
MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 145

JANUARY 1979, PAGES 185-199

A Parallel Algorithm for Solving

General Tridiagonal Equations

By Paul N. Swarztrauber*

Abstract. A parallel algorithm for the solution of the general tridiagonal system is

presented. The method is based on an efficient implementation of Cramer's rule,

in which the only divisions are by the determinant of the matrix. Therefore, the

algorithm is defined without pivoting for any nonsingular system. 0(n) storage is

required for n equations and (?(log n) operations are required on a parallel computer

with n processors. 0(n) operations are required on a sequential computer. Experi-

mental results are presented from both the CDC 7600 and CRAY-1 computers.

1. Introduction. Currently, several parallel algorithms exist for a wide class of

tridiagonal systems. Golub developed the method of cyclic reduction for solving

large block tridiagonal systems which resulted from the discretization of Poisson's

equation on a rectangle. Although the algorithm was unstable for this application,

it could be used to solve the scalar constant-coefficient tridiagonal systems; and it

could be efficiently implemented on a parallel computer [5], [6]. Later, Buneman

stabilized the Golub algorithm [1], [2] which provided another algorithm for solving

the constant-coefficient tridiagonal system. In [10], [11], Stone describes his "re-

cursive doubling" algorithm and generalizes the cyclic reduction algorithm so that

both can be used to solve the nonconstant coefficient problem. In [11] Stone com-

pares the arithmetic complexity of all three algorithms. In [12], Swarztrauber pre-

sents an algorithm for solving block tridiagonal systems that result from separable

elliptic partial differential equations; and its scalar analogue provides yet another

algorithm for solving the nonconstant coefficient system.

Each of the algorithms discussed so far is direct in the sense that if exact arith-

metic were used then an exact solution would be obtained with a finite number of

operations. Traub [3], [13] describes a parallel method for improving an approxi-

mate solution which can be applied repeatedly to obtain the desired accuracy.

Lambiotte and Voigt [8] discuss the implementation of Traub's method on the Con-

trol Data STAR-100, together with Gaussian elimination, cyclic reduction, recursive

doubling, successive relaxation, and Jacobi's method.

As Stone notes in [11], each of the algorithms mentioned above requires the

system to be diagonally dominant. If the system does not have this structure, then

Received June 8, 1978.

AMS (MOS) subject classifications (1970). Primary 65F05, 68A20; Secondary 15A15.

Key words and phrases. Tridiagonal matrices, parallel algorithms, linear equations.

•National Center for Atmospheric Research, Boulder, Colorado 80307, which is sponsored

by the National Science Foundation.

© 1979 American Mathematical Society

0025-5718/79/0000-0012/$05.00

185

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

186 PAUL N. SWARZTRAUBER

the algorithm may not be stable, or it may not be defined if a d./ision by zero occurs.

The general tridiagonal system can be solved using Gaussian elimination with partial

pivoting. However, as Lambiotte and Voigt observe, there is currently no known way

for incorporating a pivot strategy into existing parallel algorithms [8].

In this paper a parallel algorithm is presented which is based on an efficient im-

plementation of Cramer's rule. The only division is by the determinant of the matrix,

with the result that the algorithm is defined without pivoting for any nonsingular

system. O(n) storage is required for n equations, and 0(log n) operations are required

on a parallel computer with n processors. 0(n) operations are required on a sequential

computer. The formal development of the algorithm is given in Section 2; and certain

computational aspects are considered in Section 3 including complexity, accuracy,

scaling, timing and storage.

2. The Algorithm. We wish to solve a linear system of equations

(0 Ax = y,

where the matrix A is tridiagonal

(2) A =

-n— 1

an bn

and y =

}'n

Since the algorithm is based on Cramer's rule, we begin by defining the following

determinants and related quantities which will be used in the theorem given below.

(3) &<*) =

'v+l

'U-l

% bu

(4)

(5) Si = -"ib(in+\'

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 187

(6)

(7)

bx cx

y¡ c,.

y¡+i ■

yn

y i

■ y¡-i

«i y¡

"n bn

We now state and prove the theorem which is fundamental to the algorithm.

Theorem. Given the sequences d¡, g¡, s¡ and u¡ defined above, then the solu-

tion x¡ is given by

(8) xi = d-xigisi_x +d{_xUi).

Proof. From Cramer's rule

d„Xi =

bx c, y i

yi-i

"i y¡

y¡+i

yn °n t>n

Expanding by the rth row,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

188 PAUL N. SWARZTRAUBER

dnxi = a¡

b\ cl

+ y¡

y i-2

y i-1

.»'.■+1 '/+ 1 íi + 1

yn

bi-i

-7+ i c/+ r

Lí-2

^■-1

-n-2

b<

'.+ i c,

•>7+.

«« *«

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 189

Since the determinant of a block triangular matrix is the product of the determinants

of the blocks on the diagonal,

(9) d„Xi = - fl/S<_, b\"+\ + y¡d._ l b("+\ - c.di_. ui+ x,

(10) dn*i = g,S/_, + dt_, iytbft\ - c,ui+ x).

Expanding u¡, given in (7), in terms of its first row, we obtain

(ii) ", =-*,■".+! +b\+\yt>

which substituted into (10), yields the desired result (8) and completes the proof of

the theorem.

The algorithm consists of two parts which have two and three steps, respectively.

I. Initialization

la. Reduction

Ib. Backsubstitution

II. Solution

Ha. Reduction

Hb. Backsubstitution

He. Combination

Each of these steps is developed throughout the remainder of this section, and

examples for the case n = 8 are given. The complete algorithm is summarized at the

end of the section. Part I consists of calculations which are independent of the right

side, y-, including the sequences di and g¡. Part II consists of all calculations which

depend on y¡, including the sequences s¡ and u¡.

We begin with part I and, in particular, with the calculation of d¡. Expanding j

dj, given by (4) in terms of its ith row we obtain

(12) di = bidi_x-aici_xdi_2,

which, together with d0 = 1 and dx = bx, determines the sequence d¡. This recur-

rence is not suitable for parallel computations; and, thus, we could consider using one

of several related methods [4], [7], [11] which are available for the parallel computa-

tion of d-. However, the direct application of these methods would be inefficient and

it will be shown that the sequences d¡ and g(can both be determined with about the

same amount of computation that would be required to determine either one separately.

Writing (12) in matrix form, we obtain

di-i

di-2 -

If we define the sequence

(14) ei = cidi-i

(13)
ißi-i.

bt -Of

1 0

and substitute into (13), then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

190 PAUL N. SWARZTRAUBER

(15) d¡ b¡ - a¡

c,- 0

u+i

J l_c.4lj

In order to determine a similar matrix recurrence for g¡ we must first define

(16) f. = &(»>.

Referring to definition (3), we can expand /• in terms of a-, b¡ and cf,

(17) fi = bifi+x-ai+xcifi+2,

which has the matrix form:

(18)
fi+l

Ji+2.

From (5) and (16) we see that g¡ = — a¡fi+x which substituted into (8) yields

(19)

Ji\ i~ai o.

h+1

ßi+ 1 _

Further, if we define

(20) Q/ =

bt ct

-a,. 0

e =

(21) Z; =

ft

Si

then from (15)

(22)

or

(23)

and from (19)

w,-= Q/Q/_, -Qie,

w; = ^QiQ2 • • Q,

(24) z, = Q,Q.+i • • ■ Q«e-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 191

Once the vectors w;- and z(- are computed then the sequences d¡ and g¡ are avail-

able for computing the solution using (8). The matrix recurrence expressions (15)

and (18) appear to be quite independent of one another since (15) would be com-

puted in the direction of increasing index i and (19) would be computed in the direc-

tion of decreasing index ;'. However, in both (23) and (24) the matrix factors occur

in the same order, and therefore, the products that are required to compute wf can

also be used to compute z,-. To evaluate these products we use the method of recur-

sive doubling due to Stone [11]. We will illustrate the parallel algorithm for com-

puting w;- and z,- for the case n = 8. For arbitrary v and p we first define

(25) Q(M)=Q^+i ...Qm.

In the algorithm given below, the quantities in each cycle can be computed in parallel.

I. Initialization.

la. Reduction iexample).

Cycle 1 Q<2> = Q,Q2; Q(34) = Q3Q4; Q(56) = Q5Q6; Q(78) = Q7Q8,

Cycle 2 Q^ = Q(2>Q<4>; qW = q<s«)q<8>,

Cycle 3 Q<8> = Q<4)Q(58).

The following elements in the sequences w, and z¡ are directly available:

,r = eTQi. wr = erQ<2); wj = e^; w^ = e^QWw;

z8=Q8e; z7=Q7(8>e; z. = Q<»>e; ... = Q<8>e.

The remaining values are computed from the expressions below which make extensive

use of the relations

y,' = y,1 Ow
(26) m - v- +1 '

v < b < p,

(27) zv = Q(/-1)z6,

which are obtained from (23), (24), and the associative property of matrix multipli-

cation.

Ib. Backsubstitution (example).

Cycle 1 w[= w^Qf); z3 -- Q<34>z.,

Cycle 2 w[= w72"Q3; w[= wjQ5; w^ = wjQ7,

Z6 = QöZ7' Z4 = %Z5' Z2 = Q2Z3-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

192 PAUL N. SWARZTRAUBER

The sequences d¡ and g¡, i = 1, . . . , 8, are now available from the components

of w,. and z¿, respectively, for use in (8).

We now direct our attention to part II of the algorithm and the calculation of

the remaining quantities on the right side of (8), namely the sequences s¡ and u¡.

If we expand s¡, given by (6) in terms of a,- and y¡, we obtain

(28) s,- = -aisi_x + di_lyi.

If we define a«. = \$. = U a,-0 = ~ "ó X¡° = ~ cv and

(29) a00 = fi a., X<"> = n -),

then the solution of (28) is

(30) s, = t i- I)*-'aftxd,xyr
1=i

However, this form is not suitable for parallel computation. If we define

(31) s0O =±i- ir-'a^\d y
j=v

then for any v < 6 < p,

(32) s<*> = z (- ly-^rf,-,^ +. ¿ (-1)"-^^/-^/-
/= v /— 6 + 1

(33) .0») = (- íy-SaW. ¿ (- l)8"'«^-*,.^ 4- ^+)r
/=»

(34) ,(M) =(_ ,)M-6a(M) ,(«) + s(M)
-» v ' o + 1 i> o + l

This result is used extensively in the parallel calculation of s¡, which is described

below. The calculation of u¡ is similar to that of s¡. Starting with (11), which

has the solution

(35) ..,.= i i- iy-i\</-%IJ7»
/=-

then we define

(36) -.<*>= E(-iy-^-%iJv-

from which we obtain

(37) u<f) = i/6-0 + (- l)6"^6-»)«('«).

The algorithm for computing s¡ and u¡ will be illustrated for the case n = 8. It is

similar to the calculation of w. and z(- in the sense that it has two steps, namely,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 193

reduction and backsubstitution. The goal is to compute s^p and «.{"), which from

(30), (31), (35), and (36) are just s¡ and u¡, respectively. The starting values s: =

di_xyi and u. = fi+xy¡ are given by (31) and (36), respectively. The expressions

in each cycle are derived from (34) and (37) and can be computed in parallel.

II. Solution.

Ha. Reduction (example).

Cycle 1 42) = S22>-a2s<1); u<2> = «¡!> - c^\

s(4) = (4) _ (3). (4) = „(3) _ c (4)-3 J4 «4 J3 , «3 «3 -3«4 ,

s(6) = s(6) . a/S); „(6) = „(5) A6)
5U6 '

= „(8) _ „ .(7). „(8) _ M(7) _ c (8)X7 S8 8 X7 ' 7 7 C7M8 '

Cycle 2 s\^ = /34> 4- a<4>ir»>; u^ = ..<2> 4- X<2>..<4>,

s(8) = s(8) + a(8)s(6). „(8) = M(6) + X(6)u(8)

Cycle 3 s^ = S<8> + d*h<?h -.<8> = -.<4> + X<«>M«0

c(8)
, U» --(88), -.„ y(8)The elements sx = s*1', s2 = s\2\ s4 = s<4>, s8

u5 = u\ , and w. = m!j8) are available from the reduction step Ha. The remaining

elements are computed in the backsubstitution step lib.

lib. Backsubstitution (example).

Cycle 1 46> = 46> + a</>S<4>; 48> = u™ + *hf\

s(3) = s(3) - ss(2); UW = „(2) c t/(8)t2u3 ,

s(5) = s(5) _ v(4). ,(8)
4

,(4) _ (8)
4 4 5 '

s(7) = s(7) _ ^6). M(8) = „(6) _ ^(8).

Once the sequences g¡, d¡, s¡, and u¡ are computed, then the solution x¡ can

be computed from (8).

The algorithm for general n is given below.

I. Initialization.

la. Reduction. Starting with

(38) Q)
U)

bt

dp = - at; \P = -

-a. 0

then for / = 1, . . . , k — log2 n and . = 2J, 2 • 2', . . . , n — 2' compute

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

194 PAUL N. SWARZTRAUBER

(39a) a(i+2l) = a(< + 0 (¿+2.)
' ai+l i+l I + /+1 '

(39b) x(/+20 = X(i+l)x(i+2i) i = 2i
A¡+1 !+l I + /+1'

(39c) Qg+aO = Qjy-OQJJ+jO.

lb. Backsubstitution. Starting with

(40a) wf = e^Q«, / = 2/ / = 0, . . . , k,

(40b> z„-/+i -Qf-W.

then for / = /fc - 1, . . . , 1 and . = 27, 2 • 2', . . . , n - 2' compute

(41a) w£. = wfQ^.

(41b) z =0« zi-z+i v/-;+iz.-Hi-

ll. Solution.

lia. Reduction. Starting with s^ = d¡_xy¡ and k^ = /f+ij'i, then for / =

1, . . . , k and ; = 2', 2 ■ 2', . . . , n - 2' compute

(42a) «g«0 = IrSff + «.+?¿'M++i°> < = 2''>

(42b) -.£?<> = 4+Y} + M+YS(++¿'.•

lib. Backsubstitution. For / = k - 1, . . . , 1 and i = 2>, 2 ■ 2', . . . ,

n-2/

(43a) ¿*+l> = #+P+d¡'+P*P,

(43b> "^^«^l+^l«^!-

IHb. Combination.

(44) ^/ = (0-1(í?/sí_i +^-,«í)-

where d¡ = wfe, *f = (0, l)z,., x, = ujdn and x„ = _-„/_.„.

3. Computational Notes

A. Operation Counts. The total number of operations for each step is given

first, which provides an estimate of the computational effort required on a sequen-

tial or vector machine. Asymptotic operation counts are given, which include only

those contributions that are proportional to n. The letters M, A, and D refer to

multiplications, additions, and divisions, respectively. Thus, for example, the num-

ber of operations in Step la is 8.5« multiplications plus 2.5« additions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 195

Step la n(S.5M 4-2.5,4)

Step IB nClM + 3A) \ Initialization
«(15.5M4-5.5yl)

Step lia ni4M + 2A) j Total

o» rru /-.-_■ i -,-n (c i »• «(23.5M4- 11.5^4 + D)Step lib «(2Af 4- 2A) > Solution '

\ «(871/ + 5A +D)
Step He «(2AÍ + A + D))

The initialization requires «(15.5M 4- 5.5A) operations. If the matrix A re-

mains unchanged, then additional solutions corresponding to different right-hand

sides y can be obtained with «(8AÍ + SA + D) operations. The total number of

operations is «(23.5M + 8.5A + D). This number can be compared with the

counts that Stone [11] gives: «(13M 4-6/14- D), «(15M 4- 10A + 2D), and

«(22M 4-11/14- 4D) for cyclic reduction, Buneman's algorithm, and recursive

doubling, respectively.

Now, recalling that k = log2 «, on a parallel computer with n/2 processors

the operation counts are

Step la k(lOM + 4A))

} Initialization
Step lb ki8M + 4A) \ kilW + 8A)

Step lia ki2M + 2/1)] I T .

Step lib K2M+2A) \ Solution (*<26W4
1 ki%M 4-6/14- 2D)

Step lie 2¿(2M + A + D))

Asymptotic operation counts are given which include the terms that are proportional

to k. The operation count can be reduced further by increasing the number of

processors, since additional computations can be done in parallel. For example,

all ten multiplications in Step la could be done simultaneously. With 5« proces-

sors, the total operation count would be fc(5M 4- 5A + D).

B. Accuracy. Because of the well-known accuracy problems with both cyclic

reduction and Cramer's rule for solving 2x2 systems [9], the accuracy of this

algorithm is of considerable interest. In this subsection the accuracy will be ex-

amined empirically via several numerical experiments which suggest that it is quite

stable. In the course of experimentation it was observed that in certain cases the

accuracy could be improved by the double precision summation of the scalar prod-

ucts in Step la only. In what follows we will refer to the algorithm with this ad-

dition as the modified algorithm. Although satisfactory results are obtained with-

out this modification, it may nevertheless be desirable for applications in which

the matrix remains unchanged and only the right side varies. In Table 1 below,

the error is given for both the modified and the unmodified algorithm.

Results are presented for five problems; the first four solve the system with

a¡ = c¡ = — 1 and b¡ = b = 0, .5, 1, 2, and 4. The determinants d¡ are periodic

as a function of . for b < 2, linear in i for b = 2, the exponential for b > 2.

Hence, the problems which have been selected are representative. For the fifth

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

196 PAUL N. SWARZTRAUBER

problem a solution is obtained with the coefficient matrix given below, which will

be referred to as

Matrix A.

bx = 2(4«2 4- 6« - 7),

cx = - (2« - 3) (2« + 6),

a, = - [2(m 4- 0 4- 1] [2(«-/) + 2],

c¡ = - [2(« 4- 0 4- 4] [2(« - i) - 1], . = 2, ...,«- 1,

b¡ = - (a,- + Ci - 4),

a„ = — 8« - 2,

bn = 4« + 2.

These coefficients originate in the process of computing the Fourier coefficients of

the Legendre polynomials. The system differs from the system considered above

since it is not symmetric, and the coefficients vary over three orders of magnitude

for « = 1024.

In all cases the coefficients a¡, b¡, and c¡ are perturbed randomly in about the

12th decimal digit to induce roundoff error. This is necessary since the coefficients

are integers, and only multiplications and additions occur in part I. This is partic-

ularly true for the case a¡ = c¡ = — 1 and b¡ = 2, which if not perturbed, yields

quite accurate but unrepresentative results. All experiments were performed on the

NCAR Control Data 7600, which has a relative accuracy of 7.1 x 10~1S.

The entries in Table 1 are the relative maximum errors given by

max|x,- - x,-|

e =
max|x(.|

i
where x¡ is the computed solution and xt is the "exact" (double precision) solution.

Table 1

The Accuracy of the Parallel, Modified Parallel, and

Gaussian Elimination Algorithms; n = 1024

Parallel

Tridiagonal

Modified

Parallel

Gaussian

Elimination

b = 0

p = .5

ft = l.

b = 2.

b = 4.

Matrix A

4.0 x 10~12

4.3 x 10-12

1.2 x 10-12

3.3 x 10"8

4.0 x 10-14

3.9 x IQ"8

1.1 x 10"12

1.6 x 10"12

1.7 x 10"13

4.5 x 10-10

6.5 x 10"14

5.9 x 10-10

1.6 x 10-12

7.1 x 10-12

2.8 x 10-12

1.7 x 10"10

2.3 x 10-14

1.3 x 10-9

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 197

The error was also determined for a number of other systems when the coefficients

were computed randomly. In general, the accuracy of the unmodified parallel algo-

rithm was comparable to that of Gauss elimination with partial pivoting, and in the

majority of the cases the modified parallel algorithm was superior to Gauss elimination.

C. Scaling. It is possible, even for matrices of modest order, for the deter-

minant to either under- or overflow the computer, depending on the magnitude of

the coefficients. Therefore, scaling may be necessary, either implicitly in the formu-

lation of the problem or explicitly at the time of solution. At the current state of

the art and for most applications, the number of equations is sufficiently small that

scaling could be performed before solution. However, for large systems or for any

general-purpose software an adaptive scaling procedure would be desirable. A

scaling procedure was implemented, and its effect on the computing time is given

in Table 2. The scaling can be done in the initialization part, so that the time

required to obtain a solution is the same as the unsealed algorithm.

D. Timing. In Table 2 below, the times for the parallel algorithm and its

variants are compared with Gaussian elimination with partial pivoting. All programs

are written in FORTRAN with the exception of two function subprograms which

extract and modify the exponent in the program which includes scaling. The modi-

fied parallel algorithm is all in FORTRAN, and the calculations in Step la are per-

formed in double precision but with single precision storage.

The times given in Tables 2 and 3 for the parallel algorithm are not represen-

tative of the times which would be obtained on a parallel computer with a sufficient

number of processors to demonstrate the 0(log n) dependence of computing time

on «. However, they do provide a benchmark from which the performance of the

algorithm on a parallel computer can be estimated.

Table 2

CDC 7600 Computation Time in Milliseconds for a

Tridiagonal System With Order n = 1024

Initialization Solution Total

Gauss elimination with

partial pivoting 7.7 5.1 12.8

Parallel Algorithm 8.4 6.0 14.4

Modified Parallel 12.6 6.0 18.6

Scaled Parallel 16.2 6.0 22.2

Modified Parallel

with scaling 20.4 6.0 26.4

In Table 3 below, the parallel algorithm is compared with Gauss elimination

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

198 PAUL N. SWARZTRAUBER

with partial pivoting on the CRAY-1 computer. Both programs were written in

FORTRAN; however, the parallel program can vectorized by the CRAY-1 computer.

The CRAY-1 is not a parallel computer; and hence, the computing time for the

parallel algorithm exceeds 0(log n). However, the vectorization is sufficient to

make it more efficient than the Gauss algorithm for « greater than 32. The figures

include both the initialization and solution of the system.

Table 3

CRAY-1 Computation Times in Milliseconds for the

Parallel and Gauss Elimination Algorithms

« Parallel Gauss G/P

32 .24 .21 .87

64 .32 .43 1.34

128 .44 .86 1.95

256 .64 1.71 2.67

512 1.01 3.43 3.40

1024 1.71 6.85 4.01

2048 3.09 13.71 4.43

E. Storage. The implementation at NCAR of the algorithm required 6«

locations without using the 4« locations required by the tridiagonal matrix and

its right side. The storage was allocated in the following manner. In Step la the

matrices Q^.2^ required 4« locations and the a^+.2/\ and a('+,2') required 2«

locations. No additional storage is required in Step lb where the vectors w. and

z(- overwrite the matrices computed in la. In Step Ha, sí'+2^ and -»Ji*,2, over-

write the e¡ and x¡ arrays; and finally, in step lib the s¡ and u¡ overwrite the stor-

age used in Ha. The program with scaling required an additional 3« locations.

National Center for Atmospheric Research

Boulder, Colorado 80307

1. O. BUNEMAN, A Compact Non-Iterative Poisson Solver, Rep. 294, Stanford Univ.

Institute for Plasma Research, Stanford, Calif., 1969.

2. B. L. BUZBEE, G. H. GOLUB & C. W. NIELSON, "On direct methods for solving

Poisson's equations," SIAM J. Numer. Anal., v. 7, 1970, pp. 627—656.

3. D. E. HELLER, D. K. STEVENSON & J. F. TRAUB, Accelerated Iterative Methods

for the Solution of Tridiagonal Systems on Parallel Computers, Dept. Computer Sei. Rep.,

Carnegie-Mellon Univ., Pittsburgh, Pa., 1974.

4. D. E. HELLER, "A determinant theorem with applications to parallel algorithms,"

SIAM J. Numer. Anal., v. 11, 1974, pp. 559-568.

5. R. W. HOCKNEY, "A fast direct solution of Poisson's equation using Fourier analy-

sis," /. Assoc. Comput. Mach., v. 8, 1965, pp. 95-113.

6. R. W. HOCKNEY, "The potential calculation and some applications," Methods of

Computational Physics, B. Adler, S. Fernback and M. Rotenberg (Eds.), Academic Press, New

York, 1969, pp. 136-211.

7. P. M. KOGGE, Parallel Algorithms for the Efficient Solution of Recurrence Problems,

Rep. 43, Digital Systems Laboratory, Stanford Univ., Stanford, Calif., 1972.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

ALGORITHM SOLVING GENERAL TRIDIAGONAL EQUATIONS 199

8. J- R. LAMBIOTTE, JR. & R. G. VOIGT, "The solution of tridiagonal linear systems

on the CDC STAR-100 computer," ACM Trans. Math. Software., v. 1, 1975, pp. 308-329.

9. C. B. MOLER, "Cramer's rule on 2-by-2 systems," ACM SIGNUM Newsletter, v. 9,

1974, pp. 13-14.

10. H. S. STONE, "An efficient parallel algorithm for the solution of a tridiagonal linear

system of equations," J. Assoc. Comput. Mach., v. 20, 1973, pp. 27—38.

11. H. S. STONE, "Parallel tridiagonal equation solvers," ACM Trans. Math. Software.,

v. 1, 1975, pp. 289-307.

12. P. N. SWARZTRAUBER, "A direct method for the discrete solution of separable

elliptic equations," SIAM J. Numer. Anal., v. 11, 1974, pp. 1136-1150.

13. J. F. TRAUB, "Iterative solution of tridiagonal systems on parallel or vector com-

puters," Complexity of Sequential and Parallel Numerical Algorithms, J. F. Traub (Ed.), Academic

Press, New York, 1973, pp. 49-82.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

