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Abstract: The Gannet Optimization Algorithm (GOA) has good performance, but there is still room
for improvement in memory consumption and convergence. In this paper, an improved Gannet
Optimization Algorithm is proposed to solve five engineering optimization problems. The compact
strategy enables the GOA to save a large amount of memory, and the parallel communication strategy
allows the algorithm to avoid falling into local optimal solutions. We improve the GOA through the
combination of parallel strategy and compact strategy, and we name the improved algorithm Parallel
Compact Gannet Optimization Algorithm (PCGOA). The performance study of the PCGOA on the
CEC2013 benchmark demonstrates the advantages of our new method in various aspects. Finally, the
results of the PCGOA on solving five engineering optimization problems show that the improved
algorithm can find the global optimal solution more accurately.

Keywords: Gannet Optimization Algorithm; parallel communication strategy; compact strategy;
engineering optimization

MSC: 68T20

1. Introduction

With the rapid development of modern industry, optimization theory and optimization
methods have spread throughout all aspects of industrial production, and in recent years, the effi-
ciency and accuracy of optimization solutions are more and more strict.
Optimization problems exist in all walks of life around us, such as engineering optimiza-
tion, neural network optimization, intelligent computing, and some path planning problems
that require a highly efficient and accurate optimization algorithm to solve. It has been found
that various optimization problems can be solved effectively by meta-heuristic algorithms [1],
such as in the field of QR code technology [2]. Population intelligence algorithm is a kind of
meta-heuristic algorithm, and population intelligence algorithm is an algorithm studied based
on natural organisms or natural phenomenon, such as Particle Swarm Optimization Algo-
rithm (PSO) [3–6], Cuckoo Search Algorithm (CSA) [7,8], Ant Colony Optimization Algorithm
(ACO) [9–11], Flower Pollination Algorithm (FPA) [12–14], Phasmatodea Population Evolution
Algorithm (PPE) [15], Symbiotic Organisms Search (SOS) [16,17], etc.

The Gannet Optimization Algorithm (GOA) is based on a summary of the patterns
of fish predation of natural organisms gannets [18]. The Gannet Optimization Algorithm
(GOA) is simple in structure and easy to understand. There are two stages of the GOA: the
exploration stage of the fish when the Gannet hunt for food and the exploitation stage that
unfolds when the Gannet find the fish and chase them. The GOA randomly selects these
two modes to start feeding on the fish in each iteration, and this strategy allows global
exploitation and local exploration to be performed randomly throughout the process.
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Although the GOA has a better search capability than algorithms such as PSO, the
large amount of memory it occupies in the process of finding the optimum is still a ma-
jor drawback that limits the convergence efficiency of the GOA. There are many ways
to improve the performance of the algorithm, such as adopting surrogate-assisted strat-
egy [19,20], adaptive strategy [21–23] and so on. For algorithmic memory saving strategies,
many compact schemes have been proposed in other algorithms, such as compact Ge-
netic Algorithm (cGA) [24], compact Differential Evolution Algorithm (cDE) [25], compact
Particle Swarm Optimization Algorithm (cPSO) [26], etc. However, the GOA does not
currently have other options for the compact improvement strategy. The improved GOA
with the compact strategy not only improves the convergence of the GOA but also saves
the memory usage of the computer, which is called the cGOA. Although the cGOA has
a fast convergence speed, the accuracy of its convergence has no advantage compared
with the original algorithm. We try to improve the stability of the algorithm by adding a
parallel communication strategy to the improved compact strategy, and call the improved
algorithm the PCGOA.

Based on the above description, the improved GOA can both save computer memory
and solve optimization problems more accurately. Finally, the PCGOA is applied to the
selected five engineering optimization problems. This paper contributes as follows:

• For the shortcomings of memory occupation and convergence efficiency of the GOA,
this paper proposes a GOA with a combined strategy of parallel and compact, and the
improved algorithm is called the PCGOA.

• Two new parallel communication strategies are proposed in parallel strategies to
improve the performance of the algorithm.

• In this paper the proposed parallel compact GOA uses the test function CEC2013 to
compare with some traditional algorithms, such as PSO algorithm, SCA algorithm, PMVO
algorithm, etc. It is proved that the PCGOA has better performance.

• The improved GOA algorithm was applied to five engineering optimization problems,
and the results indicated that not only the convergence speed was improved, but also
a large amount of computer memory was saved.

The sections of this paper are organized as follows. The related work in Section 2 briefly
reviews the basic principles of the original GOA and the principles of Compact Scheme. Section 3
specifies the improvement process of the GOA and the principle of the PCGOA, and proposes
two new communication strategies. Section 4 tests the performance of the improved algorithm
based on the CEC2013 benchmark function and analyzes the data image curves. Section 5
explains the method of improving the algorithm to incorporate five engineering optimization
problems and analyzes the performance of the improved algorithm. Finally, the entire article
process is summarized in Section 5.

2. Related Works

There are two main parts in this section. The first part briefly reviews the basic
principles of the GOA. The second part mainly introduces the compact scheme.

2.1. Gannet Optimization Algorithm

The GOA simulates a process of Gannet in a lake from finding a target to feeding on it.
The Gannet is a large waterfowl that is ideally suited to feeding on targets in the water due to
its size, and is able to grab targets and bring them out of the water at a faster rate during the
feeding process. The Gannet also know how to work as a team. When flocks of gannets find
schools of fish, they will line up or feed on them in a semicircle. The GOA is a simulation of the
specific process of Gannet feeding on targets in the water.
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The GOA has two stages of exploration and development. The first initialization of
the GOA is to define a set of random solutions xid representing n D-dimensional gannets
locations of n*D matrices to start with, and the optimal solution obtained from this matrix
is then considered as the global optimal solution. The formula for obtaining the solution of
the matrix is as follows:

xid = r0(ubd − lbd) + lbd, i = 1, 2, . . . , N, d = 1, 2, . . . , Dim (1)

where N denotes the total number of gannets. Dim represents the upper limit of the
dimension of the solution. lbd and ubd represent the upper and lower limits of each
dimension. r0 represents a random number from 0 to 1.

After the initialization of the GOA is completed, Gannets starts to hunt. In the exploration
phase, Gannets has two dive modes: one is U-shaped dive, which is suitable for feeding on
fish in shallow water and corresponds to Equation (4), the other is a V-shaped dive, which is
suitable for feeding on fish in deep water, corresponding to Equation (5),

t = 1− Itk
Kmax

, k = 1, 2, . . . , Kmax (2)

au = 2cos(2πr1)× t (3)

bv = 2V(2πr2)× t (4)

Vsh(y) =


− y

π
+ 1 y ∈ (0, π)

y
π
− 1 y ∈ (π, 2π)

(5)

where Itk denotes the kth iteration and Kmax denotes the upper limit of the number of
iterations, r1 is a random number from 0 to 1, like r2.

The probability of choosing these two dive strategies is the same, so a random number
q is defined to represent the random selection of hunting strategies. The position update
equations are as Equation (6),

MXi(t + 1) =
{

u1 + u2 + Xi(t) q ≥ 0.5 (a)
v1 + v2 + Xi(t) q < 0.5 (b)

(6)

u2 = A(Xi(t)− Xrand(t)) (7)

v2 = B(Xi(t)− XMean(t)) (8)

A = (2r3 − 1)au (9)

B = (2r4 − 1)bv (10)
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where r3 and r4 both range from a random number between 0 and 1, u1 ranges from −au
and au, and v1 ranges from −bv and bv. The ith solution in the population is denoted
by Xi(t). Xrand(t) represents a random selection of a solution from the entire population,
XMean(t) represents a solution at the center of the population, and XMean(t) is calculated as
shown Equation (11),

XMean(t) =
1
N

N

∑
i=1

Xi(t) (11)

During the exploitation phase, when gannets encounter fish that suddenly turn around,
they also need to take two actions to develop further. Here, capturing capability is defined
as Equation (12),

Capturability =
1

Rt2
(12)

t2 = 1 +
Itk

Kmax
(13)

R =
Mv2

L
(14)

L = 0.2 + (2− 0.2)r5 (15)

where M = 2.5 kg is set by the authors based on the average mass of the Gannet population,
r5 represents a random number from 0 to 1, and v = 1.5 m/s represents the speed of the
Gannet in the water, given by the authors. If the fish escapes and the location where the
fish escapes is within the capture capability of the Gannet, the Gannet will make a position
change because it chases the fish; otherwise, the Gannet loses the target and takes a Levy
flight for position update to research for the next target x at random, with the position
update equations shown in Equation (16),

MXi(It + 1) =
{

Xi(It) + t× Delt× (Xi(It)− Xbest(It)) Capturability ≥ c (a)
Xbest(It)− (Xi(It)− Xbest(It))× t× Lv Capturability < c (b)

(16)

Delt = Capturability× |Xi(It)− XBest(It)| (17)

Lv = Levy(Dim) (18)

where c is a constant with a value of 0.2. Xbest(It) denotes the optimal Gannet.
Levy() denotes the Levy flight of the Gannet, as shown in Equation (19):

Levy(Dim) = 0.01
µσ

|v|
1
β

(19)

σ =

 sin
(

πβ
2

)
Γ(1 + β)

Γ
(

1+β
2

)
β2
(

β−1
2

)


1
β

(20)

where µ and σ are random values between 0 and 1, and β is a predetermined constant with
a value of 1.5.

The above is the formula for updating the position of Gannet during predation.
After the above introduction, the pseudocode of the GOA is shown in Algorithm 1:
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Algorithm 1: GOA
Input: Np: population size; Dim: problem dimension; Kmax: The upper limit of the

number of iterations;
Output: Global optimal individual position in the population; Fitness value;

1 Initialize the position of each Gannet in the population according to Equation (1).
2 Generate a position matrix MXi based on each initialized Gannet position and

calculate the fitness value for each Gannet.
3 for Itk< Kmax do
4 if rand ≥ 0.5 then
5 for MXi do
6 if rand ≥ 0.5 then
7 Update Gannet Xi via Equation (6a)
8 else
9 Update Gannet Xi via Equation (6b)

10 end
11 end
12 else
13 for MXi do
14 if c ≥ 0.2 then
15 Update Gannet Xi via Equation (16a)
16 else
17 Update Gannet Xi via Equation (16b)
18 end
19 end
20 end
21 for MXi do
22 Calculate fitness value of each Gannet Xi in MXi;
23 Update MXi based on Xi fitness;
24 end
25 end

2.2. Compact Scheme

The compact strategy represents the entire population by using virtual populations,
and it has also proven to be effective [27]. When the population is applied with the compact
strategy, the update after each iteration is also conducted to the whole population in the
form of a virtual population. The entire algorithmic process changes from updating the
entire population to updating the probabilistic model representing the population, saving
the use of computer memory.

The compact strategy for virtualization of the entire population is to use a probabilistic
model. To represent the whole population, a perturbation vector (PV) is used to describe
the population [28]. As the algorithm continues, the PV is also changing. The PV is
represented as follows: PV = [µt, σt], where µ denotes the mean value of the PV, σ denotes
the standard deviation of the PV, and t is the number of current iterations. In the virtual
population, each dimension of all particles of the population corresponds to a Perturbation
Vector (PV). Both µ and σ in the PV have corresponding probability density functions
(PDF), and the PDF is to be normalized [29]. The distribution of the whole population
is represented by the above. After having the PDF corresponding to the population, we
can generate the solution x from the PDF. The PDF can be constructed by constructing a
Chebyshev polynomial, which leads to a cumulative distribution function (CDF) that takes
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values ranging from 0 to 1 [30,31]. Because the PDF is defined in [−1, 1], the corresponding
CDF needs to be expressed according to the definition of the PDF as follows:

CDF =
∫ x

−1
PDFdx =

∫ x

−1

√
2
π e−

(x−µ)2

2σ2

σ(er f ( µ+1√
2σ
)− er f ( µ−1√

2σ
))

dx (21)

where x takes values ranging from −1 to 1 and er f denotes the error function [32]. The
above formula shows that the PDF belongs to a truncated Gaussian distribution, which
restricts the distribution function to the interval [−1, 1] and performs a normalization
operation. In Equation (22), it can also be transformed into this form as follows:

CDF =
er f
(

µ+1√
2σ

)
+ er f

(
x−µ√

2σ

)
er f
(

µ+1√
2σ

)
− er f

(
µ−1√

2σ

) (22)

Usually, the generated Xi is updated by the algorithmic update formula for the gener-
ated Xi to obtain the new solution Xnew, and the adaptation is evaluated according to the
generated Xi with Xnew, and the one with good adaptation is called the winner and the
one with poor adaptation is called the loser, and then the µ and σ of the PV are updated
according to the winner and the loser [33]. The PV update formula is as follows:

µt+1
i = µt

i +
1

Ntotal
(winneri − loseri) (23)

In Equation (23), µt+1 denotes the newly generated mean after iteration. Ntotal denotes
the population size. The formula for updating the standard deviation in PV is as follows:

σt+1
i =

√
(σt

i )
2 + (µt

i)
2 − (µt

i+1)
2 +

1
Ntotal

(winner2
i − loser2

i ) (24)

The population represented by the probability distribution greatly saves the com-
puter’s storage when the algorithm is running. From storing the entire population and
updating the entire population at the beginning to storing the PV and updating µ and σ
in the PV, it is achieved to run the algorithm with less memory and facilitates the use on
resource-constrained devices.

3. Parallel and Compact GOA

In this section, the first part will introduce the proposed parallel communication
strategy and the cGOA, and the second part will introduce the parallel and compact hybrid
strategy added to the GOA.

3.1. Two Proposed Parallel Communication Strategies and cGOA

The idea of the parallel strategy is to group all particles in equal or unequal fractions,
and each group performs its own computation when the algorithm runs [34,35]. We use
the grouping of Gannets in the algorithm improvement to improve the convergence and
accuracy of the algorithm.

Among the parallel improvements of other algorithms, such as: Parallel Particle
Swarm Optimization (PPSO) [36] and Parallel Fish Migration Optimization algorithm
with Compact technology (PCFMO) [37], etc. From these algorithms improved by parallel
strategies, it can be seen that adding parallel communication to the algorithm is more
effective than the original algorithm.
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Two novel communication schemes are used in this paper to improve the GOA using
the parallel strategy. One parallel communication strategy is to replace the elite solution
of a randomly selected group after each iteration when it is better adapted than the elite
solution of another randomly selected group, called communication strategy with random
replacement; another parallel communication strategy is to replace the elite solution of each
group after each iteration when it is better adapted than the elite solution of a randomly
selected group, called communication strategy with optimal replacement. In order to
better use these two strategies, after each group performs iteration completion, a random
selection is used to select a strategy for intergroup communication, and each strategy is
selected with a probability of one-half. At the same time, because the two strategies are
randomly selected groups and fitness values are calculated for elite solution replacement, a
disturbance vector d is added to the elite solution in the group whose communication fails
when each group communicates substitution failure, and the original solution is replaced
if the disturbed solution is well fitness. Figures 1 and 2 allow us to understand these two
parallel communication strategies more intuitively.

Figure 1. The communication strategy with random replacement.

Figure 2. The communication strategy with optimal replacement.

The above is the introduction of the parallel communication strategy used in this paper,
and the next will introduce the combination of GOA and compact strategy. In Section 2, we
introduced the basic principle of the compact strategy, after which the compact strategy is
combined with the GOA, and the combined algorithm is called the cGOA. The cGOA saves
the computer storage space occupied by the particles during initialization. The initialization
of the GOA is stored for each all particles, while the cGOA is initialized with only one
perturbation vector (PV) at the time of initialization. The formula for CDF−1 is as follows:

y =
√

2σ× er f−1
(
−er f

(
µ + 1√

2σ

)
− x× er f

(
µ− 1√

2σ

)
+ x× er f

(
µ + 1√

2σ

))
+ µ (25)
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In Equation (25), er f−1 denotes the inverse function of er f . where y takes values in
the range of [−1, 1] and x takes values in the random number of [0, 1]. In order to achieve
the mapping of solution y, the following Equation (26) needs to be used to achieve it:

yds =
y
2
(Ub− Lb) +

1
2
(Ub + Lb) (26)

In Equation (26), Ub and Lb represent the upper and lower limits of each dimension,
respectively. y is obtained from Equation (25). yds is an actual decision solution space.
During the iterative process of the cGOA, each iteration is completed using the obtained
yds to update the µ and σ in the PV by Equations (23) and (24) mentioned in Section 2.

3.2. Hibrid Parallel and Compact GOA

Based on our two parallel communication strategies given in the previous section and the
compact strategy, a specific implementation of the combination of the parallel and compact
strategies is added to the GOA to be improved in this subsection. The improved algorithm after
the mixture is called the Parallel Compact Gannet Optimization Algorithm (PCGOA).

In PCGOA, we divided the populations into five groups. While the algorithm is in
progress, these five groups perform their own computations. After all five groups complete
one iteration, inter-group communication starts. The communication strategy adopted is
described in Section 3.1.

In this paper, the join for the compact strategy is to virtualize the populations in each
group, because there are five groups, so there are five independent PVs corresponding to
the virtual populations in each of the five groups. Each iteration of the algorithm ends by
updating the PV corresponding to each of the five groups according to the winner and
loser of each of the 5 groups. To facilitate the distinction we take winneri(i = 1, 2, 3, 4, 5)
and loseri(i = 1, 2, 3, 4, 5) as the winner and loser of the i group. The specific process is
as follows:

1. Dividing the entire population into 5 groups and initializing PVi for each group,
where σi = 10, µi = 0, (i = 1, 2, 3, 4, 5).

2. Generating the solution Xi via PVi, generating the corresponding solution X via PV
of each group.

3. Compare X and Xnew of each group, and select the winner and loser of each group by
[winner, loser] = compete(X, Xnew).

4. X of each group performs the position update formula of the GOA to generate Xnew.
5. Updating the PV and updating the optimal solution for each group and the global

optimal solution according to Equation (16).
6. If the insufficiency condition is met, the algorithm is finalized, otherwise repeat Step 2 to

Step 5.

The algorithm flow of the PCGOA is shown in Algorithm 2:
In order to understand PCGOA more clearly, we will analyze the theoretical computa-

tional complexity of the PCGOA. From Algorithm 1, we can see that the computational
complexity of each iteration of the PCGOA is mainly in lines 9 to 22 of the pseudo-code,
and the computational complexity is O(g× d), where g denotes the total number of groups
and d denotes the total number of dimensions. In lines 8 to 24 of the pseudo code, the
computational complexity of the whole algorithm is O(Kmax × g× d). In addition, in GOA,
the computational complexity of the whole algorithm is O(Kmax × N× d), where N denotes
the total number of gannets in the population.
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Algorithm 2: PCGOA
Input: Np: population size; Dim: problem dimension; Kmax:The upper limit of the

number of iterations;
Output: Global optimal individual position in the population;Fitness value;

1 t = 0; groups = 5;
2 Initialization;
3 for g = 1:groups do
4 Initialize Group[g].PV;
5 Generate Group[g].elite via Group[g].PV;
6 Calculate the Group[g].elite fitness as Group[g]. f it
7 end
8 for Itk<Kmax do
9 for g = 1:groups do

10 generate Group[g].x via Group[g].PV;
11 Update Group[g].x by Algorithm 1 to get Group[g].xnew;
12 [winner, loser, f itwinner] = compete(Group[g].xnew, Group[g].elite);
13 if Group[g].xnew = winner then
14 Group[g].elite = Groups[g].xnew;
15 Update Group[g]. f it;
16 end
17 for i = 1:Dim do
18 temp = (Group[g].σt[i])2 + (Group[g].µt[i])2 − (Group[g].µt+1[i])2;
19 Group[g].µt+1[i] = Group[g].µt[i] + (winner[i]− loser[i])/Ntotal ;
20 Group[g].σt+1[i] =

√
temp + (winner[i]2 − loser[i]2)/Ntotal ;

21 end
22 end
23 Update Fmin and Best;
24 end
25 for g = 1 : groups do
26 if rand > 0.5 then
27 Strategy 1;
28 else
29 Strategy 2;
30 end
31 end

4. Experiments

In this section, CEC2013 will be used to test the PCGOA and demonstrate the perfor-
mance of the PCGOA. A total of 28 functions are covered in CEC2013, including unimodal
function distribution (F1–F5), multimodal function (F6–F20) and combinatorial function
(F21–F28). These three functions are considered to cover most problems in reality. In the
experiments, each algorithm is run in the same environment in CEC2013, which ensures the
fairness of the algorithm operation. The development environment used for this experiment
is MatLab2018b with Intel(R) Core(TM) I7-10750 H CPU @ 2.60 GHz RAM 16 GB.

4.1. Selection of Comparison Algorithm and Its Parameter Setting

In order to demonstrate the advantages of the PCGOA more comprehensively, the
classical algorithms PSO and SCA, the CS algorithm with Levy flight, the MVO algorithm
improved by parallel strategy (PMVO), and the AO and BOA algorithms recently proposed
in the current research field are selected for experimental comparison in this paper. The
specific algorithms and their parameters are set as follows:

• Aquila Optimizer (AO) [38]: r0 = 10, delta = 0.1, alpha = 0.1, u = 0.0265;
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• Butterfly Optimization Algorithm (BOA) [39]: probabibilityswitch = 0.6,
powerexponent = 0.1, sensorymodality = 0.01;

• Particle Swarm Optimization (PSO): Vmax = 6, Vmin = 6, c1 = c2 = 2, w3 = 0.3;
• Sine Cosine Algorithm (SCA) [40]: a = 2;
• Parallel Multi-Verse Optimizer (PMVO) [41]: G = 4, R = 20, 40, . . . , 2000,

w = 6, Wmin = 0.2, Wmax = 1;
• Cuckoo Search Algorithm (CS): Pa = 0.25.

This paper runs each benchmark function in CEC2013 20 times, each dimension is
30-dimensional, and the functions are evaluated 20,000 times. The advantages of pcGOA
over the original algorithm and other algorithms were compared based on the mean and
variance of each function run 20 times. See Table 1 for specific data.

Table 1. Simulation results on 30D.

Func_Num PCGOA GOA AO BOA PSO SCA PMVO CS

1 Mean −1.40 × 103 −1.40 × 103 4.80 × 103 5.29 × 104 1.54 × 104 1.85 × 104 −1.40 × 103 −1.40 × 103

Std 7.28 × 10−2 7.96 × 10−2 1.44 × 103 5.59 × 103 3.19 × 103 2.72 × 103 5.08 × 10−1 3.79 × 10−3

2 Mean 1.88 × 107 2.62 × 107 1.63 × 108 5.19 × 108 3.51 × 108 2.51 × 108 1.83 × 107 1.37 × 107

Std 4.55 × 106 1.07 × 107 6.79 × 107 4.64 × 108 1.24 × 108 4.51 × 107 3.57 × 106 4.14 × 106

3 Mean 5.53 × 108 3.88 × 109 3.00 × 1012 6.73 × 1019 1.77 × 1014 1.88 × 1011 2.58 × 109 −1.00 × 1010

Std 2.05 × 109 7.23 × 109 1.19 × 1011 2.47 × 1020 4.69 × 1013 4.65 × 1010 1.05 × 109 7.56 × 108

4 Mean 8.44 × 103 4.76 × 104 5.89 × 104 5.54 × 104 6.72 × 104 6.28 × 104 4.23 × 104 8.58 × 104

Std 2.00 × 103 7.26 × 103 3.66 × 103 2.45 × 103 1.10 × 104 1.41 × 104 1.59 × 104 9.94 × 103

5 Mean −9.99 × 102 −9.88 × 102 1.03 × 102 3.32 × 104 2.41 × 103 3.22 × 103 −9.00 × 102 −1.00 × 103

Std 2.03 × 10−1 1.37 × 10 6.18 × 102 7.68 × 103 1.67 × 103 6.30 × 102 4.05 × 10 3.52 × 10−2

6 Mean −8.77 × 102 −7.42 × 102 8.60 × 10 1.29 × 104 1.32 × 103 1.55 × 103 −8.22 × 102 −8.63 × 102

Std 2.81 × 10 3.51 × 10 2.47 × 102 2.60 × 103 2.10 × 103 4.18 × 102 2.13 × 10 1.75 × 10
7 Mean −6.90 × 102 −6.86 × 102 −4.99 × 102 9.36 × 104 −6.57 × 102 −5.95 × 102 −6.81 × 102 −6.60 × 102

Std 4.05 × 10 4.28 × 10 4.67 × 102 5.72 × 105 7.07 × 103 1.14 × 102 3.59 × 10 1.84 × 10
8 Mean −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102 −6.79 × 102

Std 4.68 × 10−2 4.83 × 10−2 6.52 × 10−2 4.29 × 10−2 6.58 × 10−2 5.31 × 10−2 6.70 × 10−2 4.58 × 10−2

9 Mean −5.69 × 102 −5.65 × 102 −5.59 × 102 −5.58 × 102 −5.63 × 102 −5.57 × 102 −5.73 × 102 −5.68 × 102

Std 2.83 × 10 4.72 × 10 2.80 × 10 1.50 × 10 4.46 × 10 8.34 × 10−1 2.77 × 10 1.19 × 10
10 Mean −4.96 × 102 −2.95 × 102 4.59 × 102 7.77 × 103 2.57 × 103 2.31 × 103 −4.93 × 102 −4.98 × 102

Std 9.91 × 10−1 3.31 × 10 3.85 × 102 1.10 × 103 4.61 × 102 4.76 × 102 2.39 × 10 2.13 × 10−1

11 Mean −1.80 × 102 −2.25 × 102 2.46 × 10 4.95 × 102 −1.20 × 102 9.51 × 10 −3.02 × 102 −2.93 × 102

Std 7.14 × 10 3.68 × 10 4.89 × 10 6.31 × 10 3.91 × 10 5.17 × 10 2.77 × 10 1.88 × 10
12 Mean −2.99 × 10 −1.65 × 102 4.74 × 10 5.27 × 102 1.31 × 102 2.10 × 102 −2.20 × 102 −1.16 × 102

Std 1.16 × 102 4.40 × 10 7.30 × 10 1.01 × 102 1.01 × 102 4.31 × 10 4.24 × 10 2.67 × 10
13 Mean 4.09 × 10 1.48 × 10 3.64 × 102 6.17 × 102 3.43 × 102 2.44 × 102 2.55 × 10 1.55 × 10

Std 5.15 × 10 6.85 × 10 7.71 × 10 6.01 × 10 7.76 × 10 3.17 × 10 6.13 × 10 3.24 × 10
14 Mean 4.07 × 103 3.94 × 103 5.44 × 103 8.29 × 103 4.45 × 103 7.97 × 103 2.78 × 103 3.41 × 103

Std 5.83 × 102 5.53 × 102 7.96 × 102 3.12 × 102 6.54 × 102 5.16 × 102 5.01 × 102 2.32 × 102

15 Mean 4.52 × 103 5.77 × 103 5.49 × 103 8.05 × 103 4.65 × 103 8.25 × 103 5.52 × 103 5.10 × 103

Std 9.84 × 102 1.03 × 103 7.32 × 102 3.44 × 102 5.09 × 102 4.09 × 102 8.36 × 102 2.32 × 102

16 Mean 2.01 × 102 2.03 × 102 2.03 × 102 2.04 × 102 2.03 × 102 2.04 × 102 2.02 × 102 2.03 × 102

Std 3.86 × 10−1 4.08 × 10−1 4.67 × 10−1 2.96 × 10−1 5.61 × 10−1 4.66 × 10−1 4.67 × 10−1 3.69 × 10−1

17 Mean 5.01 × 102 4.76 × 102 1.00 × 103 1.22 × 103 6.79 × 102 9.61 × 102 5.14 × 102 4.92 × 102

Std 7.87 × 10 2.67 × 10 8.93 × 10 4.38 × 10 6.80 × 10 6.87 × 10 3.84 × 10 2.35 × 10
18 Mean 7.26 × 102 6.69 × 102 9.85 × 102 1.31 × 103 8.75 × 102 1.10 × 103 6.50 × 102 6.36 × 102

Std 4.86 × 10 3.98 × 10 8.54 × 10 5.94 × 10 1.10 × 102 7.91 × 10 4.16 × 10 1.79 × 10
19 Mean 5.14 × 102 5.56 × 102 8.45 × 102 4.61 × 105 5.53 × 104 2.23 × 104 5.15 × 102 5.13 × 102

Std 5.16 × 10 7.21 × 10 4.45 × 102 1.17 × 105 1.10 × 104 1.61 × 104 3.67 × 10 2.67 × 10
20 Mean 6.15 × 102 6.13 × 102 6.15 × 102 6.15 × 102 6.15 × 102 6.15 × 102 6.15 × 102 6.14 × 102

Std 6.75 × 10−1 1.15 × 10 1.33 × 10−1 2.23 × 10−9 1.33 × 10−1 3.04 × 10−1 6.43 × 10−1 5.62 × 10−1

21 Mean 1.01 × 103 1.02 × 103 2.49 × 103 3.21 × 103 2.80 × 103 2.88 × 103 1.02 × 103 9.62 × 102

Std 6.96 × 10 7.70 × 10 4.68 × 102 5.29 × 10 1.64 × 102 1.11 × 102 8.94 × 10 3.82 × 10
22 Mean 6.06 × 103 4.53 × 103 7.24 × 103 9.61 × 103 4.67 × 103 8.48 × 103 6.51 × 103 5.19 × 103

Std 1.07 × 103 7.75 × 102 1.02 × 103 3.29 × 102 8.62 × 102 3.10 × 102 1.35 × 103 3.75 × 102

23 Mean 7.98 × 103 7.14 × 103 7.47 × 103 9.71 × 103 6.32 × 103 9.11 × 103 6.68 × 103 6.83 × 103

Std 9.87 × 102 6.57 × 102 9.50 × 102 3.56 × 102 1.26 × 103 4.26 × 102 6.99 × 102 3.30 × 102

24 Mean 1.28 × 103 1.29 × 103 1.32 × 103 1.45 × 103 1.34 × 103 1.33 × 103 1.27 × 103 1.30 × 103

Std 1.41 × 10 1.12 × 10 9.04 × 10 2.72 × 10 3.83 × 10 4.26 × 10 8.42 × 10 4.92 × 10
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Table 1. Cont.

Func_Num PCGOA GOA AO BOA PSO SCA PMVO CS

25 Mean 1.40 × 103 1.39 × 103 1.43 × 103 1.44 × 103 1.49 × 103 1.43 × 103 1.37 × 103 1.41 × 103

Std 1.61 × 10 6.66 × 10 9.56 × 10 2.79 × 10 1.63 × 10 3.28 × 10 1.49 × 10 4.09 × 10
26 Mean 1.40 × 103 1.40 × 103 1.58 × 103 1.45 × 103 1.58 × 103 1.62 × 103 1.40 × 103 1.40 × 103

Std 2.89 × 10−1 5.73 × 10 7.69 × 10 7.78 × 10 9.23 × 10 7.52 × 10 7.45 × 10 6.75 × 10−1

27 Mean 2.41 × 103 2.52 × 103 2.70 × 103 3.06 × 103 2.46 × 103 2.77 × 103 2.12 × 103 2.43 × 103

Std 9.90 × 10 8.95 × 10 6.41 × 10 6.26 × 10 1.27 × 102 4.34 × 10 1.24 × 102 1.83 × 102

28 Mean 1.72 × 103 1.79 × 103 5.17 × 103 6.12 × 103 4.68 × 103 4.79 × 103 1.74 × 103 1.77 × 103

Std 1.42 × 103 7.31 × 102 5.55 × 102 2.75 × 102 3.68 × 102 2.30 × 102 5.45 × 102 3.63 × 10

win/=/los 17/2/9 26/0/2 27/0/1 26/0/2 28/0/0 17/0/11 25/2/1

The bolded data represents the best value taken by this algorithm over other algorithms
in the current function. The win, equal sign and los in the lowest row of Table 1 represent
the number of wins, ties and failures of the PCGOA in comparison with other algorithms
in 28 functions, respectively. We can see that the PCGOA has 17 wins and 2 function
ties in the comparison with GOA, and among the winning functions, the PCGOA has an
advantage over the GOA in the single-peaked functions as well as the combined functions,
and partially in the multimodal functions.

To verify the statistical advantage of the PCGOA and to determine if the PCGOA is
significantly different compared to other algorithms, we used the nonparametric Wilcoxon
Rank-sum test for this experiment. The significance level was taken to be α of 0.05, and
the tested p values are shown in Table 2, where data with p values greater than 0.05 are
marked in bold. As can be seen in Table 2, the PCGOA has a significant gap with other
algorithms in most cases.

Table 2. p-Values of the Wilcoxon rank-sum test for CEC2013 functions.

Function GOA AO BOA PSO SCA PMVO CS

F1 1.40 × 10−2 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4

F2 3.30 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.1212 1.83 × 10−4

F3 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.6776 6.39 × 10−5

F4 2.46 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4

F5 1.31 × 10−3 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4

F6 2.20 × 10−3 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.6776 1.71 × 10−3

F7 0.0757 4.40 × 10−4 1.83 × 10−4 1.40 × 10−2 1.83 × 10−4 1.73 × 10−2 0.5205
F8 2.20 × 10−3 1.01 × 10−3 1.01 × 10−3 0.1212 2.83 × 10−3 2.46 × 10−4 3.30 × 10−4

F9 0.6776 1.01 × 10−3 1.83 × 10−4 4.52 × 10−2 1.83 × 10−4 2.46 × 10−4 0.1212
F10 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 4.40 × 10−4 1.83 × 10−4

F11 1.83 × 10−4 1.73 × 10−2 1.83 × 10−4 3.12 × 10−2 2.46 × 10−4 1.83 × 10−4 7.69 × 10−4

F12 1.31 × 10−3 2.20 × 10−3 1.83 × 10−4 2.20 × 10−3 2.20 × 10−3 2.20 × 10−3 0.4274
F13 3.30 × 10−4 2.46 × 10−4 1.83 × 10−4 4.40 × 10−4 5.83 × 10−4 3.61 × 10−3 0.1041
F14 2.20 × 10−3 3.61 × 10−3 1.83 × 10−4 0.3447 1.83 × 10−4 0.4727 0.7337
F15 2.83 × 10−3 0.1405 1.83 × 10−4 0.3847 1.83 × 10−4 5.80 × 10−3 2.83 × 10−3

F16 2.83 × 10−3 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.1405 1.83 × 10−4

F17 1.83 × 10−4 4.40 × 10−4 1.83 × 10−4 0.1620 1.83 × 10−4 1.40 × 10−2 0.0640
F18 1.31 × 10−3 1.83 × 10−4 1.83 × 10−4 3.30 × 10−4 1.83 × 10−4 0.2413 0.1212
F19 0.5205 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 4.40 × 10−4 0.0140
F20 0.6764 1.49 × 10−4 1.49 × 10−4 1.73 × 10−4 7.28 × 10−3 7.71 × 10−3 2.83 × 10−3

F21 1.71 × 10−3 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.1620 1.83 × 10−4

F22 1.83 × 10−4 0.3075 1.83 × 10−4 7.57 × 10−2 2.46 × 10−4 0.2730 0.4727
F23 0.6776 1.71 × 10−3 1.83 × 10−4 0.6776 1.83 × 10−4 3.12 × 10−2 0.1212
F24 7.28 × 10−3 3.12 × 10−2 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 0.9097
F25 7.69 × 10−4 7.69 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 3.30 × 10−4 1.40 × 10−2

F26 4.40 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 1.83 × 10−4 7.69 × 10−4 1.83 × 10−4

F27 1.40 × 10−2 1.31 × 10−3 1.83 × 10−4 4.40 × 10−4 1.83 × 10−4 3.30 × 10−4 2.11 × 10−2

F28 0.0890 9.11 × 10−3 1.83 × 10−4 9.11 × 10−3 0.1620 0.2365 0.6758

4.2. Convergence Analysis

To better demonstrate the advantages of the PCGOA, the convergence performance
of the PCGOA is tested. In this subsection, In this subsection, we present the tests of the
PCGOA on 28 benchmark functions of CEC2013 in 10 dimensions. Because the CEC2013
contains three test functions, namely single-peak function, multi-modal function and
composite function, the CEC2013 can better test the convergence and robustness of the
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PCGOA from many aspects. In order to show the convergence curve of each function more
clearly, this paper selects several functions from each function for display.

In Figure 3, the convergence effect of the PCGOA in the single-peaked function is
shown. Comparing PCGOA with GOA, PSO, PMVO and other algorithms, the convergence
image of the PCGOA in the single-peak function shows that the PCGOA performs well in
the single-peak function and converges to the optimal solution faster than several other
algorithms. In the stages of single-peaked functions the PCGOA can all converge to the
global optimal solution faster than other functions. Because the PCGOA communicates at
each iteration, the algorithm performs better with single-peaked functions.

(a) (b)

(c) (d)

Figure 3. The convergence trend of the unimodal state of the benchmark function in CEC2013. (a) F1.
(b) F2. (c) F4. (d) F5.

The performance of the PCGOA for multimodal functions is shown in Figure 4. The
selected images of functions with more obvious convergence trends show that the conver-
gence of the PCGOA for multimodal functions is also better than other functions, and the
convergence to the final results are better than other algorithms. The performance of the
PCGOA in the combinatorial function is shown in Figure 5, and four images with more



Mathematics 2023, 11, 439 13 of 23

obvious convergence are selected to show in this paper. It can be seen in F21, F23, F24
and F27 that the PCGOA still performs well in the combinatorial functions, and that the
PCGOA has good convergence for the same number of evaluation functions. It can be seen
from the final results that the PCGOA converges to in most functions that the PCGOA is
superior compared to other algorithms.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Cont.
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(g) (h)

Figure 4. The convergence trend of the multi-modal state of the benchmark function in CEC2013.
(a) F6. (b) F9. (c) F10. (d) F11. (e) F12. (f) F14. (g) F15. (h) F16.

(a) (b)

(c) (d)

Figure 5. Convergence trend of the composition function of the benchmark function in CEC2013.
(a) F21. (b) F23. (c) F24. (d) F27.
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4.3. Algorithm Memory Analysis

The PCGOA saves computer memory compared to GOA at runtime because the
compact strategy used in PCGOA saves memory mainly in terms of storage of the Gannet
population in the algorithm run, so this experiment focuses on comparing the size of
computer-to-population storage for each iteration.The following table shows the computer
memory occupied by several algorithms for the Gannet population at each iteration.

In Table 3, Name is the form in which the algorithm stores the population, Size
represents the size stored in the computer, BytesClass indicates the specific size of the
storage occupied in the computer, groups represents the number of groups, D represents
the total number of dimensions, and Np indicates the total number of individuals in the
population. In the development environment of this experiment, each basic unit is 8
floating-point type data. In BytesClass, it is multiplied by 2 because PV of each group is
actually a matrix of 2× D.

Table 3. Computer storage of populations at each iteration.

Algorithm Name Size Bytes Class

PCGOA Group 2× groups× D 2× groups× D× 8 double
GOA Np NP × D NP × D× 8 double

PMVO Group NP × D NP × D× 8 double
CS Np NP × D NP × D× 8 double

We can see from the above table that the use of the compact strategy achieves the
virtualization of the population by storing only a few PVs instead of the whole population,
which saves the computer memory when the algorithm is running.

5. Engineering Design Problems

In real life, there will be many optimally solved problems to solve. In this section, the
PCGOA is applied to five constrained engineering optimization problems.
Tension spring design [42], Pressure vessel design [43], Welded beam design [44], Speed
reducer design [45] and Car side impact design [46].

5.1. Constraint Handling

The method of dealing with the boundary constraints in this experiment is the penalty
function method, the basic idea of which is to transform the constrained problem into
an unconstrained optimization problem with the help of penalty functions, and obtain
the solution of the original constrained problem by solving a series of unconstrained
optimization problems. This method is used to bring the infeasible point closer to the
feasible domain by applying a penalty to it during the iteration. When this point is a
feasible point, it is the optimal solution to the original problem.

The constrained optimization problem is transformed into an unconstrained optimiza-
tion problem by the following equation,

min :L(X) = f (X) + σ ∑
i

g(ci(X))

g(ci(X)) = max(0, ci(X))2
(27)

where i represents the ith constraint, ci(X) represents a series of constraints, g(ci(X)) is the
external penalty function, and σ is the penalty factor. In Equation (27), the value of σ is 1,000,000.
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5.2. Tension Spring Design

The purpose of pressure vessel design is to minimize its total cost Func(~X) under its
four constraints. There are three design variables involved: the average diameter of the
spring coil (x1), the diameter of the spring wire (x2), and the number of effective coils of
the spring (x3). The mathematical description is as follows:

Func(~X) = x2
1x2(x3 + 2) (28)

The constraints of this engineering optimization problem are as follows:

g1(~X) = 1−
x2

2x3

7178x4
1
≤ 0

g2(~X) =
4x2

2 − x1x2

12566x3
1x2 − x4

1
+

1
5108x2

1
− 1 ≤ 0

g3(~X) = 1− 140.45x1

x2
2x3

≤ 0

g4(~X) =
x1 + x2

1.5
− 1 ≤ 0

(29)

where the range of values of each variable is as follows:

0.05 ≤ x1 ≤ 2

0.25 ≤ x2 ≤ 1.3

2 ≤ x3 ≤ 15

(30)

In this paper, the PCGOA is applied to this engineering optimization problem and
compared with other algorithms under the same conditions. The optimal solutions derived
from each algorithm run for this engineering optimization problem indicate that the PCGOA
yields optimal results in solving the problem. The results are shown in Table 4.

Table 4. Comparison results of each algorithm for the tension spring design problem.

Algorithm x1 x2 x3 Best

PCGOA 0.050 0.282 2 0.00282
GOA 0.050 0.282 2 0.00282
PSO 0.081 0.784 2.0809 0.02120
BOA 0.050 0.282 2 0.00282
AO 0.050 0.250 2.8712 0.00305
SCA 0.050 0.282 2 0.00282

PMVO 0.050 0.282 2 0.00282

5.3. Pressure Vessel Design

The purpose of pressure vessel design is to minimize the total cost Func(~X) while
meeting production needs. The total costs affecting pressure vessel design are material,
shape and welding. There are four design variables involved: head thickness (x2), shell
thickness (x1), inner radius (x3) and vessel length (x4). The mathematical description is
as follows:

Func(~X) = 3.1661x2
1x4 + 0.6224x1x3x4 + 1.7781x2x2

3 + 19.84x2
1x3 (31)
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The constraints of this engineering optimization problem are as follows:

g1(~X) = 0.0193x3 − x1 ≤ 0

g2(~X) = 0.00954x3 − x2 ≤ 0

g3(~X) = 1296000− πx2
3x2

4 −
4
3

πx3
3 ≤ 0

g4(~X) = x4 − 240 ≤ 0

(32)

where the range of values of each variable is as follows:

1× 0.0625 ≤ x1

x2 ≤ 99× 0.0625

10 ≤ x3

x4 ≤ 200

(33)

In this paper, the PCGOA is applied to this engineering optimization problem and
compared with other algorithms under the same conditions. The optimal solutions derived
by each algorithm running on this engineering optimization problem indicate that the
PCGOA has an advantage over the other algorithms in solving the problem. The results
are shown in Table 5.

Table 5. Comparison results of each algorithm for the pressure vessel design problem.

Algorithm x1 x2 x3 x4 Best

PCGOA 0.193 0.096 10.000 64.13 108.8280
GOA 0.192 0.095 10.000 64.12 108.8980
PSO 3.399 45.546 19.958 76.36 42,851.7246
BOA 0.192 0.162 10.000 65.967 126.6560
AO 0.194 0.095 10.090 64.537 113.9758
SCA 0.195 0.107 10.000 65.569 114.0628

PMVO 0.192 0.100 10.000 185.174 269.7348

5.4. Welded Beam Design

The purpose of the welded beam design is to minimize its design cost Func(~X) under
its seven constraints. There are four design variables involved in the design: the thickness of
the weld (x1), the length of the clamped reinforcement (x2), the height of the reinforcement
(x3) and the thickness of the reinforcement (x4). The mathematical description is as follows:

Func(~X) = 1.10471x2
1x2 + 0.04811x3x4(x2 + 14) (34)
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The constraints of this engineering optimization problem are as follows:

g1(~X) = τ(~X)− 13600 ≤ 0

g2(~X) = σ(~X)− 30000 ≤ 0

g3(~X) = x1 − x4 ≤ 0

g4(~X) = 0.10471x2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0

g5(~X) = 0.125− x1 ≤ 0

g6(~X) = δ(~X)− 0.25 ≤ 0

g7(~X) = 6000− Pa(~X) ≤ 0

τ(~X) =

√
τ
′ + (2τ

′
τ
′′)

x2

2R
+ (τ′′)2

τ
′
=

6000√
2x1x2

τ
′′
=

TK
L

T = 6000
(

14 +
x2

2

)
K =

√(
x1 + x3

2

)2
+

x2
2

4

L = 2

{
x1x2
√

2

[
x2

2
12

+

(
x1 + x3

2

)2
]}

σ(~X) =
504000

x2
3x4

Pa(~X) =
4.013

(
30× 106)√ x2

3x6
4

36
196

×

1−
x3

√
30×106

4(12×106)

28



(35)

where the range of values of each variable is as follows:

0.1 ≤ x1

0.1 ≤ x2

x3 ≤ 10

x4 ≤ 2

(36)

In this paper, the PCGOA is applied to this engineering optimization problem and
compared with other algorithms under the same conditions. The optimal solutions derived
by each algorithm running on this engineering optimization problem indicate that the
PCGOA has an advantage over the other algorithms in solving the problem. The results
are shown in Table 6.

Table 6. Comparison results of each algorithm for the welded beam design problem.

Algorithm x1 x2 x3 x4 Best

PCGOA 0.2056 3.4705 9.0455 0.2057 1.7258
GOA 0.2050 3.4305 9.1833 0.2050 1.7380
PSO 0.4193 4.8651 6.6427 0.4279 3.5247
BOA 0.1894 6.7279 7.7389 0.3523 2.9854
AO 0.1656 5.5263 9.1504 0.2052 1.9317
SCA 0.2027 3.8820 8.9529 0.2160 1.8395

PMVO 0.1921 3.7894 9.0467 0.2057 1.7470

5.5. Speed Reducer Design

In this optimization problem, the goal of the reducer design is to minimize its weight
Func(~X) under eleven constraints. There are seven design variables involved: tooth width
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(x1), gear module (x2), number of teeth in the pinion (x3), length of the first shaft between
bearings (x4), length of the second shaft between bearings (x5), diameter of the first shaft
(x6) and diameter of the second shaft (x7). The mathematical description is as follows:

Func(~X) =0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
+ 0.7854(x4x2

6 + x5x2
7)

+ 7.4777(x2
6 + x2

7)− 1.508x1(x2
6 + x2

7)
(37)

The constraints of this engineering optimization problem are as follows:

g1(~X) =
27

x1x2
2x3
− 1 ≤ 0

g2(~X) =
397.5

x1x2
2x3

3
− 1 ≤ 0

g3(~X) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0

g4(~X) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0

g5(~X) =
1.0

110x3
6

√(
745.0x4

x2x3

)2
+ 1.69× 106 − 1 ≤ 0

g6(~X) =
1.0

85x3
7

√(
745.0x5

x2x3

)2
+ 157.5× 106 − 1 ≤ 0

(38)

g7(~X) =
x2x3

40
− 1 ≤ 0

g8(~X) =
5x2

x1
− 1 ≤ 0

g9(~X) =
x1

12x2
− 1 ≤ 0

g10(~X) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~X) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where the range of values of each variable is as follows:

2.6 ≤ x1 ≤ 3.6

0.7 ≤ x2 ≤ 0.8

17.0 ≤ x3 ≤ 28.7

3.0 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3

2.9 ≤ x6 ≤ 3.9

5 ≤ x7 ≤ 5.5

(39)

In this paper, the PCGOA is applied to this engineering optimization problem and
compared with other algorithms under the same conditions. The optimal solutions derived
by each algorithm running on this engineering optimization problem indicate that the
PCGOA has an advantage over other algorithms. The results are shown in Table 7.



Mathematics 2023, 11, 439 20 of 23

Table 7. Comparison results of each algorithm for the speed reducer design problem.

Algorithm x1 x2 x3 x4 x5 x6 x7 Best

PCGOA 3.6 0.8 28 7.3 7.8 3.9 5.2847 201,613.2
GOA 3.6 0.8 28 7.3 7.8 3.9 5.2847 201,613.2
PSO 3.5524 0.7088 27.7911 7.4979 7.8804 3.7723 5.1926 585,169.9
BOA 3.6 0.8 28 7.3 8.0241 3.9 5.5000 201,760.3
AO 3.6 0.8 28 7.3 8.2965 3.9 5.3078 201,638.6
SCA 3.6 0.8 28 7.3 7.8 3.9 5.2936 201,618.5

PMVO 3.6 0.8 28 7.3 7.9512 3.9 5.2855 201,616.7

5.6. Car Side Impact Design

In daily life, the emergence of automobiles has greatly facilitated people’s travel. In
this optimization problem, the car will be subjected to side collision, and the purpose of
the car side collision design is to minimize the door weight Func(~X) under ten constraints.
There are eleven design variables involved: the thickness of the inner column plate (x1),
the B-pillar reinforcement (x2), the thickness of the inner floor (x3), the crossmember (x4),
the door beam (x5), the door beltline reinforcement (x6), the roof longitudinal beam (x7),
the inner B-pillar (x8), the inner floor (x9), the height of the guardrail (x10) and the material
at the crash location (x11). The mathematical description is as follows:

Func(~X) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7 (40)

The constraints of this engineering optimization problem are as follows:

g1(~X) =1.16− 0.3717x2x4 − 0.00931x2x10− 0.484x3x9 + 0.01343x6x10− 1 ≤ 0

g2(~X) =46.36− 9.9x2 − 12.9x1x2 + 0.1107x3x10− 32 ≤ 0

g3(~X) =33.86 + 2.95x3 + 0.1792x3 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10− 9.98x7x8

+ 22.0x8x9 − 32 ≤ 0

g4(~X) =28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.7x7x8 + 0.32x9x10

− 32 ≤ 0

g5(~X) =0.261− 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+ 0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11 − 0.32 ≤ 0

g6(~X) =0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7

+ 0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10

+ 0.00121x8x11 + 0.00184x9x10 − 0.02x2
2 − 0.32 ≤ 0

g7(~X) =0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2
2 − 0.32 ≤ 0

g8(~X) =4.72− 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11 − 4 ≤ 0

g9(~X) =10.58− 0.674x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10

− 9.9 ≤ 0

g10(~X) =16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2
11

− 15.7 ≤ 0

(41)

where the range of values of each variable is as follows:

0.5 ≤ x1, x2, x3, x4, x5, x6, x7 ≤ 1.5

x8, x9 ∈ {0.192, 0.345}
−30 ≤ x10, x11 ≤ 30

(42)

In this paper, the PCGOA is applied to this engineering optimization problem and
compared with other algorithms under the same conditions. The optimal solutions derived
by each algorithm running on this engineering optimization problem indicate that the
PCGOA has an advantage over other algorithms. The results are shown in Table 8.
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Table 8. Comparison results of each algorithm for the Car side impact design problem.

PCGOA GOA AO BOA PSO SCA PMVO

x1 0.500 0.500 0.514 0.500 0.638 0.500 0.500
x2 1.001 1.013 0.997 0.926 1.184 0.928 1.056
x3 0.500 0.500 0.526 0.500 0.618 0.500 0.500
x4 0.500 0.501 0.532 0.500 0.507 0.645 0.500
x5 0.500 0.500 0.659 0.681 0.625 0.500 0.507
x6 1.184 1.436 0.872 0.587 0.987 0.509 0.851
x7 0.500 0.500 0.500 0.560 0.969 0.500 0.504
x8 0.192 0.192 0.192 0.192 0.192 0.192 0.192
x9 0.192 0.192 0.192 0.192 0.192 0.192 0.192
x10 −8.419 −5.597 −12.897 −26.948 −16.715 −30.000 4.384
x11 −0.614 −3.464 −14.472 −12.508 −11.029 −4.106 −1.477
best 19.074 19.123 19.755 19.218 23.830 19.266 19.490

6. Conclusions

In this paper, in order to save the use of the GOA in computer memory, the compact
strategy adopted achieves the effect of saving memory. The compact strategy is to repre-
sent the entire population with a probability model. The combination of parallel strategy
and compact strategy allows the algorithm to find the best solution more accurately in
various practical problems. In addition, this paper adds a strategy for subpopulation
based on parallel communication, which enables each group to achieve better commu-
nication. The PCGOA also performs better than the original algorithm in the CEC2013
benchmark function, solving the drawbacks of the original algorithm in terms of large
memory consumption and unstable convergence. Finally, this paper applies PCGOA to
five engineering optimization problems, and all evidence shows that the test results of the
PCGOA are excellent.
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