
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Parallel Algorithm
for Constructing Binary Decision Diagrams

S. Kimura
E. M. Clarke

July 1990
CMU-CS-90-14&3

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was partially supported by National Science Foundation grant CCR-87-226-33. The views
and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the National Science Foundation or the
U.S. Government.

Keywords: Parallel Algorithms, Binary Decision Graphs and Diagrams, Shared Memory
Multiprocessors, Computer Aided Design.

A Parallel Algorithm for Constructing
Binary Decision Diagrams

S. Kimura
Kobe University, Japan

E. M. Clarke
Carnegie Mellon University, Pittsburgh

Abstract Ordered binary decision diagrams [1] are widely used for representing Boolean
functions in various CAD applications. This paper gives a parallel algorithm for constructing
such graphs and describes the performance of this algorithm on a 16 processor Encore Mul-
timax. The execution statistics that we have obtained for a number of examples show that
our algorithm achieves a high degree of parallelism. In particular, with fifteen processors
our algorithm is almost an order of magnitude faster on some examples than the program
described in [2]. Moreover, on many examples it exhibits essentially linear speedup as the
number of processors is increased.

Our approach to binary decision diagrams is somewhat different from the one used in [1],
We view the binary decision diagram for an n-argument Boolean function / as the minimal
finite state automaton for the set of Boolean vectors of length n that satisfy / (i.e. the set
of vectors in Because the minimal finite automaton for a regular language is unique
up to isomorphism, it is easy to argue that this representation provides a canonical form for
Boolean functions. Boolean operations involving NOT, AND, OR, etc. are implemented by
the standard constructions for complement, intersection, and union of the finite languages
accepted by these automata. In general, each of these operations involves building a product
automaton and then minimizing it.

We discuss a parallel algorithm for computing the product of two automata and for
minimizing the result. When we construct a binary decision graph, our algorithm follows
the syntactic structure of the Boolean formula. First, the level of each Boolean operation
is determined. Operations in the same level can be performed in parallel. If there are few
operations at some level, then these operations are divided into a sequence of sub-operations
that can be processed in parallel.

1. Introduction

The ordered binary decision diagram [2] is an acyclic graph representation for Boolean func
tions. Because this representation provides a canonical form (i.e. two functions are logically
equivalent if and only if they have the same form) and is quite succinct in most cases, it
has become widely used in CAD applications. However, the construction of binary decision
diagrams for certain large or particularly complex Boolean functions can be very time con
suming. Consequently, it is important to find ways of speeding up the construction process.
This paper describes a parallel algorithm for this task. The algorithm has been implemented
on a 16 processor Encore Multimax and tested on several standard examples.

Our approach to binary decision diagrams uses some simple ideas from finite automata
theory. An ra-argument Boolean function can be identified with the set of Boolean vectors
that make it true. For example, the function denoted by the Boolean expression x\ • x2 +
-*x2-x3 is uniquely determined by the set of vectors {(1,1,0), (1,1,1), (0,0,1), (1,0,1)}. The
corresponding set of strings {110, 111, 001,101} is a finite language. Since all finite languages
are regular, there is a minimal finite automaton that accepts this set. This automaton
provides a canonical representation for the original Boolean function. Logical operations
on Boolean functions can be implemented by set operations on the languages accepted by
the finite automata: AND corresponds to the set intersection, OR corresponds to the set
union, and NOT corresponds to the set difference ((the universal set) — (the specified set)).
Standard constructions from elementary automata theory can be used to build the binary
decision diagram for a composite Boolean function from the decision diagrams for the atomic
proposition symbols in the formula.

There are several (relatively minor) differences between our notion of a binary decision
diagram and the one given in [2]. In the sequential case these differences should have little
effect on the complexity of either algorithm. For example, in our scheme, it is unnecessary
to label the nodes of the graph with information about the corresponding Boolean variable.
The depth of the node in the graph uniquely determines its label.

We believe that there are several important reasons for viewing binary decision diagrams
as automata. Minimization of finite automata is a well-understood task for which good algo
rithms are available. In fact, many of the important properties of binary decision diagrams
follow directly from properties of the minimization procedure. A typical example is the nor
mal form property (the proof of this property in Bryant's paper is not so straightforward).
Moreover, powerful techniques from Automata and Formal Language Theory can be used
to investigate questions like what properties of a Boolean function determine the size of its
binary decision diagram. We have obtained some results of this type that we hope to present
in a future paper.

In the construction of a binary decision diagram corresponding to a Boolean function,
a parse tree of the function is used, where leaf nodes correspond to input variables, and
non-leaf nodes correspond to Boolean operations. The level of each node is defined from
leaf nodes to the top of the tree, and operations at the same level are performed in parallel.
If there are only a few operations in some level, these operations are divided into several

1

sub-operations to extract additional parallelism.

Our paper is organized as follows: In Section 2, we review some of basic terminology on
finite automata and binary decision diagrams. Section 3 describes the implementation of
Boolean operations as operations on finite automata. Section 4 describes the algorithm for
building the product automaton and minimizing it. Section 5 describes the parallel algorithm
and gives performance statistics for a number of examples. Section 6 shows a method to
manipulate the construction of BDD's with large number of nodes. The paper concludes in
Section 7 with a summary and discussion of some directions for future research.

2. Finite Automata and Binary Decision Diagrams

We start with some simple definitions dealing with finite automata and binary decision
diagrams. A string is a sequence of symbols over some alphabet E. In this paper, the
alphabet will always be E = {0,1}, where 0 represents False and 1 represents True. For
example, 110 and 111 are strings. The length of a string is the number of symbols in the
string. Thus the length of 110 is 3.

A finite automaton M is a 5-tuple (Q, E, 6, q0, F) , where Q is a finite set of states, E is
the alphabet for strings, 6 is the state transition function from Q x E to <2, qo is the initial
state in Q, and F is a set of final states in Q. M accepts a string aia2...an where each a t 6 E
if and only if there exists a sequence of states go, <Zi,---^n such that = £(# t _i ,a t) and
qn € F. The set of strings accepted by M is called the language of M and will be denoted

For example, M = ({?o,9i,?2,93,94,9s, -L}, {0, 1}, <5, 90, {#>}) accepts {010, 110, 111},
where 6 is defined as 6(qo,0) = qu 8(q0,l) = q2, £(91,0) =JL, S(qul) = 93, 6(q2,0) =-L,
% 2 , 1) = 94, % 3 , 0) = 95, % 3 , 1) =-L, % 4 , 0) = % 4 , 1) = ? 5 , % 5 , 0) = % 5 , 1) =-L, and
<$(J-,0) = £(JL,1)=J_. -Lis called a sink state. The representation of 6 as a directed graph
is shown in Figure 1. Note that the graph is acyclic; this will be true for all of the automata
that we consider in this paper. The sink state is not shown in the figure for simplicity. In
the following, the sink state may not be mentioned explicitly, but its existence is always

A Boolean function / with n-variables is a function from {0, l } n to {0,1}. For example,

is a Boolean function with three Boolean variables. The value of the function could, of
course, also be given by a Boolean expression f{x\,x2,xz) = A x2 A V (xi A x2).
Observe that the set of triples in the domain where / has value 1 (i.e. /~ 1 (1)) is the same
as the language that is accepted by the finite automaton in the previous example.

In general, the set of elements in {0, l } n for which / is 1 can be used to represent
/ . If we associate the n-tuple (ai, a2, an) with the string a i a 2 . . . a n , then each set of

by L(M).

assumed.

1, if (xux2jx3) is (0, 1, 0), (1, 1, 0) or (1, 1, 1);
0, otherwise;

2

Fig.l A binary decision diagram
accepting {010, 110, 111}.

40,1

^ n _ 1 ? Fig.3 A binary decision diagram
g n ^ ' * corresponding to X{.

Fig.2 A binary decision diagrams
accepting all strings.

n-tuples from {0, l } n will correspond to a set of strings over E = {0,1} with length n.
This correspondence allows us to associate a finite language contained in E n = {0, l } n with
each n variable Boolean function. Since all finite languages are regular, it follows from the
correspondence between regular languages and finite automata, that each such language is
accepted by some finite automaton. The minimal finite automaton corresponding to the
Boolean function / provides a canonical form for / : two n-variable Boolean functions will
have the same minimal automaton if and only if they are logically equivalent. Since each
node in the state-transition graph for a Boolean function will have at most two successors
(one for each value of E), we can view this graph as a binary decision diagram for the
function.

We illustrate these ideas by giving the finite automata and binary decision diagrams
for some simple n-variable Boolean functions. First, we consider the function fu which is
identically 1 for all possible values of its arguments, i.e. fu(xi,..., xn) = 1 for all values
of . . . , x n . The language corresponding to fu consists of all strings of length n over the
alphabet E = {0 ,1} , and accepted by a finite automaton M\j = ({qouj Qnu}, {0,
1}, you, {<lnu})j where Su is defined as $u{<li,0) = $u(<IiA) = The binary decision
diagram is shown in Figure 2.

Similarly, the n-variable function that is identically 0 for all values of its arguments,
i.e. f$(xi, . . . ,x n) = 0 for all values of . . . , x n , corresponds to the empty language and is
accepted by a finite automaton M% = (0, {0, 1}, 0, 0).

Finally, the function fi{xi,...,xn) = x t corresponds to the set {0, l } t _ 1 l { 0 , l}n~*. This
set is accepted by the finite automaton M t = ({?ot, 9m}, {0, 1}, £ t, got, 9m), where Si
is defined as £«(gj,0) = £«(<?j,l) = 9j+i for j in {0, 1, ...,« — 2, i, n —1} and £,-(#_!, 1) =
The binary decision graph for this case is shown in Figure 3.

3

Any Boolean function can be described using the above functions and Boolean operations,
and a BDD corresponding to any Boolean function can be constructed from the above BDD's
and operations on BDD's corresponding to Boolean operations.

3. Implementing Boolean Operations on Binary Decision Diagrams

Let Mi = (Qu {0, 1}, 6i, ql, Fi) and M 2 = (Q2, {0, 1}, S2j ql, F2) be the binary decision
diagrams for two n-variable Boolean functions / x and f2y J-i be the sink state in Qi, and
± 2 be the sink state in Q2. We will show how simple automata theoretic constructions can
be used to find the binary decision diagrams for various combinations of f\ and f2 involving
the Boolean operations AND(A), OR(V), N O T (-) , and EXOR(©).

We consider the AND operation first. The set of strings over {0,1} that satisfy /1 A f2

corresponds to the intersection of sets accepted by M\ and M2. The standard construction
of a finite automaton M that accepts the intersection of L(M\) and L(M2) may be used in
this case. M = (Qi x Q2 U {_L}, {0, 1}, £ A , (<7o>9o)> ^1 x ^2), where _L denotes the sink
state for the product automaton. SA is defined as:

The OR operation is similar. The OR of two Boolean functions represented by Mi and
M2 corresponds to the union of sets accepted by Mi and M2. The standard construction
for such an M can also be used in this case. M = (Qi x Q2 U { ± } , {0, 1}, £ v , (?o?9o)?
(Fi x Q2) U (Qi x F 2)) , where 6 V is defined as:

The NOT operator corresponds to the set difference. Let U be the set of all strings with
length n, then U — L(Mi) corresponds to the negation of the Boolean function represented
by Mi. A finite automaton accepting U — L(M\) can be constructed from My = (Qu, {0,
1}, 6u, Fu) and Mi as M = (Qv x Qx U { ! } , {0, 1}, (q^ql), Fv x (Qx - f i)) ,
where is defined in the same manner as for the OR operation. The EXOR operator ©
is also similar to the OR operator. The finite automaton for this operator is given by M =
{Qi x Q2 U {JL}, {0, 1}, <5e, (ql,q%), Fx x (Q2 - F2) U (Qx - Fx) x F 2) , where Se is defined
in the same manner as for the OR operation.

Note that determining the state set of the finite automaton for each of these four operators
involves a product construction Mi x M2. We exploit this observation by giving a single
procedure for the product construction that is parameterized by the type of Boolean operator
involved. Also note that in each case the resulting automaton M may not be minimal, even
if both Mi and M2 are minimal. Consequently, a final minimization stage is needed after
the product construction in order to obtain a canonical binary decision diagram.

(£1(91, a) , 62(92, a)) if <5i(gi, a) ^ i - i or 62(q2, a) ^ J _ 2

_L otherwise

4

4. The Basic Algori thm for Constructing Binary Decis ion Diagrams

4.1 . The Product Automaton

Because of our convention regarding final states, a binary decision diagram M = (<2, {0,1},
qo,F) may be represented by its state-transition graph alone. In particular, two edges
emanate from each state q: a 0-edge pointing to £(g,0) and a 1-edge pointing to 8(q, 1). In
generating the product automaton for the result of some two-argument Boolean operation
applied to Mi and M 2 , the initial product state is given by (go,gjj) where ql is the initial
state of M\ and ql is the initial state of M2. The successors of this state are determined for
the inputs 0 and 1, and this process is repeated until no new state pairs are generated. The
process is shown in Figure 4.

Note that there are only two places where we need to take into account the types of the
Boolean operator: the computation of (<$i(gi, 0), <$2(#2> 0)) and (<$i(gi, 1), £2(92,1))- The most
time-consuming part of this procedure is deciding whether a pair is new or not. By using a
hash method with chaining we can make this test take essentially constant time. The hash
function that we use is given by

hashprod(quq2) = mod(qi * (HASH, SIZE/2) + q2,HASH, SIZE),

where qi and q2 are integer values for the state pointers. The size of the hash table (the
parameter HASH, SIZE) and the hash function are critical factors in determining the
execution time of this phase of the algorithm.

Let the initial pair be (9o,9o);

Put the pair in the queue 5 , and allocate a new state for it;
While (S is not empty) do Begin

Dequeue a pair (91,92) from 5;
For symbol a 6 {0,1} do
Begin

Compute the pair of successors (f>i(qi,a),62(q2,a));
If this pair is new, then

add the pair to 5 , and allocate a new state.
Connect the a-edge from the state corresponding to (91,92) to

the state corresponding to (#1(91, a) , £2(92,0));

End;
End;

Fig.4 Construction of the product automaton.

Since we use a hash method with chaining, each state is recorded in a linked data structure
with 3 fields: the first field (edgeO) holds a pointer to the 0-successor of the state, the second
field (edgel) holds a pointer to the 1-successor of the state and the third field holds a pointer

5

M i n M 2

(Product machine) M i D M 2

Fig.5 Product generation and minimization.

to a state with the same hash key. It should be mentioned that we need no special memory
for a state pair.

Let state q correspond to a state pair ((ft, 92), state 9' correspond to a state pair (61(91, 0),
^2(92,0)), and state 9" correspond to a state pair (61(91 ,1), 62(92,1))- First, a data cell
corresponding to a state 9 is allocated so that edgeO of 9 holds a pointer to 91 and edgel
holds a pointer to 92. Then 9 is registered in a hash table and placed in a queue. If the
state pair (91, q2) is generated as a next state of some state, then the hash key is computed
and the hash entry is checked. Since the state pair is already registered as 9 in the hash
table, there is no need to register the pair. In this manner, the data cell of 9 is used for the
occurency check of the same state pair.

After the state 9 is dequeued, and state pairs corresponding to 9' and 9" are calculated,
edgeO (edgel) of 9 is overwritten to a pointer to 9' (9"). Since the state transition graph
is acyclic, if we generate state pairs in a breadth first manner using a queue as shown in
Figure 4, the same state pair as (91,92) will not be generated after the pair is dequeued, and
we need not keep the data of the pair for the occurency check after the dequeue operation.
Thus, our overwrite method for reducing the memory usage works quite well.

An example illustrating this phase is shown in Figure 5, where the intersection of M i
and M2 is computed (corresponding to an AND operation in the original formula). M i
corresponds to (-^Xi A -1X3) V # i , and M2 corresponds to (-*Xi A x2 A £3) V (-^Xi A ~^x2)
V (xi A x2) V (xi A - i £ 2 A -1X3). The result of the AND operation is (-»a?i A ^x2 A -"£3) V

(xi A -^x2 A -1x3) V (# i A x2). In the product construction, the initial pair (91,97) is entered
in the queue S. Then its next state is computed. At this point the queue S contains (92,9s),

(93,99). Next, the successor of (92,9s) is computed, and the queue becomes (93,99), (94,910),

(94,911). Hence, the states are generated in the order 914, 915, 921.

6

4.2. Minimizat ion

After the product generation phase, we must minimize the resulting automaton. Since the
graphs involved are directed acyclic graphs, we do not need to use the completely general
n • log(n) minimization algorithm described in [1]. Instead, we can use a variant of the linear
algorithm for tree isomorphism [1].

In the minimization phase, states are processed starting at bottom level working upward,
since the determination of whether two states should be merged into an equivalence class is
based on the equivalence of their successor states. First, the final states (the bottom level
nodes) are processed. Next, the states which have an edge to the final state are processed,
and so on. Thus the order in which the states are processed in this phase is the reverse of
the order in which they were generated during the product phase.

The minimization algorithm is summarized in Figure 6. To reduce the memory consump
tion, we keep a global binary decision diagram whose states represent equivalence classes
of states of the reduced automaton. The same hash mechanism is used for the occurency
check of the new global state as in the product generation phase. The hash key for a state
q is defined as hashmin(q) = mod(6(q, 0) * HASH.SIZE + % , 1), HASH.SIZE) using the
edge-pair (S(q, 0), 6(q, 1)) of q.

For each state q of the product automaton
in the reverse order of the generation do Begin

Reset_Flag;
For each global state with the same hash key as q do Begin

If the edge-pair of the global state is the same as that of q then Begin
Set_Flag;
Break;

End;
End;
If Flag is not set then Begin

Allocate a global state cell;
Copy the edge information from q to the global state;

End;
Mark q as registered, and store a pointer to the global state;

End;

Fig.6 Minimization algorithm.

For the product automaton in Figure 5, states are processed in the order of q2i, q2o, •
qi4 as shown below. The minimal automaton is also given in Figure 5.

1. #2i is processed and is registered as the unique final state.
2. The edge-pair (921,921) of q20 is new, and q20 is registered as unique.

7

level 3

level 2

level 1

level 0

Fig.7 Levels of Boolean operations for
(xi A x2) V (x3 A x4) V (~i£i A x4).

3. The edge-pair (g 2i , -L) of qi$ is new, and qi9 is registered as unique.
4. The edge-pair of gi 8 is (JL, _L), and it is impossible to reach the final state from <ji8.

Thus qis is removed.
5. The edge-pair (q2i, -L) of qi? is the same as that of qi$. Thus we set qn = 919.
6. The edge-pair (919, q20) of <7i6 is new, and q\6 is registered as unique.
7. The edge-pair (919,1_) of 915 is new, and qi$ is registered as unique.
8. The edge-pair (qis^qie) of 9i4 is new, and #14 is registered as unique.

5. Parallel Implementat ion

5.1. Implementat ion

We now describe how the basic algorithm outlined in the previous section can be implemented
on a shared memory multiprocessor. To illustrate the procedure we consider the following
example.

f(xi, £2, £3, £ 4) = (£1 A £2) V (£3 A £ 4) V (-»£i A £ 4)

The first step is to determine the level of each node in the parse tree for the formula (see
Figure 7). The leaf nodes of the tree are input variables; the non-leaf nodes correspond to
the Boolean operators that occur in the formula. The level of each node is determined by
the rule:

l .The level of an input variable is 0.
2.The level of a non-leaf node is max(l\, l2) + 1, where l\ and l2 are levels of its operands.

Since we initially generate binary decision diagrams for input variables, we can process
operations at level 1 immediately. After the level 1 operations have been completed, we can
process Boolean operations at level 2, and so on. In general, we can process level i nodes as
soon as the level i — 1 nodes have been completed.

8

Operations at the same level in the tree can be performed in parallel, since they do not
conflict. Each such operation is performed on a separate processor since synchronization
between processors is very time consuming.

Some levels have only a few operations that can be performed in parallel. We divide
operations on such levels into several sub-operations so that there will not be as many idle
processors. The method is as follows.

In the product generation and minimization phase, the 0- and 1-successors of the initial
pair (gj, q%) are generated. Then the product generation and minimization are performed
for these two successors. After the minimization for these two successors is completed, the
minimization of the root state corresponding to the initial pair is begun. Thus the product
and minimization phase for each of these two successors (the 0- and 1-successors of (#Q, <7Q))
can be performed in parallel. Note that the minimization phase guarantees the uniqueness
of global states.

An example of this procedure is shown in Figure 8. First, processor Pi expands the 0-
and 1-successors of the initial pair. Processor P2 takes the 0-successor (92598)? generates
the product automaton and minimizes this automaton. Processor P 3 takes the 1-successor
and does the same thing. After P2 and P 3 have completed the minimization phase for their
product automata, processor Pi minimizes qi4.

If, in the example, we compute the 00-, 01-, 10- and 11-successors of the initial pair,
then the original operation can be divided to four parts whose product and minimization
phases can be performed in parallel. Three merges are needed to reassemble these parts. In
a similar manner we can divide a single operation into 8 parts and 5 merges to obtain an
even higher degree of parallelism.

9

Figure 9 shows a program executed in parallel with several processors. The algorithm is
intended for a shared memory multiprocessor and would require significant modification for
other types of parallel architecture. Data for operations and for global states can be accessed
by all processors, lock and unlock are used to implement mutual exclusion.

While (operation exists) do Begin
lock;

take one operation if exists;
unlock;
If an operation can be taken then Begin

wait until the operands of the operation have been computed;
do the operation, i.e.

construct product automaton;
minimize the product automaton;

End;
End;

Fig.9 Process structure.

In the parallel minimization algorithm, the following method is used to maintain consis
tency of global states.

Reset-Flag;
For each global state with the same hash key do Begin

If the edge-pair of the global state is the same as that of q then Begin
Set-Flag; Break;

End;
End;
If Flag is not set then Begin

lock;
For each global state with the same hash key

which is generated until waiting to enter this part do Begin
If the edge-pair of the global state is the same as that of q then Begin

Set-Flag; Break;
End;

End;
If Flag is not set then Begin

Allocate a new global state cell;
Copy the edge information of q to the global state;

End;
unlock;

End;

10

Table 1 Evaluation of multiplier examples on Multimax.

7-bit 8-bit 9-bit 10-bit

of variables 14 16 18 20
of operations 478 620 878 1048

of levels 32 38 45 51

1 processor 32.6 sec 98.1 sec 339.6 sec 1465.8 sec

2 processors 16.4 sec 50.3 sec 178.0 sec 732.1 sec

3 processors 11.0 sec 34.0 sec 122.3 sec 499.9 sec

4 processors 8.5 sec 25.8 sec 93.8 sec 384.1 sec

5 processors 7.0 sec 21.1 sec 76.7 sec 311.4 sec

6 processors 5.9 sec 18.1 sec 66.6 sec 265.5 sec

7 processors 5.2 sec 15.6 sec 57.9 sec 231.7 sec

8 processors 4.8 sec 14.2 sec 52.3 sec 211.8 sec

9 processors 4.4 sec 12.9 sec 47.4 sec 196.2 sec

10 processors 4.1 sec 12.1 sec 44.0 sec 181.1 sec
11 processors 3.9 sec 11.4 sec 41.0 sec 171.6 sec
12 processors 3.7 sec 10.9 sec 38.4 sec 163.2 sec

13 processors 3.5 sec 10.3 sec 36.1 sec 155.0 sec

14 processors 3.3 sec 9.8 sec 34.0 sec 148.5 sec
15 processors 3.0 sec 9.2 sec 32.4 sec 140.6 sec

5.2. Performance Evaluation

Our program for building binary decision diagrams is implemented in C and uses the C-
threads package [5] for parallel programming under the Mach operating system. Interlocks are
used for process synchronization instead of general semaphores in order to avoid the expense
associated with system calls. The program is organized so that locks are only needed for the
hash table for global states and for taking a Boolean operation to be executed. Consequently
contention for shared memory is light. The performance statistics that we describe below
were obtained for an Encore Multimax with 16 processors and 96 megabytes of shared
memory. Each processor is a National Semiconductor 32332 and is rated at roughly 2 MIPS.

Multipliers were used to evaluate the program since the binary decision diagrams for these
circuits are known to grow quite rapidly (exponentially in the size of the operands, in fact).
Table 1 shows the execution time to construct binary decision diagrams for multipliers with
7 to 10 bits (14 to 20 Boolean variables). In the evaluation, a hash table with 1023 entries is
used for the product generation, and a hash table with 32767 entries for the minimization.

Table 1 shows that the minimum execution time on the Multimax with several processors
is about 10-times smaller than the execution time with a single processor. The time for

11

Execution time for 9-bit multiplier example. Execution time for 10-bit multiplier example.

Fig. 10 Execution time for multiplier examples on Multimax.

12

Q.1 I:

E C

S1i

I i | | j i | i • | | i

I } I | i j | | | { i | |

I i | I I ! I I ! | !
I }] | j () | [••4̂44
t ^ : • • s îti. i +. 4- • t

j } 1 j | i 1 j | |

| y t { 1 i |] i | j-

1 1 } \ 1 1 \ \ j j 1

I : 5 : i i i i i i i ;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors
Speed-up rate for 7-bit muitipiier example.

j
} ! j f 1 h " | t 1 i 1 \

t

f
j

t] 1 1 \ i i |-"4̂44""-t

f
j

j 1 1

t

f
j

j
f

^3 j- j | | | 1 1 1 r

i i i i 1 i i—1—i—i—i—1—

©16
§
Q.1 5
?
$ 1 4

* i ,
12

11

10|

9

8

7

6

5

4

3

j j
} I | | j { | j

j

I } | | \-

: 4 - 4 > : 4 - 4 >

j

{ | i.J£~\ | } { \ j

j j

i i i i i i i—S—i—i—«—i—

• 16|

^ < §.15|

| l 4

12

11

10

9

8

7

6

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Processors

Speed-up rate for 9-bit muitipiier example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Processors

Speed-up rate for 9-bit muitipiier example.

I }•••••• | i-4 \ S ^ f ^ A

itS \ I- - - 4 .

/^•••\ | { j | f | | " - f - t

i i ' « i I i i l L—i i_i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Processors
Speed-up rate for 10-bit multiplier example.

Fig.11 Speed-up rate for multiplier examples on Multimax.

13

a single processor is roughly the same as the (sequential) program for constructing binary
decision diagrams described in [6], The graphs in Figure 10 show how the execution time
varies with the number of processors. The execution time is in reverse ratio with the number
of processors. The graphs in Figure 11 show the rate of speed-up for these multipliers. The
rate of speed-up is defined as (the execution time using 1 processor) / (the execution time
using n processors). The rate is almost linear with the number of processors.

6. A Method to Manipulate Large Binary Decision Diagrams

6.1. Uniform Splitt ing Method

We have shown a parallel algorithm to construct BDD's. In several cases, the number of
nodes exceeds the memory limitation of a computer and the construction of BDD's fails.
To overcome the problem, we have devised a divide-and-conquer method. Since the parallel
algorithm guarantees the high-speed execution, each part can be processed in reasonable
time and the total execution time is also reasonable.

Let / and g be Boolean functions with n variables: f(x\, x2, . . . ,x n) and g(x\,x2, ...9£n)-
/ and g can be described as follows.

f(xx,x2,...,xn) = (- i s i A / (0 , z 2 , . . . , x n)) V (a?i A / (l , a ? 2 , . . . , # n))
g(x1,x2,...,xn) = (- ^ ! A f l f (0 , x 2 , . . . , x n)) V (xx A g(l,x2, ...,xn))

In the following, / (0 , x 2 , xn) is described as / 0 , / (l , x2, xn) is described as ft, g(0,
x2, xn) is described as (fa, and <jr(l, x2, xn) is described as g\.

The basic idea of the divide-and-conquer method is that a Boolean function / can be
represented as a pair (/o, ft), and that Boolean operations can be done independently for
each part of the pair.

It is easy to show that

/ A g = (-«xi A / o A g0) V (xx A / i A gx)

and
/ V g = (- X ! A (/o V g0)) V (xx A (ft V 9 l))

We can also show that
- , / = (^ X l A - / 0) V (* i A - i / i)

Since
(- /) = - ((- z i A fo) V (x i A ft)) = (a* V - i / o) A (-1*1 V - / i)

thus
(- /) = ("•*! A -«/o) V (xx A -i/O V (- / 0 A - / i)

On the other hand,

(- /) x 1 = o = - / o V (- / 0 A - / a) = - / o

14

and
= - / i V (- / 0 A - . / x) = - / i

thus
(- , /) = (- * X l A - . / o) V (x x A - / a)

The construction of BDD's can be divided to two parts using the above expansion method.
For example, the construction of BDD's corresponding to

(/ (x i , . . . , x n) A -*g(xu...,xn)) V h(xu...,xn)

can be divided to two parts in the following manner. At first, we construct BDD's for the
(xi = 1) part. This corresponds to

(/ (0 , x 2 , . . . , x n) A - ^ (0 , x 2 , . . . , x n)) V / i (0 ,x 2 , . . . , x n)

Then we construct BDD's for the (xi = 1) part. This corresponds to

(/ (l , x 2 , . . . , x n) A - ^ (l , x 2 , . . . , x n)) V fc(l,x2,...,xn)

Note that / (0 , x 2 , . . . ,x n) and / (l , x 2 , . . . ,x n) are n — 1 variable Boolean functions, and the
number of nodes for describing BDD's for these functions may be smaller than that for the
original functions / and g. Thus if we manipulate these parts (parts for Xi = 0 and one for
x\ = 1) independently, the number of nodes for BDD's might be reduced.

In the same manner, if we consider the following expansion

/ (x i , x 2 , x 3 , . . . ,x n) = (^xi A - i x 2 A / (0 , 0 , x 3 , . . . , x n)) V (-<xi A x 2 A / (0 , l , x 3 , . . . , x n)) V
(xi A -«x2 A / (l , 0, x 3 , x n)) V (xi A x 2 A / (l , 1, x 3 , x n)) ,

then we can divide the original problem to 4 parts. We can also divide the problem to 8
parts, 16 parts, 32 parts, and so on.

For the number of nodes of the BDD's in each divided parts, we can show the following
proposition.

Proposi t ion 1 If we divide a BDD for a Boolean function with n-variables into 2d parts,
then the number of nodes in each part is at most 2n~~d. Thus if the original BDD has 2 n

nodes, then each part has 2n~d nodes and the number of nodes is reduced by the factor 2"d.

We will show some experimental result on the number of nodes of each part.

15

of parts 8-bit multiplier 16-bit adder (bad order) 16-bit adder (good order)
1 91220 852941 2313
2 54000 747000 2175
4 34000 574000 2038
8 20500 426000 1904
16 11000 268000 1776

The algorithm is summarized as follows, where d is the logarithm of the size of the
division, i.e. the number of parts is 2d. Since the construction of BDD's is based on BDD's
for input variables and on Boolean operations, we only create BDD's for input variables
correctly in each repetition. Let d = 3, and / (x i , . . . , x n) be the original Boolean formula.
In the following loop, BDD's for / (0 , 0 , 0 , x 4 , . . . , x n) , / (0 , 0 , l , . r 4 , . . . ,a ; n) , / (0 , 1 , 0 , x 4 , . . . , x n) ,

etc. are constructed with respect to % = 0,1,2, . . .

For i = 0 to 2d - 1 do Begin
Initialize data with respect to i:

Set all operations to be undone;
Create i-th part of BDD's for input variables:

The depth d successor of the initial state of the original BDD
with respect to the binary representation of i;

While (operation exists) do Begin
do the operation;

End;
remove all data generated in the construction;

End;

Note that if we need a BDD corresponding to the global outputs, we should keep the
data corresponding to these outputs in each repetitions. Also note that if we only want to
know whether two functions are equivalent or not, we need not to keep any data, since two
Boolean functions are equivalent if and only if each part is equivalent. The check can be
done in each repetitions. The parallel execution algorithm can be used in doing the sequence
of Boolean operations in the above algorithm.

Applying the method to the multiplier examples, the result is as follows. In these exam
ples, 10 processors are used. At first, an 8-bit multiplier example is shown to compare the
data without splitting. The construction of BDD's for 13 to 16-bit multipliers cannot be
done without splitting.

1. 8-bit multiplier
The problem is divided into 4 parts. The number of nodes of BDD's for each part is
about 34,000 (0.4 MB), and the execution time for the construction of each part is
about 4.0 seconds. Total execution time is about 16.27 seconds.

2. 13-bit multiplier
The problem is divided into 8 parts. The number of nodes of BDD's for each part is

16

about 3,600,000 (43 MB), and the execution time for the construction of each part is
about 3,000 seconds. Total execution time is about 6.5 hours.

3. 14-bit multiplier
The problem is divided into 32 parts. The number of nodes of BDD's for each part is
about 2,600,000 (31.2 MB), and the execution time for the construction of each part
is about 1,500 seconds. Total execution time is about 12.5 hours.

4. 15-bit multiplier
The problem is divided into 128 parts. The number of nodes of BDD's for each part
is about 2,500,000 (30 MB), and the execution time for the construction of each part
is about 1,300 seconds. Total execution time is about 40 hours.

5. 16-bit multiplier
The problem is divided into 2048 parts. The number of nodes of BDD's for each part
is about 800,000 (9.6 MB), and the execution time for the construction of each part is
about 220 seconds. Total execution time is about 100 hours.

6.2. Non-uniform Splitt ing M e t h o d

This section shows a non-uniform splitting method to manipulate BDD's with large number
of nodes. The method is implemented as in the following procedure. In the procedure, depth
is the logarithm of the size of the division, thus if depth = d then the original construction is
divided to 2d paxts. pattern denotes the identifier of the divided part. If the pattern is 011,
then the procedure constructs a BDD for / (0 , 1 , l , x 4 , . . . , x n) . "||" denotes a concatenation
of strings.

Procedure Non-uniform-bdd(depth, pattern, operation-sequence);
Reset -Flag;
Create BDD's for input variables with respect to the depth and the pattern;
While (operation exists) do Begin

do the operation;
If the number of nodes of BDD's exceeds the limit then Begin

Set-Flag;
Break;

End;
End;
If Flag is set then Begin

Non-uniform_bdd(depth + 1, pattern||0, operation .sequence);
Non_uniform-bdd(depth + 1, pattern| | l , operation -sequence);

End;
End;

At first, this procedure is invoked with (depth,pattern) = (0, e) (e denotes the null string).

17

Non_uniform-bdd(0, e, operationjsequence)

If the number of nodes of BDD's exceeds the limit, then that invokes itself twice with
(depth,pattern) = (1,0) and (depth,pattern) = (1,1).

Non_uniform_bdd(l, 0, operationjsequence)
Non_uniform_bdd(l, 1, operation jsequence)

If the number of nodes of BDD's exceeds the limit in the latter case, then the latter one
invokes itself twice with (depth,pattern) = (2,10) and (depth,pattern) = (2,11). In this
point, the procedure is invoked like as follows.

Non_uniformi)dd(l, 0, operation-sequence)
Non_uniform_bdd(2, 10, operationjsequence)
Non_uniform_bdd(2, 11, operationjsequence)

In the above manner, splitting is done only when it is needed.

7. Summary and Directions for Future Research

This paper describes a parallel algorithm for constructing binary decision diagrams. The
algorithm treats binary decision graphs as minimal finite automata. The automaton for a
Boolean function with OR (AND) as its main operator is obtained by forming the union
(intersection) of the regular sets associated with its operands. The union and intersection
operations are implemented by a product construction on the minimal automata for the
regular sets. After each product construction step the automaton must be re-minimized.

The parallel algorithm is designed so that it is possible to find the minimal representations
for several Boolean operations in parallel. The level of each operator is determined. Oper
ations at the same level can be performed in parallel without any communication between
processors. If there are relatively few operations in one level, then we divide the product
generation step into several sub-operations and merge the results. This method works well
in practice because it minimizes the amount of locking that is required.

Preliminary experiments show that our parallel algorithm is roughly 10 times faster than
with a single processor. The execution time with a single processor is almost the same as
that of a sequential algorithm ([6]). The algorithm has a fairly simple structure so it ought
to be possible to adapt it to other shared memory architectures as well. Moreover, it should
be possible to obtain even greater speedups by using more sophisticated data structures and
coding techniques.

We plan to use this algorithm as part of a verification system for finite state concurrent
systems (hardware controllers, communications protocols, etc.) that uses a technique called

18

Symbolic Model Checking [3, 4]. When synchronization or communication is possible among
several finite state processes, the number of system states can be quite large. By using a
sequential implementation of binary decision graphs to provide a concise representation for
large global state-transition graphs, we have already been able to verify a pipelined circuit
with as many as 10 2 0 states. Since constructing binary decision diagrams is the most time
consuming part of the verification procedure, we should be able to handle even larger finite
state systems in the future.

References

[1] J. E. Hoppcroft A. V. Aho and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential Circuit Verification
Using Symbolic Model Checking. In Proceedings of Design Automation Conf, 1990. To
appear.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic Model
Checking: 10 2° States and Beyond. In Proceedings of Logic in Computer Science, 1990.
To appear.

[5] E. C. Cooper. C threads. Technical Report CMU-CS-88-154, Carnegie Mellon University,
Pittsburgh, PA 15213, June 1988.

[6] Allan L. Fisher and Randal E. Bryant. Performance of COSMOS on The IFIF Workshop
Benchmarkes. In Proceedings of IMEC Conference, 1989.

19

