

Aalborg Universitet

A parallel algorithm for Bayesian network structure learning from large data sets

Madsen, Anders Læsø; Jensen, Frank; Salmerón, Antonio; Langseth, Helge; Nielsen,
Thomas Dyhre
Published in:
Knowledge-Based Systems

DOI (link to publication from Publisher):
10.1016/j.knosys.2016.07.031

Creative Commons License
CC BY 4.0

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Madsen, A. L., Jensen, F., Salmerón, A., Langseth, H., & Nielsen, T. D. (2017). A parallel algorithm for Bayesian
network structure learning from large data sets. Knowledge-Based Systems, 117, 46-55.
https://doi.org/10.1016/j.knosys.2016.07.031

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 26, 2022

https://doi.org/10.1016/j.knosys.2016.07.031
https://vbn.aau.dk/en/publications/dca9fe74-b7d6-4807-839a-50abfa77f6e9
https://doi.org/10.1016/j.knosys.2016.07.031

Knowledge-Based Systems 117 (2017) 46–55

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

A parallel algorithm for Bayesian network structure learning from

large data sets

Anders L. Madsen

a , b , ∗, Frank Jensen

a , Antonio Salmerón

d , Helge Langseth

c ,
Thomas D. Nielsen

b

a HUGIN EXPERT A/S, DK-90 0 0 Aalborg, Denmark
b Aalborg University, DK-9220 Aalborg, Denmark
c Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
d University of Almería, ES-04120 Almería, Spain

a r t i c l e i n f o

Article history:

Received 28 February 2016

Revised 8 July 2016

Accepted 23 July 2016

Available online 25 July 2016

Keywords:

Bayesian network

PC algorithm

Parallelization

a b s t r a c t

This paper considers a parallel algorithm for Bayesian network structure learning from large data sets. The

parallel algorithm is a variant of the well known PC algorithm. The PC algorithm is a constraint-based al-

gorithm consisting of five steps where the first step is to perform a set of (conditional) independence

tests while the remaining four steps relate to identifying the structure of the Bayesian network using

the results of the (conditional) independence tests. In this paper, we describe a new approach to paral-

lelization of the (conditional) independence testing as experiments illustrate that this is by far the most

time consuming step. The proposed parallel PC algorithm is evaluated on data sets generated at ran-

dom from five different real-world Bayesian networks. The algorithm is also compared empirically with

a process-based approach where each process manages a subset of the data over all the variables on the

Bayesian network. The results demonstrate that significant time performance improvements are possible

using both approaches.

© 2016 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

t

c

i

t

p

l

f

&

f

t

s

p

p

w

i

l
1. Introduction

A Bayesian network (BN) [1–5] is a powerful model for proba-

bilistic inference. It consists of two main parts: a graphical struc-

ture specifying a set of dependence and independence relations

between its variables and a set of conditional probability distribu-

tions quantifying the strengths of the dependence relations. The

graphical nature of a Bayesian network makes it well-suited for

representing complex problems, where the interactions between

entities, represented as variables, are described using conditional

probability distributions (CPDs). Both parts can be elicited from ex-

perts or learnt from data, or a combination. Here we focus on

learning the graphical structure from data using a variant of the

PC algorithm [6] exploiting parallel computations.

Large data sets both in terms of the number of variables and

cases may challenge the efficiency of pure sequential algorithms

for learning the structure of a Bayesian network from data. Since
∗ Corresponding author.

E-mail addresses: alm@hugin.com (A.L. Madsen), fj@hugin.com (F. Jensen),

antonio.salmeron@ual.es (A. Salmerón), helgel@idi.ntnu.no (H. Langseth),

tdn@cs.aau.dk (T.D. Nielsen).

s

n

i

w

a

http://dx.doi.org/10.1016/j.knosys.2016.07.031

0950-7051/© 2016 The Authors. Published by Elsevier B.V. This is an open access article u
he computational power of computers is ever increasing and ac-

ess to computers supporting parallel processing is improving, it

s natural to consider exploiting parallel computations to improve

he performance of learning algorithms. A number of different ap-

roaches to parallel structure learning have been considered in the

iterature. In [7] the authors describe a MapReduce-based method

or learning Bayesian networks from massive data using a search

 score algorithm while [8] describes a MapReduce-based method

or machine learning on multi-core computers. Also, [9] presents

he R package bnlearn which provides implementations of some

tructure learning algorithms including support for parallel com-

uting. [10] introduces a method for accelerating Bayesian network

arameter learning using Hadoop and MapReduce. Other relevant

ork on parallelization of learning Bayesian networks from data

nclude [11–15] .

In this paper, we consider two different approaches to paral-

elization of the PC algorithm. First, we describe a new parallel ver-

ion of the PC algorithm for learning the structure of a Bayesian

etwork from large data sets on a shared memory computer us-

ng threads. The proposed parallel PC algorithm is inspired by the

ork in [16] on vertical parallelization of TAN learning using Bal-

nced Incomplete Block (BIB) designs [17] . Second, we consider
nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.07.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alm@hugin.com
mailto:fj@hugin.com
mailto:antonio.salmeron@ual.es
mailto:helgel@idi.ntnu.no
mailto:tdn@cs.aau.dk
http://dx.doi.org/10.1016/j.knosys.2016.07.031
http://creativecommons.org/licenses/by/4.0/

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 47

a

p

t

t

z

d

a

P

a

e

f

p

l

a

m

t

r

n

c

2

d

s

s

a

p

p

P

w

a

o

t

s

h

d

v

t

G

w

t

2

D

[

(

d

a

o

I

n

d

t

t

i

X

p

i

t

W

m

i

d

r

o

s

a

o

t

w

i

t

o

fi

o

p

i

e

a

C

t

c

O

t

1

w

o

r

e

r

h

r

r

p

o

c

H

{

H

{

1

H

r

o

d

c

v

2

a

p

n embarrassingly parallel version of the PC algorithm. This ap-

roach uses processes where each process manages a subset of

he data over all variables. In order to distinguish between the

wo approaches, the latter approach is referred to as the hori-

ontal PC algorithm . The horizontal PC algorithm is developed for

istributed memory concurrent computers using the standardized

nd portable message-passing system referred to as the Message

assing Interface (MPI) [18] . The horizontal PC algorithm also takes

dvantage of BIB designs to improve efficiency. The results of an

mpirical evaluation show a significant improvement in time per-

ormance over a purely sequential implementation for both ap-

roaches.

This paper is organized as follows. Section 2 presents pre-

iminaries and notation, including an introduction to BIB designs

nd the PC algorithm. Section 3 describes the details of both

ethods for parallel structure learning while Section 4 presents

he results of an empirical evaluation of the algorithms on both

eal-world Bayesian networks and examples from literature. Fi-

ally, Section 5 gives a discussion of the results and Section 6

onclusions.

. Material and methods

Let X = { X 1 , . . . , X n } be a set of random variables such that

om(X) is the state space of X when X is discrete. The state space

ize is || X|| = | dom (X) | . A BN N = (X , G, P) over the set X con-

ists of an acyclic directed graph (DAG) G = (V, E) with vertices V

nd edges E and a set of CPDs P = { P (X | pa (X)) : X ∈ X } , where

a(X) denotes the parents of X in G . The BN N specifies a joint

robability distribution over X :

 (X) =

n ∏

i =1

P (X i | pa (X i)) .

We use upper case letters, e.g., X i and Y , to denote variables

hile sets of variables are denoted using calligraphy letters, e.g., X

nd S . In this paper, we only consider discrete variables.

We let D = (c 1 , . . . , c N) denote a data set of N complete cases

ver variables X = { X 1 , . . . , X n } and we let I(X, Y ;S) denote condi-

ional independence between X and Y given S . When learning the

tructure of a DAG G from D, we use a test statistic to test the

ypothesis I(X, Y ;S) based on counts in D. That is, to test the con-

itional independence hypothesis I(X, Y ;S) between two discrete

ariables X and Y conditional on S based on counts in D, we use

he test statistic G

2 =

∑

S= s G

2
s where

2
s = 2

∑

x,y

O xy | s log
O xy | s
E xy | s

, (1)

here O xy | s is the observed count for x and y given s and E xy | s is

he expected count for x and y given s under the null-hypothesis.

.1. PC algorithm

The task of learning the structure of a Bayesian network from

amounts to determining the structure G . The PC algorithm of

6] consists of five steps:

1. Determine pairwise (conditional) independence I(X, Y ;S) .

2. Identify the skeleton of G .

3. Identify v -structures in G .

4. Identify derived directions in G .

5. Complete orientation of G making it a DAG.

Step 1 is performed such that tests for marginal independence

i.e., S = ∅) are performed first followed by conditional indepen-

ence tests where the size of S iterates over 1 , 2 , 3 , . . . taking the

djacency of vertices into consideration. That is, in the process
f determining the set of conditional independence statements

(X, Y ;S) , the results produced earlier are exploited to reduce the

umber of tests. This means that we stop testing conditional in-

ependence of X and Y once a subset S has been identified such

hat the independence hypothesis is not rejected. When testing

he conditional independence hypothesis I(X, Y ;S) , the condition-

ng set S is restricted to contain only potential neighbors of either

 or Y , i.e., a variable Z is excluded from S, if the independence hy-

othesis between X (or Y) and Z was previously not rejected. This

s referred to as the PC

∗ algorithm by [6] , but we will refer to it as

he PC algorithm.

Steps 2–5 use the results of Step 1 to determine the DAG G .

e will not consider Step 2–5 further in this paper as experi-

ents demonstrate that the combined time cost of these steps

s negligible compared to the time cost of Step 1. This is clearly

emonstrated in the empirical evaluation. The interested reader is

eferred to, e.g., [6] for more details.

Hence, our proposal for scaling up the PC algorithm is based

n parallelizing Step 1, which involve the calculation of the G

2

core (see Eq. (1)) between each pair of variables. An immediate

pproach for scaling up the algorithm could be to simply generate

ne computing thread for each pair of variables and then process

he threads in parallel. However, with n variables this approach

ould require accessing the underlying database
(

n
2

)
times, induc-

ng a significant overhead in terms of disk/network access. Alterna-

ively, one might group the variables in blocks so that each block

nly accesses the data a single time in order to calculate the suf-

cient statistics required for computing the G

2 score for all pairs

f variables within the block. A key issue here is finding an appro-

riate block size and at the same time ensuring that the blocks,

n combination, guarantee that all pairs of variables are considered

xactly once.

To get an intuitive understanding of this process we can as

n analogy consider the organization of the Speedway World

hampionship (SWC). After the initial pre-qualifying rounds for

he SWC, the remaining 16 highest ranked riders should be

ompared to each other to obtain a final ranking of the riders.

ne approach to achieve this would be to pair-up the riders so

hat each rider will participate in 15 races, yielding a total of

20 rounds with two riders competing in each round. This setup

ould put a strain on the riders and not use the full capacity

f the speedway track, which is designed to accommodate four

iders simultaneously. Instead, the SWC employs a heat-system

nsuring that each of the 16 riders will meet each of the other

iders at some time during the competition. Specifically, the

eat-system consists of 20 heats with four riders in a heat. Each

ider participates in only five heats, and within a single heat all

iders compete jointly, thereby meeting each other. After com-

leting the 20 heats, all pairs of riders will have met exactly

nce. This can also be seen by labeling the riders { 0 , . . . , 15 } and

onstructing these heats: H 1 = { 3 , 6 , 12 , 15 } , H 2 = { 4 , 5 , 10 , 13 } ,
 3 = { 0 , 4 , 6 , 7 } , H 4 = { 0 , 10 , 11 , 15 } , H 5 = { 7 , 10 , 12 , 14 } , H 6 =
 0 , 8 , 9 , 14 } , H 7 = { 0 , 1 , 3 , 13 } , H 8 = { 1 , 6 , 8 , 10 } , H 9 = { 7 , 9 , 13 , 15 } ,
 10 = { 1 , 5 , 14 , 15 } , H 11 = { 8 , 11 , 12 , 13 } , H 12 = { 5 , 6 , 9 , 11 } , H 13 =
 1 , 4 , 9 , 12 } , H 14 = { 3 , 5 , 7 , 8 } , H 15 = { 3 , 4 , 11 , 14 } , H 16 = { 2 , 6 , 13 ,

4 } , H 17 = { 1 , 2 , 7 , 11 } , H 18 = { 0 , 2 , 5 , 12 } , H 19 = { 2 , 4 , 8 , 15 } , and

 20 = { 2 , 3 , 9 , 10 } .
When it comes to computing the G

2 scores, the 16 riders cor-

espond to variables and each heat represents a block consisting

f four variables to be pairwise compared. Thus, rather than han-

ling pairs of variables independently and having to make data ac-

ess
(

16
2

)
= 120 times, we can instead make 20 blocks/heats of four

ariables each and thereby only having to access the full dataset

0 times. Note that with the particular setup above, we are guar-

nteed not to make redundant calculations as the G

2 score is com-

uted exactly once for each pair X i , X j , 1 ≤ i, j ≤ n .

48 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

F

b

s

f

r

d

d

D

o

t

i

m

{

t

[

T

s

λ

E

e

{
N

b

i

E

c

b

s

d

w

e

i

i

a

b

t

t

p

o

c

v

3

o

o

w

o

t

a

l

1 www.sagemath.org .
This approach of distributing variables/riders into blocks/heats

is an instance of a so-called balanced incomplete block (BIB) design ;

in fact the heat-system configuration employed by the Speedway

World Championship corresponds to a (16, 4, 1)-BIB design (see

Definition 2).

2.2. Balanced incomplete block designs

The use of block designs dates back to the statistical theory

of design of experiments [19] , motivated in its origin by agricul-

tural experiments. In this context the goal was to compare the

yield of different plant varieties, considering that the yield could

be significantly affected by the environment, i.e., the conditions

under which the plants are grown. The idea was to compensate

for the effect of the environment by setting up blocks of land

small enough to assume uniform environmental conditions inside

a block, and distribute the plant varieties among them. With space

limitations inside each block, one may not be able to fit sufficient

replications of all plant varieties inside a single block, and there-

fore rather required that each pair of plant varieties would be allo-

cated at least once to the same block to facilitate a fair comparison

between them. The relation to both the SWC and our calculation of

the G

2 scores is evident.

BIB designs [17] can be applied to efficiently divide the statis-

tical tests for independence among a set of, for instance, threads

or processes. In particular, [16] describes how BIB designs can be

applied to learn the structure of a TAN model from data by paral-

lelization using processes on a distributed memory system. In this

paper, we will use BIB designs to control the process of testing

for marginal independence on a shared memory computer using

threads and on a distributed memory system using processes.

This section provides the necessary background information on

BIB designs to follow the presentation of the method proposed. A

design is defined as follows:

Definition 1 (Design [17]) . A design is a pair (X, A) s.t. the follow-

ing properties are satisfied:

1. X is a set of elements called points , and

2. A is a collection of non-empty subsets of X called blocks .

In this paper, we only exploit cases where each block is a set

(and not a multiset, i.e., we do not allow multiple instances of the

same element in the set). Nevertheless, some definitions will con-

sider multi-sets. A BIB design is defined as:

Definition 2 (BIB design [17]) . Let v, k , and λ be positive integers

s.t. v > k ≥ 2. A (v, k, λ)-BIB design is a design (X, A) s.t. the

following properties are satisfied:

1. | X | = v,

2. each block contains exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks.

The number of blocks in a design is denoted by b and r de-

notes the replication number , i.e., how often each point appears in

a block. Property 3 in the definition is the balance property that

we will exploit. In Step 1 of the PC algorithm, we want to test

each pair of variables for marginal independence exactly once and

therefore require λ = 1 . A BIB design is symmetric when the num-

ber of blocks equals the number of points. This will not be the case

in general.

Example 1. Consider the (7, 3, 1)-BIB design. The blocks are (one

out of a number of possibilities):

{ 0 , 1 , 2 } , { 0 , 3 , 4 } , { 0 , 5 , 6 } , { 1 , 3 , 5 } , { 1 , 4 , 6 } , { 2 , 3 , 6 } , { 2 , 4 , 5 } .
(2)

This BIB design is symmetric as b = v .
There is no single efficient method to construct all BIB designs.

irst, it is important to know that they do not exist for all com-

inations of v, k , and λ. Second, the problem of finding a BIB de-

ign is NP-complete [20] . To efficiently utilize them we have there-

ore pre-calculated a number of BIB designs, and utilize those at

un-time. Instead of storing the full designs, it is sufficient to store

ifference sets that can be used to generate some symmetric BIB

esigns:

efinition 3 (Difference Set [17]) . Assume (G, +) is a finite group

f order v in which the identity element is 0. Let k and λ be posi-

ive integers such that 2 ≤ k < v . A (v, k, λ)-difference set in (G, +)

s a subset D ⊆ G that satisfies the following properties:

1. | D | = k,

2. the multiset [x − y : x, y ∈ D, x � = y] contains every element in

G �{0} exactly λ times.

In our case, we are restricted to using (Z v , +) , the integers

odulo v . If D ⊆ Z v is a difference set in group (G, +) , then D + g =
 x + g| x ∈ D } is a translate of D for any g ∈ G . The multiset of all v

ranslates of D is denoted Dev (D) and called the development of D

17, page 42] .

heorem 1 ([17] , Theorem 3.8 p. 43) . Let D be a (v, k, λ) -difference

et in an Abelian group (G, +) . Then (G, Dev (D)) is a symmetric (v, k,

) -BIB design.

xample 2. The set D = { 0 , 1 , 3 } is a (7, 3, 1)-difference set in

(Z 7 , +) . The blocks constructed by iteratively adding one to each

lement of D (modulo 7) are:

 0 , 1 , 3 } , { 1 , 2 , 4 } , { 2 , 3 , 5 } , { 3 , 4 , 6 } , { 4 , 5 , 0 } , { 5 , 6 , 1 } , { 6 , 0 , 2 } .
otice that the i th element of each block is unique across all

locks. This property will be used to assign blocks to threads

n Section 3 . This was not the case for the blocks presented in

xample 1 .

The concept of a difference set can be generalized to the con-

ept of a difference family . A difference family is a set of base

locks. A difference family can be used to generate a BIB design

imilarly to how difference sets are used. Table 1 shows a set of

ifference families for BIB designs on the form (q , 6, 1), which we

ill use later. Base blocks for generating BIB-designs are tabulated,

.g., [21] , but can also be found computationally. The base blocks

n Table 1 have been generated using SageMath 1 . The value k = 6

s chosen for practical reasons: First, difference families for gener-

ting the blocks need to be known to exist; second, we need to

e able to store the count tables representing the joint distribu-

ion of the variables in a block in memory, required to compute

he G

2 scores. The main idea for parallelization considered in this

aper is to use the (q , 6, 1) design to distribute the computations

f the scores over a set of computing units such that each score is

omputed exactly once from a smaller intermediate table over six

ariables.

. Theory

There are two obvious approaches to parallelize the testing step

f the PC algorithm. One approach is to assign the same number

f cases to each thread. For a specific statistical test, each thread

ould then be responsible for computing the necessary counts

ver its data. The counts from all threads are combined and used

o perform the statistical test. We refer to this as horizontal par-

llelization. This approach is embarrassingly parallel, i.e., it requires

ittle effort to separate the problem into a number of parallel tasks.

http://www.sagemath.org

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 49

Table 1

Examples of difference families for a set of (q , 6, 1) BIB designs.

BIB design Difference family # (base blocks) b = q · # (base blocks)

(31 ,6,1) {(1, 2, 7, 19, 23, 30)} 1 31

(91 ,6,1) {(0, 1, 3, 7, 25, 38), 3 273

(0, 5, 20, 32, 46, 75),

(0, 8, 17, 47, 57, 80)}

(151 ,6,1) { (1 , 32 , 118 , 7 , 73 , 71) , . . . } 5 755

(211 ,6,1) { (0 , 1 , 107 , 55 , 188 , 71) , . . . } 7 1477

(271 ,6,1) { (1 , 242 , 28 , 9 , 10 , 232) , . . . } 9 2439

H

w

t

T

a

t

a

a

v

t

s

[

c

f

t

a

m

i

t

t

a

n

t

i

S

l

t

f

l

s

p

i

o

m

d

i

3

p

w

a

t

l

i

a

a

i

p

I

t

b

s

s

w

w

o

c

p

6

c

d

a

m

t

t

3

t

f

b

i

c

X

{

o

b

{

c

p

b

a

I

l

w

t

t

c

h

f

3

n

T
orizontal parallelization mainly addresses learning from data sets,

here N is large, i.e., many cases. Another approach is referred

o as vertical parallelization as used by [16] for parallelization of

AN learning. In vertical parallelization, processes read all data for

 subset of variables and the pairwise conditional independence

ests between a pair of features conditional on the target variable

re distributed using BIB designs. Vertical parallelization mainly

ddresses learning from data sets where |X | is large, i.e., many

ariables. Each process reads all data over the variables assigned

o it.

Improving the performance of the PC algorithm on large data

ets can be achieved in a number of ways, see, for instance,

9,11,13] . We consider one approach where the counting of suffi-

ient statistics for a specific conditional independence test is per-

ormed in parallel and an approach where the tests for (condi-

ional) independence are performed in parallel.

For the case where we use threads to perform tests in par-

llel, two different approaches are considered. When testing for

arginal independence the set of tests to be performed are known

n advance and we use BIB designs to obtain parallelization. For

he higher order tests we do not know which tests to perform as

his depends on the results of previous tests. Therefore, we create

n edge index array, which the threads iterate over to select the

ext edge to evaluate for each iteration. The edge index array con-

ains all edges that have not been removed at an earlier step and it

s sorted in decreasing order of the test score as explained below.

tep 1 of the PC algorithm is implemented as three steps:

1. Test all pairs X and Y for marginal independence.

2. Perform the most promising higher-order conditional indepen-

dence tests.

3. Test for conditional independence (X, Y ;S) where |S| = 1 , 2 , 3 .

In [6] bounding the order of the conditional independence re-

ations is suggested as a natural heuristic to reduce the number of

ests. Experiments show that by far the most edges are removed

or low order tests and statistical tests become increasingly unre-

iable as the size of the conditioning set increases. For these rea-

ons, the size of the conditioning set is limited to three in the im-

lementation. In Step 3 of the process of testing for conditional

ndependence between X and Y given S, we select S as a subset

f the potential neighbours of X (except Y). Step 2 is explained in

ore detail below. This implementation of the PC algorithm was

escribed in [22] , which also reports on an empirical evaluation of

ts performance.

.1. Test for marginal independence

The tests for pairwise marginal independence I (X, Y ; ∅) for all

airs X, Y should be divided into tasks of equal size such that

e test exactly all pairs X, Y for marginal independence. This is

chieved using BIB designs of the form (q , 6, 1) where q is at least

he number of variables. That is, q is selected as the smallest value

arger than the number of variables such that a (q , 6, 1)-BIB design

s known to exist. This means that some points will not represent
ny variable and tests involving points not representing a variable

re not performed. The blocks of the BIB design are generated us-

ng a difference family (e.g., Table 1). Each block is used to com-

ute the marginal counts of the variables represented in the block.

f all the variables have the same state space size, then the count

ables will be of equal size.

The computation of the G

2 scores is parallelized assigning

locks to threads as each thread can compute the scores corre-

ponding to a block in parallel with other threads. Blocks are as-

igned to threads using the unique rank of each thread. A thread

ith rank r iterates over the block array and considers only blocks

here the array index modulus t equals r where t is the number

f threads (the uniqueness means that there is no need for syn-

hronization). When a thread has selected a block, it performs all

airwise independence tests using a (3, 2, 1)-BIB design where the

-block is reduced to three blocks with four variables each (in this

ase each point corresponds to two variables). The operation of re-

ucing a count table to a lower dimension by adding the counts for

 specific configuration of the remaining variables is referred to as

arginalization. The table of four variables is marginalized down

o all pairs for testing where the first pair is ignored producing a

otal of
(

6
2

)
= 15 tests.

Fig. 1 illustrates this principle, assuming an example with q =
1 variables labelled as X 0 , . . . , X 30 . The first block (second row in

he figure) is { X 1 , X 2 , X 7 , X 19 , X 23 , X 30 }, corresponding to the dif-

erence family for design (31, 6, 1), as given in Table 1 . The second

lock would be obtained by adding 1 to the index of the variable

n each coordinate, modulo 31, i.e. { X 2 , X 3 , X 8 , X 20 , X 24 , X 0 }. Ac-

ording to the same procedure, the third block would be { X 3 , X 4 ,

 9 , X 21 , X 25 , X 1 } and so on.

Taking the first block, we form three pairs of variables, P 1 =
 X 1 , X 2 } , P 2 = { X 7 , X 19 } and P 3 = { X 23 , X 30 } and compute the blocks

f a (3, 2, 1)-BIB design, where each block has two pairs. These

locks are actually all the possible pairings of P 1 , P 2 and P 3 , namely

 P 1 , P 2 }, { P 2 , P 3 } and { P 3 , P 1 }, placed on the third row of Fig. 1 . It

an be seen that every three pairings we come up with 5 × 3 = 15

airs of features for which the G

2 score is computed. In fact, each

lock corresponding to a pairing { P i , P j } yields 6 pairs of vari-

bles, but the first one is discarded in order to avoid repetitions.

n Fig. 1 it is indicated by marking both variables in red on the

ower row.

Notice that k = 6 represents 15 pairs and the number of times

e count is reduced by a factor of 15, but each count is a factor

hree more expensive (as we are counting six variables instead of

wo variables). In addition, there is the task of marginalizing the

ount tables to pairs. If the number of states for some variables is

igh, then it may be more efficient to compute the score directly

rom the data set instead of creating an intermediate table.

.2. Extra heuristics

Once the testing for marginal independence is completed, a

ew step compared to the traditional PC algorithm is performed.

his step performs a set of the most promising tests for each edge,

50 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

X0 X1 X2 · · · X7 · · · X19 · · · X23 · · · X30 · · · Xn

X1 X2 X7 X19X23X30 X2 X3 X8 X20X24 X0 X3 X4 X9 X21X25 X1 · · ·

X1 X2 X7 X19 X7 X19X23X30 X23X30 X1 X2 · · ·

X1 X2 X1 X7 X1 X19 X2 X7 X2 X19 X7 X19 · · ·

Fig. 1. Example illustrating the use of (q , 6, 1) and (3, 2, 1) designs.

X1 X2

X3

X5

X4

1

2
3

4

5

7

6

Fig. 2. Example illustrating the use of the heuristic weights.

e

i

T

t

a

r

n

s

f

b

a

(

b

s

l

t

c

d

n

t

m

t

l

f

p

p

3

o

e

l

t

n

C

t

(

s

t

p

d

l

c

t

i
i.e., tests with high likelihood of not rejecting the independence

hypothesis. At this and the following steps of the conditional

independence testing we do not know in advance which tests we

need to perform (since we are using previous results to reduce the

number of tests performed).

For each edge (X, Y) the set of best candidate variables to in-

clude in the conditioning set S are identified using the weight of

a candidate variable Z . The weight w (Z | (X, Y)) is equal to the sum

of the test scores for (X, Z) and (Y, Z). The idea is to condition on

candidate variables that have a strongest association with both X

and Y .

We create an array of best candidates. This array contains up to

five variables, which are all neighbours of X (or Y) in the current

graph. The main reason for limiting the number of candidate vari-

ables to five is to make sure that the count table fits in memory.

If variables have many states, then the number of candidates is re-

duced as follows. First, the combined state space size of X and Y

is computed. Next, candidate variables are selected until the com-

bined state space size reaches the number of cases in the data set

or all five candidates are selected. The objective is to perform as

many tests where the null hypothesis is not rejected as quickly as

possible. There is a balance between increasing the number of can-

didate variables and the time and space required to perform the

tests. Since the size of the count table increases exponentially with

the number of candidate variables included, there is an upper limit

on the number of candidate variables. The limit of five candidate

variables has been set based on experience with simple tests. This

array is sorted by the sum of the edge weights.

The threads iterate over the sorted edge index array. A thread

performs all tests for a selected edge (with the size of S run-

ning from one to three) from the table of up to seven variables by

marginalising down to the appropriate number of variables. From

the table of counts all possible tests are performed generating sub-

sets using the combinatorial number system [23] as we want to

generate the most promising subsets first.

Example 3 (Candidates) . Assume Fig. 2 shows the graph after

completing the marginal independence tests where the score for

marginal independence is shown above each edge and assume all

other scores are zero.
The edge with the highest score is (X 3 , X 4) and it is the first

dge in the edge index array. For the edge (X 3 , X 4), variable X 2

s the only candidate variable with weight w (X 2 | (X 3 , X 4)) = 3 + 4 .

his means that a table over X 2 , X 3 , X 4 is created. From this table

he three conditional independence tests I (X 2 , X 3 | X 4), I (X 2 , X 4 | X 3),

nd I (X 3 , X 4 | X 2) are performed by one thread.

The three tests performed based on edge (X 3 , X 4) may lead to

emoval of up to three edges (in the case the null hypothesis is

ot rejected for any of the tests). The aim of sorting the edges and

electing candidate variables based on a score is to remove edges

rom the graph as quickly as possible in order to reduce the num-

er of later tests.

Assuming independence assumptions are rejected for the tests

ssociated with (X 3 , X 4), (X 4 , X 5), and (X 2 , X 5), we reach edge

 X 2 , X 4) which has two candidates X 3 and X 5 with weights w (X 3 |
(X 2 , X 4)) = 3 + 7 = 10 and w (X 5 | (X 2 , X 4)) = 5 + 6 = 11 . If the num-

er of candidate variables is limited to one, then only X 5 is con-

idered producing the count table over X 2 , X 4 , X 5 . Using an upper

imit of five candidates (and assuming their joint state space is less

han the number of cases), the count table over X 2 , X 3 , X 4 , X 5 is

reated. From this we can perform a total of seven conditional in-

ependence tests.

The extra heuristics step is responsible for finding a significant

umber of the independence relations. In combination, the step

esting for marginal independence and the step performing the

ost promising higher-order independence tests based on heuris-

ics usually find by far the highest number of independence re-

ations meaning that higher order tests mainly ensure that no

urther independence relations can be found. This also suggests

utting an upper limit on the size of the conditioning set. The tests

erformed for each edge are stored.

.3. Higher order independence testing

Once testing for marginal independence and the testing based

n heuristics are completed, the remaining higher order tests for

ach edge are performed (unless independence has been estab-

ished at a previous step). The algorithm iterates over |S| from one

o three stopping when an independence hypothesis I(X, Y ;S) is

ot rejected. The threads iterate over the sorted edge index array.

andidate variables to be included in the conditioning set S are de-

ermined as potential neighbours of either X or Y . The list of edges

the candidate and its potential neighbour X or Y) is sorted as de-

cribed above and all possible subsets are generated again using

he combinatorial number system in order to perform the most

romising tests first, i.e., a heuristic is used to identify the con-

itional independence test where the independence hypothesis is

east likely to be rejected.

In an iteration, each thread selects an edge and performs all

onditional independence test for |S| = i and writes the results to

he edge index array. There is only synchronization on the edge

ndex array when a thread decides which edge to test and when

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 51

Table 2

Networks from which data sets used in the experiments are generated.

Data set |X | | E | Total CPT size

Ship-Ship [24] 50 75 130 ,478

Munin1 [25] 189 282 19 ,466

Diabetes [26] 413 602 461 ,069

Munin2 [25] 1003 1244 83 ,920

SACSO [27] 2371 3521 44 ,274

w

s

r

i

t

3

t

a

e

a

p

o

c

c

d

s

i

e

p

t

s

n

T

t

d

X

t

d

i

B

b

p

b

w

i

w

P

t

e

4

o

a

c

m

n

T

b

n

H

p

l

u

h

p

m

w

t

p

a

l

4

m

s

i

l

p

t

p

t

e

a

r

i

r

c

a

N

w

m

F

M

s

t

e

o

u

t

a

u

t

u

u

u

T

h

t

a

D

c

w

t

t

t

riting to the array as we need to ensure that two threads do not

elect the same edge to test and that a thread does not try to read

esults from the edge index array when another thread is writing

ts results to the array. This synchronization is also performed in

he previous step.

.4. Horizontal parallel PC

The horizontal parallel PC algorithm is designed for a dis-

ributed memory architecture. The basic idea of the horizontal par-

llel PC algorithm is to divide the data set D into subsets such that

ach process manages a proper subset of the cases over all vari-

bles in the data. That is, given a data set D = { c 1 , . . . , c N } and p

rocesses, the data D is divided into p disjoint subsets D 1 , . . . , D p

f (approximately) equal size such that
⋃

i D i = D.

The structure learning process is controlled by a master pro-

ess m , which is responsible for creating a set of p worker pro-

esses. The process m performs all steps of the PC algorithm as

escribed in Section 2.1 , whereas the computation of the required

ufficient statistics to perform the conditional independence test-

ng in Step 1 is divided among the p worker processes. That is,

ach time a test for (conditional) independence I(X, Y ;S) is to be

erformed the process m asks each process p to compute and re-

urn the marginal count table over X, Y, S computed from the data

et D p . When count tables over subsets of variables are commu-

icated, all possible tests are performed from these count tables.

hat is, if a table over, for instance, X 1 , X 2 , X 3 is communicated,

hen all tests for marginal independence and conditional indepen-

ence on a single variable are performed from the table over X 1 ,

 2 , X 3 .

When data is complete, it is possible to exploit BIB designs

o further improve the efficiency of the testing for marginal in-

ependence. BIB designs are used in the same way as described

n Section 3.1 . That is, when data is complete we use a (q , 6, 1)-

IB design to speed up the testing for marginal independence. The

enefit is twofold; we reduce the number of times each worker

rocess has to make a parse over the data and we reduce the num-

er of times the master process has to communicate with each

orker process. On the other hand, we are in some cases increas-

ng the amount of data transmitted for each communication. We

ill evaluate the impact of using BIB designs in horizontal parallel

C algorithm.

This approach is most naturally used for learning tasks where

he number of cases is large. Thus, the implementation used in the

xperimental analysis is based on the use of processes.

. Results

Random samples of data were generated from the five networks

f different sizes listed in Table 2 . Three data sets are generated

t random for each network with 10 0,0 0 0, 250,0 0 0, and 50 0,0 0 0

ases. All generated data sets used are complete, i.e., there are no

issing values in the data. In cases where data is not complete it is

ot possible to use BIB designs to the full extent described above.

herefore, we consider an example where data is made incomplete

y adding an empty case to the data.
The empirical evaluation is performed on a desktop computer

amed Odin and a computer cluster named Fyrkat. Odin runs Red

at Enterprise Linux 7 with a six-core Intel (TM) i7-5820K 3.3 GHz

rocessor and has 64 GB RAM. Odin has six physical and twelve

ogical cores. Fyrkat is a computer cluster where each worker node

sed has two Intel Xeon (TM) X5260 processors and 16 GB RAM. It

as a total of 80 such nodes. This cluster system uses SLURM (Sim-

le Linux Utility for Resource Management) for resource manage-

ent. Odin is used to evaluate both approaches on shared memory

hile Fyrkat is used to evaluate the horizontal parallel PC on dis-

ributed memory. All test programs are implemented using the C

rogramming language and HUGIN API version 8.3. On Odin par-

llelization is achieved using POSIX threads and on Fyrkat paral-

elization is achieved using MPI.

.1. Parallel PC

The parallel PC algorithm is implemented employing a shared

emory multi-core architecture. All data is loaded into the main

hared memory of the computer where the process of the program

s responsible for creating a set of POSIX threads to achieve paral-

elization. In the experiments, the number of threads used by the

rogram is in the set {1, 2, 3, 4, 6, 8, 10, 12}, where the case of one

hread is considered the baseline and corresponds to a sequential

rogram.

The average computation time is calculated over five runs with

he same data set. The computation time is measured as the

lapsed (wall-clock) time of the different steps of the parallel PC

lgorithm. We measure the computation time of the entire algo-

ithm in addition to the time for identifying the skeleton (Step 2),

dentifying v -structures (Step 3) as well as identifying derived di-

ections (Step 4) and completing the orientation of edges (Step 5)

ombined.

Fig. 3 (left) shows the average run time in seconds (left axis)

nd speed-up factor (right axis) for Ship-Ship using 50 0,0 0 0 cases.

otice that the computation time is low for the Ship-Ship net-

ork even with one thread meaning that the potential improve-

ent from parallelization is limited as the evaluation shows.

ig. 3 (right) shows the average run time and speed-up factor for

unin1 using 250,0 0 0 cases where the speed-up deteriorates for

ix or more threads illustrating the principle of diminishing re-

urns. The additional threads add overhead to the process and we

xpect that the increase in time cost is due to the synchronization

n the edge index array.

Fig. 4 (left) and (right) show the average run time and speed-

p factor for Diabetes using 250,0 0 0 and 50 0,0 0 0 cases, respec-

ively. The speed-up factor increases smoothly for both 250,0 0 0

nd 50 0,0 0 0 cases.

Fig. 5 (left) and (right) show the average run time and speed-

p factor for Munin2 using 250,0 0 0 and 50 0,0 0 0 cases, respec-

ively. For 250,0 0 0 cases there is a smooth improvement in speed-

p whereas for 50 0,0 0 0 cases the speed-up factor drops slightly

sing ten or twelve threads.

Fig. 6 (left) and (right) show the average run time and speed-

p factor for SACSO using 250,0 0 0 and 50 0,0 0 0 cases, respectively.

he experiment on SACSO using 50 0,0 0 0 cases is the task with the

ighest number of variables and cases considered in the evalua-

ion. This task produces an average speed-up of a factor 6.46 with

verage run time dropping from 737 to 114 s. The experiment on

iabetes using 50 0,0 0 0 cases is the task taking the longest time to

omplete. This task produces an average speed-up of a factor 6.36

ith average run time dropping from 3084.65 to 484.65 s.

Step 1 of the PC algorithm consists of marginal independence

ests, extra heuristics and higher order conditional independence

ests. Fig. 7 shows the time costs for the marginal independence

ests and extra heuristics.

52 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(a) Ship-Ship 500,000

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(b) Munin1 250,000

Fig. 3. Average run times for Ship-Ship with 50 0,0 0 0 cases and Munin1 250,0 0 0 cases.

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(a) Diabetes 250,000

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(b) Diabetes 500,000

Fig. 4. Average run times for Diabetes with 250,0 0 0 and 50 0,0 0 0 cases, respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(a) Munin2 250,000

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(b) Munin2 500,000

Fig. 5. Average run times for Munin2 with 250,0 0 0 and 50 0,0 0 0 cases, respectively.

Table 3

Average run times in seconds for Steps 2–5.

Data set Skeleton v -structures Orientation

(Step 2) (Step 3) (Step 4 & 5)

Ship-Ship 0 0 0

Munin1 0 .005 0 0 .001

Diabetes 0 .001 0 .004 0 .002

Munin2 0 .006 0 .002 0 .034

SACSO 0 .051 5 .692 0 .502
Figs. 8 and 9 show the time costs for higher order tests for each

size of the conditioning set. It is clear from Figs. 7–9 that the most

time consuming step is the marginal independence tests where a

large number of edges are excluded from the graph.

Table 3 shows the average time cost of identifying the skeleton

(Step 2), identifying the v -structures (Step 3) and identifying de-

rived directions as well as completing the orientation to obtain a

DAG (Step 4 and Step 5).

It is clear from Table 3 that the costs of Step 2–5 are negligible

compared to the total cost.

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 53

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(a) SACSO 250,000

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(b) SACSO 500,000

Fig. 6. Average run times for SACSO with 250,0 0 0 and 50 0,0 0 0 cases, respectively.

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12
 0

 1

 2

 3

 4

 5

 6

 7

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(a) SACSO 500,000, marginal

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

Number of threads

Time
Speed-up

(b) SACSO 500,000, extra heuristics

Fig. 7. Average run times for SACSO with 50 0,0 0 0 cases for marginal independence testing and extra heuristics, respectively.

Fig. 8. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using |S| = 1 and |S| = 2 , respectively.

4

i

m

f

p

p

c

t

u

o

o

a

t

t

i

s

e

t

e

P

S

n

t

c
.2. Horizontal parallel PC

The horizontal parallel PC algorithm is implemented employ-

ng a distributed memory multi-processor architecture. The imple-

entation is based on MPI where a master process is responsible

or performing all steps of the PC algorithm using a set of worker

rocesses to compute sufficient statistics for subsets of the data in

arallel. The communication between the master and worker pro-

esses is performed using MPI. In the experimental evaluation of

he horizontal parallel PC algorithm, we will consider the effect of

sing (q , 6, 1)-BIB designs to improve performance. BIB designs can

nly be used for the set of variables with complete data. Thus, in

rder to evaluate the impact of BIB designs on performance, we

dd a single empty case to each data set considered in the evalua-
ion. Incomplete data is handled at the level of each independence

est I(X, Y ;S) where a configuration over X, Y and S with a miss-

ng value is ignored. Since data is made incomplete by adding a

ingle empty case, we are in practice using the same data in the

valuation (just without exploiting the fact that data is complete).

The average computation time is calculated over five runs with

he same data set. The computation time is measured as the

lapsed (wall-clock) time of the entire program.

Fig. 10 shows the average run times of the horizontal parallel

C algorithm as a function of the number of worker threads for

ACSO with 50 0,0 0 0 cases of complete and incomplete data run-

ing on Fyrkat, respectively. As expected, the average run time for

he complete case is significantly lower than for the incomplete

ase. The difference between having complete and incomplete data

54 A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55

Fig. 9. Average run times for SACSO with 50 0,0 0 0 cases for higher order tests using

|S| = 3 .

t

w

t

a

t

S

o

a

b

t

f

p

s

d

a

o

v

c

t

n

a

n

i

t

i

b

p

s

T

t

f

p

a

p

u

t

p

b

u

m

c

l
is twofold. First, in the incomplete data case there is no use of

BIB designs in the marginal independence test. Second, no extra

heuristic tests are performed involving variables with incomplete

data. The difference between Fig. 10 (a) and (b) shows that these

two optimizations produce a speed-up factor of more than two for

the horizontal parallel PC algorithm.

Fig. 11 shows the average run times of horizontal parallel PC for

SACSO with 50 0,0 0 0 cases of complete and incomplete data run-

ning on Odin, respectively. In comparison, Fig. 6 (right) shows the

average run time of the parallel PC algorithm for the same network

and data set.

Recall that Figs. 10 and 11 show the average time cost as a func-

tion of the number of worker processes (in addition to the master

process). In the case of one worker process, this process still has to

communicate the count tables to the master process (running on a

different com puter). This is the reason that there is a difference in

time performance between parallel PC and horizontal PC for the

value one.

Recall that Odin is a shared memory computer with a single

CPU (six physical cores and 12 logical cores) whereas Fyrkat is a

computer cluster with distributed memory. The significant differ-

ence in the average run time for the same task is probably due to

different CPU performance.

5. Discussion

This paper considers parallel Bayesian network structure learn-

ing from data using a variant of the PC algorithm. Two approaches

to parallelization have been considered in the paper. One approach

is designed for a multi-core shared memory architecture whereas

the other approach is designed for a computer cluster with dis-
 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

SACSO 500k cases, 2371 variables

Time
Scale-up

(a) SACSO 500,000, Fyrkat, complete

Fig. 10. Average run times for SACSO with 50 0,0 0 0 on Fyrkat using complete and in
ributed memory. The first approach is based on the use of threads

ith all data cases stored in shared memory.

The PC algorithm consists of five main steps where the focus of

his paper has been on performing the independence tests in par-

llel as the results in Section 4 clearly demonstrate that the total

ime cost of Steps 2–5 are negligible compared to the time cost of

tep 1.

Step 1 of the PC algorithm consists, as presented in this paper,

f three steps. In the first step the tests for marginal independence

re performed. Parallelization of this step in both approaches is

ased on the use of difference sets and families where the tests

o be performed are known in advance as all pairs are to be tested

or marginal independence. In the second step a set of the most

romising higher order tests are performed whereas in the third

tep tests for conditional independence are performed using con-

itioning sets of size one, two and three, respectively.

In the statistical tests for marginal independence, BIB designs

re used on the subset of variables with complete data. BIB designs

n the form (q , 6, 1) are used to produce counts tables over six

ariables. If variables have many states and there are only a few

ases, then this table may be larger than the number of cases in

he original data set. Therefore, the approach requires a minimum

umber of cases.

The edge index array is the central bottleneck of the approach

s it is the only element that requires synchronization. There is no

eed for synchronization during the marginal independence test-

ng. Synchronization is limited to selecting which edge to test and

o determine which remaining tests need to be performed. There

s no synchronization related to the counting. The counting usually

eing the most time consuming element of testing for conditional

airwise independence.

The horizontal parallel PC approach is based on distributing a

ubset of the data over all variables to a set of worker processes.

his approach is embarrassingly parallel. Each process holds a dis-

inct subset of the data cases over all variables and it is responsible

or computing partial counts over this subset each time the master

rocess needs to perform a test. When the horizontal parallel PC

pproach exploits the use of BIB designs (over variables with com-

lete data), the tables communicated may become large. We have

sed a limit on the count tables equal to the number of cases in

he original data set.

The results of the empirical evaluation show a significant time

erformance improvement over the pure sequential method for

oth approaches. For most cases considered there is a point where

sing additional threads or processes does not improve perfor-

ance illustrating the principle of diminishing returns. In a few

ases, where the number of variables is low, the number of cases is

ow, or both, increasing the number of threads used may increase
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2 4 6 8 10
 0

 1

 2

 3

 4

 5

 6

 7

 8

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

SACSO 500k cases, 2371 variables (incomplete)

Time
Scale-up

(b) SACSO 500,000, Fyrkat, incomplete

complete data, respectively, as a function of the number of worker processes.

A.L. Madsen et al. / Knowledge-Based Systems 117 (2017) 46–55 55

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 2 4 6 8 10
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

SACSO 500k cases, 2371 variables

Time
Scale-up

(a) SACSO 500,000, Odin, complete

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2 4 6 8 10
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

A
ve

ra
ge

 s
pe

ed
-u

p
fa

ct
or

SACSO 500k cases, 2371 variables (incomplete)

Time
Scale-up

(b) SACSO 500,000, Odin, incomplete

Fig. 11. Average run times for SACSO with 50 0,0 0 0 on Odin using complete and incomplete data, respectively, as a function of the number of worker processes.

t

b

p

t

t

s

t

a

o

i

6

p

a

s

m

a

d

t

m

o

A

A

e

m

p

R

[

[

[

[

[

[

[

ime costs. Notice that on SACSO with complete data, the thread-

ased version is faster and offers a better speed-up factor than the

rocess-based approach.

The PC algorithm is known to be sensitive to the order in which

he conditional independence tests are performed. This means that

he number of threads used by the algorithm may impact the re-

ult as the order of tests is not invariant under the number of

hreads used. This is a topic of future research.

There is some variance in the run time measured. This should

lso be expected as the evaluation is performed on systems serving

ther users, i.e., the experiments have not been performed on an

solated system.

. Conclusions

In this paper, we have considered two different approaches to

arallelization of Bayesian network structure learning using the PC

lgorithm. The horizontal approach is embarrassingly parallel and

hows that a significant speed-up is possible both on a shared

emory system and a cluster system using processes. The other

pproach based on the use of BIB designs for marginal indepen-

ence testing shows a significant speed-up on shared memory sys-

ems using threads. This makes it possible to take advantage of

ulti-core and multi-processor systems to improve time efficiency

f structure learning.

cknowledgments

This work was performed as part of the AMIDST project.

MIDST has received funding from the European Union’s Sev-

nth Framework Programme for research, technological develop-

ent and demonstration under grant agreement no 619209. This

aper is an extended version of [28] .

eferences

[1] J. Pearl , Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Series in Representation and Reasoning, Morgan Kaufmann, 1988 .

[2] R. Cowell , A. Dawid , S. Lauritzen , D. Spiegelhalter , Probabilistic Networks and

Expert Systems, Springer, 1999 .
[3] F.V. Jensen , T.D. Nielsen , Bayesian Networks and Decision Graphs, 2nd ed.,

Springer, 2007 .
[4] D. Koller , N. Friedman , Probabilistic Graphical Models — Principles and Tech-

niques, MITPress, 2009 .
[5] U.B. Kjærulff, A.L. Madsen , Bayesian Networks and Influence Diagrams: A Guide

to Construction and Analysis, 2nd ed., Springer, 2013 .

[6] P. Spirtes , C. Glymour , R. Scheines , Causation, Prediction, and Search, Adaptive
Computation and Machine Learning, second ed., MIT Press, 20 0 0 .
[7] Q. Fang, K. Yue, X. Fu, H. Wu, W. Liu, A MapReduce-based method for learning

bayesian network from massive data, in: Web Technologies and Applications,
in: Lecture Notes in Computer Science, vol. 7808, Springer, 2013, pp. 697–708,

doi: 10.1007/978- 3- 642- 37401- 2 _ 68 .
[8] C.-T. Chu , S. Kim , Y.-A. Lin , Y. Yu , G. Bradski , A. Ng , K. Olukotun , Map-Reduce

for machine learning on multicore, in: NIPS, 2006, pp. 281–288 .

[9] M. Scutari , Learning Bayesian networks with the bnlearn R package, J. Stat.
Software 35 (3) (2010) 1–22 .

[10] A. Basak , I. Brinster , X. Ma , O. Mengshoel , Accelerating Bayesian network
parameter learning using Hadoop and MapReduce, in: Proceedings of the

1st International Workshop on Big Data, Streams and Heterogeneous Source
Mining: Algorithms, Systems, Programming Models and Applications, 2012,

pp. 101–108 .

[11] M. Kalisch , P. Buhlmann , Estimating high-dimensional directed acyclic graphs
with the PC-algorithm, J. Mach. Learn. Res. 8 (2008) 613–636 .

[12] M. de Jongh , Algorithms for constraint-based learning of Bayesian network
structures with large numbers of variables (Ph.D. thesis), University of Pitts-

burgh, 2014 .
[13] O. Nikolova , S. Aluru , Parallel discovery of direct causal relations and Markov

boundaries with applications to gene networks, in: Parallel Processing (ICPP),

2011 International Conference IEEE, 2011, pp. 512–521 .
[14] W. Chen , L. Zong , W. Huang , G. Ou , Y. Wang , D. Yang , An empirical study

of massively parallel Bayesian networks learning for sentiment extraction
from unstructured text, in: Web Technologies and Applications, Springer, 2011,

pp. 424–435 .
[15] J. Arias, J. Gamez, J. Puerta, Learning distributed discrete Bayesian network

classifiers under MapReduce with Apache spark, Knowledge Based Syst. (2016),

doi: 10.1016/j.knosys.2016.06.013 . Available online 22 June 2016
[16] A.L. Madsen , F. Jensen , A. Salmeron , M. Karlsen , H. Langseth , T.D. Nielsen , A

new method for vertical parallelisation of TAN learning based on balanced in-
complete block designs, in: Proceedings of PGM, 2014, pp. 302–317 .

[17] D. Stinson , Combinatorial Designs — Constructions and Analysis, Springer,
2003 .

[18] T.M. Forum , MPI: A Message Passing Interface, in: Supercomputing ‘93, Port-

land, OR, 1993, pp. 878–883 .
[19] R. Fisher , An examination of the different possible solutions of a problem in

incomplete blocks, Ann. Eug. 10 (1940) 52–75 .
20] D. Corneil , R. Mathon , Algorithmic techniques for the generation and analysis

of strongly regular graphs and other combinatorial configurations, Ann. Dis-
crete Math. 2 (1978) 1–32 .

[21] K. Takeuchi , A table of difference sets generating balanced incomplete block

designs, Rev. Int. Stat. Inst. 30 (3) (1962) 361–366 .
22] A.L. Madsen , M. Lang , U.B. Kjærulff, F. Jensen , The Hugin tool for learning

Bayesian networks, in: Proceedings of ECSQARU, 2003, pp. 549–605 .
23] D.E. Knuth , The Art of Computer Programming, 4, Fascicle 3, Addison-Wesley,

2005 .
24] A. Papanikolaou , Presents Modern Risk-Based Methods and Applications to

Ship Design, Operation, and Regulations, Springer, 2009 .
25] S. Andreassen , F.V. Jensen , S.K. Andersen , B. Falck , U. Kjærulff, M. Woldbye ,

A .R. Sørensen , A . Rosenfalck , F. Jensen , MUNIN — an expert EMG assistant,

Computer-Aided Electromyography and Expert Systems, Elsevier Science, 1989 .
26] S. Andreassen , R. Hovorka , J. Benn , K.G. Olesen , E.R. Carson , A model-based

approach to insulin adjustment, in: Proceedings of the Third Conference on
Artificial Intelligence in Medicine, 1991, pp. 239–248 .

[27] F.V. Jensen , C. Skaanning , U. Kjærulff, The SACSO system for troubleshooting of
printing systems, in: In Proceedings of the Seventh Scandinavian Conference

on Artificial Intelligence, IOS Press, 2001, pp. 67–79 .

28] A.L. Madsen , F. Jensen , A. Salmeron , H. Langseth , T.D. Nielsen , Parallelization
of the PC algorithm, in: The XVI Conference of the Spanish Association for

Artificial Intelligence, 2015, pp. 14–24 .

http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0001
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0002
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0003
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0004
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0005
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0006
http://dx.doi.org/10.1007/978-3-642-37401-2_68
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0008
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0009
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0010
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0011
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0012
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0014
http://dx.doi.org/10.1016/j.knosys.2016.06.013
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0016
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref1017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref1017
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0018
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0019
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0020
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0021
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0022
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0023
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0024
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0025
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0026
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027
http://refhub.elsevier.com/S0950-7051(16)30246-5/sbref0027

	A parallel algorithm for Bayesian network structure learning from large data sets
	1 Introduction
	2 Material and methods
	2.1 PC algorithm
	2.2 Balanced incomplete block designs

	3 Theory
	3.1 Test for marginal independence
	3.2 Extra heuristics
	3.3 Higher order independence testing
	3.4 Horizontal parallel PC

	4 Results
	4.1 Parallel PC
	4.2 Horizontal parallel PC

	5 Discussion
	6 Conclusions
	 Acknowledgments
	 References

