
A Parallel and Accelerated Circuit Simulator with Precise Accuracy

Peter M. Lee, Shinji Ito+, Takeaki Hashimoto+, Junji Sato,Tomomasa Touma+, and Goichi Yokomizo
Semiconductor and IC, Hitachi, Ltd

+Hitachi ULSI Systems Co., Inc.
E-mail: lee-peter@sic.hitachi.co.jp

Abstract

We have developed a highly parallel and accelerated
circuit simulator which produces precise results for large
scale simulation. We incorporated multithreading in
both the model and matrix calculations to achieve not
only a factor of 10 acceleration compared to the de facto
standard circuit simulator used worldwide, but also
equal or exceed the performance of timing-based event-
driven simulators with the accuracy which matches that
of SPICE-based circuit simulation. For example, a 89K
element DRAM CAS circuit simulation can be performed
in under 38 minutes with timing accuracy error as little
as 7 ps.

1. Introduction

Conventional SPICE-based simulators have been the
workhorses of circuit design to predict performance from
early to late stages of the design. These simulators are all
based on the simulator SPICE first developed by
University of California, Berkeley, in 1975 [1]. There are
now many simulators out on the market and also
developed internally for simulation within larger
organizations.

Although logic products, due to their enormous scale,
are based on higher-level simulation using basic libraries,
SRAM and DRAM products require an increasingly larger
scale of circuit level simulation. Because of this trend, a
new breed of timing-based event-driven simulators have
been developed which promise from 100 times
performance increase while sacrificing very little in
accuracy.

However, to be able to use these accelerated
simulators, much time must be spent in adjusting options
to obtain the required degree of accuracy. In many cases,
to achieve accuracy, performance drops so that actual
simulation time approaches that of the SPICE-based
simulators. Although purely digital circuits may have
more tolerance towards error than full analog circuits,
SRAM and DRAM circuits have many circuit blocks

which are more analog than digital in nature, thus making
accuracy crucial in timing investigations. Furthermore, as
clock speed goes up and the contribution from parasitic
elements (such as interconnect and power supply network
R, L, C, extracted from layout extraction tools) increase
in the deep sub-micron to sub-sub-micron regime,
predicting precise timing becomes more and more
difficult with event-driven timing simulators as the entire
chip becomes more analog in nature.

In this paper, we introduce an internally developed
SPICE-based simulator in which we implement
multithreading under the shared memory symmetrical
multiprocessing (SMP) concept. We chose the shared
memory methodology as opposed to distributed memory
methodology, such as that of [2,3], because of the
tendency for communication between processor nodes to
increase due to the nature of IC circuits, and the fact that
multithreading is more generally available on engineering
workstations. To achieve this simulation speed up, we
implement advanced multithreading in both the model
and matrix calculation portions of the simulator. To
preserve accuracy, we retain analytical device models and
do not use table look-up models, and we do not perform
any parasitic RC reduction which can greatly affect
transient waveform results within the simulator.

Section 2 describes the multithreading concepts
implemented into the simulator. Section 3 shows
benchmark results on five benchmark circuits compared
with a de facto standard SPICE-based simulator and an
event-driven timing simulator. Section 4 gives a brief
description of actual use in product design, and finally,
Section 5 ends the paper with a conclusion.

2. Multithreading algorithm
implementation

Fig. 1 shows the basic configuration of our circuit
simulator, which is quite typical of all SPICE-like circuit
simulators. There is a pre-processing portion which
parses the circuit netlist (which describes the circuit
configuration) and loads the appropriate data structures.

Next, the matrix representing the circuit is created.
Actual DC and transient analysis occurs next, with
repetitive device model calculations and matrix
calculations for each iteration, each DC point, and each
timestep. Finally, the output routine dumps simulation
results to a file.

Circuit
Netlist

Netlist
Parsing

Circuit Matrix
Setup

Device Model
Calculations

...

... Circuit Matrix
Calculations

Convergence?

End of
analysis?

Yes

No

Output

Yes

No

L
oo

p
ba

ck
 to

 n
ex

t i
te

ra
tio

n
or

 ti
m

es
te

p

Circuit Simulator

Fig. 1 Basic configuration of our circuit simulator.
Multithreading is implemented in the device
model calculations and circuit matrix calculations,
which occur at every calculation iteration.

The most time consuming portions of the calculations
are undoubtedly the model and matrix calculations.
When the size of the circuit increases, model calculation
time generally increases linearly with the number of
devices. However, matrix computational time increases
approximately to the power of 2 of the number of nodes

in the circuit. Thus, for large-scale circuits, matrix
computation will tend to dominate the total simulation
time.

As shown in Fig. 1, we thus implemented
multithreading in both the model and matrix calculations
of our simulator. All multiple threads are generated and
administered using the standard POSIX thread library for
portability. As simulation accuracy received top priority,
we did not implement any table look-up models (we use
the full analytical models used in SPICE-based
simulators), and we did not implement any algorithms
which reduce parasitic RC elements.

To demonstrate the improvements seen for the
multithreading implemented in actual circuit simulations,
we present three benchmark circuits, one RAS circuit and
two DRAM CAS circuits, as summarized in Table 1. All
simulations are done using Hitachi’s 9000 N4000 8-CPU
workstation, which contains 8 PA-RISC 8600 CPU’s
running at 550MHz.

The next sub-sections explain in more detail the
multithread implementations and their effects in speeding
up our circuit simulator.

Label Circuit Type No. of Elements

Circuit 1 DRAM RAS 38k

Circuit 2 DRAM CAS 1 89k

Circuit 3 DRAM CAS 2 175k

Table 1 List of three benchmarks used for detailed
analysis of circuit simulator performance. The
circuits are ordered in increasing scale.

2.1 Model multithread implementation
We have implemented multithreading in the model

calculations by dividing the calculations evenly among all
devices and device types. We reduce the need for
synchronization by calculating all types of devices in each
thread, and carefully arranging the algorithm so that
writing into the conductance matrix for each device do not
conflict. Only one synchronization is done before writing
into the conductance matrix, and one more
synchronization occurs before proceeding to the matrix
calculation.

Fig. 2 shows the acceleration factors we achieved for
one of our benchmark circuits, a 38K element DRAM
RAS circuit. Revision A is as first implemented which is
after eliminating conflicts in loading the matrix from
different threads. We performed successive revisions B
and C, in which further improvements were done to
reduce the time to load the conductance matrix and

enhance the thread generation step. Although this circuit
is fairly small scale compared with the other examples,
note we have achieved a maximum of almost 5 speed-up
factor in the model calculation section alone for 8 CPU
parallel computation. Note that the behavior shows very
little saturation, so that more speed-up could be achieved
using a higher number of parallel CPU’s.

1

2

3

4

5

0 2 4 6 8 10

No. of CPU's

A
cc

el
er

at
io

n
 F

ac
to

r

A
B
C

Model Calculations
Circuit 1

Fig. 2 Acceleration factor versus number of parallel
CPU’s for model calculations for Circuit 1
showing the effects of improvements A, B, and C,
in multithreading and synchronization.

Fig. 3 shows the model calculation acceleration factor
for all three circuits Circuits 1, 2, and 3, after all the
improvements were implemented. Note that the speed-up
factor in this case is fairly independent of the scale of the
simulation, as we were able to reduce the overhead due to
multithreading and synchronization to a minimum.
However, note that the larger scale circuits Circuit 2 and 3
show slightly less saturation behavior, thus promising
more speed-up with a larger number of parallel CPU’s.
Maximum acceleration in this case is achieved by Circuit
2 with a factor of 5.7.

2.2 Matrix calculation multithread (MVA
Algorithm) and advanced thread
synchronization

For matrix calculation multithreading, we employ an
algorithm named Maximal Vectorization Algorithm
(MVA) developed earlier in [4] for use in vector-processor-
based supercomputers. This is a methodology which pre-
determines the calculations necessary for LU
decomposition and groups the calculations into sets of
independent operations, where operations in one set can
be executed in parallel. One “level” denotes one set of
calculations which are independent of each other, with the
next level being the next set of independent operations to

be done in parallel but must occur after the calculations of
the previous level, as calculations depend on this previous
level. Because parallel calculations at each level must all
finish before calculations of the next level start, thread
synchronization must occur between each level. The
amount of overhead that occurs during synchronization
greatly affects the speed-up factor, especially if the
original amount of calculations is small. Thus, this
method is better suited for larger scale calculations.

1

2

3

4

5

6

0 2 4 6 8 10

No. of CPU's

A
cc

el
er

at
io

n
 F

ac
to

r

Circuit 1
Circuit 2

Circuit 3

Model Calculations

Fig. 3 Acceleration factor of the model calculations versus
number of parallel CPU’s for Circuits 1 through 3,
which are in order of increasing size. The model
multithreading has been optimized so that in this
case there is not much difference between circuits
of different scale. Here we can achieve about 5.7
maximal acceleration factor for 8 CPU’s, with
little saturation.

In Fig. 4, we show the speed-up obtained in the
matrix calculations using the MVA algorithm on Circuit
1, the relatively smaller scale circuit. Here, we improved
the method of synchronization from A, B, to C by
decreasing the number of thread calls and optimizing the
wait time for thread synchronization. Note the large affect
on the acceleration results, which show an improvement
from a factor of 1.94 to 3.21 at 8 CPU just by changing
the synchronization method. Note also that because of
the small scale of the calculations, the speed actually
decreases for 8 CPU’s. Thus, in this case, the optimum
simulation occurs at 6 CPU’s, which results in a speed-up
factor of 3.28.

Fig. 5 shows the results of Circuits 1, 2, and 3 using
the optimum synchronization method. Note that
acceleration factor increases dramatically as the scale of
the circuit increases, from 3.21 to 5.4 in this case for 8
CPU’s. Furthermore, the characteristics for Circuit 3

shows less saturation, so that faster performance can be
expected with a larger number of parallel CPU’s.

1

2

3

4

0 2 4 6 8 10

No. of CPU's

A
cc

el
er

at
io

n
 F

ac
to

r

A
B

C

Matrix Calculations
Circuit 1

Fig. 4 Acceleration factor versus number of parallel
CPU’s for the matrix calculation portion using the
MVA algorithm. “A” is initial implementation,
“B” is first fine-tuning of the multithread
synchronization, and “C” is the optimal fine-
tuning of the multithread synchronization.

1

2

3

4

5

6

0 2 4 6 8 10

No. of CPU's

A
cc

el
er

at
io

n
 F

ac
to

r

Circuit 1
Circuit 2
Circuit 3

Matrix Calculations

Fig. 5 Acceleration factor of the matrix calculations
versus number of parallel CPU’s for Circuits 1
through 3, which are in order of increasing size.
Note that the speed up is affected by the scale of
the circuits, since synchronization between the
different levels of the MVA algorithm is present.
However, we can achieve almost a factor of 5.4
speed-up for 8 CPU’s for the larger circuit, with
only some saturation in the characteristics.

2.3 Overall acceleration
Finally, Fig. 6 shows the acceleration factors of the

overall simulation. Here the maximum overall

acceleration factor is 4.6 for Circuit 2. Slightly more
saturation occurs when overall elapsed time is taken into
account, since the non-parallelized areas of the simulator
outside of the model and matrix calculations start to
become visible because of the speed-up of the model and
matrix portions seen in the previous sub-sections. Future
work will concentrate on further decreasing the elapsed
time of this serial portion of the simulator.

1

2

3

4

5

0 2 4 6 8 10

No. of CPU's

A
cc

el
er

at
io

n
 F

ac
to

r Circuit 1

Circuit 2
Circuit 3

Overall Elapsed Time

Fig. 6 Overall elapsed time acceleration factor for Circuits
1, 2, and 3. Here we achieve a maximum
acceleration factor of 4.6.

3. Performance and accuracy results

This section shows simulation results of our
simulator with circuits in the previous section plus two
more analog circuit examples, a 4k-element PLL circuit,
and a 5.1k-element A-to-D converter (ADC) circuit.
Benchmark circuits are listed again in Table 2.
Performance is compared with one of the worldwide de
facto standard SPICE-based simulators (which we will
denote Simulator A) and also with a well-known event-
driven accelerated simulator (which we will denote
Simulator B). Table 3 shows the nomenclature used.

Label Circuit Type No. of Elements

Circuit 1 DRAM RAS 38k

Circuit 2 DRAM CAS 1 89k

Circuit 3 DRAM CAS 2 175k

Circuit 4 Analog PLL 4k

Circuit 5 Analog ADC 5.1k

Table 2 Listing of eight benchmark circuits used for
overall performance and/or accuracy evaluation.

Simulator Type Description
Simulator A De facto standard circuit simulator
Simulator B Event-driven timing simulator

Our simulator
Model and matrix multithread
circuit simulator

Table 3 Nomenclature used for the three different
simulators.

All simulations except for the two purely analog
benchmark circuits were done on Hitachi’s PA-RISC
8600 based workstations with CPU clock = 550 MHz.
As mentioned in the previous section, we performed all
non-analog benchmark circuit multithread simulations
using the Hitachi 9000 N4000 8-CPU workstation, using
the same PA-RISC 8600 CPU running at 550MHz. For
the two pure analog simulations, we used an 6-CPU Sun
Enterprise 3500 workstation using UltraSparcII chip
running at 400MHz for all simulations.

Fig. 7 shows the performance factor of Simulator B
(the event-driven timing simulator) and our simulator
with respect to the de facto standard circuit simulator
Simulator A the five benchmark circuits. Table 4 shows
the actual elapsed time of the three simulators. Note that
in all cases, the Simulator B and our simulator perform
from 7 – 25 times speed-up compared to Simulator A.
Note here also that our simulator, which is represented by
the darker bars, slightly to substantially exceeds the
performance of the event-driven Simulator B for all except
Circuit 2 (there is no data for Circuit 5 for Simulator B as
it did not predict the correct waveform).

For the performance obtained in Fig. 7, we also
compared the timing errors for each of the digital Circuits
1, 2, and 3, as shown in Fig. 8. The waveform used as
the standard for comparison was Simulator A using
accurate simulation mode (the performance factor of
Simulator A in Fig. 7 and the error of Simulator A in Fig.
8 are, in contrast, found by simulating Simulator A in
normal mode, which is faster than accurate mode).

Note that the error between Simulator A and our
simulator are very comparable. However, the error of the
event-driven Simulator B was substantially larger than
either of the circuit simulators. Note that by comparing
Fig. 7 with Fig. 8, Simulator B is both slower and has
larger error than our simulator for Circuit 1 and Circuit 3.
Thus, for these two circuits, we judged that no advantage
could be gained by fine tuning Simulator B simulations
any further.

Circuit 2 was one example where Simulator B was
faster than our simulator (32 min. versus 38 min.). We
thus tried improving the accuracy of Simulator B for
Circuit 2. Increasing accuracy slowed Simulator B until,
at the point where Simulator B became slower than our
simulator (45 min. versus 38 min.), the error was reduced

from 219 ps down to 172 ps. However, this 172 ps error
is still much larger than the 7.1 ps error of our simulator.
We thus concluded that it was not possible to offer the
same performance and accuracy with Simulator B.

0

5

10

15

20

25

30

Circuit 1 Circuit 2 Circuit 3 Circuit 4 Circuit 5

A
cc

el
er

at
io

n
 F

ac
to

r

Event-driven Simulator

Our Circuit Simulator

Fig. 7 Simulation elapsed time acceleration factors
compared to the de facto standard circuit simulator
Simulator A of the event driven timing simulator
Simulator B and our circuit simulator. There is no
data for Simulator B for Circuit 5 (the ADC
analog circuit) as the simulator did not produce
correct waveforms.

Label
Simulator

A
Simulator

B
Our simulator

Circuit 1 91 min. 6.89 min. 3.6 min.

Circuit 2 333 min. 32 min. 38 min.

Circuit 3 2496 min. 214 min. 102 min.

Circuit 4 160.1 hrs. 14.7 hrs. 12.8 hrs. (6-CPU).

Circuit 5
29.1 hrs. Waveform

 error
4.2 hrs. (4-CPU)

Table 4 Elapsed time for Circuits 1 – 5 for all three
simulators.

For the analog benchmarks Circuits 4 and 5, Table 5
shows the accuracy between Simulators A, B, and our
simulator. Simulations were done on the Sun Enterprise
3500 6-CPU workstation. Note that our simulator
exhibits exceptional accuracy but with the fastest elapsed
time compared with either of the other simulators.

4. Application to products

We have internally released our simulator for usage in
design of memory and analog products. In real-product
usage, in one site, for a memory product, a set of 9
simulations which required 24 hours was reduced to 1.5
hours, a factor of 16 in speed-up, compared with the
previous version of our simulator. We are now having the
simulator used for more than 7 products, with a speed-up
ranging from a factor of 2 to 16 depending upon the
number of parallel CPU’s available at the designer’s
workstations.

0

50

100

150

200

250

Circuit 1 Circuit 2 Circuit 3

E
rr

o
r

in
 [

p
s]

Simulator A

Simulator B

Our Simulator

79ps

49ps42ps

219ps

7.1ps8.9ps

219ps

21ps

86ps

Fig. 8 Error in delay time in picoseconds of the de facto
standard circuit simulator Simulator A, the event-
driven timing simulator Simulator B, and our
circuit simulator.

Label
Error

Criteria
Simulator

A
Simulator

B
Our

simulator
Peak
Voltage
Error

1.1% 1.4%
1.3%

Amplitude
Error

31.6% 3.9%
3.9%

Circuit 4

Period
Error

63.4% 7.75%
8.22%

Circuit 5
Output
stepsize

0% Waveform
 error

5.3%

Table 5 Accuracy figures for the two analog benchmark
circuits.

5. Conclusion

We have developed a highly parallel circuit simulator
while preserving the tight accuracy of conventional circuit
simulations. We have implemented multithreading in
both the model and matrix calculation portions and have
achieved maximum acceleration factors of 5.7 and 5.4,
respectively, with only slight saturation, for 8 CPU’s.
For the benchmarks we have listed, we achieved an
acceleration factor of 10 or more compared to a widely
used de facto circuit simulator, and we show comparable
or faster performance than an event-driven timing
simulator while retaining the accuracy of normal circuit
simulation. For example, we have performed a 89k –
element circuit simulation in 38 min. within a
propagation delay accuracy of 7 ps.

Acknowledgements

We would like to acknowledge the many people who
contributed to the development and evaluation of our
circuit simulator. We would like to thank H. Yasushima
for the analog benchmark circuit analysis. We would like
to thank K. Ono and K. Yuyama of Device Development
Center for much advice and for providing the computing
environment to do the simulator development and testing,
T. Wada and H. Kitajima for providing the initial push to
start the development and provide helpful suggestions and
feedback in terms of product application, and Y. Okamura
and K. Ise for evaluation for analog applications and
general help and support. Many thanks goes to H. Kono
of Hitachi ULSI Systems Co. for participating in many of
the discussions on multi-threading concepts.

References
[1] L.W. Nagel, “SPICE2 – A computer program to

simulate semiconductor circuits, “ Univ. of
California, Berkeley, ERL Memo ERL-M520, May
1975.

[2] K. Hachiya, T. Saito, T. Nakata, and N. Tanabe,
“Enhancement of Parallelism for Tearing-based
Circuit Simulation,” ASP-DAC Technical Digest,
1997, pp. 493 – 498.

[3] T. Kage, J. Niitsuma, K. Teramae, S. Shimogori,
and Y. Izuta, “PARACS: A parallel circuit
simulator,” 5th Karuizawa Workshop on Circuits and
Systems, April 1992, pp. 213-224.

[4] F. Yamamoto and S. Takahashi, “Vectorized LU
Decomposition Algorithms for Large-Scale Circuit
Simulation,” IEEE Trans. on CAD, Vol. CAD-4, No.
3, July 1985, pp. 232 – 239.

