
International Journal of Humanoid Robotics
Vol. 1, No. 1 (2004) 65–93
c© World Scientific Publishing Company

A PARALLEL DISTRIBUTED COGNITIVE CONTROL SYSTEM

FOR A HUMANOID ROBOT

KAZUHIKO KAWAMURA, R. ALAN PETERS II, ROBERT E. BODENHEIMER,
NILANJAN SARKAR, JUYI PARK, CHARLES A. CLIFTON,
ALBERT W. SPRATLEY and KIMBERLY A. HAMBUCHEN

Center for Intelligent Systems, Vanderbilt University

VU Box 350131 Station B, Nashville, TN 37235-0131, USA

Received 15 August 2003
Accepted 26 November 2003

During the last decade, researchers at Vanderbilt have been developing a humanoid robot
called the Intelligent Soft Arm Control (ISAC). This paper describes ISAC in terms of its
software components and with respect to the design philosophy that has evolved over the
course of its development. Central to the control system is a parallel, distributed software
architecture, comprising a set of independent software objects or agents that execute as
needed on standard PCs linked via Ethernet. Fundamental to the design philosophy is
the direct physical interaction of the robot with people. Initially, this philosophy guided
application development. Yet over time it became apparent that such interaction may
be necessary for the acquisition of intelligent behaviors by an agent in a human-centered
environment. Concurrent to that evolution was a shift from a programmer’s high-level
specification of action toward the robot’s own motion acquisition of primitive behaviors
through sensory-motor coordination (SMC) and task learning through cognitive control
and working memory. Described is the parallel distributed cognitive control architecture
and the advantages and limitations that have guided its development. Primary structures
for sensing, memory, and cognition are described. Motion learning through teleoperation
and fault diagnosis through system health monitoring are also covered. The generality of
the control system is discussed in terms of its applicability to physically heterogeneous
robots and multi-robot systems.

Keywords: Multi-agent based robot control architecture; cognitive control; biologically
inspired memory structures; automatic motion generation; task learning; system health
monitoring.

1. Introduction

The Center for Intelligent Systems (CIS) at Vanderbilt University was established

in 1985 to advance the state of the art in intelligent systems through research and

development of robots that interact with people. The current research emphasis is

on humanoid robots, in particular task acquisition through the learning of behav-

iors and their sequences, sensory association and attention, cognitive control, and

short- and long-term and working memory structures. Application-oriented research
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Fig. 1. ISAC humanoid robot and examples of atomic agents for ISAC.

includes collaborative teams of people and robots, heterogeneous robot teams, and

tools and technologies for human-robot interface.1

The humanoid robot, ISAC (Intelligent Soft Arm Control) (Fig. 1) was designed

initially to assist the physically disabled during meals.2 Many of the problems solved

for that purpose had broader applicability so the robot gradually became a more

general-purpose test bed for human-robot interaction (HRI) research.3 Such high-

level interaction exposed many of the lower-level deficiencies in the architecture

(and robot programming in general) which has led to more recent research in the

sensory motor coordination basis for intelligent behavior4 and biologically inspired

memory structures. ISAC is equipped with pneumatic actuators called McKibben

Artificial Muscles5,6 and sensors including stereo CCD cameras, microphones, and

infrared sensors (see appendix). Unlike humanoid research groups that emphasize

human-like motion control (such as walk pattern generation), the Vanderbilt group’s

emphasis on HRI has led them to study the development of behavior learning and

other cognitive aspects of the humanoid robot.

This paper describes the various components of the ISAC system starting with

the parallel distributed, multi-agent software framework called Intelligent Machine

Architecture (IMA).7,8 IMA promotes code reuse and software integration. But it

also has scalability problems which are discussed. This is followed by a description

of the control system built on IMA and its primary constituents. Each of these

is described in turn. That includes the low- and high-level software objects that

the researchers call “agents” and the primary memory structures, short-term and

long-term. Task learning through the acquisition of behavior sequences is described

as is the combination of behaviors through interpolation. Another strategy for task

learning through working memory is briefly touched upon. How ISAC will detect
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servo-motor level failures is the topic of the last section. Several experiments are also

presented to illustrate how various components work together to complete tasks.

2. Intelligent Machine Architecture

A humanoid robot is an example of a machine that requires intelligent behavior to

act with generality in its environment. Especially in interactions with humans, the

robot must be able to adapt its behaviors to accomplish goals safely. As the complex-

ity of interaction grows, so grows the complexity of the software necessary to pro-

cess sensory information and to control action purposefully. The development and

maintenance of complex or large-scale software systems can benefit from domain-

specific guidelines that promote code reuse and integration. Intelligent Machine

Architecture (IMA) was designed to provide such guidelines in the domain of robot

control.9,10 It is currently used to control ISAC and a set of mobile robots.11,12

IMA consists of a set of design criteria and software tools for Windows NT/2000

that supports the development of software objects that we call “agents.” An agent

is designed to encapsulate all aspects of a single element (logical or physical) of a

robot control system. A single hardware component, computational task, or data set

is represented by an agent if that resource is to be shared or if access to the resource

requires arbitration. Agents communicate through message passing using DCOM,

the Distributed Component Object Model service of Windows NT/2000. IMA facil-

itates coarse-grained parallel processing because of the loose coupling afforded by

message passing and because DCOM allows software objects on separate computers

to be treated as if they were local to each other. Each agent acts locally based on

its internal state and provides a set of services to other agents through various rela-

tionships. The resulting asynchronous, parallel operation of decision-making agents

simplifies the system model at a high level. IMA has sufficient generality to permit

the simultaneous deployment of multiple control architectures. A behavior can be

designed using any control strategy that most simplifies its implementation. For

example, a simple pick and place operation may be most easily implemented using

a standard Sense-Plan-Act approach, whereas visual saccade is more suited to sub-

sumption, and object avoidance to motion schema.

There is a two-level hierarchy of IMA agents comprising atomic agents and

compound agents. A compound agent contains or depends on other agents for its

primary function. An atomic agent encapsulates a single resource; it neither sub-

sumes nor references any other agent. (The term “atomic” is used in the sense of

the Greek word atomos, literally “indivisible.”) Each controllable hardware device

or common data resource on the robot has an associated hardware/resource atomic

agent. A dataset or computational procedure associated with a specific object in

the robot’s external environment has an associated environment atomic agent.

Within IMA, any existing agent can be accessed by any other agent. Their

connectivity, as defined by message passing, is flat — without hierarchy. However, a

virtual or logical hierarchy is implied by the structure of a compound agent. Various
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levels of abstraction form within the control system as needed but are not fixed. Two

compound agents, the Self Agent and the Human Agent, are discussed in Sec. 3.

IMA works very well to promote software reuse and dynamic reconfiguration.

However, the large systems built with it have experienced scalability problems on

two fronts. First, as the system exceeds a certain level of complexity it is difficult

for any programmer to predict the interactions that could occur between agents

during actual operation. This level seems to be higher than for a direct, sequential

program. But that level has been reached in the development of ISAC. The other

scalability problem may or may not be a problem with IMA itself but may be an

inevitable consequence of increasing complexity in a system based on message pass-

ing. The asynchronous nature of message passing over communications channels

with finite bandwidth leads to system “lock-ups.” These occur with a frequency

that apparently depends on the number of agents in the system. It may be possible

to minimize this problem through the use of system-self monitoring or through a

process of automatic macro-formation. For example, the system could, through a

statistical analysis, recognize the logical hierarchies of agents that form repeatedly

within certain tasks or under certain environmental conditions. A structure so dis-

cerned could be used to “spin off” copies of the participating agents. These could

be encapsulated into a macro, a compound agent that optimizes the execution and

inter-process communications of the agents involved. For such an approach to be

most useful, it should be automatic and subject to modification over time frames

that encompass several executions of a macro.

The way in which IMA was used initially in the ISAC system caused problems

with real-time control. It seems obvious in retrospect, but asynchronous message

passing within a real-time control loop works only if the latency due to computa-

tion and communication is less than the sampling rate of the control loop. In a

relatively simple task, this was not a problem. But it was as the system increased

in complexity. The separate encapsulation of a multi-agent task (such as visual

servoing) was found to be necessary if that task was but a small component of a

larger control problem (such as responding to a person’s speech while performing

object recognition on-the-fly during a reach to grasp an object). The servo control

loops for arm control were especially susceptible. Thus QNX, a real-time operating

system, was employed to execute the arm-control agents directly on the computer

that contained the arm hardware interface cards.13

To realize distributed object computing, agents in QNX are built using the ACE

ORB, an Object Request Broker (ORB) for CORBA (Common ORB Architecture)

that builds on the Adaptive Communications Environment (ACE). It is described

by its developers as follows: “The ACE ORB (TAO) . . . is our standards-based,

CORBA middleware framework that allows clients to invoke operations on dis-

tributed objects without concern for object location, programming language, OS

platform, communication protocols and interconnects, and hardware.”13 Within

IMA on QNX, the agents are the TAO clients. Since most other IMA agents run on

Windows platforms with DCOM (which performs the same function for windows as

CORBA does for QNX) a DCOM-TAO bridge was built to permit communication
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between these two types of agents. Behavior generation described in Sec. 5 uses

QNX-based robot arm teleoperation.

3. Cognitive Robot Architecture

IMA encapsulates the functions of hardware, low-level controllers, and basic sensory

processing into independent, reusable units. This abstraction of details away from

control loops, image operators, signal processing algorithms, and the like, enables

programming to occur at the level of purposeful actions and environmental features.

Actuators are supplanted by actions. Raw sensory data are replaced by features.

For example, a programmer can instruct the robot to find the red object and pick

it up, rather than grabbing images sequentially from a pair of cameras, transferring

that data into an array where it can be segmented according to color, finding blobs

in left and right images, computing disparity, then depth, filtering the 3D position

estimate, computing the difference between the object location and the end-effecter

position, computing a Jacobian then joint angles and velocities, sending those to

a motion controller, waiting for the result, measuring the actual position, then

grabbing a new pair of images and repeating until the arm is in position and the

grasp can be planned and controlled. Each of the individual tasks is encapsulated

by an atomic agent and these are subsumed by find-colored-object, reach-to-point,

and grasp-object agents. The limits of such abstraction are the robot itself and the

objects with which it interacts. Hence at the highest level, the ISAC control system

comprises a Self Agent and a set of Object Agents, the most complex of which is

the Human Agent.

Figure 2 depicts the key agents and the memory structure within the cognitive

control architecture. Sensory processing agents write data to the Sensory EgoSphere

(SES) which acts as a short-term memory (STM) and interface to the high-level

agents (cf. Sec. 4.1). Object Agents, including the Human Agent, monitor the SES

for information relevant to their tasks and write information on the SES that is

relevant to the object. The Human Agent recognizes and keeps track of all infor-

mation relevant to the robot’s interactions with a person (cf. Sec. 3.2). The Self

Agent subsumes a set of atomic and compound agents that actuate the robot and

monitor its internal states. Long-term memory (LTM) stores motor skills in the

form of procedural memory (PM) and in the future the knowledge base in the form

of declarative memory (DM) (cf. Sec. 4.2). In order to continually bias processing

throughout a given task, rapid and frequent access to stored information must be

available. It is believed that this is accomplished by a working memory system in

humans. Inspired by this, we are currently developing a working memory (WM)

model for ISAC (cf. Sec. 4.3).

3.1. Self Agent

The Self Agent (SA) is responsible for ISAC’s cognitive activities ranging from

sensor signal monitoring to planning and cognitive control. Cognitive control14 is
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Fig. 2. Key IMA agents and the memory structure.

needed in tasks that require the active maintenance and updating of context rep-

resentations and relations to guide the flow of information processing and bias

actions.15 Figure 3 is a schematic of the Self Agent and memory structure. The

Description Agent provides the description of atomic agents available in the system

in terms of what it can or cannot do and what is it doing. The Intention Agent

selects the humanoid’s actions based on its own state and on the perceived inten-

tions of the person with whom the robot is currently interacting (supplied by the

Human Agent). It also determines if this action would conflict with the robot’s

current activities. If so, the Intention Agent resolves the conflict as a function of

the relative priorities of the actions. The Interaction Agent provides speech out-

put to humans and the Pronoun Agent performs keyword matching during a task

decomposition process.

The Central Executive Controller is being designed to interact with the Human

Agent, the STM and the LTM to construct and invoke plans to perform various

tasks. The goal of each generated plan is determined by input from the Intention

Agent. Constructed plans are put into action by activating appropriate behaviors

to form new procedural memory or motions, guided by the attention networks and

sensory information received from the SES.

Another key feature of our cognitive robot might be called “self-reflection.” Self

reflection will allow the robot to reason its own abilities, cognitive processes, and
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Fig. 3. Self agent and memory structure.

knowledge.16 As part of an initial effort to incorporate self-reflective process into

ISAC, we are incorporating two agents: the Anomaly Detection Agent (ADA) and

the Mental Experimentation Agent (MEA) into the Self Agent. The ADA will mon-

itor the inputs and outputs of the atomic agents in the system for fault detection

(cf. Sec. 6). The MEA invokes the Central Executive Controller (CEC) to produce

an action sequence appropriate for current task conditions and the current condi-

tion. When an impasse is raised and if the CEC fails to find an alternative action

sequence, the MEA will conduct a search through the space of control parameters

to accomplish the task in “simulated mode.”

3.2. Human Agent

The Human Agent (HA) comprises a set of agents that detect and keep track of

human features and estimate the intentions of a person within the current task

context. It estimates the current state of people interacting with the robot based on

observations and from explicit interactions (Fig. 4).17 The HA receives input from

various atomic agents that detects physical aspects of a human (e.g. the location

and identity of a face). The HA receives procedural information about interactions

from the SA, which employs a rule set for social interaction. The HA integrates the
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Fig. 4. Human agent and associated atomic agents.

physical and social information with certain inferred aspects of the cognitive states

of interacting humans, such as a person’s current intention.

The HA processes two types of human intentions. An expressed intention is

derived from speech directed toward ISAC, e.g. greetings and requests from a

human. Inferred intentions are derived through reasoning about the actions of a

person. For example, if a person leaves the room, ISAC assumes it means that the

person no longer intends to interact, therefore, it can reset its internal expectations.

The Human Agent’s assessment of how to interact is passed on to the SA. The SA

interprets the context of its own current state, e.g. current intention, status, tasks,

etc. This processing guides ISAC in the selection of socially appropriate behaviors

that lead towards the ultimate goal of completing tasks with (or for) humans.

Figure 5 shows the model of the levels of interaction engagement, represented

by a numerical value, that we have developed as the basis for modeling social inter-

action. These levels progress the robot from a state of no interaction to an ultimate

goal of completing a task with (or for) a person. Level 1, Solitude, corresponds to

when ISAC does not detect anyone in the environment. In this situation, ISAC may

choose actions to actively attract people with whom to interact. Level 2, Awareness

of People, corresponds to a stage, often short time, when ISAC is aware of people

around it, and has not interacted with them. Level 3, Acknowledgement, is the phase
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Fig. 5. Levels of interaction within the human agent.

when the robot actively acknowledges the presence of a person. This is performed

if the person is approaching ISAC for the first time or if the person is interrupting

an ongoing interaction. Level 4, Active Engagement, represents that stage of active

interaction.

3.3. Demonstration in situation-based acknowledgment

In this demo, ISAC processes the intentions of the human, resolves them with its

own intentions and abilities, and communicates to the person if there is a problem

with the request. The scenario begins as a person approaches ISAC and gains its

attention. The Human Agent determines that the person has an intention to interact

with ISAC. If ISAC is unoccupied at the time, ISAC begins its interaction behaviors

by turning toward the person and initiating a greeting and identification sequence.

Once interaction is established, ISAC begins a social dialog. After greeting, ISAC

may respond to a person’s task request (an intention for ISAC to do something)

if it is within ISAC’s abilities. If a second person approaches ISAC and attempts

to gain its attention, the Human Agent will notify the Self Agent that there is a

new person with a pending intention [Fig. 6(a)]. The Self Agent must then resolve

the current human intention with its own current intention. If the second human

intention is not of sufficient priority to override ISAC’s current task, then ISAC

will then pause its current interaction, turn to the interrupter, and apologize for

being busy [Fig. 6(b)]. ISAC can then return its attention to the first person and

resume its previous interaction. There may also be a situation where the request of

the interrupting person actually has higher priority than the task ISAC is currently

performing. In this case, the Self Agent determines to switch to the new task after

giving an explanation to the current person.
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Fig. 6. (a) ISAC responding to an interruption; (b) role of intention processing during an
interruption.

4. ISAC Memory Structure

Memory in mammals is usually analyzed in two or more categories based on tem-

poral duration. Most often used are the terms short-term, long-term and working

memories. There is however neither agreement on the meaning of these nor con-

sistency in their use. For example, Squire and Kendal18 define short-term memory

(STM) as comprising those memories that last anywhere from several minutes to

several weeks that appear to be controlled, in part, by hippocampal function. Long-

term memory (LTM) can persist indefinitely and appears to require the involvement

of the frontal cortex. Procedural memory (PM), on the other hand, appears to be

stored in the putamen.19 Finally, working memory is used to describe how we juggle

perceptions, memories and concepts.19 For ISAC, we adapted short-term memories

to be those that persist, at most, through a session of continuous operations, long-

term memories to be those between sessions and working memories to be those

needed for executing task-oriented operations and thus could be either short term

or long term.

4.1. Short term memory, coincidence detection, and attention

ISAC’s short-term memory resides in a Sensory EgoSphere (SES).20 The SES oper-

ates asynchronously as a high-level agent in IMA. In addition to memory function, it

provides multi-modal sensory association, and attentional processing. For a person

interacting with the robot, the SES can be visualized as a spherical shell centered

on the robot’s base frame. Each point on the shell is a locally connected memory
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unit with an associated activation vector and a temporal decay. From an internal,

computational point of view, the SES is a graph whose edges form a geodesic tes-

sellation of a sphere. Each node of the graph connects to a database in addition to

its neighbors. A SES manager agent interacts with other agents to write and read

information to the SES.

On the sensory side of the interface, parallel, independent sensory processing

modules (SPM) write data to the SES at points on the sphere. Directional sensors

write data to the SES at the point in the direction of the data source. These include

exteroceptive sensors, e.g. vision, SONAR, LIDAR, IR, and proprioceptive sensors,

e.g. joint angles, force, and torque. Non-directional sensors, e.g. power level, write

to an additional point included for such data. When an SPM writes to a point on

the SES, the data is stored at the node closest to that point. The actual direction,

distance (if known), and time (adjusted for the known latency of the SPM) are

recorded and the value of an element in an associated activation vector is increased

in a neighborhood of the point. (Although the data structure is discrete and of

possibly lower resolution than some of the SPMs that write to it, full location

resolution is maintained because that information is written along with the rest of

the data. The geodesic discretization permits fast searches through the database,

indexed by location.) The activation level decays with a time constant that is a

function of the data type. Agents that use sensory data may read from the SES

or may add activation to points of interest. Object agents can place descriptors on

the SES or search for them there. That operation in itself makes the SES useful for

people interacting with a robot as it provides an ego-centric representation of the

robot’s knowledge of the current environment.

As a short-term memory, the SES is useful for maintaining an inventory of

objects in the robot’s locale for subsequent manipulation or other action. When the

robot recognizes an object, the location of a point of reference on the object (part of

the object definition) and the object’s pose are stored along with an identifier and

time stamp at the closest SES node. The identifier is used as a tag by the SES for

its search and recall routines. The time stamp can be used along with an activation

decay constant to compute a probability that the object is at the recorded location

after time has elapsed. As an object moves, its location is updated by the SES so

that the robot always stores the object’s position relative to the base frame. This

position is likely to accrue errors if the robot is not actively tracking the object with

its sensors. Therefore, the SES provides the starting location for a sensory search if

the object is not found by the sensors at the recorded location upon later recall. The

spatial layout of the SES keeps track of the spatial relationships between objects so

that the robot can know “what is where” [Fig. 7(a)].

There are two primary hypotheses behind the definition and use of the SES:

(i) often, a physical event in the environment will stimulate more than one of the

robot’s sensors, and (ii) changes in motion of the robot can precipitate a sensor event

(a sudden detectable change in the signal, its derivatives, or its statistics). Thus, if

two or more of the SPMs detect events at nearly the same time, and if directionally
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Fig. 7. (a) Sensory EgoSphere and (b) association with high-level agents.

sensitive modules report their events as having emanated from similar directions

in space, then we presume that the robot has detected a real event. Moreover,

if a change in motion is accompanied by the registration of events by more than

one sensor we presume the events may be relevant. By including proprioceptive

sensing and motor control sequences with the exteroceptive sensory streams that

project to it, the SES makes spatio-temporal sensory-motor data associations. It

does so without having to perform any comparative operations on the sensory signals

[Fig. 7(b)].

Each node on the SES has either five or six neighbors connected by edges.

To enable both coincidence detection and attentional processing, a radial basis

function (RBF) is associated with each node. When the SES receives directional

data, it adds activation to the node closest to the direction of the data. The RBF

spreads the activation to all nodes that are a given number of edges away with

an exponentially decreasing intensity. These nodal activation values can be used

to direct the attention of the modules that read data from the SES and, thereby,

the attention of the robot. The SES can be biased toward the selection of specific

data by modulating the strength of activations assigned to SES nodes. This bias is

useful for directing the robot’s attention during tasks such as picking up objects,

or during contextual circumstances such as working with people. The attention

network balances the trade-off between contextually important data and unexpected

yet salient data. It does this by combining the activation from the nodal RBFs

(that represent the salience of events in the environment) with priority values (that

represent desired data). The focus of attention is selected as the node that receives

the highest combination of activation from both the RBFs and the priority values.

4.2. Long-term memory

Long-term memory (LTM) in the human brain stores information such as

motor skills and episodic experiences for future retrieval. In our cognitive robot
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Fig. 8. Structure of long-term memory database.

architecture, LTM is a data structure which contains behaviors that will be com-

bined to perform specific tasks. A motor skill unit of LTM is a Procedural Memory

(PM). PMs are derived using the spatio-temporal Isomap method proposed by

Jenkins and Mataŕıć.21 A short description of how it was used to generate PMs is

described in Sec. 5.1.

Behaviors are organized in LTM using pointers to motions stored in the form

of trajectories, such as how to reach to a point. Motion skills for each behavior

must be interpolated in order to be used in specific situations. The interpolation

method we are using is the Verbs and Adverbs method developed in Ref. 22. This

technique describes a motion (verb) in terms of its parameters (adverbs) which

allows ISAC to generate a new movement based on the similarity of stored motions.

Adverbs, or parameters, can be objective values which allow each set of motions

to be interpolated in very different ways. Thus, ISAC will be able to show new

movements based on a limited number of learned movements (cf. Sec. 5.2).

The current LTM structure consists of a set of joint-angle space trajectories

indexed by the initial and final values of the motion stream as illustrated in the

data files in Fig. 8. Shortcomings of this data representation are that a separate

database must exist for every primitive motion or meta-level behavior and there is no

mechanism for controlling the underlying motion parameters during interpolation.

To avoid these limitations, a more logical description for each behavior is enhanced

(Fig. 8). Each entry in the meta-level behavior table contains pointers to underlying

primitive motions.

4.3. Working memory

Cognitive scientists have long gathered evidence for a variety of memory systems

in the mammalian brain.18 One dichotomy, introduced early in the history of

psychology,23 has been between short-term memory and long-term memory, with

the former being more prone to rapid forgetting. More recently, separate short-

term mechanisms have been found for visual-spatial information and speech-based
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information which led to a model of working memory based on three parts: the

Central Executive, the Visual-spatial sketch pad and the Phonological loop holding

acoustic and speech-based information.19,24 While contemporary theories of work-

ing memory are diverse25 researchers agree that working memory is a mechanism

that protects a small number of informational “chunk” from interference and dis-

traction and places them in a position to directly influence behavior.26 This implies

that the size of working memory should be adaptive to the task.

Neurological studies point to the prefrontal cortex region (PFC) as a likely candi-

date for supporting these functions performed by working memory27,28 [Fig. 9(a)].

In the PFC, mental representations are protected from interference and/or fre-

quently updated to bias processing in task completion. Irrelevant information must

not be allowed to interfere with task execution. However, the system must be flex-

ible enough to allow for the learning of new information. Working memory allows

ISAC to focus its attention on the salient task features and adapt to learning new

experience-based behaviors.

Inspired by this, we are currently developing an adaptive Working Memory

(WM) system in our humanoid robot.29 Of particular interest is the process by

which the importance and sensitivity of certain information is modified based on

the task success or failure. For effective task completion, the sensitivity to the overall

system’s inputs should be managed in such a way that both rapid updating and

robust maintenance are facilitated.

A system utilizing a “gate” that can be opened to incorporate new data, or

closed to limit the effect of distracting information would accomplish this. In

humans, it is believed that gating is done by modulating dopamine (DA) levels.

DA gating plays a role in reward based learning by allowing synaptic connection

Fig. 9. (a) Prefrontal Cortex Region (PFC) region31 and (b) schematic diagram of the visual DA
model; mechanisms in this example detect shape or color to drive the desired visual response.32
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strengths to be activated or deactivated when necessary.30 By opening the gate

(i.e. increasing DA levels), PFC representations are susceptible to change, and by

closing the gate, the representations are protected from interference [Fig. 9(b)].

We can model the gating action in our system by applying a reinforcement learn-

ing algorithm, called Temporal Difference (TD) learning.33 This uses the expec-

tation of reward from a previous experience to determine the decision that will

maximize reward for the current action. Over time, changes in the reward estimate

will enhance future predictions and improve action selection. The structure the

adaptive working memory and its integration into robots to provide the embodi-

ment necessary for exploring the issue of task learning is the focus of the four-year

NSF grant.29

5. Motion Generation and Behavior Derivation

It is well known that sensory-motor coordination (SMC) can be used by a mobile

robot to categorize features of its environment and to navigate within that

environment.4 We hypothesize that a similar approach could be used to gener-

ate motions and behaviors for a humanoid robot. Specifically, we are testing the

following two approaches for automatic motion generation: the spatio-temporal

Isomap developed by Jenkins and Matarić21 and a multidimensional motion inter-

polation method called the Verbs and Adverbs developed by Rose, Cohen and

Bodenheimer.22

5.1. Spatio-temporal Isomap

This motion derivation method consists of four main components. The derivation

system takes as input a single continuous kinematic motion as a time-series of joint

angle values. This motion is segmented into intervals based on some heuristic defin-

ing separating SMC events, with each segment assumed to be an atomic motion. The

result from the derivation process is a behavior vocabulary consisting of primitive

behaviors, which represent a family of kinematic motion across a span of variations,

and meta-level behaviors, which represent sequential combinations of the primitives

and index into them to produce action.

In our approach, the derived vocabulary is assumed to be an intrinsic substrate

of basic robot skills. Consequently, this vocabulary is stored as long-term memory,

more specifically as Procedural Memory (PM). Generally, PM is a memory unit for

storing a skill and procedure, and is involved in tasks such as remembering how

to reach to a point. As shown in the data file in Fig. 8, each primitive behavior is

stored a set of trajectories in joint angle space with an indexing structure stored as

a PM unit. This indexing structure stores the initial and final Cartesian coordinates

for all arm trajectories in a primitive behavior.34

Motion data is collected from the teleoperation of ISAC and then segmented.

The central idea in the derivation of behaviors from motion segments is to discover

spatio-temporal structure in a motion stream as shown in Fig. 10.
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Fig. 10. Derivation of PM through human-guided motion stream.

5.2. Verbs and adverbs

We are incorporating recent developments from the field of computer animation into

our behavioral control and motion generation. The particular technique we are using

is called “Verbs and Adverbs”21 which assumes that fundamental motion exemplars

can be generated by given control strategies that have reasonable robustness prop-

erties. The technique then extends the range of these example motions into a con-

tinuous behavior by interpolating the robot’s degrees of freedom in a user-defined
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perceptual space. The result is a set of behaviors (verbs) that are parameterized by

user-defined, continuous controls (adverbs). The advantage of this technique is that

example motions sparsely populate the control space.

The technique consists of two components, dynamically time-warping the exam-

ple motions and interpolating the underlying control signals. The motions are first

manually segmented into segments bounded by shared points of structural signifi-

cance, called key-times. Once these key-times have been identified, they are used to

time warp the motions and their underlying controls so that all example motions

occur on a canonical time-index. Also at this stage, the position in the percep-

tual space of the example motions is identified. New motions are now created by

interpolating the controls used to generate the example motions using a weighted

radial-basis function interpolation scheme augmented with a low-order polynomial.

Radial basis functions are used because they are computationally efficient and the

effect of any example motion is local (and determined by the width of the radial

basis functions). The low-order polynomial finds the general trend of the data, and

provides limited ability to extrapolate outside of the workspace defined by the exam-

ple motions. Inverse time-warping is now applied to transform the synthetic motion

from its canonical time-frame into normal time.

The constraints of this method are that example motions must be structurally

similar and have the same number of key-times in each. Additionally, the example

motions must be manually segmented and manually positioned in the perceptual

space. This constraint could possibly be relaxed using the work of Jenkins et al.21

but the manual techniques do provide the ability to have fine-grained control over

the process. This fine-grained approach is important since the success of the method

depends on the operating envelopes of the underlying control strategies being suffi-

ciently robust that the radial basis function blending does not exceed their limits at

any point in the perceptual space. Finally, the time-warping must be done with care.

Since the underlying motion data is discrete, resampling the motion must be done

so that the inverse time-warping produces meaningful control inputs to the robot.

To demonstrate this method on ISAC, a series of reaching and grasping motions

were performed under manual control and recorded. Three trials of a reaching

motion were recorded to three different collinear locations on a table. Each trial

positioned the wrist degree of freedom in a different end position 0◦, 90◦, and 180◦.

Once the sample trajectories had been recorded, the motion streams were segmented

using kinematic centroid, which calculates the Euclidean distance from the shoul-

der to the center of mass of the entire arm as it moves through the motion stream.

The segments are identified as the critical points of the computed function. This

technique has the additional advantage of serving as a low pass filter to minimize

sensor noise. The example motions were then used in the interpolation method.

The method was tested by asking ISAC to reach out and grab a Barney doll

[Fig. 11(a)]. The adverb values are the position and orientation of Barney. The

verbs and adverbs algorithm produce a trajectory to the correct position and the
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Fig. 11. (a) ISAC preparing to grasp Barney and (b) ISAC performing a reaching motion using
the verbs and adverbs technique.

proper wrist orientation in order to grasp Barney from any position collinear with

the original motions. This was found to be reasonably robust to deviations from

collinearity [Fig. 11(b)].

5.3. Human-guided motion generation and behavior derivation

This experiment illustrates how the Self Agent, the STM and the LTM work together

to generate a new behavior for ISAC under the following scenario: ISAC is told by
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Fig. 12. (a) ISAC is taught to reach five points on a table and (b) results from interpolating
selected action units. Each plot shows trajectories in Cartesian coordinates: (Left) reaching; (Right)
returning to home.34

a human to reach to an object in an unlearned position on a table. First, ISAC

is driven by a human to reach five random points (A, B, C, D, E) on a table

[Fig. 12(a)], giving a motion stream consisting of five different reaching motions

[Fig. 12(b)]. When applying the spatio-temporal Isomap to the motion stream, a

meta-“reach-to” behavior is derived and stored as a PM in LTM.

The demonstration illustrates several levels of the cognitive robot architecture

for directing attention to known and unknown objects, recalling generic “reach-

to” behavior from LTM and using a stereo vision system and the spatial-temporal

Isomap to execute the command. More specifically, upon receiving a speech cue

and a finger-pointing gesture from the human, the robot’s attention is directed

to an object. The Human Finger Agent finds a pointed finger to fixate on the

object (Fig. 13), and the SES returns the coordinates of the object. Based on this

information, the Self Agent retrieves the motion data to execute the reaching motion

as illustrated in Fig. 14.
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Fig. 13. Finger-pointing demo.

Fig. 14. Data flow for the human-guided motion generation and behavior derivation demo.
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6. System Health Monitoring

Like most humanoid robots, ISAC is a complex mechatronic system comprised

of many sensors and actuators. The overall task performance of such a system

depends on the proper functioning of its components. Despite the best design and

maintenance practices, it is unlikely that such a complex system will be immune to

system faults. Any fault that may develop in the system components may adversely

affect the humanoid. Therefore it is necessary to detect, isolate, and if possible

accommodate these faults as soon as they develop. In order to perform the above-

mentioned task, we designed an automated monitoring system for ISAC that is

expected to provide a real-time status of its sensors and actuators, and an analysis

of the possible task failures given a set of system faults. We call it the System Health

Monitoring (SHM) module.

ISAC’s SHM is designed in a hierarchical manner consisting of three different

levels. The lowest level is the component fault detection. Task monitoring is the

second level, which utilizes the knowledge of component fault detection to generate

a possible task failure scenario given a set of component faults and/or human-

robot communication. The highest level, called intention and decision monitoring,

is expected to provide high-level information to the human about the humanoid’s

intention and the associated possible decisions (Fig. 15).

The fundamental component on which the SHM relies is its ability to monitor

signals to detect faults. There are several methods that can be used to detect com-

ponent faults. The main idea is to compare the estimated signal value with the real

signal from sensors and actuators to detect faults when there is sufficient deviation

(Fig. 16). Several estimator based fault detection techniques have been developed in

Fig. 15. Levels of monitoring and action in the self agent.
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Fig. 16. System block diagram and plots of sensor signals.

the literature. For example, Hanlon and Maybeck used a residual correlation Kalman

filter bank to detect sensor fault in multiple mode of an aircraft.35 Roumeliotis

et al. employed a multiple model adaptive estimation (MMAE) technique to detect

sensor faults in a mobile robot.36 Both research groups detected sensor failure by

comparing the sensed value with the estimated value from the bank of the Kalman

filter. Scattolini and Cattane used Beard–Jones’ fault detection filter to detect sen-

sor faults in a large space structure.37 We are using adaptive Kalman filtering and

Beard–Jones techniques for fault detection in ISAC.

In order to identify the fault source, we are developing fuzzy rules based on

observation of the error characteristics. We have considered faults in position sen-

sors, actuators, during transmission and collision. As inputs to the fault isolation

logic, we are using desired, estimated and measured joint position and measured

joint torque. Simulation was conducted to verify the performance of the fault detec-

tion and isolation scheme to be used for task monitoring. Results are shown in

Fig. 17.

7. Future Direction

Through our research collaboration with NASA-JSC’s Robonaut group, USC,

UMass and MIT, we plan to pursue a realization of cognitive robots through

sensory motor coordination as the basis for generating intelligent behavior.

As we gained experience with our cognitive robot architecture, it became
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clear that the initial memory structure involving short- and long-term mem-

ories may not be adequate as we increase tasks for ISAC both quantita-

tively (i.e. total number) and qualitatively (i.e. complexity). We continue to

explore the realization of a third memory structure tentatively named an adap-

tive working memory, such as the lateral portion of human’s prefrontal cor-

tex (PFC) within our cognitive architecture. Our goal for such a PFC model

is to allow ISAC to focus attention on the most relevant features of the cur-

rent task without explicitly programming ISAC. This will finally complete our

multiagent-based cognitive robot architecture development initiated more than a

decade ago.
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Appendix

Interaction Competencies Hardware Software
for a Personal Robot

Observational
Presence of Person: Infrared
(IR)

Passive IR motion detector array Digital I/O

Sound: Event Localization Condenser Microphones Matlab

Speech: Detection/Recognition Handheld Microsoft Speech
Recognition Engine 4.0

Vision: Face and Gesture Sony Color CCD Cameras Visual C++ routines,
some with Intel
Libraries

Demonstrative/Responsive
Speech: Synthesis PC Speakers AT&T Natural Voices

Engine
Motor behaviors: Head Directed Perception PTU-46-70 IMA wrapper for serial

port
Motor behaviors: Arms Pneumatic Muscles Visual C++ routines and

control
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