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The task of 3D ICs layout design involves the assembly of millions of 

components taking into account many different requirements and constraints such 

as topological, wiring or manufacturability ones. It is a NP-hard problem that 

requires new non-deterministic and heuristic algorithms. Considering the time 

complexity, the commonly applied Fiduccia-Mattheyses partitioning algorithm is 

superior to any other local search method. Nevertheless, it can often miss to reach 

a quasi-optimal solution in 3D spaces. The presented approach uses an original 

3D layout graph partitioning heuristics implemented with use of the extremal 

optimization method. The goal is to minimize the total wire-length in the chip. In 

order to improve the time complexity a parallel and distributed Java 

implementation is applied. Inside one Java Virtual Machine separate optimization 

algorithms are executed by independent threads. The work may also be shared 

among different machines by means of The Java Remote Method Invocation 

system.  
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Introduction 

Optimal layout design is one of the main engineering design tasks. Optimal is a key 

word for a design that optimizes a set of  goals and satisfies a set of constraints in the 

same time. Both goals and constraints are often conflicting requirements like 

miniaturization and usability, low production cost and high quality or practical and 

aesthetic reasons. Layout design may be found in the literature under different headings,  

e. g. packing, packaging, spatial arrangement, floor-layout, configuration or component 



 

 

layout. Thus, the search space of optimal layout design solutions is composed of:  (1) 

design components and their topological connections and (2) design objectives and 

constraints. Usually, this space is too large to perform an effective deterministic search 

procedure and some heuristic algorithms are applied to obtain a globally near-optimal 

solution. Moreover, the ongoing technological development causes the enormous 

increase of systems complexity and the number of components to consider. The 

electronic industry is the best example of this progress. In the year 2017, the transistor 

count (a number of transistors on an integrated circuit (IC)) exceeded 19 billions! 

(Mujtaba 2017). Hence, the physical arrangement of chip components comprises a 

myriad of conditions.  

Even though the concept of 3-dimensional (3D) circuits integration was first 

demonstrated as early as in 1979 (Geis et al. 1979) and attracted researchers from 

industries as well as academics, the 2-dimensional (2D) technology was scaling so well, 

that there was no market pull to develop it. Nowadays 3D ICs design is being 

reconsidered and become a sine qua non for the silicon world. It definitely improves 

circuit blocks packing density and dramatically decreases the total interconnect wire 

length. Along with the interconnect wire length reduction the power consumption is 

decreased as well. The third dimension allows heterogeneous technology integration 

such as digital and analog. Different components can be manufactured separately 

according to their technology and then stack together on a single chip. And last but not 

least, 3D design not only gives a smaller footprint but the total volume minimization, 

which is very suitable for commonly used mobile devices (Dong and Xie 2009). There 

are two major groups of 3D integration technologies: integration using chip stacking 

and Through Silicon Vias (TSVs), and  native 3D integration. The latter approach is still 

in its infancy. Despite the abundance of electronic design automation tools for 2D 



 

 

integration, there is still a great need for the specific 3D tools, methods and flows to 

support the growth of the 3D IC market. Most available software packages are 

extensions of those used for planar (2D) design (De Micheli et al. 2011).  

The proposed native 3D layout design approach introduces three separate design 

representation layers, namely the semantic layer, the presentation layer and the 

optimization control one (Grzesiak-Kopeć and Ogorzałek 2014). Possible solutions are 

generated with use of a simple shape grammar supervised by an intelligent derivation 

controller. The shape grammar is defined by the designer, who also provides a specific 

design knowledge in a form of predicates. The predicates are fed into the generation and 

optimization procedures. The total wire-length of a generated result may be further 

optimized adopting a knowledge intensive 3D ICs layout hypergraph representation 

described in (Grzesiak-Kopeć and Ogorzałek 2015a), together with the elaborated 

neighbourhood optimization heuristics presented in (Grzesiak-Kopeć and Ogorzałek 

2015b). 

This article mainly deals with the total wire-length minimization. The main 

novel contribution is the volume optimization procedure for eliminating gaps/empty 

spaces in the generated 3D structure. The 3-step intelligent wire-length optimization 

approach is illustrated by the example of application to the MCNC benchmark circuits 

(MCNC) using a parallel and distributed Java implementation. First, the knowledge 

intensive 3D ICs layout hypergraph representation together with the elaborated 

neighbourhood optimization heuristics are introduced. Then, the wire-length extremal 

optimization is described. After that, the procedure of the volume optimization together 

with the parallel and distributed implementation are explained. Finally, the proposed 

wire-length optimization heuristics is applied to the MCNC set of benchmark circuits 

and the experimental results are reported. 



 

 

Related work 

The physical arrangement of components plays a crucial role in integrated 

circuit design. It directly affects circuit performance, area, reliability, power, and 

manufacturing yield (Kahng et al. 2011). It enables assessment of system architecture 

decisions and estimation of delay and congestion caused by wiring (Wang et al. 2009). 

The today’s 3D ICs technology still has various limitations such as a layer-like 

structure, where a number of device layers is restricted and the inter-layer height is 

fixed. Still, a quasi-3D placement problem is much more complex than a true-2D one. 

Generally, the placement problem is known to be NP-hard (Garey and Johnson 1979, 

Lengauer 1990). Adding an extra dimension to the solution space definitely increases 

the difficulty of the circuit design task in many aspects.  When taking into account a 

placement problem with n components and k layers, a 2D solution may be divided into  
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 different k-layer 3D floorplans (Li et al. 2006).  Thus the solution space 

complexity raises by this number times and results in longer searching time and/or 

worse placement quality. Common techniques for global placements are: partitioning-

based algorithms, analytic techniques and stochastic algorithms (Kahng et al. 2011, 

Hentschke 2007).  

Recursive partitioning are constructive techniques with average CPU 

requirements and versatility. The netlist and the layout are recursively divided into 

smaller sets/problems according to a cut-based cost function until the parts are small 

enough to be solved optimally (Taghavi 2005).  Common algorithms used to minimize 

the number of cut nets are the Kernighan-Lin (Kernighan and Lin 1970) and the 

Fiduccia-Mattheyses algorithm (Fiduccia and Mattheyses 1982).  The most popular is 

the latter which is both computationally effective (a linear time heuristics) and easily 

adjustable to different fitness functions. It consists of three stages: coarsening, initial 



 

 

partitioning and uncoarsening. During the coarsening phase, the netlist is successively 

contracted until it is small enough to be plausibly partitioned in the initial partitioning 

phase. The selected strategy strongly determines  general quality of the partition. The 

contraction is reversed at the time of the uncoarsening phase. The achieved initial 

partition is mapped to the more comprehensive netlist graph and the solution is 

improved by a local search algorithm. 

Analytic techniques, such as quadratic placement and force-directed placement, 

are constructive ones with relatively low CPU requirements and average versatility 

(Eisenmann and Johannes 1998, Obermeier and Johannes 2004). They use an objective 

quadratic or otherwise non-convex function, that can be minimized/maximized via 

mathematical analysis. Quadratic placement is a two-stage approach. The first stage is a 

global placement that minimizes the quadratic function with respect to the component 

centers. The obtained overlapping (illegal) solution is corrected during detailed 

placement to give a final placement result. A special case of quadratic placement is the 

force-directed placement where the mechanical mass-spring system analogy is used to 

represent components and wires. The attraction force between components is directly 

proportional to their distance. The goal is to reach a placement in a state of force 

equilibrium. 

Stochastic algorithms introduce a random factor into the cost function 

optimization procedure. The best known stochastic placement algorithm is simulated 

annealing (SA). SA is an iterative  approach with high CPU requirements where not 

much memory but a long execution time is needed to reach the desired solution (Sechen 

1988, Wong et al. 1988, Taghavi et al. 2005, Chen and Chang 2006). A generated initial 

placement is perturbed until the annealing process reaches an equilibrium state or the 

algorithm stops after a prescribed number of iterations. 



 

 

Today’s global placement algorithms model wire length with mathematical 

functions and use numerical methods to optimize them (Kahng et al. 2011). The 

components actual dimensions are initially ignored in order to find a seed placement. 

After that, they are gradually introduced into the optimization procedure to prevent 

unbalanced densities and routing congestion. The most popular approaches are based on 

analytic techniques and nonlinear optimization. The constantly growing complexity of 

microelectronic systems implies growing importance of partitioning. That is why wire 

length optimization algorithms are often combined with netlist clustering. The system is 

divided into some critical parts to speed up and improve the design cycle. Some of the 

modern placers are: APlace (Kahng et al. 2007), Capo (Roy at al. 2005), FastPlace 3.0 

(Viswanathan et al. 2007), mFAR (Hu et al. 2005), mPL6 (Chan et al. 2006), and simPL 

(Kim et al. 2012). 

Intelligent wire-length optimization 

Aside from 3D technological hurdles, the interconnect wire-length minimization is one 

of the crucial circuit design requirements. We propose a 3-step optimization approach 

(Figure 1) where the only input of the task is a netlist given in a YAL file format 

(MCNC). A netlist description defines the connectivity of an electronic circuit together 

with the parameters (like dimensions and pins) of the devices. In the first step, a YAL 

file is parsed into a layout hypergraph, which is a knowledge intensive representation of 

a netlist structure and its components (Grzesiak-Kopeć and Ogorzałek 2015a). In the 

second step, a topological partitioning procedure using the extremal optimization is 

applied to the layout hypergraph in order to find a special arrangement of components. 

Finally, in the third step, a parallel distributed volume optimization is performed by 

squeezing  the intermediate layout solution. The relative positions of the components 

are preserved while the gaps and empty spaces are removed. 



 

 

 

Figure 1. The 3-step intelligent wire-length optimization approach. 

Transforming netlist into a layout hypergraph 

In electronic design, a netlist is a text description of the electronic circuit connectivity. 

It consists of a collection of several related lists: a list of terminals (pins), a list of 

instances (components) and a list of signals connected to terminals (connections). It 

may also contain some attribute information. The connectivity information from a 

netlist  may be formally represented in the form of a graph with appropriate semantic 

mappings (Mony et al. 2004). 

 Graphs are data structures especially useful to represent different relational 

issues in a variety of systems (such as electric circuits, traffic, chemical processes or 

social networks). In  the basic definition a graph depict only binary relations but its 

generalization, called a hypergraph, effectively abolish this limitation. Recently 

hypergraphs gain a lot of attention because of their applicability to Web information 

systems, social networks, document centred information processing and many others 

service-oriented systems (Molnár 2014). Since the connectivity/wires of the electronic 

circuit, described by a netlist, can be straightforward mapped into a hypergraph (Figure 

2 A, B), they are also used for ICs layout design (Karypis et al. 1999). 

 



 

 

 

Figure 2 The example:  (A) a simple logic circuit, (B) the corresponding hypergraph, 

(C) the corresponding layout hypergraph. 

 

In our approach, the layout hypergraphs introduced in (Grabska et al. 2006) to 

depict floor-layouts in architectural design, are used. A layout hypergraph consists of a 

finite set of vertices (nodes), a finite set of hyperedges and labelling functions that allow 

assignment of attributes to either nodes or hyperedges. Nodes do not represent any 

entities but some pin points that are used for fixing represented components together. 

Both components and relations are depicted by dedicated hyperedges, namely 

component hyperedges and relation hyperedges.  In Figure 2C rectangles represent 

components hypergedes and ellipses illustrate wire relation ones. Component 

hyperedges are labelled by the corresponding component names (i1 – i4, U1 – U8, o1, 

o2). There are nine binary wire relations and three 3-tuples. Black dots denote nodes 

that are pin points (terminals). If required, a hierarchy relation may be introduced with a 

use of a child nesting function. The formal definition of such a layout hypergraph can 

be found in (Ślusarczyk 2012, Grzesiak-Kopeć et al. 2017). 

The MCNC block packing instances given in a YAL file format is the most 

common set of benchmark circuits for floorplanning and placement problems (MCNC). 

Parsing a YAL file and building a corresponding layout hypergraph is pretty 



 

 

straightforward. The component descriptions are given in appropriate MODULE 

sections together with their dimensions (DIMENSIONS) and possible terminals 

(IOLIST). The circuit connectivity is defined in the NETWORK section. Each line 

specifies a named instance of a module (component) that is a part of the circuit, together 

with its signal bindings. A single signal identified by its name is represented by a single 

wire hyperedge in a layout hypergraph. As the  number of nets in considered examples 

is very large (see Table 1), the layout hypergraph drawing of such a circuit would be 

completely unreadable and therefore is omitted. 

Wire-length Extremal Optimization 

In the context of IC design, a hypergraph representation is applied to solve the wire-

length minimization task. The commonly implemented recursive partitioning algorithm 

splits netlists into parts, just like in the case of 2D floorplans, using only a single 

dimension (Ababei et al. 2005). A hypergraph is divided into k disjoint nonempty 

partitions in such a way that the total vertex weight in each partition is balanced and the 

sum of hyperedge weights that are cut between partitions is minimized. The most 

popular and the most computationally effective (a linear time heuristic) graph 

partitioning algorithm is Fiduccia-Mattheyses one (Fiduccia and Mattheyses 1982). It 

starts with the coarsening phase during which the graph is progressively reduced to be 

small enough to likely undergo optimal partitioning in the initial partitioning phase. The 

last stage is the uncoarsening phase when the reduction is reversed. The final result of 

this approach is highly determined by the applied coarsening strategy. Better quality of 

the partitioning is achieved when the smaller graphs exhibit similar structural properties 

to the propertied of the bigger ones. 

Unfortunately, the approach with a dimension limiting to the k-way partitioning 

often fails to find a near optimal solution in 3D. Hence, the 3D topological partitioning 



 

 

of the layout hypergraph has been proposed (Grzesiak-Kopeć and Ogorzałek 2015b). 

Instead of striving for the minimal and balanced cut of the graph, a topology-oriented 

neighborhood grouping is performed. Bearing in mind the grid-like chip topology, the 

diamond-shaped von Neumann neighborhood is considered. The Manhattan distance is 

used to measure the distance between two cells in the IC grid. The shorter adjacent 

component wire connections are achieved, the better total wire-length solution is 

obtained. Adopting the building block hypothesis, where the optimal global solution is 

the sum of the optimal local neighbourhoods, entails the selection of the Extremal 

Optimization (EO) implementation (Boettcher 2000). 

The EO is a co-evolution approach for optimization problems inspired by self-

organized critical (SOC) models and the Bak-Sneppen co-evolution model (Bak and 

Sneppen 1993). The distinguishing trait of this approach is evolving only a single 

solution S={x1,x2,…,xm} instead of the whole population of possible solutions. Every 

solution feature (xi) has its own fitness value and the sum of these values gives the 

quality of the entire solution S. In each step,  the evolution procedure eliminates the 

least desirable feature (xi) of S by generating a new random solution S’ where (xi) is 

altered. Such a purely random strategy may cause a deadlock in some implementations. 

To overcome this disadvantage, a t control parameter may be introduced that enables a 

ranking selection instead of a simple random change of the worst adopted features. 

During the t-Extremal Optimization (t-EO) all the features are sorted in 

ascending order according to their fitness values. Step by step, a new solution S’ is 

achieved by swapping two features from a probability distribution: P(k) µ k-t, 1≤ k ≤ m. 

In such a t-controlled approach, almost all features are significantly better in the self-

organized critical state than initial ones. Their fitness values are highly correlated to the 

quality of their neighbours. The generation procedure maintains good values if their 



 

 

neighbouring features are not low-adapted. The adaptation process improves the 

solution quality applying a hill climbing technique for some time to crash it suddenly 

(avalanche) as described by punctuated equilibrium. The avalanches act as the mutation 

operator in other evolutionary approaches and shift the search process to escape the 

local optima. They are emergent behaviours of the negative feature selection that 

provide diversity and assure large variation at any stage of the optimization procedure 

(Boettcher 2000). 

In the case of the IC total wire-length optimization task, the search space is 

limited by a predefined maximal chip volume X×Y×Z. Neglecting original dimensions, 

the chip components are placed in this cuboid in such a way that each cell 

(x,y,z)ÎX×Y×Z  is either occupied by a component or empty. Empty cells that are not 

located in the boundary of the chip are not welcome and, if possible, should be 

eliminated from the final solution. Components designate the solution features and they 

are evaluated on the basis of the range of their neighbourhoods. The optimal fitness of 

each component is the minimal range neighbourhood containing all of its neighbors (for 

details see (Grzesiak-Kopeć et al. 2015). In this way, the optimal fitness of the whole 

solution S equals the number of components. 

The t-EO results for the MCNC benchmark are presented in (Grzesiak-Kopeć et 

al. 2017). Generated layout examples of the MCNC instances (apte, xerox, hp, ami33 

and ami49 ) are depicted in Figure 3. The cell sizes are adjusted to the component 

dimensions and numerous unwanted gaps are visible. 

 



 

 

 

Figure 3 The t-EO results for the MCNC benchmark. 

Volume Optimization 

The t-EO optimal topological partitioning of the layout hypergraphs generates solutions 

in a predefined 3D grid cuboid and neglects the actual dimensions of the modules. In 

such an approach some cells in the grid usually remain empty. In most cases it is 

possible to eliminate at least some of these gaps without violating the optimal spatial 

arrangement of components. In other words, the relative arrangement of components is 

preserved.  

Squeezing 

The elaborated step-by-step squeezing procedure moves the chip components towards a 

predefined rallying point P along either the X or the Y axis. The Single Component 

Move Algorithm proceeds in the following way. If a component cannot be moved in a 

selected direction it is added to immobileComponentsX or immobileComponentsY, 

respectively. A component that is immobile in both directions is blocked and removed 

from possibleMovesQueue. A rallying point P is selected arbitrary by the designer. It 

can be a center of the chip or one of the corners of the chip bounding box, or a center of 

mass of the chip or any other point in 3D. A current move of a component is selected 



 

 

randomly from a queue of possible moves (possibleMovesQueue). If a new component 

position is not closer to P it will be rejected. Otherwise, it is verified whether a new 

position collides with other components. When the currently sliding component collides 

with any component that is blocked (immobile), its moves in the selected direction are 

also blocked. Summing up, a component is translated if and only if it is approaching the 

point P and no collision with other components is recognized. The algorithm 

pseudocode is presented in Figure 4. 

 

 

Figure 4 The Single Component Move Algorithm pseudocode. 



 

 

 

Figure 5 The example arrangement of components before and after the squeezing; (1)-

(6) selected intermediate steps. 

 

Let us consider the squeezing example in Figure 5. A rallying point P is a left-

bottom-front corner of the chip bounding box. The first step (Figure 5.1) presents some 

intermediate situation where three components have already been recognized as blocked 

(immobileComponents). In the following steps, only moves towards the point P along 

the X axis are considered. Unfortunately, the currentComponent selected in the next 

step (the blue one) (Figure 5.2) cannot be moved in the preferred direction due to the 

collision with another component (green). Since the colliding green component is still 

marked as mobile, the action is just neglected at this moment and may be reconsidered 

in the future. In Figure 5.3 the move of the currentComponent (green) is admissible and 

performed. After that, the green component cannot be translated any further and if it is 

selected in any of the following steps it will be blocked and marked as 



 

 

immobileComponent.  In Figure 5.4, the blue component is selected once again and 

moved towards P as close as it is possible – till it collides with the orange one. In the 

last two situations (Figure 5.5-6), the orange component and the blue one, respectively, 

are moved to their final locations. 

It is also possible to move at the same time a whole bundle of components. Such 

a move is allowed if: (1) all the components in a bundle can move in the same direction 

and the move place them closer to P, (2) no collision occurs. Applying a bundle 

approach to the example in Figure 5, the whole squeezing could be performed in two 

steps instead of five. In the first move, a bundle of three components (orange, green and 

blue) would be translated towards P along the X axis and the orange component would 

reach its final position. In the second move, a bundle of two last components (green and 

blue) would be translated to its terminal location. 

Parallel and distributed computations 

Taking into account the grid-like structure of the plausible results, the number of 

possible moves in each step is upper bounded by the number of components multiplied 

by 2 (the X and the Y direction). The final result is dependent on the actual sequence of 

moves because they are strongly correlated with each other. Hence, the randomize 

selection of the next action has been introduced and the possibleMovesQueue is shuffled 

before the current move selection. Furthermore, in order to maximize the number of 

analysed available solutions, parallel and distributed computations have been applied.  

Distributed computations are shared among autonomous computers that 

communicate with each other in order to achieve a common goal. The computers are 

independent which means that they do not physically share processors or memory. They 

communicate and coordinate their work using messages passed over a network. They 



 

 

may play different roles and be organized in different ways. There are two predominant 

architectures: client-server and peer-to-peer architecture (Coulouris et al.  2011). 

The volume optimization application is written in Java. Multiple optimization 

procedures are executed in parallel either by independent threads inside one Java 

Virtual Machine or are shared between many machines by means of  The Java Remote 

Method Invocation system. In the latter case, the client-server  architecture is adopted. 

One instance of the program plays the role of the server and the others are run in the 

client mode. The server generates and spools optimization tasks, while the clients fetch 

and do the jobs (Figure 6).  The client list is managed dynamically and at any time 

machines are able to join or leave the computing system. 

 

Figure 6 The parallel and distributed calculation scheme of the squeezing. 

 

The proposed system architecture is fault tolerant. All the tasks are unified and 

kept in a single queue. Each type of the task is elaborated by a dedicated plugin that is 

matched by the object type. The server distributes the tasks among clients and waits for 

“hello” messages which confirm that the clients are still working. If no “hello” is 



 

 

received from a client for a specified period of time, the client timeout is recorded and 

its unfinished task is going back to the queue (Figure 7). 

The squeezed t-EO results for the MCNC benchmark are presented in Figure 8. 

The cell sizes are no  longer adjusted to the maximal component dimensions, like in 

Figure 3. Many unwanted empty spaces are successfully removed while preserving the 

relative spatial relations of components. 

 

Figure 7 The fault tolerant task realization scheme. 

 

 

Figure 8 The squeezed t-EO results for the MCNC benchmark. 



 

 

Experimental results 

The MCNC benchmark netlists (MCNC) are one of the most frequently used for 

floorplanning and placement problems. Five block packing instances are given in a 

YAL file format. Their characteristics are listed in Table 1, where the columns denote: 

the file name (YAL datafile), the number of components (Blocks), the number of nets 

(Nets), the minimal, the maximal and the average number of interconnected components 

respectively (Neighbors no/ min/ max/ avg). As stated before, by neighbours we denote 

components that comprise a single net. Each component may be a part of many different 

nets. 

Table 1 Characteristics of the MCNC benchmark instances. 

YAL datafile Blocks Nets 
Neighbors no 

min max avg 

apte.yal 9 97 8 8 8 

xerox.yal 10 203 9 9 9 

hp.yal 11 83 5 10 7 

ami33.yal 33 123 32 32 32 

ami49.yal 49 408 2 35 18 

 

In (Funke et al. 2016) the optimal wire-length in 2D for the three smallest 

MCNC instances (apte, xerox and hp) was calculated. It also was stated, that computing 

wire-length optimal packings for the two remaining instances (ami33 and ami49) is still 

far beyond the realms of possibility. The basic half-perimeter model (HPWL) for a 

wire-length calculation was applied, where the wire-length of a net is a half of the 

perimeter of the bounding rectangle that encloses all the pins of the net. It is one of the 

most widely used approximation schemes. In such a way calculated optimal results 

together with the results reported in (Funke et al. 2016) for ami33 and ami49 are given 

in Table 2. 



 

 

Table 2 Optimal wire-lengths for apte, xerox, and hp for the original die size (after 

(Funke et al. 2012)).  Wire-length for ami33 and ami49 after (Funke et al. 2016). Values 

are given in µm. 

YAL datafile original size 
wire-length 

*optimal 

apte.yal 10 500 × 10 500 513 061* 

xerox.yal 5 831 × 6 412 370 993* 

hp.yal 4 928 × 4 200 153 328* 

ami33.yal 2 058 × 1 463 58 627 

ami49.yal 7 672 × 7 840 640 509 

 

The extremal optimization procedure was successfully evaluated in (Grzesiak-

Kopeć et al. 2015) and different approaches were examined (Grzesiak-Kopeć et al. 

2017). The numerical data proved that the initial component layout basically does not 

matter for the final result as was expected for a fine defined extremal optimization task. 

In this article, the total wire-length approximation results, calculated after the squeezing 

volume optimization, are presented. In order to compare the proposed solution with the 

optimal results in 2D (see Table 2), the HPWL wire-length model approximation was 

applied. The third dimension was introduced into a formula as the height of the 

bounding cube of the components which belong to a net. Thus, the wire-length w(n) of a 

net n is calculated as follows: 

𝑤(𝑛) = 𝑚𝑎𝑥12,122∈!|𝑐78 − 𝑐788| + 𝑚𝑎𝑥12,122∈!;𝑐<8 − 𝑐<88; + 𝑚𝑎𝑥12,122∈!|𝑐=8 − 𝑐=88| (1) 

where c’ and c” are components that belong to a network n and cx, cy, cz denote (x,y,z) 

position of a component c, respectively. The experimental results are listed in Table 3. 

Although many floorplanning approaches are applied to the MCNC set of 

benchmarks there are only a few that contain comparable wire-lengths in 2D, like 

(Funke et al. 2016, Liu and Nannarelli 2008). It is caused by the fact that the authors do 

not use the original die sizes (Table 2) but modify them by scaling, rotating or splitting 



 

 

block modules in order to reduce whitespaces (Nain and Chrzanowska-Jeske 2011, Xie 

and Zhao 2015). In this way, the chip components are changed and an essentially 

different layout task is solved. Still, it was reported in (Das et al. 2004), that depending 

on the number of chip layers, the average 28% to 51% reduction in the total wire-length 

may be achieved in 3D.  Our results presented in Table 4 confirm this premise. Apart 

from the ami49 instance, the total wire-length was reduced by 21%-73% compared to 

the best results in 2D (Funke et al. 2016). Only in the case of ami49 circuit, the total 

wire-length is by 10% longer. Yet, it is by 34% better that the 2D result presented in 

(Liu and Nannarelli 2008). 

Table 3 The volume optimization results for the MCNC benchmark original die size. 

Volumes are given in µm (die height equals 1). 

YAL datafile t-EO grid size volume wire-length 

apte.yal 2×2×3 5 018×4 972×3 137 325 

xerox.yal 2×2×3 3 864×3 829×3 290 183 

hp.yal 2×2×3 3 758×3 542×3 105 848 

ami33.yal 3×3×4 911×1 163×4 42 183 

ami49.yal 4×4×4 5 769×5 979×4 704 135 

 

Table 4 The wire-lengths results in µm for the MCNC benchmark instances. 

Article apte Xerox hp ami33 ami49 

This (3D) 137 325 290 183 105 848 42 183 704 135 

(Funke et al. 2016) (2D) 513 061 370 993 153 328 58 627 640 509 

(Liu and Nannarelli 2008) (2D) 614 602 404 278 253 366 96 205 1 070 010 

(Nain and Chrzanowska-Jeske 
2011) (3D) 

- - - 22 500 446 800 

(Xie and Zhao 2015) (3D) - 297 440 124 819 27 911 547 491 

 

In (Xie and Zhao 2015)  various perturbations that change the original modules 

are allowed to handle 3D floorplans, namely rotation and resize. Even though, our 



 

 

results for xerox and hp are a bit better. However, when bigger benchmarks are 

considered (ami33 and ami49) our wire-length are by 33% and 22% longer. Taking into 

account 3D solutions for ami33 and ami49 in (Nain and Chrzanowska-Jeske 2011) 

where some modules are split and their parts are assigned to different device layers, our 

results are by 47% and 37% worst.  

At the first glance, the proposed approach seems to be inferior to others when 

applied to bigger benchmarks. However, it must be stressed out that changing the 

original modules changes the whole layout task. Hence, the achieved solutions are  

incomparable. Our approach is general and does not use any specific knowledge about 

circuit building blocks except of the netlist. It does not modify the building blocks 

structure. Considering the generated four-layer 3D floorplan of ami49 (Figure 8), some 

may criticize it for too many gaps (white spaces) comparing to the floorplans presented 

in (Nain and Chrzanowska-Jeske 2011). Therefore, one may assume that when 

perturbations of original modules are allowed the total wire-length, which is satisfactory 

right now, will even improve. 

 

Figure 9 The 3D floorplan of ami49. 

Conclusions  

This article presents an original and general 3-step intelligent approach to the 

total wire-length minimization in the integrated circuits design. In the first step, a netlist 

YAL file is parsed into the elaborated layout hypergraph representation. After that, a 



 

 

topological partitioning with a use of the extremal optimization is applied to optimize 

the relative positions of the components in the chip. And finally, a parallel distributed 

volume optimization is performed. The squeezing procedure is executed in order to 

minimize the total wire-length of the final solution.  

There is no a priori knowledge needed to solve the floorplan puzzle. Only the 

original block modules sizes and the netlist connectivity information are considered. 

That is why, the reported numerical results for both the chip volume size and the total 

wire-length are very promising and encourage to continue this research. In the future 

work, the knowledge about the circuit building blocks may be incorporated to allow 

components perturbations. Furthermore, the exact pin points positions used in the wire-

length calculation formula would give precise instead of the rough results.  
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