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Abstract

We present a simple and implementable algorithm that computes a min�
imum spanning tree of an undirected weighted graph G � �V�E� of n � jV j
vertices andm � jEj edges on an EREW PRAM in O�log���n� time using n�m
processors� This represents a substantial improvement in the running time over
the previous results for this problem using at the same time the weakest of the
PRAM models� It also implies the existence of algorithms having the same
complexity bounds for the EREW PRAM� for connectivity� ear decomposition�
biconnectivity� strong orientation� st�numbering and Euler tours problems�
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� Introduction

This paper describes a new parallel algorithm for computing the minimum spanning
tree 
MST� of a graph in the EREW PRAM model of parallel computation� the

weakest of the PRAM models� This algorithm is faster by a factor of
q
log jV j than

any deterministic algorithm previously known for any model that does not make
use of concurrent writing� The algorithm uses the growth�control scheduling of the
connectivity algorithm described in JM���� it also makes use of an observation by
GGS����
A major innovation is our discovery that necessary information about compo�

nents can be extracted without ever explicitly shrinking the components� Component
shrinking is a feature of every other parallel MST and connectivity algorithm known
to us�
Two of our objectives while designing the algorithm were simplicity and im�

plementability� that is� to be able to implement the algorithm using simple� well�
understood routines 
like sorting and list ranking� that are likely to be found on most
parallel machines� We feel that we have succeeded in both� In fact� the complexity
of our solution is in the proof � not in the algorithm itself�
Even though the connectivity algorithm of JM��� improved the running time of

several other graph�theoretic problems it seemed that there was no obvious way to
create a MST algorithm from the connectivity algorithm having comparable complex�
ity with the latter� The di�culty� of course� is that the selection of minimum weight
edges from edge�lists seems to require either a powerful concurrent�write model of
computation or some other minimization process� which thereby takes time logarith�
mic in the length of the list� A connectivity algorithm may select any edge� not
the one with minimum weight� and that makes the selection simpler� Thus� a new
approach was needed to achieve an o
log� jV j� running time for this problem� As
we will explain� we maintain a subset of edges that contains all the edges that must
be considered in any one phase of the algorithm in order to control the number of
candidates that must be tested� Maintaining this subset is essential to the bound on
the running time�

Our results� We present an algorithm that computes a minimum spanning tree

MST� of an undirected weighted graph G � 
V�E� of n � jV j vertices and m � jEj
edges on an EREW PRAM in O
log��� n� time using n �m processors� 
If G is not
connected� our algorithm �nds a minimum spanning tree for each connected com�
ponent�� This represents a substantial improvement in the running time over the
previous results for this problem using at the same time the weakest of the PRAM
models� It also implies the existence of a connectivity algorithm with the same com�
plexity bounds for the EREW PRAM� therefore improving on previous work JM����
Furthermore� we note that the number of processors used can be reduced by a factor
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of O

p
log n�� provided that there exists a practical integer�sorting subroutine which

runs in O
log n� time using n�
p
log n EREW PRAM processors� In this paper� we

have not only succeeded in solving a problem more di�cult than the connectivity
problem 
implying a new� simpler solution to the connectivity and related problems
as well�� but also have done so using the weakest of the PRAM models� We note that
among the problems having running times depending on the connectivity algorithm
are ear decomposition MR���� biconnectivity TV���� strong orientation Vis���� st�
numbering MSV��� and Euler tours AV����
Computing the MST of a weighted graph has attracted much attention in both the

sequential and parallel settings� The best known sequential algorithm runs in time
O
n�� for dense graphs Pri���� and in time O
m log� log� logd n� for sparse graphs
GGS���� where d � max
m�n� ��� For a presentation of several sequential MST
algorithms� see Tar�	� Chapter ���
In parallel models� the previous results for the MST problem were O
log� n� using

n�� log� n CREW PRAM HCS��� CLC��� or n� EREW PRAM processors NM����
and O
log n� time using n�m PRIORITY CRCW PRAM processors AS��� SV����
or 
n�m� log log log n� log n STRONG CRCW PRAM processors CV��� using very
elaborate techniques� Other parallel algorithms are reported in KRS��� KR���
Ben��� SJ����
Recently� CL�	� have improved the running time of JM��� to O
log n log log n�

mainly by providing a recursive version of the growth�control schedule� It does not
appear� however� that this technique has immediate application on the MST algorithm
we present here�
The paper is organized as follows� Section � contains some preliminaries� Section 	

gives an outline of the algorithm and then describes its parts in some detail� Section �
has the main theorem along with the correctness and complexity proofs� Finally�
Section � contains the conclusions�

� Preliminaries

��� De�nitions

We give here some de�nitions� and we discuss the complexity of an algorithm that
we use as a subroutine� The minimum spanning tree 
MST� problem is de�ned as
follows� Given a connected undirected graph G � 
V�E� each of whose edges has
a real�valued weight� �nd a spanning tree of the graph whose total edge weight is
minimum� A pseudotree P � 
C�D� is a maximal connected directed graph with
n � jCj vertices and n � jDj arcs� for which each vertex has outdegree one� Every
pseudotree has exactly one simple directed cycle� We call the number of arcs in the
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cycle of a pseudotree P its circumference� circ
P �� A rooted tree is a pseudotree whose
cycle is a loop on some vertex r called the root� A rooted star R with root r� is a
rooted tree all of whose arcs point to r�
Given n elements in a linked list representation� the list ranking problem is to �nd�

for each element� its distance from the end of the list� called its rank� The list ranking
problem� which appears very often in parallel computation and will be used by our
algorithm as well� can be solved optimally in O
log n� time using n� log n EREW
PRAM processors CV��� AM����
Given a connected subgraph Gi � 
Vi� Ei� � G � 
V�E�� we de�ne an internal

edge to be an edge 
v�w� � Ei such that v�w � Vi� Similarly� we de�ne an outgoing
edge to be an edge 
v�w� � E � Ei such that one of its endpoints belong to Vi and
the other belongs to V � Vi� Let Gj � 
Vj � Ej� be another subgraph of G where Gi

and Gj are vertex disjoint� Distinct edges 
v�w�� 
x� y� � E � 
Ei � Ej� having one
endpoint in Vi and the other in Vj are called multiple�
Let G � 
V�E� be a connected weighted graph on n � jV j vertices and m � jEj

edges� and let weight � E � R be a function which gives the weights of the m edges�
We assume that the vertices of the graph are given in an array representation� and
let id
v� be the index of vertex v in the array� Each vertex v has a linked list L
v�
of edges 
v�w� incident to vertex v and two pointers first and last pointing to the
beginning and the end of L
v�� For implementation purposes we will assume that
the last edge in every edge�list is a dummy one� There are two copies for each edge�

v�w� � L
v� and 
w� v� � L
w�� which are connected via a pair of twin pointers�
Finally� pointer next
v�w� points to the next edge in 
v�w��s edge list�

��� The model

We brie�y describe here the model of parallel computation we use� A PRAM 
Parallel
Random Access Machine� employs p processors� each one able to perform the usual
computation of a sequential machine using some �xed amount of local memory� The
processors communicate through a shared global memory to which all are connected�
Depending on the way the access of the processors to the global memory is handled�
PRAMs are classi�ed as EREW� CREW and CRCW� 
In the model names� E stands
for �exclusive� and C for �concurrent��� If we don�t allow any con�icts in the reading
from and writing to the shared memory� the model is called an EREW PRAM� the
weakest of the three models� If we allow only concurrent reading� we have a CREW
PRAM� Finally� in the CRCW PRAM� simultaneous writing is permitted and we have
to address the question of which of the attempting writing processors will write� In
the PRIORITY CRCW PRAM model� the processor having the largest priority 
id
number� wins� while in the STRONG model the processor holding the minimum 
or
equivalently the maximum� of all the values attempted to be written wins�
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One can simulate an algorithm designed for the PRIORITY CRCW model on a
EREW PRAM� with a slowdown in time logarithmic in the number of processors
used by the former machine Eck��� Vis�	��
It should be noted that for an algorithm to run on a model that permits no concur�

rent reads 
writes�� implies that any two processors make no attempt to concurrently
read from 
write to� the same memory location� If such an attempt is ever made� the
result of the computation is unde�ned� For more information on the PRAM models�
see KR���

� Description of the Algorithm

��� Outline

The algorithm is divided into phases and maintains a minimum spanning forest of
the graph� We will call each of the trees in the forest a component� Later on� when
each component has grown in size by including sets of vertices and is organized as a
rooted tree� the root will represent the component� In the beginning� we can think of
each vertex as the root of the 
trivial� component to which it belongs�
During each phase� each component C grows in size by executing the following

two steps�
First� C �nds the minimum�weight outgoing edge 
v�w� which is connected to

any of the vertices v � C and leads to vertex w � C � of some other component
C �� This is called the hooking step 
Figure ��� When executed simultaneously by all
components� the hooking step creates clusters of components formed as pseudotrees
with circumference � 
asumming that all weights are distinct�� Such pseudotrees will
easily become rooted trees�
Each cluster produced by hooking is then processed into a new component C

organized as a rooted tree with root r and one edge list L
C�� We call the completion
of the creation of a new componentmerging 
Figure ��� To merge the new component�
a root r is chosen from the cycle with circumference two of the new component�
Then� the edge list of r is augmented by all the other edge lists of the constituent
components that hooked to form the new one� We use the EREW edge�plugging
scheme JM��� Met��� to perform the augmentation of r�s edge�list in constant time
and without memory access con�icts� Finally� housekeeping is performed on the
merged edge list to remove internal and multiple edges�
One can easily see that repeating the sequence of the hooking and merging steps

in parallel for a long enough period of time� a MST of the graph is computed�
Before we continue with the technical details� let us make an important obser�

vation� All previous algorithms for connectivity and MST� during the hooking step�
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Figure �� 
a� The input graph G� Each vertex represents a component� 
b� The
hooking step� Each components has picked the minimum�weight outgoing edge� An
arc points from a vertex to its selected neighboring component� Dotted are those
edges that were not picked by any vertex� Three pseudotrees are shown in this �gure�
Note that each pseudotree contains a cycle of circumference two 
shown as a double
arc��

�



��

�

�

�

�

�


c�


d�

�


e�

�

�

�

Figure �� 
c� The merging step� The new components have been identi�ed� Shaded
are the vertices that will become roots of the components�rooted trees� Dashed
edges are internal edges that will be removed� 
d� The new graph contains three
components� Multiple edges are shown between the components� 
e� The new graph
after the removal of multiple edges�
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Figure 	� Edge lists of nodes v and w before 
top� and after 
bottom� the edge
plugging step�

create trees or pseudotrees and then reduce them to explicit rooted stars by some
kind of pointer jumping� Given that� in general� the in�degree of each node of the
tree is not bounded by a constant� the reducing process generates read con�icts� In
our algorithm we will avoid these con�icts� because we will never explicitly create
these structures� Instead� for each new component C we will create a linked list
E
C�� representing a preorder traversal of the component�s tree� Then� we will use
this linked list to gather the information about the component� Doing so obviates
the need to shrink components�

Edge�Plugging� For reasons of completeness� we brie�y describe here the edge�
plugging scheme and how it ensures that no concurrent accesses happen when used�
As we mentioned in the Section ���� we represent each undirected edge 
v�w�

by two twin copies 
v�w� and 
w� v�� The former is included in L
v� and the latter
in L
w�� The two copies are interconnected via a function twin
e� which gives the
address of the twin copy of edge e� We can assume that both 
v�w� and 
w� v� are
being simulated by the same processor� Therefore� calculating the twin function in
constant time is straightforward�
Let us assume that during the hooking step� edge 
v�w� was chosen as the minimum�

weight outgoing edge 
Fig� 	� top�� According to this scheme� v plugs its edge�list
L
v� into w�s edge�list by redirecting some pointers� The exact place that L
v� is
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Figure �� The e�ect of the plugging step execution by all vertices of a tree but the
root r� On the right is L�
r� after the execution of the plugging step�

plugged is after the twin edge 
w� v� contained in L
w� 
Figure 	� bottom�� This
ensures exclusive writing�
Note that the e�ect of having all v � C � frg perform the plugging step simul�

taneously is to place all the edges in their edge�lists into r�s updated edge�list L�
r�

Figure ��� This step takes constant time�

Growth�Control� Following the growth�control schedule of JM��� we de�ne

as critical size the quantity B � �
p

logn� Therefore logB �
p
log n� As we men�

tioned� the algorithm is divided in phases� The purpose of each phase i is to promote
components to phase i � �� i�e� to grow the size of each component� if possible� to
at least Bi��� Therefore� at most dplog ne phases are needed� We require that each
component C entering a phase i has an edge�list L
C��
In light of the above discussion� if we are able to assure that� after each phase� all

components that were large enough to be promoted have really been promoted� then
the MST algorithm is simply composed of the following loop�

Algorithm MST

Main Procedure

for dplog ne times do
execute procedure phase

We will give the description of procedure phase in Section 	�	�
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��� The B�list

The running time of our algorithm depends on the following observation� Since the
purpose of each phase is to grow the size of a component by a factor of B� then�
during any phase� components need not keep track of all the edges in their edge
lists� In particular� assuming that L
C� contains no internal and no multiple edges�
components need to keep track of only the �best� 
i�e� least weight� B edges of their
edge�list L
C�� 
A similar observation was made also in GGS��� for their related
merging components problem�� The components will do so by placing these B edges
into a new list� called B�list
C�� During a phase� some of the edges in B�list
C� will be
used for hooking� and some will be found to be internal� i�e� connecting vertices inside
the same component� Note that� if during a phase some component �nds that all the
edges in its B�list are either used or internal� then the component can determine that
it is promoted�
In order to be able to use the B�lists of the vertices� we must initialize our data

structures appropriately�

Procedure Initialization

�� Form n trivial trees� one per vertex 
component� v�

�� For each component v � V � form its linked list L
v� and its B�list
v��

To compute B�list
v� for each v in parallel� we may use a selection algorithm
Col��a� Vis��� CY���� Using the algorithm by Cole Col��a�� we can select the
B���st least weight element b in time O
log n� using almost n� log n EREW PRAM
processors� Then� edges with weight less than b will be copied into B�list
v��

��� Description of a Phase

As we have said� the algorithm is composed of
p
log n phases� Each phase will operate

on the components� and will promote them to the next phase in O
log n� time� It
will also do some housekeeping to prepare the data structures for the next phase�
Each phase i is divided further into O


p
log n� sub�phases� During each sub�phase

j� components will hook and merge achieving a minimum size of Bi � �j vertices� We
will use the variable counterC
j� to record a lower bound of the size of the component
C during the sub�phases j of the phase� Whenever counterC
j� � B for some sub�
phase j� the component has been promoted and need not take part in the remaining
sub�phases of the phase�
A high�level description of a phase follows� Subsection 	�� examines the operations

performed during a sub�phase in more detail�
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Procedure phase�i�

�� For each component C� set counterC
��	 ��

�� Run procedure sub�phase�j� for j 	 � to dplog ne��� During each sub�phase
components perform hooking and merging� and grow in size� As we will describe
in the following subsections� each sub�phase takes timeO


p
log n�� therefore this

step takes time O
log n�� We will show that at the end of this step we have
computed a minimum spanning forest of promoted components�

	� Finish up the work that was deferred during the sub�phases� The description
of step � of the sub�phases will clarify the need for this step� In brief� if some
component that formed during the sub�phases was too large and had not enough
time to clean up its data structures� it will do so in this step� At the end of
this step� components are implicit rooted stars� that is� for each vertex x� p
x�
is the root of its component�

�� Rename edges 
x� y� as 
p
x�� p
y��� where p
x� is the root of x�s and p
y� is the
root of y�s component� Internal edges in the components� edge list are easily
identi�ed� since they have identical endpoints� they are given weight of �
�

�� Sort edges lexicographically according to their endpoints� We can use Cole�s
Mergesort algorithm Col��b� for this purpose� which sortsm elements inO
logm�
time using m EREW PRAM processors� We should remark that actually an
integer�sorting or a bucket�sorting algorithm su�ces for this purpose� On the
sorted list� multiple edges end up in a sequence� Then� using list�ranking we �nd
for each sequence of multiple 
x� y� edges� the one with minimum weight� This
edge is recorded as useful while the remaining multiple ones are given weight of
�
�

�� Remove internal and multiple edges from the edge�lists by O
log n� pointer
jumping steps� Recompute the twin pointers of the useful edges as follows�
First� observe that� after removing redundant edges from an edge�list� all edges
named 
v�w�� useful and redundant� point at the same location� This location
is the edge 
v�� w�� that comes lexicographically after 
v�w�� The useful edge

v�w� passes its address to a �eld prev

v�� w��� From there� the useful edge

w� v� reads it� by following pointer next
twin

w� v����

�� For each component C� form its B�list
C� to enter the next phase i�� as follows�
Determine the B � ��st element b in L
C�� Then� copy edges smaller than b
into a new list� B�list
C��
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We discuss now the implementation of procedure phase in the EREW PRAM
model� Each step runs in O
logm� parallel time� Step � 
the sub�phases� re�
quires m�

p
logm processors� step � needs m processors� and the remaining steps

use m� logm processors� Thus� the algorithm uses O
n �m� processors� Assuming
that there exists an integer sorting algorithm that runs in logarithmic time using
O
m�

p
logm� processors� the whole algorithm will have this processors bound� In

fact� the algorithms given in KRS��� and in She��� HS��� are within the desired
bounds� However� due to space requirements 
the former� and to unrealistic machine
assumptions 
the latter�� these algorithms are not considered practical�

��� Description of a Sub�phase

As we have said� each component C entering a phase holds B�list
C�� a linked list
of its B least�weight� outgoing and non�multiple 
useful� edges� The idea behind the
component�s B�list is described in this invariant�

Invariant � In the beginning of each sub�phase� the B�list of any active� unpromoted
component contains enough least�weight edges to promote the component to the next
phase�

This is certainly true in the beginning of the �rst sub�phase of a phase because
B�list
C� contains edges leading to B distinct components� During each sub�phase s�
components hook and merge achieving size of at least �s� Assuming that some com�
ponent C has collected since the beginning of the phase k � B components where
k � counterC
s� � �s� C needs to keep track of only B � counterC
s� least�weight
non�internal� non�multiple edges� The reason is that these edges will lead to an equal
number of components that were distinct at the beginning of the �rst sub�phase�
therefore we can assure promotion of C� We will prove that this invariant will be
preserved through each sub�phase� Lemma � shows that we can select correctly the
edges in this group and� in fact� the B � counterC
s� least�weight outgoing edges to
promoted components appear in C�s B�list�
Each sub�phase proceeds as follows 
Figures � and ���

Procedure Sub�phase�j�

�� The root v of each active component �nds the best edge in its B�list� say 
v�w��
and moves it to the front of the list� We call this step the hooking step� since
we can think implicitly of v hooking to the component of which w is a member�
by creating a pointer p
v� � w 
Figure ��� As we have mentioned� this step
implicitly creates pseudotrees with circumference two�
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Figure �� Run of a Sub�phase� 
See also the next �gure�� The implicit pseudotree
with circumference two of some components that hooked together at the beginning
of a sub�phase forming component C� The vertex v that will become the root of C is
shown shaded�
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Figure �� 
Top� The e�ect of the edge�plugging of the B�lists� Labeled edges represent
the edges that the named component used for hooking and hold the counters of their
components� Dotted pointers are those changed during the edge�plugging process�
The edge�list marked with x� belongs to some component x which� though it belongs
to C� could not plug its B�list because 
d� x� � twin
x� d� was not included in B�
list
d�� This component will not be counted in counterC
s�� 
Bottom� The E
C�
list� created by removing the ��edges 
unlabeled in the picture� from the B�lists�
Running list rank on E
C� we can enumerate and identify the components 
all but
x� that formed C� Before starting a new sub�phase� B
C� is formed by including the
B � counterC
s� least�weight outgoing useful edges� Note that E
v� corresponds to
a preorder traversal of the C�s implicit tree 
shown in the previous picture��
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�� Components that hooked in the previous step perform edge�plugging in two
parts� Let 
v�w� be the hooking edge� In the �rst step components having
id
v� � id
w� perform the edge�plugging� In the second part� components
having id
v� � id
w� perform the edge�plugging i� vertex w did not plug its
B�list into v� i�e�� i�

next
twin
first
B
v���� �� first
B
v��

After these two steps� all but the roots of components have plugged their edges
into the root�s B�list 
Figure ��� In the implicit graph� this step results in creat�
ing a forest of minimum spanning trees 
instead of pseudotrees�� Components
that hooked but did not plug their B�lists during this sub�phase will be the
roots r
C� of their component�s trees�

Note that the B�list of some vertex x may not get plugged anywhere� because
the edge that x was to get plugged into was not included in the B�list of its
parent� This will not a�ect the invariant on the B�list of the resulting component
during this phase because B�list
x� contained edges with large weights� it will
only underestimate the size of a component C� so the component may have size
larger than counterC
j�� We note that any plugging that is prevented by this
condition is deferred until the end of the phase� so it is not lost� 
Step 	 of
procedure phase will take care of that��

	� Using the plugged B�lists� we try to enumerate components of trees into counterr�C�
s��
where r
C� is the root of the newly created component C� This enumeration is
done in this and the next step spending only �dlogBe�� time as follows� First�
we make a copy of each next pointer into a new pointer ptr� Then the copy of
the edge used for hooking by component Ci is assigned value counterCi


s� ���
and the remaining edges are assigned value �� Using pointer jumping on ptr for
�dlogBe � � steps over the ��edges� we can �compact� each B�list� if the new
component contains up to B � �s edges� The compacted list E
C� represents a
preorder traversal of the implicit tree 
Figure �� bottom��

�� Run list�ranking on the computed edge�lists E
C��s� and determine promotion
of component C as follows�


a� If list ranking in some list did not terminate after �dlogBe � � pointer
jumping steps 
i�e� the first pointer did not reach the last or if the short�
cutting edges encountered a ��edge�� then there were more than B� edges
in the B�list
C�� Given that each component started the phase with up
to B outgoing� non�multiple edges� there are at least B components in the
new component C� and therefore C is promoted�
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b� If the list ranking procedure terminated with rank in counterC
s� greater
or equal to B� the component is promoted�


c� If list�ranking terminated with rank less than B� the component may not
be promoted� and it has fewer than B� edges in its B�list� In the remaining
sub�phases of this phase� only these components will take part� We call
these components� active� The remaining components 
those recognized as
promoted and those that could not plug their edges� will be given enough
time at the end of the phase to �nish up their pointer jumping 
cf� step 	
of procedure phase��

�� Rename edges 
x� y� according to their new endpoints as 
p
x�� p
y���

�� Identify and remove internal and multiple edges of active components� This is
done as follows� First we sort lexicographically each active component�s B�list
according to the edge�s endpoints� Then� we use pointer jumping over internal
and multiple edges for �dlogBe�� steps� At the end of this step� any sequence
with up to B� internal and multiple edges are removed�

�� For each active component�s B�list
C� containing more than B edges we select
the B � counterC
s� least weight edges� If there are no more edges left in B�
list
C�� then C corresponds to a connected component of the input graph G and
it is marked done� This component will not take part in any of the remaining
phases or sub�phases�

This is the end of a sub�phase� Each step takes O
logB� � O

p
log n� time� In

terms of processors� the most expensive step is step � 
lexicographical sort� which re�
quires nB � O
m� EREW PRAMprocessors The remaining steps requireO
m� logB� �
O
m�

p
log n� processors in the �rst phase� while in the remaining phases require only

O
n�
p
log n� processors�

� Complexity of the algorithm

We prove the main theorem and two lemmas that are used in proving correctness and
the complexity bounds�

Theorem � Algorithm MST correctly computes the minimum spanning tree of a
graph G � 
V�E� in O
log��� jV j� parallel time using jV j � jEj EREW PRAM pro�
cessors�

Proof� As we mentioned before� if we repeat the hooking and merging steps for
a long enough period of time� the minimum spanning tree of a connected graph is
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computed� We �rst show that our algorithm correctly computes the MST of a given
connected graph� and then we prove the claimed complexity�
In the correctness part of the proof� the crucial points are to show that in the B�list

of any active unpromoted component there are enough least�weight edges to promote
the component 
Lemma ��� and that in every hooking step the least weight edge of
the whole component is selected 
Lemma ��� In the complexity part of the proof the
idea comes from the growth�control schedule JM��� and the carefully chosen critical
size for promotion 
Lemma 	�� �

Lemma � Invariant � holds in the beginning of each sub�phase s�

Proof� Let C be an active unpromoted component� We �rst show that 
i� there
are enough edges in B�list
C�� and then that 
ii� these edges are actually the least�
weight edges of the whole component�

i� In the beginning of the �rst sub�phase� B�list
C� contains B edges leading

to B distinct components� During each sub�phase s� components hook and merge
achieving size of 
at least� �s� Assume that during sub�phase s � �� C collects k
components where k � counterC
s� � �s� In order for C to achieve the promoting
size� C needs to be augmented by at least B � k components� The B � counterC
s�
non�internal� non�multiple edges that C holds at the end of sub�phase s are clearly
enough for this task�

ii� We now show that the edges in B�list
C� are� in fact� the least�weight edges

of the whole component C�
If all components that hooked together during sub�phase s started the phase with

less than B edges� the lemma holds� since the selection of the least�weight outgoing
edges was done on the whole set of edges� If there was at least one component
which started the phase with B edges� then the root of the component in which it
participates holds at most B � k outgoing edges�
We will need the following de�nitions� Let promotion ceiling pci
C� of phase i

be the weight of the B�th edge in B�list
C� that was formed in the beginning of the
phase� if C had at least B outgoing edges� and unde�ned otherwise� Let Cl� � � l � k�
be the components that hooked together within a phase to promote C to the next
phase i��� The idea behind this de�nition is that no edge with weight greater than
minlfpci
Cl�g will be used during the sub�phases of phase i for hooking�
We prove that every outgoing edge e in the component is dominated by some

edge in the B�list
C�� To see this� we will examine the three places in which edges
are removed from consideration during phase i� the formation of B�lists� failure of a
component to plug its B�list� and removal of internal and multiple edges�
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�� If edge e was left out during the formation of the B�list
Cl� of its component
Cl in the beginning of the phase� then weight
e� � pci
Cl�� Apparently� e will
not be needed during this phase�

�� If edge e belonged to some component Cx which failed to plug its B�list into
the B�list of its parent component C �� then e will not be needed� since it has
weight
e� � pci
C �� � minlfpci
Cl�g�

	� If edge e was left out after the selection step of sub�phase j� then it had weight
greater than any edge that will be considered during the remaining sub�phases

part 
i��� so weight
e� � minlfpci
Cl�g�

So� every outgoing edge e in the component is dominated by some edge in the B�
list
C�� therefore the edges in the B�list
C� are� in fact� the least�weight edges of the
whole component� �

Lemma � Assume that� during the hooking step of sub�phase s �step ��� some com�
ponent C picks edge 
v�w� for hooking� Then 
v�w� is C�s least weight outgoing edge�
i�e�

weight
v�w� � minfweight
x� y�jx � C� y � C �� C �� C �g

Proof� We will prove it by induction on the number of sub�phases s� The Lemma
is true for s � � as we can see by examining the steps of procedure phase�
To see that the lemma is true for � � s � p

log n� we assume it was true at
sub�phase s and we will show it true at sub�phase s� ��
According to Lemma �� at the end of step � of sub�phase s any component C

with jCj � k� where k � counterr�C�
s�� will be always able to select the B � k
least�weight outgoing to active components� non�multiple edges 
assuming that there
are that many outgoing edges left in the component�� The proof follows if we observe
that the hooking step of sub�phase s � � selects the least�cost edge of the B�list
C�
and therefore of the whole component� �

Finally� the running time comes from the following

Lemma � If� at the end of sub�phase s of phase i� some active component C has
vertex size less than Bi��� then either C corresponds to a connected component of the
input graph G and is done� or there is a sub�phase s� � in the current phase during
which C will hook�

Proof� Recall that an active component at the end of the sub�phase s is an
unpromoted component� If B�list
C� �  then� according to Lemma �� L
C� � �
thus vertices in C are not connected to any other vertex of the graph and therefore
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C is a connected component of the input graph� In this case� the algorithm correctly
labels it as �done��
If B�list
C� ��  then s � p

log n� To see that� without loss of generality assume
that in all previous sub�phases C was hooking� 
If not� consider the �rst phase s
during which C did not hook and apply the same argument�� Since C was hooking in

all the previous sub�phases� its size is now Bi��s � Bi�� � �s � �
p

logn � s �
p
log n

So� there is another sub�phase s� � during which C will hook�
�

We also have the following corollary�

Corollary � There are algorithms solving the connectivity� biconnectivity� ear de�
composition� Euler tours� strong orientation and st�numbering problems of a graph
G � 
V�E� in O
log��� jV j� parallel time using jV j� jEj EREW PRAM processors�

Proof� We can easily derive a connectivity algorithm from the MST algorithm
we described� by assigning arbitrary distinct weights on the edges of the graph� In
particular� we can assign weight
e� � id
e� where id
e� is the id of the processor
assigned on edge e�
For the remaining problems� we note that the results in MR��� TV��� Vis���

MSV��� AV��� use a connectivity algorithm as the most expensive subroutine�

� Conclusions

We have presented a new� simple and implementable parallel algorithm for computing
the minimum spanning tree 
MST� of an undirected weighted graph G � 
V�E� of
n � jV j vertices and m � jEj edges on an EREW PRAM� the weakest of the PRAM
models� in O
log��� n� time using n � m processors� Our algorithm quite naturally
observes the condition that no more than one processor ever attempts to read from
or write to the same memory location concurrently�

Our algorithm is faster by a factor of
q
log jV j than any deterministic algorithm

previously known for any model that does not make use of concurrent writing� A
major innovation is our discovery that necessary information about components can
be extracted without ever explicitly shrinking the components� Component shrinking
is a feature of every other parallel MST and connectivity algorithm known to us�
Our result represents a substantial improvement in the running time over the pre�

vious results for this problem� using at the same time the weakest of the PRAM
models� It also implies the existence of a connectivity algorithm with the same
complexity bounds for the EREW PRAM� therefore improving on previous work
JM���� Furthermore� the number of processors used can be reduced by a factor of
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O

p
log n�� provided that there exists an practical integer�sorting subroutine which

runs in O
log n� time using n�
p
log n EREW PRAM processors�

However� it is still an open question if there exists an O
log n� time deterministic
algorithm that uses a polynomial number of EREW PRAM processors�
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