
Research Article

A Parallel Algorithm for the Two-Dimensional Time Fractional
Diffusion Equation with Implicit Difference Method

Chunye Gong,1,2,3 Weimin Bao,1,2 Guojian Tang,1 Yuewen Jiang,4 and Jie Liu3

1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 Science and Technology on Space Physics Laboratory, Beijing 100076, China
3 School of Computer Science, National University of Defense Technology, Changsha 410073, China
4Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK

Correspondence should be addressed to Chunye Gong; gongchunye@gmail.com

Received 9 January 2014; Accepted 6 February 2014; Published 12 March 2014

Academic Editors: F. Liu, A. Sikorskii, and S. B. Yuste

Copyright © 2014 Chunye Gong et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It is very time consuming to solve fractional di	erential equations. �e computational complexity of two-dimensional fractional
di	erential equation (2D-TFDE) with iterative implicit
nite di	erence method is�(�����2). In this paper, we present a parallel
algorithm for 2D-TFDE and give an in-depth discussion about this algorithm.A task distributionmodel and data layout with virtual
boundary are designed for this parallel algorithm.�e experimental results show that the parallel algorithm compares well with the
exact solution.�e parallel algorithm on single Intel XeonX5540CPU runs 3.16–4.17 times faster than the serial algorithm on single
CPU core.�e parallel e�ciency of 81 processes is up to 88.24% compared with 9 processes on a distributedmemory cluster system.
We do think that the parallel computing technology will become a very basic method for the computational intensive fractional
applications in the near future.

1. Introduction

Building fractional mathematical models for speci
c phe-
nomenon and developing numerical or analytical solutions
for these fractional mathematical models are very hot in
recent years. Fractional di	usion equations have been used
to represent di	erent kinds of dynamical systems [1]. But the
fractional applications are rare. One reason for rare fractional
applications is that the computational cost of approximating
for fractional equations is too much heavy. �e idea of
fractional derivatives dates back to the 17th century. A
fractional di	erential equation is a kind of equation which
uses fractional derivatives. Fractional equations provide a
powerful instrument for the description of memory and
hereditary properties of di	erent substances.

�ere has been a wide variety of numerical methods
proposed for fractional equations [2, 3], for example,
nite
di	erence method [4–7],
nite element method [8, 9], spec-
tral method [10, 11], and meshless techniques [12]. Zhuang
and Liu [4] presented an implicit di	erence approximation

for two-dimensional time fractional di	usion equation (2D-
TFDE) on a
nite domain and discussed the stability and
convergence of the method. �e numerical result of an
example agrees well with their theoretical analysis. Tadjeran
and Meerschaert presented a numerical method, which
combines the alternating directions implicit (ADI) approach
with a Crank-Nicolson discretization and a Richardson
extrapolation to obtain an unconditionally stable second-
order accurate
nite di	erence method, to approximate a
two-dimensional fractional di	usion equation [13]. Two ADI
schemes based on the �1 approximation and backward Euler
method are considered for the two-dimensional fractional
subdi	usion equation [14].

It is very time consuming to numerically solve fractional
di	erential equations for high spatial dimension or big
time integration. Short memory principle [15] and parallel
computing [16, 17] can be used to overcome this di�culty.
Parallel computing is used to solve computation intensive
applications simultaneously [18–21]. Large scale applications
in science and engineering such as particle transport [22–24],

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 219580, 8 pages
http://dx.doi.org/10.1155/2014/219580

2 �e Scienti
c World Journal

di	erent linear and nonlinear systems [25], nonnumerical
intelligent algorithm [26], and computational �uid dynamics
[27] can rely on parallel computing. Diethelm [17] imple-
mented the fractional version of the second-order Adams-
Bashforth-Moulton method on a parallel computer and
discussed the precise nature of the parallelization concept.
�is is the
rst attempt for parallel computing on fractional
equations. Following that, Gong et al. [16] presented a
parallel algorithm for one-dimensional Riesz space fractional
di	usion equation with explicit
nite di	erence method.�e
numerical solution of Riesz space fractional equations has
global dependence on grid points, which means the approx-
imation of a grid point will depend on the approximation
of all grid points in one time step. �e numerical solution
of time fractional equations has global dependence on time
steps, which means that the approximation of a grid point
will depend on the approximation of the grid point in all
time steps. Global dependence means the nonlocal property
of fractional deviates on time or space. Explicit method is
easy to be parallelized but is restrict by its stability condition.
Implicit method is hard to be solved by Gauss elimination
method and o�en uses the iterative scheme. Until today, the
power of parallel computing for high dimensional and time
fractional di	erential equations has not been tried.

�is paper focuses on the two-dimensional time frac-
tional di	usion equation studied by Zhuang and Liu [4]:

��� (,
, �)
��� =
 (,
, �) �2� (,
, �)�	2

+ � (,
, �) �2� (,
, �)�
2 + � (,
, �) ,
� (,
, 0) = � (,
) , (,
) ∈ Ω,
� (,
, �) |�Ω = 0, � ∈ [0, �] ,

(1)

where Ω = {(,
) | 0 ≤ 	 ≤ ��, 0 ≤
 ≤ ��,
(,
, �) >0, �(,
, �) > 0}. �e fractional derivative is in the Caputo
form.

2. Background: Numerical Solution

�e fractional derivative of�(�) in theCaputo sense is de
ned
as [15]

��� (�)
��� = 1

Γ (1 − �) ∫
�

0

�� (�)
(� − �)� �� (0 < � < 1) . (2)

If ��(�) is continuous bounded derivatives in [0, �] for
every � > 0, we can get

��� (�)
��� = lim

	→0, �	=�
�� �∑
�=0
(−1)� (��)

= � (0) �−�
Γ (1 − �) +

1
Γ (1 − �) ∫

�

0

�� (�)
(� − �)� ��.

(3)

De
ne � = �/�, ℎ� = ��/��, ℎ� = ��/��, �� = �,	� = �ℎ�, and

 = !ℎ�, for 0 ≤ ≤ �, 0 ≤ � ≤ ��,

and 0 ≤ ! ≤ ��. Let ���,
, "�� , ���,
, ��,
,
��,
, and ���,

be the numerical approximation to �(�,

, ��), �(�,

, ��),�(�,

),
(�,

, ��), and �(�,

, ��). We can get the implicit
approximating scheme [4] for (1):

��+1�,
 − ���,
 +
�∑
�=1

�� (��+1−��,
 − ��−��,
)
= %1Γ (2 − �)
�+1�,
 (��+1�+1,
 − 2��+1�,
 + ��+1�−1,
)
+ %2Γ (2 − �) ��+1�,
 (��+1�,
+1 − 2��+1�,
 + ��+1�,
−1)
+ ��Γ (2 − �) ��+1�,
 ,

(4)

where �� = (& + 1)1−� − &1−� (& = 0, 1, 2, . . . , �), %1 = ��/ℎ2�,
and %2 = ��/ℎ2�. �e ℎ� and ℎ� are the step size along X and

Y directions de
ned above.

3. Parallel Algorithm

3.1. Analysis. Let '1 = '1(�, !, *) = %1Γ(2 − �)
�+1�,
 , and let

'2 = '2(�, !, *) = %2Γ(2 − �)��+1�,
 ; (4) can be rewritten as

− '1 (��+1�+1,
 + ��+1�−1,
) + (1 + 2'1 + 2'2) ��+1�,

− '2 (��+1�,
+1 + ��+1�,
−1)

= ���,
 −
�∑
�=1

����+1−��,
 + �∑
�=1

����−��,
 + ��Γ (2 − �) ��+1�,
 .
(5)

�e explicit schemes are conditionally stable and need
very small � for high dimensional problems for both classical
and fractional equations. �e implicit schemes are uncondi-
tionally stable but need to get the inverse of the coe�cient
matrix. Sometimes the sparse coe�cient matrix is too large,
making a direct method too di�cult to use. So, the iterative
method can be used to avoid matrix inverse:

��+1,�+1�,

= 1
1 + 2'1 + 2'2
× ('1 (��+1,��+1,
 + ��+1,��−1,
) + '2 (��+1,��,
+1 + ��+1,��,
−1) + ���,

− �∑
�=1

����+1−��,
 + �∑
�=1

����−��,
 + ��Γ (2 − �) ��+1�,
)

(6)

until Δ� = |��+1,�+1�,
 − ��+1,��,
 | is smaller than a prede-

ned threshold 5. ��+1,�+10→�� ,0→�� are the iterative variables.

��0→��,0→�� are the known variables for the unknown + 1
time step.

It is very time consuming to solve the 2D-TFDE by
iterative method of (6). For determining �,��,�� and
assuming if there are 6 iterations for each time step on aver-

age, there are about����(�2/2+1.5�+66�) arithmetical

�e Scienti
c World Journal 3

.

.

.

tn+1

tn

tn−1

t0

Pi,j+1

Pi−1,j Pi,j

Pi,j

Pi,j

Pi,j

Pi+1,j

Pi,j−1

Figure 1:�e data dependence of 2D-TFDE of grid point9�,
 of time
step ��+1.

logical operations ignoring the computation of the coe�-

cients. So, the computational complexity is �(�����2),
which is much more heavy than the classical integer order
2D partial di	erential equations �(�����).

Besides the heavy computational cost, the memory space
requirement is the other problem. Because each unknown
time step needs to use all the values of the previous time steps,
all the values of �0→�0→�� ,0→�� need to be stored into themem-

ory space. When � is big enough, the memory complexity
is �(�����), which is far bigger than the classical integer
order 2D partial di	erential equations �(����).

�e computation of (6) can be divided into two parts.

(i) Part1�,
 = ���,
 − ∑��=1 ����+1−��,
 + ∑��=1 ����−��,
 + ��Γ(2 −
�)��+1�,
 . �e unknown value ��+1,�+1�,
 of grid point 9�,

at the time step + 1 relies on the value of grid point9�,
 at all previous time steps of Part1�,
.

(ii) Part2�,
 = '1(��+1,��+1,
 + ��+1,��−1,
) + '2(��+1,��,
+1 + ��+1,��,
−1). �e

unknown value ��+1,�+1�,
 of grid point 9�,
 relies on the

value of 9�+1,
, 9�−1,
, 9�,
+1, 9�,
−1.
�e data dependence of 2D-TFDE is shown in Figure 1. ��+1�,

relies on the neighboring grid points at the same time step
and the same position of all the previous time steps.

3.2. Task Distribution Model and Data Layout. �e task
distribution of the total computation should be designed on
distributed memory systems, with the goal of making the
total computations as e�cient as possible. �ere are three
main issues in choosing a task distribution model for these
computations:

(i) load balance: ensure splitting of the computations
reasonably evenly among all computing proces-
sors/processes throughout the time stepping;

(0, Py)

(0, 0)

(1, Py)

(1, 0)

(Px , Py)

(Px , 0)

· · ·

· · ·· · ·

· · ·P0,0 P0,1 PMx,0PMx−1,0

P0,My

P0,My−1

PMx−1,My
PMx,My

PMx−1,My−1
PMx,My−1

Figure 2: �e two-dimensional task distribution model for 2D-
TFDE.

(ii) less communication: the task distribution model
should keep the communication among di	erent
computing processes as less as possible;

(iii) convenient programming: the parallel algorithm
based on the task distribution model should not
change the serial algorithm too much.

�e goal of keeping attention on these issues is achieving
high execution e�ciency and high scalability of the parallel
algorithm on distributed memory systems for 2D-TFDE.

Refer to (6). Part2�,
 computation has no data depen-
dence. Part1�,
 computation has data dependence among
neighboring grid points. �ere are mainly two kinds of task
distribution models. �e
rst one is one-dimensional distri-
bution (ODD): splitting the domain of all grid points along
the X or Y direction on average. �e task distribution model
of the parallel algorithm [16] for the one-dimensional Riesz
space fractional equation is ODD. �e parallel algorithm
based on ODD will not change the serial algorithm much
and the load balance is guaranteed. If task is divided along
X direction and �� is very big, the communication will
in�uence the scalability of the parallel algorithm.�e second
one is two-dimensional distribution (TDD): splitting the
domain of all grid points along the X and Y direction on
average. So, the computing processes have a two-dimensional
grid layout, with process id (;�, ;
) and 0 ≤ ;� ≤ 9�, 0 ≤ ;
 ≤9�. 9�, 9� are the dimension size of the processes grid. �e
task distribution with TDD is shown in Figure 2.

With the TDD, the data layout is described in Figure 3.
Each subdomain with a process may have less than four
virtual boundaries to receive the boundary data from its
nearest neighbors.�e virtual boundary is shownwith dotted
lines. �e process (;�, 9� − 1) (0 ≤ ;� ≤ 9�) has four
virtual boundaries.�e process (;�, 9�) only has three virtual
boundaries since there is no process that stays on its right
hand. A virtual boundary may have several layer grid points,
which depends on the discrete scheme on space. In this paper,
there is only one layer grid point for a virtual boundary
with (4). In every iteration of (6), the processes exchange

4 �e Scienti
c World Journal

(Px , Py − 1) (Px , Py)

· · ·· · ·

· · ·· · ·

.

.

.

Virtual

boundary
Boundary

Figure 3: Data layout for 2D-TFDE.

the data near the virtual boundaries shown in Figure 3. A�er
the exchange, every process performs its own computation
according to (6).

3.3. Implementation. �e parallel algorithm for 2D-TFDE
uses themechanisms of process level parallelism.�e process
level parallelism is a kind of task level parallelism.�e parallel
algorithm for (1) is described in Algorithm 1.

Each process only allocates its local memory. Assuming��,�� are divisible by 9�, 9�, the process with four virtual
boundaries will allocate (��/9� + 2)(��/9� + 2)�memory
space for array �.�e calculation of process id has three steps:

step 1: get the MPI global id ID;

step 2: ;� = ⌊ID/9�⌋;
step 3: ;� = ID − 9�;�.

�e computations of '1(�, !), '2(�, !), ��,
, and so forth
depend on the particular functions of coe�cient and source
terms. Performing these computations, every time step is a
good choice. If these computations are performed out of the
main loop (lines 9–32), a lot of memory space is required.
If these computations are performed in the “While” loop
(lines 16–32), it is too time consuming. �e �0 stands for

the zero time step �0�,
 and V stands for V�,
. A�,
 means the

iteration 1 ≤ � ≤ ��/9�, 1 ≤ ! ≤ ��/9�. If a process has
neighbors, it should exchange the boundary data with its
neighbors. �e received boundary data are stored into the
designed virtual boundaries.�e lines 3–7 of Algorithm 1 are
the preprocessing for the parallel algorithm. �e lines 9–32
are the main time marching loops. �1, �2 are used to record
the execution time.

4. Experimental Results and Discussion

�eexperiment platform is a clusterwith distributedmemory
system (DSM) architecture. One computing node consists
of two Intel Xeon E5540 CPUs. �e speci
cations of the
cluster are listed in Table 1. �e code runs on double
precision �oating point operations and is compiled by the

Table 1: Technical speci
cations of the experiment platform.

CPU Intel Xeon E5540, 4 cores, 2.53GHz

Operating system Kylin server version 3.1

Compiler mpif90, Intel Fortran, version 11.1

Communication MPICH2, version 1.3rc2

mpif90 compiler with level three optimization (-O3). For
convenience to compare the runtime, the inner loop (lines
16–32) of Algorithm 1 is
xed as 3.

4.1. Numerical Example and Convergence of the Parallel Algo-
rithm. �e following time fractional (� = 0.4) di	erential
equation [4] was considered:

�0.4� (,
, �)
��0.4 = 2�1.6

CΓ (0.6)
�2� (,
, �)

�	2
+ �1.6
12CΓ (0.6)

�2� (,
, �)
�
2 + � (,
, �) ,

� (,
, 0) = sin (C) sin (C
) , (,
) ∈ Ω,
� (,
, �) |�Ω = 0, � ∈ [0, �] ,

(7)

where �(,
, �) = (25�1.6/12Γ(0.6))(�2 + 2) sin(C) sin(C
),Ω = {(,
) | 0 < 	 < 1, 0 <
 < 1}, and �Ω is the boundary
of Ω. �e exact solution of the above equation is �(,
, �) =(�2 + 1) sin(C) sin(C
).

�e computational results for di	erent � at � = 1.0 and
 = 0.5 are shown in Figure 4. Figure 4 shows that the order of
the fractional time derivative� governs the value of unknown�.With the increase of� to 1, (1) approaches the classical PDE.
Figure 5 shows the numerical solutions with � = 0.4, � = 1.0.

�e parallel algorithm compares well with the exact
analytic solution to the fractional partial di	erential equation
in this test case of (7) with � = 0.4, shown in Figure 6.�e Δ�
and ℎ are 1.0/100 and 1.0/10. �emaximum absolute error is8.36 × 10−3.
4.2. Performance Improvement. For
xed � = 10, the per-
formance comparison between single process and four pro-
cesses (single CPU) is shown in Figure 7. �e X step number
in (6) is �, which is the x-coordinate of Figure 7. � =�� = �� ranges from 2048 to 10240. With � = 2028,
the runtime of one process is 23.45 seconds and the runtime
of four processes is 6.64 seconds. �e speedup is 3.53. With� = 10240, the runtime of one process is 803.88 seconds and
the runtime of four processes is 192.76 seconds. �e speedup
is 4.17. FromFigure 7, the parallel algorithmwith
xed� = 10
is more than 4 times faster than the serial algorithm.

For
xed � = 2560 = �� = ��, the performance
comparison between single process and four processes is
shown in Figure 8. For single process, the X, Y step number
is 2560. For four processes, the X, Y step number is 1280 with9� = 2, 9� = 2. � ranges from 16 to 512. With � = 16,
the runtime of one process is 17.63 seconds and the runtime

�e Scienti
c World Journal 5

(1) init parallel environment
(2) for all MPI processes do in parallel

(3) get the input parameters like��,��,�, 9�, 9�, 50.
(4) allocate localmemory �, '1, '2, �, Part1, V and so forth
(5) init variables and arrays

(6) get process id (;�, ;�)
(7) compute the initial condition �0 with �(,
) and boundary condition
(8) record time �1
(9) for = 0 to � − 1 do

(10) compute '1, '2, � et al.
(11) V�,
 ← ���,
 with A�,

(12) ��,
 ← �(�,

, (+ 1)�) with A�,

(13) Part1�,
 ← ���,
 + ��Γ (2 − �) ��+1�,
 with A�,

(14) for & = 1 to do

(15) Part1�,
 ← Part1�,
 − ����+1−��,
 + ����−��,
 with A�,

(16) while 5 ≥ 50 do
(17) ��+1�,
 ← 1/(1 + 2'1 + 2'2) ('1(V�+1,
 + V�−1,
) + '2(V�,
+1 + V�,
−1)) with A�,

(18) if ;� < 9� then
(19) send right boundary to its right neighbor
(20) receive le� boundary of its right neighbor
(21) if ;� < 9� then
(22) send top boundary to its top neighbor
(23) receive bottom boundary of its top neighbor
(24) if ;� > 0 then

(25) send le� boundary to its le� neighbor
(26) receive right boundary of its le� neighbor
(27) if ;� < 0 then

(28) send bottom boundary to its bottom neighbor
(29) receive top boundary of its bottom neighbor
(30) 5 ← max |V − ��+1| with A�,

(31) get global maximum of 5 of all processes
(32) V�,
 ← ��+1�,
 with A�,

(33) record time �2
(34) output �2 − �1
(35) stop parallel environment

Algorithm 1: Parallel algorithm for 2D-TFDE.

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

X

� = 0.2

� = 0.4

� = 0.6

� = 0.8

u
(x
,0
.5
,1
)

Figure 4: �e numerical approximation whose transport is gov-
erned by the TFDE (7) for various � = 0.2, 0.4, 0.6, 0.8when
 = 0.5,� = 1.0.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
X

00.10.20.3
0.40.50.60.7

0.80.9
1

Y

0
0.4
0.8
1.2
1.6
2

Z

0
0.2
0.4
0.6
0.8

1.2
1

1.4
1.6
1.8

2.2
2

Figure 5: �e approximation solution of (7) when � = 0.4 and � =1.0.

of four processes is 4.65 seconds. �e speedup is 3.79. With� = 512, the runtime of one process is 4415.78 seconds and
the runtime of four processes is 1394.99 seconds.�e speedup

6 �e Scienti
c World Journal

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
al

u
e

Exact

Parallel algorithm

x

Figure 6: Comparison of exact solution to the solution of the
parallel algorithm at time t = 1.0.

0

100

200

300

400

500

600

700

800

900

2048 4096 6144 8192 10240
2

2.5

3

3.5

4

4.5

5

R
u

n
ti

m
e

Sp
ee

d
u

p

M

One process

Four processes
Speedup

Figure 7: Performance comparison between one process and four
processes on E5540 with
xed� = 10.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

16 32 64 128 256 512
0

1

2

3

4

5

6

R
u

n
ti

m
e

Sp
ee

d
u

p

N

One process

Four processes
Speedup

Figure 8: Performance comparison between one process and four
processes on E5540 with
xed�.

9 16 25 36 49 64 81

(s
)

E
�

ci
en

cy

Process number

Runtime

E�ciency

82

84

86

88

90

92

94

96

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Figure 9: Scalability of the parallel algorithm on the cluster system.

is 3.16. �e performance of four processes is about 3.2 times
higher than the performance of single process with � =2560.
4.3. Scalability. �e scalability of the parallel algorithm on
the large scale cluster system is shown in Figure 9. �e
technical speci
cations of the cluster system are listed in
Table 1. � is
xed with 10 for all conditions. Each process
has the same (��/9�,��/9�) with � = �� = �� and9� = 9�. � varies from 16650, 33300, and 49950 for 9,
36, and 81 processes. �e runtime of 9 processes is 83.02
seconds and the runtime of 81 processes is 94.08 seconds.�e
parallel e�ciency of 81 processes is 88.24% compared with 9
processes. Here, the parallel e�ciency is de
ned as the ratio
of the runtime of di	erent number of processes with the same
work load on each process.

4.4. Discussion. �e parallel Algorithm 1 will have good
parallel scalability on distributed memory system. From
Figure 3, we can see that each subdomain has only virtual
boundary at every direction (top, bottom, le�, and right).
Assuming that the size of the subdomain is ��,�� (�� >0,�� > 0), the inner iteration of line 16 in Algorithm 1
has about 8���� arithmetic operations with 1/(1 + 2'1 +2'2) precomputed. It needs to establish 8 communications
for neighbors except the global communication for 5. �e
arithmetic operation of each time step besides the inner
iteration is constant as 6����. 6 is bigger than 4 ����.
�e communication data is 4�� + 4�� + 1 grid point.
Assuming that
nishing one arithmetic operation needs time�� and there are � inner iterations, the computing time of each
time step is (6 + 8�)����. Assume that �� is the time to
establish the communication, �� is the transform time for a
grid point, and �� is the global communication time. So, the
total communication time for a time step is �(9�� + 4���� +4���� + ��). �e communication/computation ratio I is as
follows:

I = � (9�� + 4���� + 4���� + ��)(6 + 8�)���� . (8)

�e Scienti
c World Journal 7

Table 2: Impact of the source term on iteration times.

�(,
, �) � = 2.0 � = 3.0
25�1.6

12Γ(0.6) (�2 + 2) sin(C) sin(C
) 284 444

25
12Γ(0.6) 2 sin(C) sin(C
) 253 361

25
12Γ(0.6) sin(C) sin(C
) 245 348

1.0
Γ(0.6) sin(C) sin(C
) 238 336

�e computation time is determined with the multiplication
of ���� and the communication time is determined with
the addition of�� and��. �e extreme of I is as follows:

lim
�� ,��→∞

� (9�� + 4���� + 4���� + ��)(6 + 8�)����
= lim
��→∞

(lim
��→∞

� (9�� + 4���� + 4���� + ��)(6 + 8�)����)

= lim
��→∞

� (4��)(6 + 8�)�� = 0.

(9)

�at means we can enhance the parallel e�ciency by enlarg-
ing the size of subdomain.

�e time � and number of grid points will a	ect the
convergence property. �e exact solution of (7) shows that�(0.5, 0.5, �) = �2 + 1.

(1) �e bigger � becomes, the more inner iterations are

needed. With� = �� = �� = 5,� = �2, the
rst
inner time step �1 needs 5 Jacobi iterations and the last
inner time step �� needs 31 iterations for � = 1.0. For� = 2.0, �1 becomes 7 and �� becomes 61.

(2) �e bigger� becomes, the more inner iterations are
needed. �e � is
xed as 1.0. For� = 10, �1 becomes
6 and �� becomes 66. For� = 10, �1 becomes 3 and�� becomes 136.

�e reason for the phenomenon above is that Δ� (��+1 − ��)
changes dramatically if the source term �(,
, �) is big. �e

iteration times with � = 1.0,� = 15,� = �2 are shown in
Table 2.

�e parallel algorithm is compatible with short memory
principle [15]. �e computing time (6 + 8�)���� will
become small with a smaller6, which is determined by .�e
Gauss-Seidel iteration method will have better convergent
speed than Jacobi iterationmethod, but it is hard to parallelize
the Gauss-Seidel method.

As analyzed in Section 3.1, the computational complexity

is �(�����2). De
ne the following function:
J = log2 (√�2 − �1) . (10)

J varies almost linearly, as shown in Figure 10. Figure 10
shows that the heavy computation is a real challenge from the
point of view of computer science.

16 32 64 128 256 512

w

x

Linear

Serial algorithm
Parallel algorithm

1

2

3

4

5

6

7

Figure 10: �e linear variation of J.

�e heavy memory usage is the other challenge besides
the heavy computation. Ignoring the memory usage of the
coe�cients and the source term ���,
, ���,
 needs 8�����
bytes memory space. It needs 100GB memory with �� =10240, �� = 10240, and � = 1024. As discussed above,
the bigger the ��,�� are, the smaller the I (communi-
cation/computation ratio) is. So, the heavy memory usage
will limit the parallel e�ciency of the parallel algorithm.
�is kind of contradictions exists in many places. One
contradiction is the easy parallelizationwith bad convergence
of the Jacobi iterative method. Another contradiction is the
hard parallelization and good convergence of the Gauss-
Seidel iterative method.

5. Conclusions and Future Work

In this paper, we present a parallel algorithm for 2D-TFDE
with implicit di	erential method. �e parallel solution is
analyzed and implemented with MPI programming model.
�e experimental results show that the parallel algorithm
compares well with the exact solution and can scale well on
large scale distributed memory cluster system. So, the power
of parallel computing for the time consuming fractional
di	erential equations should be recognized.

�e numerical solution for fractional equations is very
computationally intensive. As a part of the future work,
rst,
the numerical solution of high dimensional space fractional
equations has global reliance on almost whole grid points,
which is very challenging for real applications. Second, the
Krylov subspace method with preconditioner will enhance
the convergence for (4) and should be paid attention to.�ird,
accelerating the parallel algorithm on heterogeneous system
[28] should be paid attention to.

Conflict of Interests

�e authors declare that there is no con�ict of interests
regarding the publication of this paper.

8 �e Scienti
c World Journal

Acknowledgments

�is research work is supported by the National Natural
Science Foundation of China under Grant no. 11175253, also
by 973 Program of China under Grant no. 61312701001. �e
authors would like to thank the anonymous reviewers for
their helpful comments also.

References

[1] R. L. Magin, Fractional Calculus in Bioengineering, Begell
House, Redding, Calif, USA, 2006.

[2] F. Liu, I. Turner, V. Anh, Q. Yang, and K. Burrage, “A numerical
method for the fractional Fitzhugh-Nagumo monodomain
model,” ANZIAM Journal, vol. 54, pp. C608–C629, 2013.

[3] H. Ding and C. Li, “Mixed spline functionmethod for reaction-
di	usion equations,” Journal of Computational Physics, vol. 242,
pp. 103–123, 2013.

[4] P. Zhuang and F. Liu, “Finite di	erence approximation for
two-dimensional time fractional di	usion equation,” Journal of
Algorithms & Computational Technology, vol. 1, no. 1, pp. 1–15,
2007.

[5] S. B. Yuste and L. Acedo, “An explicit
nite di	erence method
and a new von Neumann-type stability analysis for fractional
di	usion equations,” SIAM Journal on Numerical Analysis, vol.
42, no. 5, pp. 1862–1874, 2005.

[6] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability
and convergence of the di	erence methods for the space-time
fractional advection-di	usion equation,” Applied Mathematics
and Computation, vol. 191, no. 1, pp. 12–20, 2007.

[7] S. B. Yuste and J. Quintana-Murillo, “A
nite di	erence method
with non-uniform timesteps for fractional di	usion equations,”
Computer Physics Communications, vol. 183, no. 12, pp. 2594–
2600, 2012.

[8] X. Zhang, P. Huang, X. Feng, and L. Wei, “Finite ele-
ment method for two-dimensional time-fractional tricomi-
type equations,” Numerical Methods for Partial Di	erential
Equations, vol. 29, no. 4, pp. 1081–1096, 2013.

[9] O. P. Agrawal, “A general
nite element formulation for frac-
tional variational problems,” Journal of Mathematical Analysis
and Applications, vol. 337, no. 1, pp. 1–12, 2008.

[10] C. Li, F. Zeng, and F. Liu, “Spectral approximations to the
fractional integral and derivative,” Fractional Calculus and
Applied Analysis, vol. 15, no. 3, pp. 383–406, 2012.

[11] N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, “Frac-
tional pearson di	usions,” Journal ofMathematical Analysis and
Applications, vol. 403, no. 2, pp. 532–546, 2013.

[12] P. Zhuang, Y. T. Gu, F. Liu, I. Turner, and P. K. D. V. Yarlagadda,
“Time-dependent fractional advection-di	usion equations by
an implicit MLS meshless method,” International Journal for
NumericalMethods in Engineering, vol. 88, no. 13, pp. 1346–1362,
2011.

[13] C. Tadjeran and M. M. Meerschaert, “A second-order accurate
numerical method for the two-dimensional fractional di	usion
equation,” Journal of Computational Physics, vol. 220, no. 2, pp.
813–823, 2007.

[14] Y.-N. Zhang and Z.-Z. Sun, “Alternating direction implicit
schemes for the two-dimensional fractional sub-di	usion equa-
tion,” Journal of Computational Physics, vol. 230, no. 24, pp.
8713–8728, 2011.

[15] I. Podlubny, Fractional Di	erential Equations, Academic Press,
San Diego, Calif, USA, 1999.

[16] C. Gong, W. Bao, and G. Tang, “A parallel algorithm for the
Riesz fractional reaction-di	usion equation with explicit
nite
di	erence method,” Fractional Calculus and Applied Analysis,
vol. 16, no. 3, pp. 654–669, 2013.

[17] K. Diethelm, “An e�cient parallel algorithm for the numerical
solution of fractional di	erential equations,” Fractional Calculus
and Applied Analysis, vol. 14, no. 3, pp. 475–490, 2011.

[18] J. Yan, G.-M. Tan, and N.-H. Sun, “Optimizing parallel L�
sweeps on unstructured grids for multi-core clusters,” Journal
of Computer Science and Technology, vol. 28, no. 4, pp. 657–670,
2013.

[19] Z. Mo, A. Zhang, X. Cao et al., “JASMIN: a parallel so�ware
infrastructure for scienti
c computing,” Frontiers of Computer
Science in China, vol. 4, no. 4, pp. 480–488, 2010.

[20] F. Chen and J. Shen, “A GPU parallelized spectral method for
elliptic equations in rectangular domains,” Journal of Computa-
tional Physics, vol. 250, pp. 555–564, 2013.

[21] J. B. Haga, H. Osnes, and H. P. Langtangen, “A parallel block
preconditioner for large-scale poroelasticity with highly hetero-
geneous material parameters,” Computational Geosciences, vol.
16, no. 3, pp. 723–734, 2012.

[22] C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU
accelerated simulations of 3D deterministic particle transport
using discrete ordinates method,” Journal of Computational
Physics, vol. 230, no. 15, pp. 6010–6022, 2011.

[23] A. Talamo, “Numerical solution of the time dependent neutron
transport equation by themethod of the characteristics,” Journal
of Computational Physics, vol. 240, pp. 248–267, 2013.

[24] C. Gong, J. Liu, H.Huang, and Z. Gong, “Particle transport with
unstructured grid onGPU,”Computer Physics Communications,
vol. 183, no. 3, pp. 588–593, 2012.

[25] S. Pennycook, S. Hammond, S. Wright, J. Herdman, I. Miller,
and S. Jarvis, “An investigation of the performance portability
of OpenCL,” Journal of Parallel and Distributed Computing, vol.
73, no. 11, pp. 1439–1450, 2012.

[26] J. Gu, X. Gu, and M. Gu, “A novel parallel quantum genetic
algorithm for stochastic job shop scheduling,” Journal ofMathe-
matical Analysis andApplications, vol. 355, no. 1, pp. 63–81, 2009.

[27] F. Salvadore, M. Bernardini, and M. Botti, “GPU accelerated
�ow solver for direct numerical simulation of turbulent �ows,”
Journal of Computational Physics, vol. 235, pp. 129–142, 2013.

[28] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S.
Su, “�eTianHe-1A supercomputer: its hardware and so�ware,”
Journal of Computer Science and Technology, vol. 26, no. 3, pp.
344–351, 2011.

Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

