermi,” Sept. 2009. [Online]. Available:
http://www.nvidia.com/object/fermi_architecture.html

[11] J. Jaja, An introduction to parallel algorithms. Addison Wesley
Longman Publishing Co., Inc., 1992.

[12] R. Anderson, J. Kirtzic, and O. Daescu, “Applying parallel design
techniques to template matching with gpus,” in High Performance
Computing for Computational Science–VECPAR 2010: 9th Interna-
tional Conference, Berkeley, CA, USA, June 22-25, 2010, Revised,
Selected Papers, vol. 6449. Springer-Verlag New York Inc, 2011, p.
456.

[13] Y. K. Cheung and O. Daescu, “Approximate point-to-face shortest
paths in 3,” CoRR, vol. abs/1004.1588, 2010. [Online]. Available:
http://dblp.uni-trier.de/db/journals/corr/corr1004.htmlabs-1004-1588


