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Abstract

In this paper, we introduce a novel parallel contact algorithm designed to run efficiently in High Performance Com-
puting based supercomputers. Particular emphasis is put on its computational implementation in a multiphysics finite
element code. The algorithm is based on the method of partial Dirichlet-Neumann boundary conditions and is capable
to solve numerically a nonlinear contact problem between rigid and deformable bodies in a whole parallel framework.
Its distinctive characteristic is that the contact is tackled as a coupled problem, in which the contacting bodies are
treated separately, in a staggered way. Then, the coupling is performed through the exchange of boundary conditions
at the contact interface following a Gauss-Seidel strategy. To validate this algorithm we conducted several benchmark
tests by comparing the proposed solution against theoretical and other numerical solutions. Finally, we evaluated the
parallel performance of the proposed algorithm in a real impact test to show its capabilities for large-scale applications.

Keywords: Contact mechanics, Dirichlet-Neumann boundary conditions, Finite element method, High performance
computing, Domain decomposition approach

1. Introduction

Since decades ago, contact problems have taken an important place in computational solid mechanics. Because
of their relevance and complexity, many numerical procedures have been proposed in the engineering literature.
The pioneering works to treat contact mechanics within the Finite Element Method were done by Francavilla and
Zienkiewicz [1] and Hughes [2]. In these works, they proposed a simple node-based approach that requires node-
matching meshes between contacting bodies and are restricted to small deformations. Since then, the field of com-
putational contact mechanics has experienced a continuous evolution. An example of this are the methods proposed
by Laursen [3], Wriggers and Zavarise [4] or more recently by Yastrebov [5] for the numerical treatment of contact
problems.

The most used methods within finite element framework are the ones with constraint enforcement such as the
penalty method [6, 7, 8] and the classical Lagrange multiplier method [9, 10]. Due to known drawbacks of the
penalty method (see [11]), Lagrange multiplier techniques have become relevant in the domain of constrained prob-
lems. Especially one of its extensions has gained importance in the field of computational contact mechanics: the
Augmented Lagrangian method, which combines advantages of both penalty and Lagrange multipliers and has been
applied successfully to frictionless and frictional contact (see [12, 13, 14]).

With respect to the discretization of the continuum setting, these approaches result in a monolithic system of
linear equations which includes all the unknowns for all the geometries of the mechanical system. Furthermore, the
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discretization of contact problems using implicit solvers requires the construction of contact elements, contact tangent
matrices, and contact residual vectors which incorporate the contact constraints in the global weak form. In almost
all contact problems where the contact zone is a priori unknown, the use of contact elements requires the update of
the mesh graph in a fixed number of time steps. On the other hand, some of the optimization techniques used in
contact problems increase the number of degrees of freedom in the problem, by introducing Lagrange multipliers as
unknowns. Since the number of Lagrange multipliers depends on the active contact surface at each time step, the total
unknowns of the system can vary as the problem evolves.

As an alternative to the previous methods, there are formulations that allow solving problems for each body
separately, with certain boundary conditions at the natural interface. These kinds of methods are named as Dirichlet-
Neumann type contact algorithms, and for a complete overview, the reader is referred to [15, 16, 17, 18, 19, 20]. One of
the pioneering works in this area was done by Krause [15], who solved a frictional Signorini contact problem between
two elastic bodies based on mortar elements for discretization, and a monotone multigrid method as a subdomain
solver. The main idea of this algorithm is to solve in each iteration a linear Neumann problem for one body and a
unilateral contact problem for the other body, by using essentially the contact interface as the boundary data transfer.
Convergence of this algorithm in the continuous setting in its frictionless form has been proved in [16, 19] and
considering friction in [21]. More recently, Yastrebov [18, 22] proposed a method for unilateral frictional contact
in which the contact constraints are replaced by partial Dirichlet-Neumann boundary conditions: normal contact is
introduced as a Dirichlet condition and frictional contact is introduced as a Neumann condition. One of the most
attractive features of this algorithm is its simplicity and stability in the fulfillment of the geometrical constraints.

As parallel computing platforms are nowadays widely available, solving large engineering problems on high-
performance computers in supercomputing facilities is a possibility for any engineer or researcher. Due to the memory
and computing power that contact problems require and consume, they are good candidates for parallel computation.
Industrial and scientific realistic contact problems involve different physical domains and a large number of degrees
of freedom, so algorithms designed to run efficiently in high-performance computers are needed. Nevertheless, the
parallelization of the solution methods which arises from the classical optimization techniques and discretization
approaches for the solution of contact problems present some drawbacks and difficulties. Few works in the computa-
tional contact mechanics literature have been devoted to parallel methods, also reporting their difficulty and effort to
parallelize this kind of problems [23, 24, 25, 22]. In the finite element formulation, the contact element matrices are
assembled in the global structural matrix of the system. Since traditional contact formulations are based on contact
elements that create additional node connectivities, from a parallelization point of view this presents some drawbacks
when the contact area changes during execution time. Sliding is a very frequent phenomenon in contact problems that
requires the modification of node connectivities at the boundary contact zone due to the creation and destruction of
contact elements. Since the contact area changes during an incremental solution procedure, the mesh graph must be
updated in a fixed number of time steps. From the point of view of the parallel resolution, this is a significant draw-
back due to its computational expensiveness. A dynamic repartitioning must be done to redistribute the updated mesh
graph to the different processors. On the other hand, some contact methods use Lagrange multipliers as unknowns,
which also affects the global structural matrix by dynamically modifying the number of degrees of freedom as the
contact area changes.

Motivated by the fact that standard contact algorithms are not a suitable alternative for efficient parallelization, we
introduce a novel contact algorithm that can run efficiently in High Performance Computing (HPC) based supercom-
puters. In this paper, we put special emphasis on its computational implementation. This algorithm, which is based
on the method of partial Dirichlet-Neumann boundary conditions (PDN) proposed by Yastrebov [18], is designed to
solve nonlinear contact problems between rigid-to-deformable bodies in a whole parallel framework. One of the main
distinctive characteristics of this algorithm is that the contact is tackled as a coupled problem. As a consequence, the
bodies in contact are treated separately, in a staggered way. Then, the coupling is performed through the exchange of
boundary conditions at the contact interface, following a Gauss-Seidel strategy. As this approach solves each body
separately, there is no need to increase the degrees of freedom of the problem or to redefine the mesh graph at different
time steps, since no contact elements and no Lagrange multipliers are used. The mesh partitioning is only done at the
beginning of the execution, as a preprocess task, without restricting the partitioning algorithm. The contact detection
is based on an Eulerian-Lagrangian system analogy, in which the geometry of the rigid body is used as a reference
for the detection of contact. Due to the particular characteristics that this algorithm presents, it can be interpreted as a
black-box scheme that can be used with any parallel finite element code. All the reasons enumerated previously make
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this algorithm suitable for solving large-scale contact problems on parallel computers.
The rest of this paper is outlined as follows: Section 2 summarizes the formulation for unilateral contact problems.

Section 3 describes the method of partial Dirichlet-Neumann which is the basis of the proposed algorithm. Then,
Section 4 describes the computational implementation and the parallel aspects which are required for an HPC finite
element code. Section 5 includes a series of benchmark problems for the verification and validation of the proposed
algorithm. Some of these benchmark problems are used to evaluate the computational performance of the proposed
algorithm in Section 6. Finally, the conclusions of the present work are summarized at the end of this article.

2. Formulation of unilateral contact problems

2.1. Unilateral normal contact

n

n0

(X,t)

Figure 1: Reference (Ω0) and current (Ω) configurations of a deformable body in unilateral contact with a rigid plane.

Let’s assume the motion of a deformable body approaching to a rigid plane, see Fig. 1. The motion is described
with respect to a fixed orthonormal coordinate system with basis vectors {ex, ey}. All the points that belong to the body

are described by a vector X in the reference configuration (Ω0) and by a vector x(X, t) in the current configuration (Ω)
at time t. Being the rigid plane in this position, the motion of any body in space is then restricted to y ≥ 0 from the
rigid plane. Then, we can represent this restriction by the following displacement contact constraint:

g(x) = x · ν ≥ 0, (1)

where g(x) is the gap between the current point x of the body and the rigid plane and ν = en is a unit vector normal
to the rigid plane pointing to the area of motion. In other words, Eq. (1) states that any point of the body at any time
can not penetrate the rigid plane.

Defining the displacement of any point of the body as u = x − X, we can express Eq. (1) as:

g(u) = u · ν + g0 ≥ 0, (2)

where g0 = X · ν is the initial gap. If the body retains its integrity, the non-penetration condition given by Eq. (2)
is applied only to the surface points ∂Ω, precisely to the potential contact zone (Γc) in the current configuration. Γc

can be splitted into two nonintersecting sets: the active contact zone Γ̄c (points which are in contact) and the inactive
contact zone Γc\Γ̄c (points which are not in contact). The active contact zone in the actual configuration is defined by:

x ∈ Γ̄c if and only if g(x) = x · ν = 0, (3)

while for the reference configuration, the active contact zone can be defined by:

X ∈ Γ̄0
c if and only if X · ν = −u · ν. (4)

3



From the definitions in Eq. (3) and Eq. (4) we observe that the active and inactive contact zones are a priori
unknowns of the problem. Only in some specific problems, given the potential zone we can predict a priori the active
contact zone at each instant of time.

When the contact between the body and the rigid plane occurs, a contact pressure appears in the active contact
zone in order to prevent the penetration. This pressure should be zero in the inactive contact zone and negative in the
active contact zone:

σn ≤ 0 at Γc. (5)

Combining the non-penetration condition in the active zone given by Eq. (3) and the definition of the contact
pressure by Eq. (5) we get the non-penetration-non-adhesion condition:

σn g(x) = 0 at Γc. (6)

All together, the set of conditions expressed in Eq. (1), Eq. (5) and Eq. (6) form the Hertz-Signorini-Moreau law
of unilateral normal contact:

g ≥ 0, σn ≤ 0, σn g = 0. (7)

2.2. Balance of momentum including contact
The nonlinear contact problem can be written as a boundary value problem, given the following equilibrium

condition in Ω and boundary conditions on ∂Ω, which includes the Hertz-Signorini-Moreau law for normal contact:

∇ · σ + f
v

= 0 in Ω

σ · n = σ0 on ΓN

u = u0 on ΓD

g ≥ 0, σn ≤ 0, σn g = 0, σt = 0 on ΓC

(8)

being σ the Cauchy stress tensor, f
v

a vector of volumetric forces, σ0 a set of prescribed tractions and u0 a set of
prescribed displacements. Over ΓC we have imposed the contact boundary conditions: g represents the gap between
contacting bodies, σn is the normal contact pressure and σt is the tangential stress. The tangential stress equal to zero
(σt = 0) in Eq. (8) characterizes a frictionless contact case.

2.3. Interpretation of contact Hertz-Signorini-Moreau conditions
A contact problem can be directly interpreted as finding the active contact zone and the contact pressure which

has to be applied in order to fulfill the contact constraints. However, the problem can be also interpreted from another
point of view: instead of prescribing the pressure at the active contact zone, we can impose a displacement according
to the contact constraints. In what follows, and without loss of generality, we assume a frictionless case.

The set of normal contact conditions expressed by Eq. (7) can be separated into two parts for active Γ̄c and inactive
Γc\Γ̄c contact zones:

{
g = 0, σn < 0, σt = 0 at Γ̄c (9a)
g > 0, σn = 0, σt = 0 at Γc\Γ̄c (9b)

According to Eq. (2) and the definition of the active contact zone given by Eq. (4), the first term of Eq. (9a) can be
written as follows:

g = 0 ⇐⇒ ν · u = −g0 ⇐⇒ un = −g0 (10)

Eq. (10) shows that the no-penetration condition represented by Eq. (2) can be interpreted as a Dirichlet boundary
condition. In contrast, the condition represented by Eq. (9b) can be interpreted as a singular Neumann boundary
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condition σt = 0 (free boundary) for the inactive zone. Considering the previous interpretations, we can rewrite the
Hertz-Signorini-Moreau conditions of Eq. (9a) and Eq. (9b) as:

{
un = −g0, σt = 0 for x ∈ Γ̄c (11a)
σ = 0 for x ∈ Γc\Γ̄c (11b)

Even more, we can rewrite Eq. (11a) using the condition given by Eq. (5) in the definition for the active zone:

un = −g0, σt = 0 for {x | x ∈ Γc and σn(x) < 0}. (12)

In Eq. (11a) (and Eq. (12), which is equivalent) we have replaced the contact conditions on the active contact zone
Γ̄c by a partial Dirichlet boundary condition (un = −g0) and a partial Neumann boundary condition (σt = 0).

Writing Hertz-Signorini-Moreau law as expressed in Eq. (7) in the form of Eqs. (11a) and (11b) gives a better
understanding of the normal contact boundary conditions for unilateral contact problems. From a numerical point of
view, it is easier to prescribe a displacement and then check the sign of the contact pressure, rather than to prescribe a
contact pressure in an unknown active contact zone (which is determined by a zero value of the gap).

3. Method of partial Dirichlet-Neumann boundary conditions

The main idea of this method is to replace the geometrical constraints due to normal and tangential contact by
Partial Dirichlet-Neumann (PDN) boundary conditions in the case of unilateral contact with an arbitrary rigid sur-
face [18]. In particular, the geometrical constraints due to normal contact are imposed by means of Multi-Point
Constraints (MPC). From a geometrical point of view, MPC can be interpreted as Dirichlet boundary conditions that
allow sliding of the contacting node only in the tangential plane, assuming a frictionless case. For the enforcement
of MPC a chosen degree of freedom of each contacting node –slave dof us– is written as a linear combination of the
other dofs of the same node –master dofs ui

m, i = 1, . . . ,M–:

us = αiui
m + β, (13)

where αi and β are scalar coefficients, and M is the total number of master dofs. The slave dof can be chosen
arbitrarily for each contacting node but it is required that αi < ∞.

Fig. 2 shows an example of MPC boundary conditions for a 2D frictionless unilateral contact. The nodes of the
deformable body which have penetrated the rigid body are identified and projected following an arbitrary direction
to the rigid body surface. Then, a tangent line to the contact surface of the rigid body, which contains the projection
point, is computed. This tangent line defines the relation for the MPC boundary condition.

Rigid

Deformable
v

Figure 2: MPC boundary conditions for unilateral frictionless contact.

5



3.1. Mathematical formulation
Let xi be the coordinates of a contacting node over Γc in the i-th iteration. Then, the incremental displacement

vector is given by:

ui = xi − xi−1. (14)

The incremental displacement of each degree of freedom is given by splitting the vector u into the reference frame
basis:

ui
j = ui · e j, (15)

where e j is a set of basis vectors.
Otherwise, any rigid surface can be described by the parametric representation:

r(s, t) = x(s, t) e1 + y(s, t) e2 + z(s, t) e3. (16)

Where s and t are the surface parameters. Without any loss of generality, let us suppose that locally exists a
function f such that:

z = f (x, y), (17)

where x, y and z are coordinates of the surface point in the chosen coordinate system:

x = x(s, t) e1, y = y(s, t) e2, z = z(s, t) e3. (18)

Then, using the definition given by Eq. (14), the geometrical constraint given by Eq. (1) can be written in the
following way:

xi
3 ≥ f (xi

1, x
i
2) ⇐⇒ ui

3 ≥ f (xi−1
1 + ui

1, x
i−1
2 + ui

2) − xi−1
3 . (19)

We can compute the tangential plane at a given point {x∗, y∗} on Γc by the following expression:

P : z =
∂ f
∂x

∣∣∣∣
{x∗,y∗}

(x − x∗) +
∂ f
∂y

∣∣∣∣
{x∗,y∗}

(y − y∗) + f (x∗, y∗). (20)

which can also be expressed as,

P : z = a(x − x∗) + b(y − y∗) + c (21)

where,

a =
∂ f
∂x

∣∣∣∣
{x∗,y∗}

, b =
∂ f
∂y

∣∣∣∣
{x∗,y∗}

, c = f (x∗, y∗). (22)

Then, the multi-point constraint to be imposed to the point {x∗, y∗} is given by:

u3 = au1 + bu2 + c − xi−1
3 , (23)

Additionally, it is necessary to check that there are no artificial traction forces in the contact interface defined
by the MPC. The reaction force R appearing at the contacting nodes, where the MPC have been imposed, has to be
checked: the normal contact force should point in the same direction as the normal to the rigid surface:

R · n ≥ 0. (24)

Otherwise, the MPC imposed at the contacting node must be removed. Fig. 3 shows an example of an iterative
process for the MPC update process. Once penetrated nodes are detected, MPC boundary conditions are imposed on
such nodes. When equilibrium is reached, a search for non-physical adhesion nodes is performed. If adhesion nodes
are detected, MPC boundary conditions are released for those nodes and the system is solved again. This procedure
is repeated until no adhesion node is found.
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(a) (c)(b) 2(d)

Figure 3: Iterative process for the MPC method. (a) Initial configuration for the two-body contact problem. (b) Four nodes from the deformable
body have penetrated to the rigid body. (c) Application of the Dirichlet condition and detection of two adhesion nodes (first iteration). (d) Nodes
release and equilibrium are recomputed (second iteration).

4. Computational implementation

We now present the computational implementation of the parallel algorithm, which solves the unilateral contact
problem from a coupled problem point of view. In this approach, each body is treated separately, using one instance of
the computational code for each body (multi-code approach). The contact interaction is performed by the transference
of Dirichlet boundary conditions at the contact interface. As we tackle a unilateral contact problem (contact between
a rigid body and deformable body), the rigid body can be a finite element mesh (current approach) or an analytic
expression describing its boundary.

Using a parallel computational code allows us to split each contacting body into several subdomains. In the
implementation presented in this work, the displacements of each body are solved independently in isolated code
instances. Thus, each body can be treated as a standalone problem with extra boundary conditions due to contact. The
mesh is partitioned independently in both code instances at preprocessing time, not creating any restriction to the mesh
partitioner. In this work we use the graph-based partitioner METIS [26], which maximizes the load balance while
minimizing the sizes of the subdomain interfaces. The unilateral contact condition is enforced via the transference of
information from the rigid to the deformable body. This algorithm can be interpreted as a black-box method, easily
adaptable to any finite element computational code. As the solution procedure is performed through the exchange of
boundary conditions, this algorithm can be implemented using any parallel computational code since the basis of the
contact problem resolution is the exchange of specific boundary information.

To better describe the computational implementation of the contact algorithm, we divide this section into two
subsections: (a) contact searching and communication, and (b) contact resolution algorithm. Strong emphasis is
dedicated to the latter as it is the main contribution of this work.

4.1. Contact searching and communication

The first step of any contact algorithm is the contact detection. This means to detect interpenetration between
the bodies that are prone to contact. In a parallel contact simulation, contact can occur between surfaces owned
by different computational nodes (i.e. partitions or subdomains), according to the distribution done by the mesh
partitioner. To search for contact, frequent global searches (i.e. unstructured communications) must be done across all
the computational nodes. A contact situation in which two partitioned bodies get in contact is depicted in Fig. 4. Due
to the high load of communications that parallel contact detection require, it is a relevant topic in the field of contact
mechanics [24].

For the localization of contact and communication between subdomains, we use PLE++, which is an adaptation
of the Parallel Location and Exchange (PLE) library [27], originally developed by Électricité de France (EDF). Due
to the black-box characteristics of the algorithm presented in this work, its computational implementation is not
restricted to PLE++ and can be done using any tool capable of detecting overlapping and exchanging information
between subdomains.

PLE++ [28] is a parallel 2D and 3D locator and communication tool, used to detect interpenetration and to com-
municate and transfer information between subdomains. PLE++ is a C++ environmental library, with the capability of
parallel localization of nodes in overlapping subdomains and communication between parallel applications in C, C++,
Fortran, or Python. Basically, PLE++ allows detecting those nodes belonging to Ωb which have penetrated into Ωa, as
shown in Fig. 4. It also performs the inverse operation: identifying the nodes of Ωa which have penetrated into Ωb.
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Rigid

Deformable

Figure 4: Schematic representation of contact between two bodies partitioned into different subdomains.

As PLE++ is a parallel tool, the localization is done at the subdomain level. Moreover, PLE++ allows to communicate
and transfer of information between the subdomains involved in the localization process. This is of crucial necessity
for solving coupled problems, which are based on the exchange of information between partitions at the boundary
interface.

In Fig. 5 we show a discretized physical domain formed by two non-conforming partitions Ωa and Ωb. A total
of seven processors are used to solve the system, distributed as follows: three processors are assigned to Ωa and
four to Ωb. Some boundary nodes of the subdomain Ω2

a (processor 2) are in contact with the interface boundary of
subdomains Ω1

b (processor 4) and Ω4
b (processor 7). Thus, only processors 2, 4, and 7 are involved in the coupling

between partitions Ωa and Ωb. In order to establish the connections needed for the resolution of the contact problem,
each processor must know exactly which of its nodes (if any) are contained by any other subdomain. On the other
hand, if a given processor contains external nodes (i.e. nodes owned by other processors), it must know the number
and coordinates of those nodes. Also, that processor must know which of its elements contain each of the external
nodes and the processor to which those nodes belong. To summarize how PLE++ does the contact searching and
communication its main algorithms are described below. The reader is referred to [28] for more details.

4.1.1. Searching and localization

Algorithm 1 Search/localization

1: Qk
a = GetBox(Ωk

a)
2: for l = {1, 2, ..., pb} do
3: Ql

b = S endRecvl(Qk
a)

4: if Qkl
ab = Qk

a ∩ Ql
b , ∅ then

5: Idk
a = WithinBox(Rk

a,Q
k
a ∩ Ql

b)
6: rk

a = Rk
a(Idk

a)
7: Idk

ac
= WithinBox(Ωk

a,Q
k
a ∩ Ql

b)
8: ωk

a = Ωk
a(Idk

ac
)

9: rl
b = S endRecvl(rk

a)
10: Idrb

ac
= LocateInCells(rl

b,ω
k
a)

11: Idra
ac

= S endRecvl(Idrb
ac

)
12: IDk

a[l] = (Idk
a, Idra

ac
)

13: end if
14: end for

In Algorithm 1, we show how PLE++ performs the first step named as searching and localization of the contact
nodes. For the sake of clarity, we are going to suppose the case where a local processor, k is that belonging to Ωa

while the remote ones, l, are those from Ωb. First of all, a global search is performed creating a global bounding box
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Subdomains

Processors

mpirun -np 3 solver-a -np 4 solver-b MPMD mode
syntaxis

:

Exchange 
of data

Rigid

Deformable

7

Figure 5: Example of a discretized physical domain formed by two non-conforming meshes with different number of partitions (subdomains).

for each of the subdomains of bodies Ωa and Ωb. Let’s assume that this algorithm is executed in a local processor
k. The first task of the algorithm is to share with all remote processors (line 2) the geometric definition of each local
bounding box (line 3). After this information is shared with all subdomains through the SendRecv instruction, each
local processor compares its bounding box with all bounding boxes received from the remote processors. When there
is an overlap between subdomains from different bodies (line 4), the next step is to store the list of node identifiers Idk

a,
where Rk

a is a list of local nodes which lie inside the overlapping region Qkl
ab. The coordinates list rk

a (line 6) is obtained
through the array of the local nodes. Additionally, it is important to know the information about the elements and their
nodal connectivity. The element identifier Idk

ac
is an array of local element numbering from Ωk

a, which allows to store
the element connectivities ωk

a (line 8). After that, the subset of local nodes rk
a is shared with all remote processors

which fulfill the condition Qk
a ∩ Ql

b , ∅ (line 9). After this information is collected, a local search to identify which
remote nodes lie inside the local elements (line 10) is conducted. This is performed using an octree search and linear
interpolation using barycentric coordinates strategies, see [28]. Finally, the last step of the algorithm is to share the
identifiers Idrb

ac
to the remote processor with the SendRecv instruction (line 11) and to store the node identifiers Idk

a

and the element identifiers Idra
ac

in the assembly array IDk
a[l] (line 12). This array serves to conduct the exchange of

information for the coupling between bodies.

4.1.2. Data exchange
Algorithm 2 describes the data exchange strategy. The communication between one of the subdomains Ωk

a and
another from Ωl

b (and vice versa) only occurs when Qk
a ∩ Ql

b , ∅ condition is fulfilled (line 2). For instance, in the
example shown in Fig. 5, the exchange would be between Ω1

a and the two subdomains Ω1
b and Ω4

b. The exchange step
consists of doing first the interpolation of the local properties vk

a to the remote nodes (rl
b) with the aim of getting the

interpolated values vl
b at Ωl

b (line 3). This is done locally in each processor and then the values are communicated
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using the Message Passing Interface (MPI). In the case of unilateral contact problems, the exchange of data related to
the contact force can be straightforward without any interpolation. The rigid body only receives the force, which is the
sum of the nodal forces of the deformable body at the contact region. On the contrary, the contact between deformable
bodies requires conservative interpolation methods for the exchange of data between bodies, see [28] and [29].

Algorithm 2 Data exchange
1: for l = {1, 2, ..., pb} do
2: if Qkl

ab = Qk
a ∩ Ql

b , ∅ then
3: Interpolationa(vk

a, r
l
b)→ vl

b
4: Communicationab(vl

b)
5: end if
6: end for

4.2. Contact algorithm

One of the most important advantages of the proposed contact algorithm is its flexibility to solve each body
separately depending on the complexity of the problem. In the present paper, the resolution of the rigid body is
performed using a Runge-Kutta 4th order scheme [30] while the deformable body is solved using a Newmark β
implicit scheme [31], but any solution scheme suitable for each code instance can also be used. The solution scheme
used to solve the deformable body is designed to be used in implicit solvers.

The workflow of the parallel contact algorithm is shown in Fig. 6 and the algorithm as a coupling scheme is
shown in Fig. 7. The execution is done in a staggered way, so the first execution is the rigid body and then follows
the deformable body, see Fig. 7. This solution process can be interpreted as a Gauss-Seidel coupling scheme with
weak coupling. At each time step, contact detection is done after the displacements update of the rigid body but
before the resolution loop of the deformable body. In other words, we use the updated mesh of the rigid body at time
tn+1 as the base mesh for the localization of penetrated nodes of the previous time step (tn) mesh of the deformable
body. At this instant, both instances synchronize and the localization is executed. This procedure is repeated at each
time step and the contact algorithm is triggered only when at least one boundary node of the deformable body has
penetrated inside the rigid body. When this happens, the rigid body computes and sends to the deformable body all the
information required for the enforcement of the MPC boundary conditions, which are used as additional constraints to
find the equilibrium configuration of the deformable body. In the following subsections, we explain in further detail
this procedure.

(a) (b) (c) (d) (e) 

dn

n

t R Deformable

Rigid

v

Figure 6: Workflow of the parallel contact algorithm (contact searching and resolution). (a) Interaction. (b) Overlapping. (c) Contact searching.
(d) Projection and Dirichlet condition. (e) Equilibrium.

4.2.1. Rigid body
At this stage of the contact algorithm, the aim is to compute the local coordinate system for each contacting node

and its distance to the rigid body boundary, which will be later used as an MPC in the deformable body, as shown in
Fig. 8a. When contact is detected, the projection algorithm (Algorithm 3) is executed concurrently (i.e. in parallel)
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Figure 7: Multicode Gauss-Seidel coupling algorithm for the parallel contact between rigid and deformable bodies.

in all the processors which belong to the rigid body partition. The projection direction v must be given as an input by
the user and it is used for determining the boundary element where the local system has to be created. This algorithm
is sufficiently general in order to consider the case where the projection lies in a boundary segment of a different
processor than the one which owns the detected node (see Fig. 8b, node 3). The strategy followed in this work is
to communicate to all the processors of the rigid body partition the information of the complete contact boundary
definition (lines 1 to 4). After line 4 is executed, each processor of the rigid body partition has a local copy of the
coordinates of the boundary nodes and the boundary element connectivities of the complete contact boundary of the
rigid body. For each of the npoin loc b nodes of the deformable body that have penetrated the rigid body (line 5),
the algorithm loops over each boundary element nboun loc a of the contact boundary of the rigid body (line 6) and
builds a plane πi (or a line, in a 2D case) using the geometrical information of the boundary element (line 7). Then,
the algorithm projects the detected node j to the plane πi in the direction v (line 8). Afterwards, the algorithm checks
if the projection of the node j to plane πi lies inside the boundary element i (line 9). If this is true, the algorithm
returns the normal vector, n j, tangent vector, t j, and normal distance, d j from node j (lines 10 to 11). This procedure
is schematically represented in Fig. 8. The output of this computation is a normal-tangent orthonormal basis for each
of the penetrated nodes. This orthonomal basis is created on the boundary element defined by the projection of the
contact node, see Fig. 8a. The normal distance, d j, which corresponds to the distance from the point to the normal
tangent line, is also computed.
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Algorithm 3 Rigid body algorithm (Code 1)
Require: v, npoin loc b return n, t, d

1: Communicate local number of rigid body boundary elements
2: Get total number of rigid body boundary elements: nboun loc a
3: Communicate local boundary nodes coordinates
4: Get all boundary nodes coordinates : bocod loc a
5: for j = 1, npoin loc b do
6: for i = 1, nboun loc a do
7: Create plane πi : ax + by + cz + d
8: Projection node j to plane πi using v
9: if Projection is inside boundary element i then

10: Compute local basis: n j, t j

11: Compute normal distance: d j

12: end if
13: end for
14: end for

After the rigid body’s code instance has computed all the information required for each contacting node, the next
step is to send this data (exchange) to the deformable body, as shown Fig. 7 (step 2). This exchange of information is
done via the PLE++ tool, described in Sec. 4.1. Each processor of the rigid body that has detected a contacting node
will send the orthogonal basis and normal distance to the processor of the deformable body which owns that node.
Fig. 8b shows an example where the rigid body is divided in 3 subdomains while the deformable body is divided in
5 subdomains. Node 1 ( j = 1), which belongs to the deformable body’s contact surface is detected by processor 1
(subdomain 1) of the rigid body. Once the orthogonal basis and normal distance are computed, this information is sent
to processor 4 (subdomain 1) of the deformable body, as this is the processor/subdomain which owns that node. A
similar procedure is performed for node 3 ( j = 3), where the projection of this node lies on a boundary which belongs
to processor 2 but it is detected by processor 3. In this case, the projection is transferred to the appropriate boundary
(subdomain 2) as each of the subdomains of the rigid body know the complete contact boundary information of the
whole domain.

4.2.2. Deformable body
The exchange of the projection data between the rigid and deformable body is produced after the end of the

execution of Algorithm 3. This means that after the contact detection, the code instance in charge of the solution of
the deformable body is on hold waiting for the rigid body instance to finish the execution of Algorithm 3. Then, the
execution of the code instance in charge of the rigid body stops and the Algorithm 4, which is executed concurrently
by each processor that belongs to the code instance in charge of the deformable body, starts. This staggered execution
is shown in Fig. 9.

Algorithm 4 Deformable body algorithm
Require: npoin loc b, n, t, d

1: Initialize all nodes: tag contact j← 0
2: for j = 1, npoin loc b do
3: tag contact j = 1
4: Construct rotation matrix T j with n j, t j

5: Set Dirichlet displacement, d j

6: end for

Each of these processors loop over the npoin loc b nodes (line 2). These nodes, which belong to the boundary
of the deformable body, are marked as contact nodes (line 3). Next, a rotation matrix is built for each of these nodes
using the information received by the rigid body (line 4). Finally, a prescribed displacement (Dirichlet condition) is
applied to each of the npoin loc b nodes using the normal distance d j to the tangent plane (line 5). Both, the rotation
matrix and the prescribed displacement are used for the enforcement of the MPCs.
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Figure 9: Staggered execution of rigid and deformable body code instances for the resolution of contact at tn+1.

The effect of the MPC for each contacting node is that they restrict their movement along the tangential plane
located at the projected point in the contact surface of the rigid body, see Fig. 8a. To avoid the introduction of
additional degrees of freedom in order to solve this kind of constraint, we rotate locally the coordinate system of
each node j using the matrix T j and enforce a homogeneous Dirichlet boundary condition along the normal direction.
Once we get the equilibrium solution of the deformable body, we rotate back the local coordinate system of all the
contacting nodes, to transform the solution to the global x − y reference frame.

For a general 3D case, the rotation matrix T j for the node j is constructed as follows:

T j =

 nx t1,x t2,x
ny t1,y t2,y
nz t1,z t2,z

 , (25)

where n is the normal vector and t1 and t2 the tangential vectors associated to node j. In a 2D problem, only one
tangent vector is needed.

The algorithm which controls the system resolution and the nodes’ release in a parallel execution is shown in
Algorithm 5. This algorithm is executed concurrently in each processor of the deformable body partition at each time
step.

After the contact constraints enforcement, the resultant linear system of equations for the deformable body is
solved. The result of this procedure is the equilibrium configuration of the deformable body given the MPC imposed
by contact (lines 1 to 7 of Algorithm 5). Once the convergence is achieved, reactions are calculated in each contact
node (line 9). The next step is to check if any of the contact nodes is in artificial adhesion (line 10). If this is the case,
the MPC of the node is released (line 11) and the system is solved again. This procedure is repeated until all contact
nodes in artificial adhesion are released.

In general, the nodes which are subjected to artificial adhesion are owned by subset of all the processors which
own the totality of the contact nodes. As Algorithm 5 is executed concurrently by all processors, this implies that the
processors which own the adhered nodes will continue the execution of the algorithm while the rest will exit the loop
as they converged. As it is necessary to keep all processors executing Algorithm 5 once adhesion nodes are detected,
it is crucial to synchronize the execution of all processors. This is done by communicating to all the processors the
convergence flag (lines 15 to 18). By doing this, it is assured that all processors exit the loop simultaneously when no
adhesion node is longer detected.
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Algorithm 5 System resolution algorithm for an implicit time integration scheme
1: Update boundary conditions
2: Assembly of right-hand-side and system matrix
3: Set initial guess for inner iterations
4: not converged← 1
5: while not converged == 1 do
6: call Newmark-β implicit scheme
7: Check convergence Newton iterations
8: if not converged == 0 then
9: Compute reactions R on each contact node i

10: if nodes to release then
11: Release nodes
12: not converged = 1
13: end if
14: end if
15: call MPI_SUM( not converged )
16: if not converged >= 1 then
17: not converged = 1
18: end if
19: end while

5. Benchmark tests

In this section we verify and validate the parallel contact algorithm in 2D and 3D examples. The algorithm
described in the present paper is implemented within an environment designed for heterogeneous problems in compu-
tational mechanics, which is the multiphysics, multiscale and massively parallel code Alya [32]. Taking profit of the
flexibility and generality of the algorithm presented in this work we use a multicode scheme. Under this scheme, the
displacement field of each body (rigid and deformable) is solved using different instances of the BSC’s in-house Finite
Element Code, Alya, while the contact detection and exchange of contact information between instances is done by
PLE++ [28]. It is worth highlighting that in all the benchmarks presented in this section, both rigid and deformable
bodies are discretized with a finite element mesh to assess the geometrical localization algorithm. This methodology
is flexible enough to deal with any kind of geometry and it enables the extension of the current unilateral contact
algorithm to deformable-to-deformable contact problems. The Implicit Newmark-Beta time integration scheme [31]
using β = 0.65, γ = 0.9 and α = 0 is used for the non-linear iterations of the deformable body and an iterative
Conjugate-Gradient solver with diagonal preconditioning is used for the resolution of the algebraic system. With
respect to the rigid body, a 4th order Runge-Kutta scheme [30] is used in all cases. All the simulations are conducted
in MareNostrum4 supercomputer. This cluster has 3456 nodes, each of them with 48 cores Intel Xeon Platinum @
2.1 [GHz], giving a total core count of 165 888 cores.

5.1. Hertz contact problem

The Hertz contact problem is a classical example for verifying the physics of the proposed contact algorithm. This
problem consists of a circular and infinitely long cylinder of radius R and length l resting on a flat rigid foundation.
The cylinder is subjected to an uniform load along its top F/l and it is constructed of an homogeneous, isotropic,
elastic material with Young’s modulus E and Poisson’s ratio ν, see Fig. 10. Taking that l >> R, we can assume a
problem of plane strain. No friction is assumed to exist on the contact surface.
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Figure 10: Physical model of the Hertz contact problem

The Hertz solution (see [11]) yields a contact pressure distribution of:

P =
2F
πb2l

√
(b2 − x2), (26)

where F/l is the load per unit length and b is the half-width of contact surface defined by:

b = 2

√
FR(1 − ν2)

πlE
. (27)

We solve an equivalent problem in 2D and 3D, as depicted in Fig. 11. In both models, we apply a prescribed
displacement at the topmost edge (2D model) or face (3D model). Taking profit the symmetry of the problem only
one-quarter of the cylinder is modeled. It is worth mentioning that the 3D case, a cylinder of unit thickness is modeled.
In order to impose the plane strain condition, the out-of-plane displacements are fixed on the two exterior faces, see
Fig. 11b. The 2D model is meshed with quadrilateral plane strain elements, while the 3D case is meshed with 8-node
linear solid elements using full integration.

In this example, the cylinder has a radius of 0.254 m, Young’s modulus of 206 GPa and Poisson’s ratio of 0.3.
The vertical displacement imposed is 10.16 × 10−3 m. The total time of the simulation is set to 1 s with a prescribed
time step of 0.1. The maximum contact pressure obtained for each numerical model is Pmax = 18.427 GPa which
corresponds to a distance of (x = 0). By combining Eqs. (26) and (27) we can isolate the variable F/l in order to
compute b, which results in b = 41.18 × 10−3 m.

A comparison of the computed contact pressure with the Hertz solution (Eq. (26)) is given in Fig. 12. We can
observe a good agreement between analytical and numerical solutions for both dimensions. When the distance is
higher than 0.04 m, the contact pressure differs from the theoretical solution due to the coarse discretization in this
rounded region. On the contrary, the contact pressure is accurately predicted at the center region where the mesh is
refined. Thus, it is advisable to have a dense mesh or even quadratic elements when dealing with rounded shapes.

5.2. 3D indentation test
This example solves a 3D indentation test, which consists of a rounded-head rigid indenter and a deformable beam,

see M. Rivero [29] for more details. The physical model for this problem is shown in Fig. 13a. The dimensions of the
rigid body (indenter) are: ri = 1 m and wi = 0.5 m, while the deformable body (beam) are hb = 0.25 m, lb = 1.5 m and
wb = 0.3 m. The relative position of the indenter with respect to the beam is given by ax = 0.25 m and az = 0.1 m and
ay = 0.01 m (gap). The beam is modeled with an hyperelastic Neo-Hookean formulation [33] and finite strains, with
material properties Eb = 6.896 × 108 Pa (Young modulus) and νb = 0.32 (Poisson ratio). The prescribed displacement
by the indenter along the vertical axis is δ = 0.11 m, while the bottom part of the beam is fixed in all directions. The
beam is meshed with 8-node linear solid elements and the indenter is meshed with 4-node linear tetrahedrons, both
element types with full integration. The mesh of the model contains 224 640 elements for the beam and 15 960 for the
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Figure 12: Contact pressure versus position for the Hertz contact problem.

indenter. A non-linear static analysis is performed with a total time of the simulation of 1 s and a fixed time step of
0.025.

To test the parallel behavior of the contact algorithm we solve this problem using 12 subdomains for the beam
and 24 for the indenter, see Fig. 13b. It is important to remark that the contact zone shares several subdomains, so the
localization of nodes and their communication for data transfer between instances and partitions is done dynamically.

The deformed shape of the beam and the forces originated at the contact zone are respectively shown in Fig. 14
and Fig. 15.

In this example the numerical predictions are compared against the solution obtained by the FE code Code_Aster
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Figure 13: (a) Physical model of the 3-d indentation test. (b) Domain decomposition of the mesh and boundary conditions [29].

Figure 14: Beam’s displacement in y-direction due to an indenter’s displacement of 0.11 m and assuming an initial gap of 0.01 m.

[34]. The different displacements and forces at the contact region are shown in Fig. 16 for two different paths. Path
a corresponds to the center nodes located along the length of the beam, while path b corresponds to the center nodes
along the width direction.

In overall, we observe a very good agreement of the results. The differences observed in Fig. 16 can be explained
by the fact that we are comparing two different approaches for the resolution of unilateral contact problems. These
differences can be attributed to the different formulations used in Alya and Code_Aster for finite strains.

The convergence of the contact algorithm is analyzed in Fig. 17. In this figure, we show the convergence of the
Newton-Raphson (N-R) for the time step No. 38. This time step is selected as it allows to show how the nodes release
is performed in an implicit time integration scheme (Algorithm 5). Two convergence criteria from [31] are evaluated:
displacement increment error named as DISPL and residual error, FORCE, see Fig. 17a. The precision with which the
error in displacement and force are calculated is set to 1 × 10−4 for both criteria. We can see a good convergence of the
solution guaranteeing an equilibrium of the problem for each time step. When artificial contact nodes are detected, the
contact algorithm requires subiterations to fulfill Eq. 24. Fig. 17b shows the additional iterations which are required
within a time step to avoid the adhesion nodes at the contact region. The number of artificial (adhesion) nodes depends
on the projection method and the geometry of the contact bodies and this is a key issue for further analysis.

5.3. Drop-weight impact test
In this example, we aim to solve a drop-weight impact test where an hemispherical rigid impactor is dropped in

free fall on a plate, see Fig. 18. The impact setup and experimental results from [35] are used to compare the numerical
predictions. In the present study the case of 6 J (5.6 J according to the experiment) is evaluated. In [35] the striker mass
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Figure 15: Contact forces resulting from an indenter’s displacement of 0.11 m and assuming an initial gap of 0.01 m (scaled factor for vectors is
1.0 × 10−7).

and its radius are not specified by the authors, so we assume m = 4 kg and r = 8 mm. The coupon is made of composite
material with a stacking sequence of [45/ − 45/90/0]s and its dimensions are 150 mm × 100 mm × 2.504 mm. The
material is modeled using an orthotropic linear elastic model and its properties are summarized in Tab. 1.

Property Description Value
E11 (GPa) Longitudinal Young modulus 86.70
E22 = E33 (GPa) Transverse Young modulus 7.00
ν12 = ν13 (-) Poisson ratio in 12 and 13 directions 0.32
ν23 (-) Out-of-plane Poisson ratio 0.49
G12 = G13 (GPa) Shear modulus in 12 and 13 directions 3.60
G23 (GPa) Out-of-plane shear modulus 2.70

Table 1: Elastic unidirectional lamina material properties [35]

According to the ASTM D7136/D7136M-20 standard [36], the plate is supported on a metallic frame with a
cut-out of 125 mm × 75 mm and it is clamped at the four corners by rubber-tipped clamps. Equivalent boundary
conditions are used for the model, see Fig. 18. With regards to the mesh, a refined centered region of 75 mm × 75 mm
is created with an element size of 0.5 mm in order to accurately capture the contact between impactor and plate. The
global element size is 1 mm and each ply from the laminate stacking sequence has one element through the thickness.
This results a base mesh of 324 264 hexahedron elements (≈ 1.1 million of dof) for the plate. On the other hand,
the impactor is meshed with 4-node linear tetrahedron elements with a biased mesh of 0.184 mm at the center of the
half-sphere and 1 mm at the end of the edge. The total number of elements of the impactor base mesh is 8561 (25 683
dof). The total simulation time is set to 8 ms with a fixed time step size of 1 × 10−5 s.

A mesh convergence analysis is conducted for this test, Tab. 2 summarizes three different meshes ranging from
324K to 20M of elements (plate instance). For the large case (Mesh-3) a total of 2400 CPUs are used to conduct the
impact simulation. The force-time curve between the different meshes is shown in Fig. 19. As we can see in this
figure, an excellent agreement is obtained between the different meshes demonstrating that the physical solution does
not change when the mesh is refined and the number of processors is increased. On the other hand, comparing the
numerical solution with the experimental result, we can see that the maximum impactor force is over-predicted respect
to the experiment, a relative error of less than 11 % is obtained respect to the experiment. With respect to the maximum
indentations an error below 1 % is obtained. The difference obtained for the maximum force can be explained due
to the use of a fully elastic material model instead of specifically damage model for this kind of material. According
to the authors in [35], the material dissipates a small portion of energy due to delamination between plies, which is
not taken into account in the present model. The use of proper advanced damage models for the prediction of onset
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Figure 16: Displacements and contact forces for path a and b [29]. (a) Vertical displacement. (b) Tangential displacement path a. (c) Tangential
displacement path b. (d) Contact force at path a. (e) Contact force at path b.
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Figure 17: Convergence of the 3D indentation test for the time step No. 38. (a) convergence of the contact algorithm based on different convergence
criteria and (b) subiterations for artificial nodes

and propagation of inter- and intra-laminar damage (delamination and fiber/matrix failure) it is required to have more
accurate results from the material point of view.
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Figure 19: Mesh convergence for the 6J low velocity impact test. The reader is referred to the web version of this paper for the color representation
of this figure.

Force, energy, displacement and velocity of the impactor versus time of impact are shown in Fig. 20. The experi-
mental result and the numerical solution obtained by the authors in [35] are also included in the figures for comparison.
As we can see, a very good correlation is obtained for the displacement of the impactor (indentation), velocity and
energy curves. These parameters demonstrate that the contact behavior and kinematics are well predicted by the
proposed algorithm.

6. Parallel performance

In this section, we show the parallel performance of the proposed contact algorithm through the 3D indentation
and the drop-weight impact tests previously discussed. In the first example (3D indentation test), we perform a trace
analysis using a reduced number of processors in order to evaluate the behavior of the contact algorithm, while in
the second example (drop-weight impact test) we evaluate the scalability of the code up to 2400 processors using a
refined mesh of 80M elements.

Trace analysis on the 3D indentation test. Trace executions are one of the main solutions for measurement and
analysis of program performance on parallel computers. Traces are basically space-time diagrams that show how
a parallel execution unfolds over time. They are analyzed post-mortem, as they are built based on the information
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Case No. elem. No. CPUs No. elem. No. CPUs Max. force Error Max. displ. Error
plate impactor (kN) (%) (mm) (%)

Mesh-1 324 264 520 8561 8 3.480 10.24 3.800 0.07
Mesh-2 5 188 224 742 68 488 16 3.471 9.97 3.818 0.53
Mesh-3 20 752 896 2304 547 904 96 3.461 9.66 3.829 0.83
Experiment [35] 3.157 3.798

Table 2: Comparison between numerical and experimental data for the 6J impact using different meshes.
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Figure 20: 6J low velocity impact test (Mesh-3): (a) Impactor force vs. time. (b) Energy vs. time. (c) Impactor displacement vs. time. (d) Impactor
velocity vs. time. The reader is referred to the web version of this paper for the color representation of this figure.

gathered during the program execution. In a trace, time lines for different Message Passing Interface (MPI) processes
are stacked top to bottom. A MPI process activity over time unfolds left to right. Each time line is composed of
several colored segments, where each distinct color represent a different procedure, function or subroutine. Space-
time visualization of MPI execution traces are very useful for spotting and understanding the temporal behaviour
of the program, as they allow to graphically observe the work load balance among the different processors, the idle
time for each processor, the time consumed for the execution of a given subroutine, the impact of inter-process
communications, etc. In the present paper, we use the HPCToolkit [37] suite in order to perform the trace analysis.

A trace analysis is performed on the 3D indentation test, which has been previously described. The total number
of processors used for the simulation is 32 (31 for the beam and 1 for the indenter). The execution trace obtained for
five steps is depicted in Fig. 21. The vertical axis of the trace corresponds to the processors used for each instance,
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while the horizontal axis is the space-time of the simulation. The orange color segments represent a running processor,
while the green color means that the processor is idle or executing another task non-related to the solution of the finite
element problem e.g., the contact detection. As we can see, the solution for the rigid body is faster than the deformable
body. This is due to the complexity of solving the physics for each instance, e.g. the non-linearity of the deformable
body. The block/segregated execution observed in the trace (first the rigid body, then the deformable body) is the
Gauss-Seidel strategy adopted for the contact algorithm, which forces the processor dedicated to the rigid indenter to
be idle when the remaining processors dedicated to the deformable beam are computing, and vice-versa. From the
observation of this trace, we can also deduce that the workload is well balanced among the group of processors which
belong to the deformable beam, as they start and finish its execution in a coordinated way. This means that all the
computational resources are being used efficiently, as there is no waiting or idle time between processors when the
deformable beam is computing.
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Figure 21: Global view of the execution trace for the 3D indentation test using 31 tasks for the beam and 1 task for the indenter [29]. The reader is
referred to the web version of this paper for the color representation of this figure.

In order to analyze the localization and contact detection performed by PLE++ a zoom in the time interval is
shown in Fig. 22. As we can observe for this particular example, the localization task has a small impact in the
overall execution time. The fact that the localization has a negligible impact in the total simulation time cannot be
generalized without further analysis and it should be restricted only to the context of this particular example, as this
impact strongly depends on the number of used processors. An increase in the number of processors involved in the
localization implies more communications and operations, which could affect the execution time of the localization
process. How the localization time affects the overall simulation time as the number of processors increase is a key
issue for further analysis.

 

localization - contact detection

Figure 22: Local view (zoom in) on the time interval where localization occurs [29]. The reader is referred to the web version of this paper for the
color representation of this figure.
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Scalability analysis on the drop-weight impact test. In the previous trace analysis, we could observe how the Gauss-
Seidel method works in a ”serial manner” (while one of the bodies is computing the other is waiting). It is well-known
that this method is a-priori not the best option for efficient parallel resolutions but it is considered as a robust method
to prevent any numerical instabilities. However, it should be pointed out that there exist strategies to fully exploit the
resources in the case of the Gauss-Seidel method. In [38], an oversubscription is used for the different code instances
in the case of multiphysics problems. Such strategy is not envisaged in the present work as the rigid body simulation
only requires few cores to run, meaning that the unused resources are limited. To evaluate the speedup and the parallel
efficiency of the proposed approach strong scalability has been conducted on the drop-weight impact test previously
described. In this case, a larger mesh than the one used for the physics validation has been evaluated with 80M of
elements (≈ 250 million of dof). Strong scalability consists of fixing the mesh and solving the problem with a different

number of processors. The strong speedup is calculated as
t0
tN

while the parallel efficiency is calculated as
t0N0

tN N
, where

N is the number of cores and t0 is the reference simulation time for N0 cores. The number of processors used ranges
from 192 to 2400. As we are working with a multibody and multicode approach, we fix the number of processors
for the rigid body (impactor) to 3 processors (sufficiently for its base mesh of 8561 elements) and we change the
number of processors of the deformable body where we have the strong computational effort. Only the first 15 time
steps are analyzed, which are sufficient as contact is occurring between the impactor tip and the plate during this time.
Strong speedup and parallel efficiency is depicted in Fig. 23. The ideal scalability and efficiency are represented with
a dashed line.

Figure 23: Strong scalability of the drop-weight impact test using a mesh of 80M of elements.
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We can see that the scalability of the problem is really good up to 2400 processors, maintaining a parallel efficiency
above 80%. Moreover, the optimum number of elements per core according to the aforementioned efficiency is around
34K elements. Therefore, this analysis demonstrates the scalability of the proposed algorithm and also provides a good
indication of the amount of resources to request for the size of a particular problem.

7. Concluding remarks

The development of a full parallel contact algorithm to solve rigid-to-deformable bodies is presented. The ap-
proach is based on partial Dirichlet-Neumann boundary conditions and it works as a Gauss-Seidel scheme with weak
coupling. The main aspect of the proposed algorithm is that the bodies are treated separately, in a segregated way.
As this approach solves each body separately (multicode), there is no need to increase the degrees of freedom of the
problem or to redefine the mesh graph at different time steps, since no contact elements are used in the algorithm.
Depending on the complexity of the problem, different time integration schemes can be used in the contact resolution
to solve the physics for each body.

The verification and validation of the algorithm are conducted in several benchmark cases. In all the cases, a good
agreement is obtained between the proposed solution and other solutions obtained analytically, numerically (from
other finite element codes) or experimentally, demonstrating the capabilities of the proposed algorithm for 2D and 3D
problems. The last example corresponds to a well-known test named as drop-weight impact test, which is used by the
industry for the damage resistance of materials. In this case, the proposed algorithm is validated through experiments
showing its reliability in real problems. Moreover, a mesh convergence analysis is conducted for the drop-weight
impact test showing that the physics of the problem remains the same by using different meshes of the model and
increasing the number of processors. The refined mesh is discretized with 20M of elements and solved with 2400
processors showing its applicability for large-scale problems.

In terms of parallel performance, a trace analysis and a strong scalability analysis are conducted for the 3D
indentation test and the drop-weight impact test respectively. For the case of the 3D indentation test, we show that the
workload related to the overall execution including the localization/detection phase is well balanced among the group
of processors assigned to each body. This means that all the computational resources are being used efficiently, as
there is no waiting or idle time between processors, in particular when the deformable body is computing. On the other
hand, a strong scalability analysis is conducted on the drop-weight impact test with a mesh of 80M of elements. This
case shows a very good parallelization efficiency above 80% up to 2400 processors and demonstrates its capability for
larger problems. However, the application of this contact algorithm in other case scenarios such as contact between
bodies of similar size would be a key issue for further computational performance analysis.

A further conclusion from this work is that many engineering contact problems involve the contact between rigid
and deformable bodies such as indentation tests, impact tests, metal forming, tire-road contact or even biomechanical
applications such as a stent in arteries. In all theses cases, the proposed method can be very useful thanks to its
simplicity, robustness of the fulfillment of the geometrical constraints and efficiency for large-scale problems requiring
a high computational cost.
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