
1236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

A Parallel Algorithm
for Constructing a Labeled Tree

Yue-Li Wang, Hon-Chan Chen, and Wei-Kai Liu

Abstract —A tree T is labeled when the n vertices are distinguished from one another by names such as v1, v2, �, vn. Two labeled
trees are considered to be distinct if they have different vertex labels even though they might be isomorphic. According to Cayley’s
tree formula, there are n

n-2
 labeled trees on n vertices. Prüfer used a simple way to prove this formula and demonstrated that there

exists a mapping between a labeled tree and a number sequence. From his proof, we can find a naive sequential algorithm which
transfers a labeled tree to a number sequence and vice versa. However, it is hard to parallelize. In this paper, we shall propose an
O(log n) time parallel algorithm for constructing a labeled tree by using O(n) processors and O(n log n) space on the EREW PRAM
computational model.

Index Terms —Cayley’s tree formula, dominance counting problem, labeled trees, parallel algorithms, Prüfer mapping.

—————————— ✦ ——————————

1 INTRODUCTION

tree T is labeled when the n vertices are distinguished
from one another by names such as v1, v2, �, vn. Two

labeled trees are considered to be distinct if they have dif-
ferent vertex labels even though they might be isomorphic.
For example, the two trees T1 and T2 of Fig. 1 are labeled,
but T3 is not. Moreover, T1 and T2 are two different labeled
trees even though they are isomorphic [7].

Fig. 1. Labeled and unlabeled trees.

According to Cayley’s tree formula [4], there are nn-2 dif-
ferent labeled trees on n vertices. In [11], Moon introduced
various proofs of Cayley’s formula. In [12], Prüfer used a
simple way to prove this formula. His main idea is to build
a one-to-one correspondence between a labeled tree and a
number sequence. He gave an algorithm which transfers a
labeled tree to a number sequence and vice versa. Thus, a
labeled tree can be encoded to a number sequence. This
encoding scheme can be viewed as a data compression
technique on trees. However, his algorithm is difficult to

parallelize. In this paper, we shall propose a parallel algo-
rithm to transfer a number sequence to a labeled tree. Our
approach uses the EREW PRAM (Exclusive-Read-Exclusive-
Write Parallel Random Access Machine) computational
model. Our algorithm enables very fast parallel construc-
tion of random, uniformly distributed labeled tree.

The remainder of this paper is organized as follows. In
Section 2, we introduce Prüfer’s mapping. Some notations
with their properties are introduced in Section 3. In Section 4,
we introduce and analyze our parallel algorithm. Section 5
contains the concluding remarks.

2 PRELIMINARIES

In this section, we shall briefly discuss how to obtain a la-
beled tree from a number sequence by using Prüfer’s algo-
rithm [6]. We shall also define some notations which will be
used in the remaining sections.

A p-sequence is a sequence of length n - 2 with entries
from the set {1, 2, 3, º, n}. Let p1, p2, º, pn-2 be a p-
sequence. Then, sequence s1, s2, º, sn-1 is called an s-
sequence if si = pi for i = 1, 2, º, n - 2 and sn-1 = n. For exam-
ple, 7, 4, 4, 7, 5 is a p-sequence, since its length is 5 and its
entries are from the set {1, 2, 3, 4, 5, 6, 7}. And, 7, 4, 4, 7, 5, 7
is an s-sequence, but 9, 2, 3, 4, 4 is not a p-sequence.

Now, we describe Prüfer’s algorithm. In the following
algorithm, the degree of vertex v, denoted by deg(v), is the
number of edges incident with vertex v.

Algorithm A

Input: An s-sequence s1, s2, º, sn-1 of length n - 1.

Output: A labeled tree T.

Method:

Step 1. Let T be a graph with n vertices 1, 2, º, n and no
edge.

Step 2. Let deg(k) = 1 + (the number of times k appears in p-
sequence), for k = 1, 2, º, n.

1045-9219/97/$10.00 © 1997 IEEE

————————————————

• The authors are with the Department of Information Management, Na-
tional Taiwan University of Science and Technology, Taipei, Taiwan, Re-
public of China. E-mail: ylwang@cs.ntust.edu.tw.

Manuscript received 11 Sept. 1995.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 101305.

A

WANG ET AL.: A PARALLEL ALGORITHM FOR CONSTRUCTING A LABELED TREE 1237

Step 3. For i = 1 to n - 1 do
Let j be the least vertex such that deg(j) = 1. Construct an
edge between vertices j and si. That is, let (j, si) be an
edge of T. Set deg(j) = 0 and deg(si) = deg(si) - 1.

Step 4. The resulting graph T is a labeled tree.

End of Algorithm A

The most time-consuming step of Algorithm A is Step 3. By
using a heap [8], finding the least vertex with degree one can
be done in O(log n) time. Hence, Step 3 takes O(n log n) time.
The time-complexity of Algorithm A therefore is O(n log n).

Let us use an example to illustrate Algorithm A. Given
an s-sequence 7, 4, 4, 7, 5, 7, the degree of each vertex i, i =
1, 2, º, 7 is shown in Table 1. Note that 7, 4, 4, 7, 5 is a p-
sequence.

TABLE 1
THE DEGREE OF EACH VERTEX

k 1 2 3 4 5 6 7
deg (k) 1 1 1 3 2 1 3

According to Step 3 of Algorithm A, vertex 1 is the least
vertex, with degree one when i = 1. An edge is added be-
tween vertices 1 and 7. Then, the degrees of both vertices
are decreased by 1. Next, vertex 2 will be selected when i =
2. Vertices 2 and 4 will be incident to each other and the
degrees of both vertices are decreased by 1. After the algo-
rithm is terminated, the resulting tree is shown in Fig. 2.

Fig. 2. The corresponding labeled tree T of p-sequence 7, 4, 4, 7, 5.

In Step 3 of Algorithm A, a vertex j will be selected in
each iteration, so that an edge will be added between j and
si. We use ri to denote the vertex selected in iteration i.
Clearly, there are totally n - 1 vertices which will be se-
lected. The sequence r1, r2, º, rn-1 is called an r-sequence. In
the above example, 1, 2, 3, 4, 6, 5 is the resulting r-sequence.
Notice that (si, ri), i = 1, 2, º, n - 1, is an edge of the result-
ing tree.

3 SOME PROPERTIES OF A P-SEQUENCE

In this section, we shall define two functions f1 and f2 on a
p-sequence which will be used in our algorithm to con-
struct a labeled tree. Besides, we shall describe some prop-
erties of these two functions.

For each vertex i, let f1(i) be equal to the last position of
vertex i in the p-sequence. If i is not in the p-sequence, then
f1(i) = 0. It means that the degree of vertex i will become one
at iteration f1(i) of Algorithm A. It also means that the posi-
tion of vertex i in the r-sequence is after f1(i). Let f2(i) denote
the number of f1(j), where f1(j) £ f1(i) and j < i. It means that

there are at least f2(i) vertices which appear before vertex i
in the r-sequence. Obviously, the position of vertex i in the
r-sequence is not equal to f1(i) + 1 if f2(i) > f1(i). For example,
let 9, 6, 4, 10, 1, 5, 7, 7 be a p-sequence. Then, f1(1) = 5, since
the last position of vertex 1 in the p-sequence is five. The
other values of f1(i), i = 2, 3, º, 10 can be seen in Table 2.
Furthermore, f2(1) = 0, since there exists no vertex j which
has f1(j) £ f1(1) and j < 1. However, f2(3) = 1, since there is
only one vertex (vertex 2) which has f1(2) £ f1(3) and 2 < 3.
The other values of f2(i) are shown in Table 2.

TABLE 2
THE VALUES OF f1(i) AND f2(i) OF THE GIVEN p-SEQUENCE

9, 6, 4, 10, 1, 5, 7, 7

i 1 2 3 4 5 6 7 8 9 10

f1(i) 5 0 0 3 6 2 8 0 1 4

f2(i) 0 0 1 2 4 2 6 2 3 6

The following lemmas describe some properties of the
above two functions.

LEMMA 1. Given a p-sequence of length n - 2, let i and j be two
distinct vertices with 1 £ i < j £ n. If f1(i) £ f1(j), then i ap-
pears before j in the corresponding r-sequence.

PROOF. By the definition of f1, the degrees of vertices i and j
will become one at iterations f1(i) and f1(j), respec-
tively, of Algorithm A. Since f1(i) £ f1(j), vertex i is se-
lected either at an iteration number less than or equal
to f1(j) or it is selected after iteration f1(j). In the former
case, i is certainly selected before j. In the latter case, i
is still selected before vertex j, since i < j. Therefore,
vertex i appears before vertex j in the corresponding
r-sequence. �

LEMMA 2. Given a p-sequence of length n - 2, let i, 1 £ i £ n - 1,
be a vertex with f1(i) ≥ f2(i). Then, the position of i in the
corresponding r-sequence is f1(i) + 1.

PROOF. Obviously, this lemma holds when f1(i) = f2(i) = 0. In
the following, we consider the case where f1(i) > 0.

Let U1 = {u|1 £ u < i and f1(u) £ f1(i)}. Note that
|U1| = f2(i), where |U1| denotes the number of verti-
ces in the set U1. By the definition of f2, all of the verti-
ces in |U1| will be selected before vertex i. Let U2 be
the set of vertices which are selected before iteration
f1(i) + 1 of Algorithm A and whose labels are greater
than i.

If vertex i is selected at iteration f1(i) + 1 of Algo-
rithm A, then vertex i must be the least vertex of de-
gree one at iteration f1(i) + 1. For the purpose of con-
tradiction, we assume that vertex i is not the least
vertex of degree one at iteration f1(i) + 1 of Algorithm
A. That is, there exists at least one vertex in U1 which
is not selected before iteration f1(i) + 1. It implies that
|U1| + |U2| ≥ f1(i) + 1.

Let j be the latest selected vertex among the vertices
in U2 and k be its selected iteration. Clearly, k £ f1(i). Let
U3 Ã U1 be the set of vertices which are not selected
before iteration k. Since k £ f1(i) and there exists at
least one vertex in U1 whose degree is one at iteration
f1(i) + 1, U3 is not an empty set. Note that there is no

1238 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

vertex in U3 whose degree is one before iteration k;
otherwise, j would not be selected at iteration k.
Moreover, there is exactly one vertex u Œ U3 whose
degree becomes one at iteration k, i.e., f1(u) = k. In each
iteration after iteration k, there is, at most, one vertex
in U3 whose degree can become one. Suppose that v is
the vertex in U3 whose degree most lately becomes
one. Then, f1(v) ≥ f1(i) + 1, since |U1| + |U2| ≥ f1(i) + 1.
It contradicts that U1 is the set of all vertices whose
labels are less than i and are of f1(u) £ f1(i), where u Œ
U1. Therefore, the lemma follows. �

LEMMA 3. Given a p-sequence of length n - 2, let i and j be two
distinct vertices with 1 £ i < j £ n. If f1(i) < f2(i) and f1(i) ≥
f1(j), then i appears before j in the corresponding r-
sequence.

PROOF. The case where f1(i) = f1(j) occurs only when f1(i) = 0.
It means that i and j are not in the given p-sequence
and their initial degrees are one. It is clear that, in this
case, i appears before j in the r-sequence.

We now consider the other case, where f1(i) ≥ 1.
Suppose, to the contrary, that j appears before i in the
resulting r-sequence. Let j be selected at iteration k.
Then, k must be less than or equal to f1(i); otherwise, j
would not be the least vertex of degree one at itera-
tion k. Let U denote the set of vertices whose labels
are smaller than i and their initial degrees are one or
will become one before iteration f1(i). Clearly, |U| =
f2(i). There are at most k - 1 vertices which are eligible
for selection from U before iteration k of Algorithm A;
otherwise, vertex j would not be selected on this it-
eration. It means that there are at least |U| - (k - 1)
vertices that must become eligible (i.e., degree one)
between iterations k and f1(i) - 1. Therefore, the num-
ber of vertices in U, whose degrees do not become one
yet before iteration k, is at least |U| - (k - 1) = f2(i) - k
+ 1. The degrees of these f2(i) - k + 1 vertices must all
become one between iterations k and f1(i) - 1, i.e. f1(i)
- 1 - k + 1 = f1(i) - k iterations. However, it is impossi-
ble to reduce the degrees of f2(i) - k + 1 vertices into
one within f1(i) - k iterations since

f i k f i k

f i k f i k

f i f i

2 1

2 1

2 1

1

1

1

1

a f a fc h
a f a f
a f a f

- + - -

= - + - +
= - +
> .

It contradicts the assumption that the degrees of all of
the vertices in U will become one before iteration f1(i).
This completes the proof. �

COROLLARY 1. Given a p-sequence of length n - 2, let i be a ver-
tex of f1(i) < f2(i), where 1 £ i £ n. Then, for every vertex j,
i < j £ n, j appears after i in the corresponding r-sequence.

4 A PARALLEL ALGORITHM FOR CONSTRUCTING A
LABELED TREE

Given an s-sequence, if f1(i) ≥ f2(i) for a vertex i, then, ac-
cording to Lemma 2, the position of vertex i in the corre-
sponding r-sequence can be easily determined. When f1(i) <

f2(i), computing the resulting position of vertex i in the
r-sequence is not so trivial by applying Corollary 1. In the
following, we show how to obtain the resulting position of
vertex i in the r-sequence when f1(i) < f2(i).

Let x1, x2, �, xn-1 be a sequence with respect to an s-
sequence of length n - 1, where xi = 0, 1 £ i £ n - 1, if there
exists a vertex j such that i = f1(j) + 1 and f1(j) ≥ f2(j); other-
wise, xi = 1. Then, x1, x2, �, xn-1 is called a position sequence.
Let y1, y2, �, yn-1 be the prefix sums of a position sequence
x1, x2, �, xn-1. That is y1 = x1 and yk = yk-1 + xk, for k = 2, 3,
�, n - 1. A vertex v, 1 £ v £ n, is called a delayed vertex if
f2(v) > f1(v). Assume that there are m delayed vertices for a
position sequence x1, x2, �, xn-1. A sequence z1, z2, �, zm is
called a delayed sequence with respect to an s-sequence if zi,
i = 1, 2, �, m, is a delayed vertex and zi < zj when i < j. De-
fine f3(zi) = k if yk = i and xk = 1 for the delayed vertex zi, i =
1, 2, �, m, where xk is the kth element of a position se-
quence and yk is its corresponding prefix sum.

For example, given an s-sequence 9, 6, 4, 10, 1, 5, 7, 7, 10,
its position sequence x1, x2, �, x9 is 0, 1, 0, 0, 1, 0, 0, 1, 0. The
prefix sums y1, y2, �, y9 of the position sequence are 0, 1, 1,
1, 2, 2, 2, 3, 3, respectively. The delayed sequence z1, z2, z3 of
the s-sequence is 3, 8, 9. Then, f3(3), f3(8), and f3(9) are 2, 5,
and 8, respectively.

Now, we describe our algorithm for constructing a la-
beled tree as follows.

Algorithm B

Input: An s-sequence s1, s2, �, sn-1.

Output: A labeled tree.

Method:

Step 1. Let T(V, E) be a graph with V = {1, 2, º, n} and E is
an empty set, where V and E are the vertex and edge, re-
spectively, sets of T.

Step 2. Compute f1(i) and f2(i), for i = 1, 2, �, n - 1.

Step 3. For i = 1, 2, �, n - 1
if f1(i) ≥ f2(i), then r if i1 1()+ = .

Step 4. For each delayed vertex i, 1 £ i £ n-1,
compute f3(i) and let r if i3 () = .

Step 5. For i = 1, 2, �, n - 1
E = E < (si, ri). The resulting graph T is a labeled tree.

End of Algorithm B

Steps 1, 3, and 5 can be done in O(1) time by using O(n)
processors on an EREW PRAM model. By applying parallel
sorting algorithms [9], computing f1(i), i = 1, 2, �, n - 1, in
Step 2 takes O(log n) time and O(n) processors. Computing
f2(i), for i = 1, 2, �, n - 1, can be done in O(log n) time using
O(n) processors and O(n log n) space by viewing this prob-
lem in terms of the dominance counting problem [1], [2],
[3], as will be described later. In Step 4, computing f3(i) for
all of the delayed vertices can be done in O(log n) and O(n)
processors by using the parallel prefix technique [9], [10].
Notice that Step 4 only computes f3(i) for i = 1, 2, �, n - 1,
since vertex n is never selected in the sequential algorithm.
Therefore, Algorithm B takes O(log n) time using O(n)
processors and (n log n) space on an EREW PRAM model.

WANG ET AL.: A PARALLEL ALGORITHM FOR CONSTRUCTING A LABELED TREE 1239

We also use an example to illustrate Algorithm B. Given
an s-sequence 9, 6, 4, 10, 1, 5, 7, 7, 10, ten isolated vertices
are labeled from 1 to 10 in Step 1. Step 2 computes f1(i) and
f2(i), for i = 1, 2, �, 9. The values of f1(i) and f2(i) are shown
in Table 2. In Step 3, the positions of vertices 1, 2, 4, 5, 6,
and 7 in the corresponding r-sequence can be obtained di-
rectly, since all of them have f1(i) ≥ f2(i). Thus, the positions
of vertices 1, 2, 4, 5, 6, and 7 in the r-sequence are 6, 1, 4, 7,
3, and 9, respectively, since f1(1) = 5, f1(2) = 0, f1(4) = 3, f1(5)
= 6, f1(6) = 2, and f1(7) = 8. The corresponding position se-
quence x1, x2, �, x9, with respect to the s-sequence, is 0, 1, 0,
0, 1, 0, 0, 1, 0. The prefix sums y1, y2, �, y9 of the position
sequence are 0, 1, 1, 1, 2, 2, 2, 3, and 3, respectively. Vertices 3,
8, and 9 are delayed vertices since all of them have f2(i) >
f1(i). The delayed sequence z1, z2, z3 with respect to the s-
sequence is 3, 8, 9. Thus, f3(3), f3(8), and f3(9) are equal to 2,
5, and 8, respectively. The resulting r-sequence is 2, 3, 6, 4,
8, 1, 5, 9, 7. In Step 5, the edges (si, ri) for i = 1, 2, �, 9 are
obtained. The resulting labeled tree is shown in Fig. 3.

Fig. 3. The corresponding labeled tree of the s-sequence 9, 6, 4, 10, 1,
5, 7, 7, 10.

The correctness of Algorithm B is described as follows.

THEOREM 1. The output of Algorithm B is the same as that of
Algorithm A.

PROOF. By Lemmas 1, 2, and 3, Algorithm B indeed pro-
duces the same labeled tree as Algorithm A. �

Now we describe how to transform the computation of
f2(i), i = 1, 2, º, n - 1, in Step 2 of Algorithm B into the
dominance counting problem. A point (x1, y1) is dominated
by point (x2, y2) in the plane if x1 £ x2 and y1 £ y2. The domi-
nance counting problem is to count for each point the
points dominated by it [2], [3]. For each vertex i and f1(i), i =
1, 2, �, n - 1, we can get a corresponding point (i, f1(i)) in the
plane. For example, see Fig. 4. The value of f2(i) is the number
of points dominated by point (i, f1(i)), i = 1, 2, �, n - 1.

Fig. 4. The corresponding points in the plane of s-sequence 9, 6, 4, 10,
1, 5, 7, 7, 10.

In [1], Atallah et al. gave a parallel algorithm which runs
in O(log n) time using O(n) processors on a CREW
(Concurrent-Read-Exclusive-Write) PRAM model to solve
the dominance counting problem. In [5], Cole used the
sampling technique to implement his merging procedure in
the EREW PRAM model. Applying his technique on the
dominance counting problem results in EREW PRAM algo-
rithm with the same asymptotic bound as CREW PRAM
model, except that the space bound for the problem be-
comes O(n log n).

We summarize our result as the following theorem.

THEOREM 2. Algorithm B constructs a labeled tree in O(log n)
time by using O(n) processors on CREW PRAM model.
Algorithm B can also solve the problem in EREW PRAM
model with the same asymptotic bound as CREW PRAM
model, except that the space bound becomes O(n log n).

5 CONCLUDING REMARKS

In this paper, we propose a parallel algorithm for transfer-
ring an s-sequence to a labeled tree. It takes O(log n) time
by using O(n) processors and O(n log n) space on the EREW
PRAM model. Another interesting problem is to design an
efficient parallel algorithm for transferring a labeled tree to
its corresponding number sequence. We are now trying to
solve this problem.

ACKNOWLEDGMENTS

This work was supported by the National Science Council,
Republic of China, under Contract NSC-84-2213-E-011-008.

REFERENCES

[1] M.J. Atallah, R. Cole, and M.T. Goodrich, “Cascading Divide-and-
Conquer: A Technique for Designing Parallel Algorithms,” SIAM
J. Computing, vol. 18, no. 3, pp. 499-532, June 1989.

1240 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 12, DECEMBER 1997

[2] M.J. Atallah and S.R. Kosaraju, “An Efficient Algorithm for Max-
dominance, with Applications,” Algorithmica, vol. 4, pp. 221-236,
1889.

[3] M.T. De Berg, S. Carlsson, and M.H. Overmars, “A General Ap-
proach to Dominance in the Plane,” J. Algorithms, vol. 13, pp. 274-
296, 1992.

[4] A. Cayley, “A Theorem on Trees,” Quarterly J. Math., vol. 23, pp. 376-
378, 1989.

[5] R. Cole, “Parallel Merge Sort,” Proc. 27th IEEE Symp. Foundations
of Computer Science, pp. 511-516, 1986.

[6] R. Gould, Graph Theory. Benjamin Cummings. 1988.
[7] F. Harary, Graph Theory. Reading, Mass.: Addison-Wesley, 1969.
[8] E. Horowitz and S. Sahni, Fundamentals of Data Structures in Pas-

cal, third edition. Computer Science Press, 1990.
[9] J. Jájá, Introduction to Parallel Algorithms. Addison-Wesley, 1992.
[10] C.P. Kruskal, L. Rudolph, and M. Snir, “The Power of Parallel

Prefix,” IEEE Trans. Computers, vol. 34, pp. 965-968, 1985.
[11] J.W. Moon, Counting Labeled Trees. Montreal: Canadian Mathe-

matical Congress, 1970.
[12] H. Prüfer, “Neuer Beweis eines satzes über Permutationen,” Ar-

chiv der Mathematik und Physik, vol. 27, pp. 742-744, 1918.

Yue-Li Wang received the BS and MS degrees
from Tamkang University, Taiwan, Republic of
China, in 1975 and 1979, respectively, and the
PhD degree from National Tsing Hua University,
Taiwan, in 1988, all in computer science.

He joined the National Taiwan Institute of
Technology in 1990. He is presently the head of
the Department of Information Management,
National Taiwan University of Science and
Technology (the original National Taiwan Insti-
tute of Technology). Before joining the National

Taiwan University of Science and Technology, he worked in the Ad-
vanced Technology Center, Electronics Research and Service Organi-
zation, Industrial Technology Research Institute. His research interests
include graph theory, computational geometry, and the design and
analysis of computer algorithms.

Hon-Chan Chen received the BS and MS de-
grees in information management from National
Taiwan Institute of Technology, Taipei, Taiwan,
Republic of China, in 1992 and 1994, respec-
tively. He is currently a PhD student in the De-
partment of Information Management, National
Taiwan University of Science and Technology,
Taipei, Taiwan. His research interests include
algorithms, parallel processing and graph theory.

Wei-Kai Liu received the BS and MS degrees in
information management from National Taiwan
Institute of Technology, Taipei, Taiwan, Republic
of China, in 1993 and 1995, respectively. He is
currently an engineer at Taiwan Semiconductor
Manufacturing Company. His research interests
include parallel processing and graph theory.

