
A Parallel Computation Approach to Topological
Sorting

M. C. Er
Department of Computing Science, The University of Wollongong, PO Box 1144, Wollongong 2500, NSW, Australia

A new topological sorting algorithm is formulated using the parallel computation approach. The time complexity of
this algorithm is of the order of the longest distance between a source node and a sink node in an acyclic digraph
representing the partial orderings between elements. An implementation of this algorithm with an SIMD machine is
discussed. To avoid contention for logical resources, a synchronization of all processors is proposed and its performance
is also discussed.

INTRODUCTION

The topological sort is a computation of a linearization of
a directed acyclic graph subject to the constraints of
partial orderings embedded in the graph. A few tech-
niques for computing the topological sorting have been
documented in the literature.1"6 They are all based on
the sequential computation approach.

This paper presents a new topological sort based on
the parallel computation approach. As we shall see
below, this new approach is conceptionally very simple.
It can be easily adapted to other applications involving
digraph traversal. An implementation of this parallel
algorithm with a single instruction stream-multiple data
stream machine and its performance are also discussed.

THE ALGORITHM

The topological sorting operates on a digraph of partial
orderings. The basic idea behind the parallel computation
approach is to traverse in parallel down all links leading
from a node, once the node concerned is visited.
Inductively, all nodes in the digraph will be visited if all
source nodes are visited. If the digraph is acyclic, the
parallel traversal will terminate, as the number of nodes
in a digraph is finite.

The algorithm is organized in two phases. In the first
phase, pairs of nodes which have partial orderings
between them are read in. A digraph which represents
the partial orderings is set up. In the second phase, the
parallel topological sorting takes place. The details of the
algorithm are outlined below. Here let Nt be node i in the
digraph.

Algorithm (parallel topological sort)

Step 1. Read in pairs of partial orderings and set up a
digraph representation of the relationships as follows:

If a < b, place a directed link from Nb to Na
If a > b, place a directed link from Na to Nb

Step 2. Initialize all node values to zero, and find all the
source nodes of the digraph (if no source node exists, the
digraph is obviously cyclic; exit).

Step 3. Visit all the source nodes, and change their node
values to ones.

Step 4. Follow down the directed links from all the nodes
Adjust visited and visit all of their successor nodes Ns, in
parallel. Update the node value of each successor node
Ns as follows: If the node value of Ns < the node value of
Np, then update the node value of Ns to 1 + the node
value of Np; otherwise do nothing.

Iterate step 4 until the computation is converged or the
node value of a node is assigned a value larger than the
total number of nodes in the digraph. The latter obviously
signifies that the digraph is cyclic and should be reported
accordingly.

Step 5. List all the nodes in ascending order of node
values.

This algorithm can be proved correct logically. Since
all successor nodes carry node values greater than that of
their predecessor nodes, consequently they will be listed
last with respect to their predecessor nodes in the
linearized form. Furthermore, the digraph traversal is
bound to terminate, in the absence of cyclic directed
links, as the number of nodes in a digraph and the longest
distance between a source node and a sink node are
finite.

IMPLEMENTATION

Because of the parallel computation nature of the
algorithm, it is attractive to implement it with a multi-
processor multi-memory system. Now, we discuss prob-
lems arising in implementing this algorithm.

In recent years, single instruction stream-multiple
data stream (SIMD) machines have become increasingly
popular.7"8 Typically, an SIMD machine is a computer
system consisting of N processors, N memory modules, a
control unit, and an interconnection network. The
interconnection network provides a communication
facility for the processors and the memory modules; and
it may be positioned either between the processors and
the memory modules or between N processing elements,
where each processing element consists of a processor
and its own memory. The control unit broadcasts

CCC-0010-4620/83/0026-0293 $01.50

© Wiley Heyden Ltd, 1983 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 293

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/293/377400 by guest on 20 August 2022

M. C. ER

identical instructions to all processors; and thus all active
processors execute the same instruction at the same time.

To minimize the memory contention in running the
topological sorting algorithm, it is necessary to assign
each node of the digraph to a memory module.9 As such,
node values of all nodes can be updated in parallel.

When executing the algorithm in parallel, there is a
problem that two or more processors may have a common
successor node and thus may try to test and update the
node value of this successor node at the same time. To
obtain the correct result, the test and update operation
could be made a point operation through the use of
critical regions or some other mechanism for ensuring
mutual exclusion.10 This, however, results in a perfor-
mance degradation, since on each node access the
processors must co-ordinate. An alternative solution to
this is to synchronize execution of the algorithm. If we
assume that all processors complete one stage 4 iteration
before all processors can start the next iteration, then a
common successor node is reached either in a later
iteration by the processor chaining down the longer path
or at the same iteration by two or more processors
chaining down the same distance from the source nodes.
In the former case there is no interference. In the latter
case there can be interference and only one of them must
increment the node value. By postulating a finer degree
of synchronization, we can overcome this. Thus, if the
algorithm is implemented with an SIMD machine with
an interconnection network that can allow any mapping
of processors to memory modules including one to
many,11 each active processor fetches the same old node
value before starting to update this value. We may
formalize the above results in the following theorem.

Theorem 1

The parallel topological sort when implemented with an
SIMD machine is free of contention, provided all
processors are synchronized and each node value is
stored in a memory module.

Proof. The contention may occur when two (or more)
processors try to update a common memory with different
values simultaneously. Without loss of generality, we
shall consider the contention caused by two processors
only.

Suppose two nodes, Nt and Nj, have a common
successor node Nk. Let Vh Vj and Vk be the node values
of Nh Nj and Nk, respectively, such that Vt > Vj > Vk.
The contention occurs when processor 1 tests for Vk < Vt
and then updates Vk to Vt + 1, whereas processor 2
simultaneously tests for Vk< Vj and then updates Vk to
Vj + 1. If the test and update operations of these two
processors are allowed to interleave, then the resulting Vk
is either V,;+ 1 or Vj + 1. In consequence, the parallel
topological sort may fail. To prove that this algorithm is
free of contention if each node value is stored in a
memory module, we need to show: (i) the contention
cannot occur if Vv # Vj\ and (ii) if the contention can
occur, then Vt = Vj.

We prove it by reductio ad absurdum. Suppose that the
contention does occur even if Vt # Vj. We assume that
this event happens at time t. We further assume, without
loss of generality, that each cycle of propagation of node

values takes one unit of time. By the basic assumption of
the theorem that all processors are synchronized, the
chains of propagation of node values leading to Vt and Vj
must start at times (t — Vt) and (t — Vj), respectively,
from some source nodes. Since (t — Vt) # (t — Vj), it
contradicts the algorithm. Therefore the contention
cannot occur if Vt # Vj.

If, however, the propagation of node values starts from
all the source nodes simultaneously at time f, the
propagations of node values from nodes Nt and Â happen
at times (f + Vt) and (t' + Vj), respectively. If these two
propagations reach the same node at the same time,
therefore {? + V{) = it' + Vj). That is Vt = Vy Since
processors 1 and 2 attempt to update Vk to the same node
value Vt+ I (Vj + 1), it follows that only one of the
processors needs to update the node value.

Q.E.D.

EXAMPLE

An example will help to put the picture in perspective.
The digraph shown in Fig. 1 is adopted from Ref. 2.

Figure 1. A digraph showing the propagation of node values
starting from A/, and /V9.

The numbers written beside the nodes are node values.
Node values that have been crossed out represent
superseded values. The propagation of node values starts
from nodes Nx and Ng. The algorithm terminates when
the sink node N6 is assigned a node value equal to 6.
Incidentally, the largest node value also equals the longest
distance between a source node and a sink node in the
digraph.

A linearized arrangement of the nodes in ascending
order of node values is 1 9 2 3 7 4 5 8 6.

ANALYSIS

The parallel topological sort relies on the propagation of
node values from all source nodes to all sink nodes. Let
i)max be the maximum distance between a source node
and a sink node in a digraph concerned. Obviously, Dmax
equals the maximum node value assigned to a sink node.

294 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/293/377400 by guest on 20 August 2022

A PARALLEL COMPUTATION APPROACH TO TOPOLOGICAL SORTING

The number of cycles of propagations is thus equal to
Dmax. Therefore, the running time of the algorithm is
O(Dmax). In the normal digraph context, Z)max < N.
However, in the worst case when all nodes line up as a
chain, Dmax = N.

The actual performance of this implementation may
be less than optimum. The synchronized mode of
operation we proposed above for avoiding contention for
logical resources carries a penalty. The synchronization
forces all processors to take the time of the processor
handling the node with the most successor nodes. Clearly,
some processors must wait, and this is a waste of
processor power.

If, however, the synchronization is abandoned, Theo-
rem 1 is no longer valid. Two or more processors may try
to update the node value of the same node concurrently
with different values. In order to preserve the correctness
of the node value, only one processor at a time is allowed
to be in the test and update cycle. In other words, this test
and update cycle on a node value must appear like a
point operation; or equivalently mutual exclusion must
be achieved over access to a node value. The processors
accessing a common successor node thus contend to
update that node value and clearly some processors must
wait. Such a contention for logical resources will result in
performance degradation.12'13

On the balance, the synchronization approach seems
to offer a better compromise.

CONCLUDING REMARKS

The parallel topological sort is based on a very simple
computational concept: the propagation of node values
from all source nodes to all sink nodes in a given digraph.
This algorithm may be implemented with an SIMD
machine, and takes advantage of its parallel architecture.
The time complexity of the parallel topological sorting
turns out to be of the order of the longest distance
between a source node and sink node in an acyclic
digraph. It has been shown that the synchronization
approach or the point operation approach for avoiding
contention caused by two or more processors accessing a
common successor node degrade the performance some-
what. Of course, the parallel topological sorting algorithm
could also be implemented with a conventional single-
processor single-memory computer system. The resulting
sequential computation is effectively a simulation of the
parallel computation.

Acknowledgements

The author is indebted to the referee for his helpful and valuable
comments. This research was supported by the Research Grants
Committee under grant 05-143-105.

REFERENCES

1. A. B. Kahn, Topological sorting of large networks. Communi-
cations of ACM 5, 558-562 (1962).

2. D. E. Knuth, Fundamental algorithms. The Art of Computer
Programming 1, Addison-Wesley, Reading, Mass. (1973).

3. D. E. Knuth and J. L. Szwarcfiter, A structured program to
generate all topological sorting arrangements. Information
Processing Letters!, 153-157 (1974).

4. E. M. Reingold, J. Nievergelt and N. Deo, Combinatorial
Algorithms: Theory and Practice, Prentice-Hall, New Jersey
(1977).

5. Y. L. Varol and D. Rotem, An algorithm to generate all
topological sorting arrangements. The Computer Journal 24,
83-84(1981).

6. N. Wirth, Algorithms + Data Structures = Programs, Prentice-
Hall, New Jersey (1977).

7. H. J. Siegel, Interconnection networks for SIMD machines.
Computer 12, 57-65 (June 1979).

8. H. J. Siegel, A model of SIMD machines and a comparison of

various interconnection networks. IEEE Transactions on Com-
puters c-28, 907-917 (1979).

9. D. L. Lawrie, The prime memory system for array access. IEEE
Transactions on Computers c-31, 435-442 (1982).

10. P. Brinch Hansen, Operating System Principles, Prentice-Hall,
New Jersey (1973).

11. D. H. Lawrie, Access and alignment of data in an array
processor. IEEE Transactions on Computers c-24, 1145-1155
(1975).

12. F. Baskett and A. J. Smith, Interference in multiprocessor
computer systems with interleaved memory. Communications
of ACM 19, 327-334 (1976).

13. D. P. Bhandarkar, Analysis of memory interference in multipro-
cessors. IEEE Transactions on Computers c-24, 897-908
(1975) .

Received June 1982

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 295

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/293/377400 by guest on 20 August 2022

