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Abstract

Dynamic programming is an efficient technique to solve combinatorial search and optimization
problem. There have been many parallel dynamic programmingalgorithms. The purpose of this
paper is to study a family of dynamic programming algorithm where data dependence appear be-
tween non-consecutive stages, in other words, the data dependence is non-uniform. This kind of
dynnamic programming is typically callednonserial polyadic dynamic programming. Owing to the
non-uniform data dependence, it is harder to optimize this problem for parallelism and locality on
parallel architectures. In this paper, we address the chanllenge of exploiting fine grain parallelism
and locality of nonserial polyadic dynamic programming on amulti-core architecture. We present
a programming and execution model for multi-core architectures with memory hierarchy. In the
framework of the new model, the parallelism and locality benifit from a data dependence transfor-
mation. We propose a parallel pipelined algorithm for filling the dynamic programming matrix by
decomposing the computation operators. The new parallel algorithm tolerates the memory access
latency using multi-thread and is easily improved with tiletechnique. We formulate and analytically
solve the optimization problem determing the tile size thatminimizes the total execution time. The
experiments on a simulator give a validation of the proposedmodel and show that the fine grain
parallel algorithm achieves sub-linear speedup and that a potential high scalability on multi-core
arichitecture.
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1 Introduction

Combinatorial search and optimization is used to look for a solution to a problemamong many po-
tential ones. For many search and optimization problems, dynamic programming (DP) is a classical,
powerful and well-known technique for solving large kinds of optimization problems. There are many
applications such as scheduling, inventory management, automatic control, and VLSI design, etc [17].
More recently, it has been found useful towards solving many problems inbioinformatics. For exam-
ple, the two most important application is Smith-Waterman algorithm [27] for matching sequences of
amino-acids/necleotides and Zuker’s algorithm [24] for predicting RNA secondary structures. However,
a combinatorial explosion limits this method’s chance of being widely used because the CPU time and
storage requirements can be so high. Parallel processing could be an efficient tool to solve large-scale
DP problems. In fact, parallelization of DP algorithm has been a classicalproblem in parallel algorithm
research in the last decade. In order to find efficient parallel algorithmsfor implementing DP, Grama,
et.al. [17] present a classification of DP formulation: DP can be considered as a multistage problem com-
posed of many subproblems. If subproblems at all levels depend only onthe results of the immediately
preceding levels, it is called aserial DP formulation; otherwise, it is called anonserialDP formula-
tion. Typically, there is recursive equation called afunctional equation, which represents the solution to
optimization problem. If a functional equation contains a single recursive term, the DP formulation is
monadic; otherwise, if it contains multiple recursive terms, we call ispolyadicformulations. Based on
this classification criteria, four classes of DP formulations can be defined:serial monadic (single source
shortest path problem, 0/1 knapsack problem), serial polyadic (Floyd allpairs shortest paths algorithm),
nonserial monadic (longest common subsequence problem, Smith-Watermanalgorithm) and nonserial
polyadic (optimal matrix parenthesizeation problem and Zuker algorithm). From the view point of data
dependence [31], serial DP formulation shows a uniform dependence because between subproblems is
consecutive. The data dependence in nonserial DP formulation appears among non-consecutive levels,
meaning that it is non-uniform. This non-uniform data dependence make theparallelization harder on
current memory hierarchy and network latency computer architecture. This paper will focus on the par-
allel performance of nonserial polyadic DP algorithms which have becomethe most important method
for RNA secondary structure prediction on an emerging multi-core architecture-IBM Cyclops64.

1.1 Problem Formulation

The nonserial polyadic DP formulation is defined by following recurrence:

c(
i

j
) = min

t(i,j)
k=1 {gk(c(

i + a1(i, j)

j − b1(i, j)
), ..., c(

i + aw(i, j)

j − bw(i, j)
))}

This formulation defines an × n triangular domain with dependence vectorsδl(i, j) = (
−al(i, j)

bl(i, j)
).

Typically, the value oft(i, j) is anO(j − i) function which means the computation of a entry(i, j)

in DP domain(matrix) may depend on several entries which has been computed. In order to simplify
the presentation of the proposed algorithm, without disturbing the dependence, we instantiate the gen-
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eral formulation by the DP formulation appearing in RNA secondary structure prediction. In fact, our
research on this instantiation also applies to the general problem because our proposed algorithm only
depends on the data dependence which is not been changed. The DP matrix can be filled using following
recursive formulation:

m[i, j] =



















mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}
0 ≤ i < j < n

a(i)

i = j

(1)

1.2 A Large Scale Multi-core Architecture Case: IBM Cyclops64

Larg scale multi-core architectures, which have been mainstream, have been used to build a petaflops
supercomputer. There are several prototypes or real products of multi-core chips, such as IBM’s
Cell [18]/Cyclops64 [13], Cray’s new XMT [2] and GRAPE-DR [1]. To some extent, some common
features of these large scale multi-core architectures are their small on-chip memory (no data cache)
and explicit memory hierarchy to programmer. The memory access latency canbe tolerated by multi-
threads. However, to exploit locality and data reuse in the on-chip memory while achiving maximum
parallelism is a challenging problem. In this work, we present our parallelalgorithm based on IBM
Cyclops64 multi-core architecture.

The Cyclops64(C64) (See Figure 1) is petaflops supercomputer project under development at
IBM T.J.Watson Laboratory [13]. It is designed to serve as a dedicated compute engine for running
high performance scientific and engineering applications. The C64 chip architecture employs a large
scale multi-core on chip design by integrating 160 hardware threads units, and the same amount of
embedded SRAM memory banks in a single silicon chip. A C64 chip has 80 processors, each with two
thread units (TU), a floating-point unit (FP) and two SRAM memory banks of32KB each. A 32KB
instruction cache (not shown in the figure) is shared among five processors. The basic unit of memory,
a word, in C64 is 8 bytes. The C64 chip architecture represents a major departure from mainstream
microprocessor design. Although the C64 also supports uniform memory access among all processors
like other multi-core architecture, it features a three level (Scratchpad(SP) memory, on-chip SRAM,
off-chip DRAM) (See Figure 2) memory hierarchy without data cache. Instead, a portion of each thread
unit’s corresponding on-chip SRAM bank is configured as the scratchpad memory (SP). Therefore,
the thread unit can access to its own SP with very low latency, which providesa fast temporary
storage to exploit locality under software control. The remaining sections of all on-chip SRAM banks
together form the global memory that is uniformly addressable from all thread units. The total on-chip
memory (including SP) is approximately 5MB. There are 4 off-chip memory controllers connected to 4
off-chip DRAM banks with size of 1GB in current design. The C64 provides no resource virtualization
mechanisms, which means that there is no hardware virtual memory manager and the three-level
memory hierarchy is visible to the programmer.
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Figure 2: IBM Cyclops64 memory hierarchy

A maximum configuration of a C64 system consisting of 13,824 C64 chips, connected by a 3D mesh
network, is expected to achieve over 1 petaflops peak performance. A first C64 system is planned to
be installed in 2007. The goal of our work is to demonstrate an experience on designing an algorithm
on C64-like multi-core architectures. Our previous work has shown some optimization techniques for
numerical computation such as dense matrix multiplication [21]. In this work wefocus an irregular
computation with non-uniform data dependence-nonserial DP algorithm.
The rest of this paper is organized as follows: Section 2 summarizes previous work on parallelizing the
nonserial DP algorithm. In section 3, for the memory hierarchy on multi-core architectur, we construct
a preliminary programming model and execution model. In order to exploit better parallelism, we
perform a transformation of the data dependence for nonserial DP algorithm. Then based on the models,
we proposed a parallel pipelined algorithm with load balancing for transformed nonserial polyadic DP.
Furthermore, a tiling technique [22] is used to improve the performance further. Section 5 develops an
analytical model for the proposed parallel algorithm. Section 6 presents theexperimental results on the
C64 simulator-FAST [10], which is execution driven cycle-by-cycle simulator. We conclude this paper
in Section 7.

2 Related Works

For this family of DP algorithms with non-uninform data dependence, which obviously make the par-
allelization harder, there has been a lot of work on exploiting the parallelism.Bradford [7] described
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several algorithms, which solve optimal matrix chain multiplication parenthesizations using the CREW
PRAM model. Edmonds et al. [14] and Galil et al. [16] presented severalparallel algorithms on general
shared memory multiprocessor systems. Another important research area isin the systolic framework,
for example, Guibas et al. [19] [23] focuses on designing triangular systolic arrays. These works fo-
cus on how to reduce the complexity of arithmetic cost on different theoretical parallel models. On
distributed memory multi-computer systems, the main difficulty for obtaining an efficient parallel im-
plementation is to find a good balance between communication and computation cost. In [8] [15] [26],
the authors represented parallel implementations of RNA secondary structure prediction DP algorithm.
The computational load balance is satisfactory, however, the algorithm donot optimize the communica-
tion cost. The authors proved experimentally that the communication take about50% of the execution
time for a sequence of length 9212. Although a simple blocking method was used, they didn’t take in
account the value of the startup latency, and furthermore, the processors are assumed to be permanently
busy. For current machines it is an unrealistic approximation. Inspired bythe blocking technique, F.
Almeida [4] proposed a parallel implementation with tiling on a ring of processors. They showed the
usefulness of the tiling technique for this nonuniform dependence DP. However, like the algorithms
in [26], this parallel tiling algorithm can’t achieve computational load balance. In their performance
analytical model, the authors ignored the fact that the computation of each iteration point is different.
Besides, in order to only achieve communication between two neighbors tiles,they have to keep the
entire iteration in each processor. W.Zhou [33] presented a parallel out-of-core [29] algorithm for this
dynamic programming problem under the conventional out-of-core model.Their research is to find a
replacement strategy for in-core buffer. They used a load balance algorithm which is similar to the
method in [28], but this method only can promise the number of entries on each processor is the same,
the arithmetic cost on each processor is not the same because of the non-uniform data dependence.

3 The Proposed Algorithm

Like memory hierarchy on general computer systems, it is a great challenge to to exploit parallelism
while keeping locality. A general strategy on a cache memory model is to develop parallel out-of-core
algorithm. On IBM Cyclops64 the latency of access to each memory segment is different. However,
there are many cheap hardware thread units on this multi-core architecture,which permits the memory
access latency to be tolerated by use of multi-threading (that is same with other multi-core architec-
ture). In order to facilitate the study of the methodology for designing algorithms on such a large scale
multi-core architecture, it is necessary to build a programming/execution model. Because the memory
hierarchy plays an important role in achieving performance, we devise theconventional out-of-core
model. The most important feature in this new model are thehelper threads, which are used to tolerate
memory access latency. In our proposed parallel algorithm, there are only two helper threads, one of
which is used to load data from DRAM to SRAM, the other transfers data from SRAM to DRAM.
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3.1 Programming Model

In order to exploit the locality, we refer to out-of-core programming modelwhich is inspired by data
parallel programming paradigm [6]. In fact, we can consider the based multi-core architecture-IBM
Cyclops64 as a new data parallel architecture. In the out-of-core programming model mapped on IBM
Cyclops64, a large array is declared with full size stored in DRAM. Consider an array that is too large to
fit in SRAM/SPM on chip, calledOut-of-Core Arraysor OCAs. Each time only a small section can fit in
SRAM/SPM. The memory pieces in SRAM/SPM is calledIn-Core Arraysor ICAs. In this programming
model, the locality means that operations should accessICAsthat are in SRAM/SPM. Another important
indication of this out-of-core model is thatICAsshould be shared so that other helper threads move the
data betweenICAs andOCAs. So, in this model, we can use helper threads to tolerate the latency of
access toOCAs, then release the burden on maximize locality.
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Figure 3: (a). The execution model of previous out-of-core model. (b). The execution model of out-
of-core model on multi-core architecture. The number ofhelper threaddepends on the architecture
parameters such as bandwidth.

3.2 Execution Model

In the framework of out-of-core model, each work thread should follow the sequential steps:load-
compute-store. R. Bordawekar [6] proposed aLocal Placement Modelin which a worker can compute
the elements inICAs until it load the data fromOCAs. At the end of each synchronization step, each
thread perform a store to flushICAsto OCAs. In their model, all opertions are serialized (See Figure 3).
On multi-core architecture, some threads (or idle threads) can be excluded as helper threads to overlap
load/store operations with computation. However in this new execution model double ICAsshould be
available. Thus, the compuation of elements in it ICAs and load/store betweenICAs andOCAsare
parallelized. The execution is visualized as Figure 3. In the next sections,we address the challenge of
developing an efficient fine-grained parallel algorithm for non-serialpolyadic dynamic programming on
multi-core architecture with memory hierarchy.
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Figure 4: The blocked original DP matrix (sizen = 16). The row and column where red elements locate
need cross block reference.

3.3 Parallel Algorithms on Memory Hierarchy

Blocking is an efficient technique to exploit locality on memory hierarchy model. We use blocking
strategy to exploit not only locality, but also fine grain parallelism. However, the parallelism is not
enough if the DP matrix is simply blocked, because of data dependence. We apply a data dependence
transformation to the original problem so that the data dependence is partially smoothed when the DP
matrix is blocked.

3.3.1 A Transformation of Data Dependence

The purpose of the computation during dynamic programming algorithms is to fill a dynamic program-
ming matrix, which can be easily implemented as a simple three nested loops. We consider this as an
iteration domain problem. Figure 4 gives a original blocked DP matrix. The blocked matrix dosen’t
change the data dependence. For example,block(0, 3) depends onblock(0, 0),block(0, 1),block(0, 2)

andblock(3, 1), block(3, 2), block(3, 3). According to the programming model on memory hierarchy,
only a limited number of sub-blocks are loaded into lower level memory and computed because of
the small size of memory. Without loss of generality, we assume that we can loadthree blocks: the
computed block and two other blocks which it depends on. Whenblock(0, 3) is being computed using
block(0, 1), block(1, 3),only block(0, 3), block(0, 1), block(1, 3) are loaded. Following equation 1,
each element pair betweenblock(0, 1) and block(1, 3) is accumulated. However, the corresponding
elements on the right border ofblock(0, 1) are inblock(2, 3) and the corresponding elements on upper
border ofblock(1, 3) are in block(0, 0) (See Figure 4), which are not in lower level memory. We
call this casecross block reference, where the depended elements are reloaded and the parallelism
within blocks decreases. Therefore, in order to achieve more blocked data reuse and parallelism, a data
dependence transformation is applied to the original DP domain.
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Figure 5: The blocked transformed DP matrix (sizen = 16) where the gray points along the diagonal
do not contribute to computation, thecross block referenceis eliminated

Assume(i, j) is the original coordinate in the original domainD = {(i, j)|0 ≤ i ≤ j < n},
wheren = |D| is the original problem size,(i′, j′) is the new coordinate in the transformed domain
D′ = {(i′, j′)|0 ≤ i′ ≤ j′ < n′}, wheren′ = n + 1 = |D′| is the new problem size. The iteration
domain transformation is defined as follows:

(i′, j′) = f(i, j) : i′ = i, j′ = j + 1

Thus, in the transformed domain equation 1 is rewritten as the new equation 2, wherea(i) is the known
initial value (the values on the new diagonal also can be any values).

m[i′, j′] =



















mini′+1≤k′<j′{m[i′, j′], m[i′, k′] + m[k′, j′]}
0 ≤ i′ < j′ < n′

a(i)

j′ ≤ i′ + 1

(2)

In the new domain, the entries on the new diagonal doesn’t contribute to thecomputation. We claim
that except for the unused values on the new diagonal in the new domain, thetransformed formulation
2 gets the same dynamic programming matrices with the original formulation 1 in the original domain.
Thus, we have corollary 1.

Corollary 1. ∀(i, j) ∈ D and∀(i′, j′) = (i, j + 1) ∈ D′, after formulation 1 and 2 are used in
domainD andD′, respectively,m[i, j] = m′[i′, j′] or m[i, j] = m′[i, j + 1].

Proof: See Appendix 1.

This domain transformation ensures that the new DP formulation 2 gets the correct results. In fact,
the original domainD is a subset of the transformed domainD′, D ⊂ D′. It can be viewed as adding a
new diagonal to the original DP matrices (See the gray point along the diagonal in Figure 5. Thus, the
cross block referenceis eliminated. Our parallel algorithm is considered within the transformed domain
D′.
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3.3.2 Parallel Pipelined Algorithm

Let us assume that we havep + 2 threads, two of which are helper threads, and the size of transformed
domain (DP matrix) isn. The DP matrix is divided by a block size2

√
p. For any blockA(i, j) in

the blocked transformed domain, it depends on the blocks on the same rowA(i, i...j) and column
A(i...j, j). The blocks along the diagonal are triangles and it is self-contained, but there exits good
parallelism for computing the triangular blocks in a diagonal-wise way. Besides, the execution time
of the triangles occupies a little in the total execution time, so we focus on other rectangular blocks.
Because there is data dependence between two consecutive entries in the same row and column, we can
not get efficient parallelism. However, through decomposing the computation, we can exploit higher
fine grain parallelsim.
Based on equation 2, we define two tensor operations⊗ and⊕ for the blocked matrices operation. Let
matricesA = (aij)s×s,B = (bij)s×s,C = (cij)s×s.

definition 1. ∀aij ∈ A, bij ∈ B, cij ∈ C, 1 ≤ i, j ≤ s, if cij = minn
k=1{ci,j , ai,k + bk,j}, then

C = A ⊗ B.

definition 2.∀aij ∈ A, bij ∈ B, cij ∈ C, 1 ≤ i, j ≤ s, if cij = min{ai,j , bi,j}, thenC = A ⊕ B.

Thus, we get a formulation to compute any blockA(i, j):

A(i, j) = ⊕j
k=i(A(i, k) ⊗ A(k, j))

= (⊕j−1
k=i+1(A(i, k) ⊗ A(k, j)))

⊕(A(i, i) ⊗ A(i, j)) ⊕ (A(i, j) ⊗ A(j, j))

(3)

In equation 3, the computation of a blockA(i, j) (i 6= j) is divided into two parts. The first one depends
on rectangular blocks on the same row/column:

⊕j−1
k=i+1(A(i, k) ⊗ A(k, j))

the second one depends on a triangular block and itself:

(A(i, i) ⊗ A(i, j)) ⊕ (A(i, j) ⊗ A(j, j))

Let us take computation ofA(0, 3) for example in Figure 6, the first part is(A(0, 1) ⊗ A(1, 3)) ⊕
(A(0, 2) ⊗ A(2, 3)), the second part is(A(0, 0) ⊗ A(0, 3)) ⊕ (A(0, 3) ⊗ A(3, 3)) We observe
that parallelism can be exploited at two levels for the first part. The first level is O(j − i − 1) ⊕
operations;The second level is each⊗ operation. The parallelism in the second part is low because of
the data dependence between two consecutive entries. However, our decomposition algorithm leverages
the computation in the second part and reduces the proportion of this part. For computing any block
A(i, j), the number of operators (⊗ and⊕) is O(j − i − 1) in the firs part, but it is onlyO(2) in the
second part.
During computation of the second part, the submatricesA(i, i) andA(j, j) are triangular. The two
operationsA(i, i) ⊗ A(i, j), A(i, j) ⊗ A(j, j) depend on the final results ofA(i, j), soA(i, i), A(j, j),
A(i, j) are integrated into one sub-matrices, where the parallelism can be exploitedalong the diagonal.
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Now, we focus on the part of⊕j−1
k=i+1(A(i, k) ⊗ A(k, j)). Obviously, each⊗ for the depended blocks

can be executed in parallel, which is the idea similar to previous coarse grained parallel algorithm.
However, we noted that the memory access latency is different for each memory segment even though
the memory address is uniformly arranged. So, in our fine grained parallelalgorithm we need to find a
strategy to tolerate memory access latency so that the parallel algorithm can achieve fine scalability.

p0 p1

p2 p3

p0 p1

p2 p3

p0 p0 p1

p2 p3

p1

p2 p3

thread unit map of a block

rectangular tile

triangular tile

0 1 3

1

2

3

0

2
sqrt(p)

sqrt(p)

Figure 6: Each block size is4p. The first block in each row strip is triangular, others are rectangular.
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when computing sub-blockC(0, 0) in step 1.

Because the block size is2
√

p, each block is divided into 4 sub-blocks with size ofp =
√

p × √
p

(See Figure 7). Each element in one sub-block is mapped to one thread(See Figure 6). According to
the definition 1, there is no dependence among all elements in a block for⊗ operation, so all threads
proceed in parallel. For anyi + 1 ≤ k ≤ j − 1, we need computeA(i, k) ⊗ A(k, j). Let C, A andB

denoteA(i, j), A(i, k) andA(k, j), respectively. The data dependence shown in equation 2 indicates
that the computation of one sub-block ofC needs the sub-blocks in the same row and column inB

andC, respectively (This is the same with the blocked matrix multiplication). A simple strategy to
implement⊗ can be derived from matrix multiplication. Typically, it needs(2

√
p)3× (3+1) = 32p

√
p

(3 loads and 1 store), therefore, there exists data reuse for each sub-block. In order to reduce the number
of read sub-block from DRAM, we allocate three SRAM buffers which contain half of each sub-block,
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respectively. There are two helper threads used to load/store data between DRAM and SRAM. One half
of each of the three buffers is used for computation, the other half is usedto transfer data. The basic
idea is that the helper threads can load/store data that is used to compute the next C sub-block while
the computation threads compute the currentC sub-block. The computation of 4 sub-blocks ofC can
proceed in a pipeline style. The pipeline algorithm consists of 8 parallel steps which are described in
Figure 8

ParllelSteps
startup: LOADC00, A00, B00;
step 1: COMPUTEC00; LOAD A01, B10;
step 2: COMPUTEC00; LOAD C01, B01;
step 3: COMPUTEC01; LOAD B11; STORE
C00;
step 4: COMPUTEC01; LOAD C11, A10;
step 5: COMPUTEC11; LOAD A11; STORE
C01;
step 6: COMPUTEC11; LOAD C10, B00;
step 7: COMPUTEC10; LOAD B10; STORE
C11;
step 8: COMPUTEC10;
end: STOREC10;

Figure 8: The eight pipelined parallel steps for computing one block. Thememory access is overlapped
with computation by multi-thread

The pipeline algorithmParalelStpesin Figure 8 needs 4 loads/stores from/toC, 4 loads fromA,
6 loads fromB, therefore the number of memory access is only18p. Although the memory access
complexity is not optimal, we have exploited a fine parallel algorithm to overlap data transfer with
computation, and thus, the memory access latency is tolerated.
For each blockA(i, j), the number of⊗ operations required isO(j − i − 1). In fact, whilestep 8is
computingC10, one of the helper threads can load theC00, A00, B00 for the next⊗ operation. Thus,
the startupstep is removed tostep 8so that a pipeline is reformed among the⊗ operations for block
A(i, j).

3.3.3 Tiling

Tiling iteration domain (loop blocking) [9] [30] [25] [32] is a well-known technique used by compil-
ers and programmers to improve data locality and to control parallel granularity in order to increase
the computation to communication ratio. In our parallel algorithm based on the modified out-of-core
programming model, the ”communication” is the data transfer between DRAM and SRAM/SPM, while
the locality in SRAM/SPM also should be accounted. In this case, tiling is used to minimize the total
execution time of parallel program on out-of-core programming model on multi-core architecture.
We now apply a tiling approach to this parallel pipelined algorithm, which fills thetransformed domain
D′. Each tile has two parametersx andy, which are called tileheightandwidth respectively (see Figure

10



6). In this current work, we only consider a square tile withx = y (in the rest of this paper, we only
use tile parameters referring to tile width/height). In the tiled domain, each tile can be considered as a
element in this new domain. In order to keep the dependence, the tiles along diagonal are triangles, the
other tiles are rectangle, and both tile parameters arex. Because the data dependence in the tiled domain
is the same as that equation 2, the tiled DP matrix can be filled using the proposed parallel pipelined
algorithm.

4 Performance Modeling

The study of performance modeling is confined to parallel algorithm with tiling. The basic operation is
blocked⊗ which contains eight parallel steps. Assume that the size of the original transformed domain
is n, tile parameters isx, the number of computational threads isp. Then, the size of the tiled domain
is m = n

x
, which is blocked with block size of4p = 2

√
p × 2

√
p. According to the proposed parallel

pipelined algorithm, there arem′ = m
2
√

p
row strips. In row stripi, there arem′ − i blocks to be

filled. Because of the data dependence shown in transformed DP formulation 2, for any blockA(i, j)

(i ≤ j < m′ − i) in row stripi, it needsj − i − 1 blocked⊗ operations. LetI⊗ denotes the number of
blocked⊗ operations for filling the entire tiled transformed DP domain.

I⊗ =
m′−2
∑

i=1

m′−i−1
∑

j=i+1

j

Becausem = n
x

, we get the nubmer of blocked⊗ operations:

I⊗ =
1

24
[

n3

x3p
3

2

− 6
n2

x2p
+ 8

n

x
√

p
] (4)

4.1 Memory-traffic Complexity

The programming model that is used for designing algorithms that deal with these problems is similar
to the out-of-core model. In the out-of-core model, an important performance measurement is I/O
complexity [3] [20]. On IBM Cyclops64 multi-core system, there is no data cache, but the access
latency for each memory segment is different, so this memory system can also be consider as a memory
hierarchy. For example, we refer to SPM closest to hardware thread unit as level 1, on-chip SRAM
as it level 2 and off-chip DRAM aslevel 3. However, SPM is mainly used to keep the private data
for each thread, so we only use SRAM forIn-Core Arrays. In the new out-of-core model, we refer to
memory-traffic complexity. This is defined as the amount of memory traffic between on-chip SRAM
that is smaller than problem size and off-chip DRAM that is larger than the problem size.

Lemma 1. For the parallel pipelined algorithm, tiling with parameterx reduces the memory-traffic
complexity by a factor ofx, wherex = O(

√
C) andC is the size of on-chip SRAM.
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Proof: For the parallel algorithms without tiling, the memory-traffic complexity of non-pipelined
and pipelined is:

Mnon−pipeline = I⊗ × 32p
√

p = O(n3)

Mpipeline = I⊗ × 18p = O(
n3

√
p
)

For the tiling version, the element of each single⊗ operation is tile with parameterx and the volume
of a tile isx2. Then each single⊗ operation needsx2 memory traffic, so the amount of memory traffic
of the blocked⊗ operation is18px2. Because the number of blocked⊗ operations isI⊗, combining
equation 4, thememory-traffic complexityis shown that:

Mtile = I⊗ × 18p

= 1
24 [ n3

x3p
3

2

− 6 n2

x2p
+ 8 n

x
√

p
] × 18p

= O( n3

x
√

p
)

Lemma 1 gives the upper bound ofmemory-traffic complexity. The⊗ operation is similar to the
basic operation in matrix multiplication, and as a result, we can use the similar technique [20] to prove
the lower bound ofmemory-traffic complexityis Ω( n3

x
√

p
), which gives us the following theorem:

Theorem 1. The parallel tiled pipelined algorithm, which is tiled with parameterx, is asymptoti-
cally optimal with respect to memory-traffic complexity.

The termmemory-traffic complexityonly shows the amount of memory access similar to the case
on general memory hierarchy. However, we noted that there are helperthreads to tolerate memory
access latency on multi-core architecture. That is, besides the memory accesses are overlapped with
computation, they also can be parallelized within memory bandwidth limitation usinghelper threads. In
this performance model, assume that there is no bandwidth limitation and that the memory access for
load and store is the same. We refer to another measure calledmemory-traffic efficiency. It is defined as
a ratio of the time reduction percent of memory access to the number of helperthreads. In our proposed
parallel algorithm, we use two helper threads. If one helper thread is usedfor load, the other is used
for store, then the 4 store operations are completely overlapped and the timereduction percent for a⊗
operation is4/18, therfore, thememory-traffic efficiencyis 11% for 2 helper threads. However, as shown
in figure 8, each parallel step only needs two memory accesses, therefore, we can schedule one idle load
thread to store and the time reduction percent for a⊗ operation is8/18 andmemory-traffic efficiencyis
22%. If the number helper threads is 3, then in each parallel step all memory accesses are parallel and
the time reduction percent is10/18, but memory-traffic efficiencyis 19%. In fact, thememory-traffic
efficiencyis determined by the parallelism in memory access. In all practical architectures there exists
memory bandwidth limitation, so more helper threads do not means higher efficiency.

4.2 Execution Time

Under the execute model we now determine a analytic formulation of the execution time of our parallel
program. In this work, we only use square tile. Let us denote the time to execute a single instance of
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equation 2 asα and , the latency of one memory access asβ. Each step inParallelStepsneeds
√

p

instance of⊗ operation for each thread. For the tiled algorithm, since the element of each operation is
a tile with volumex2, the execution time of computation in each parallel step is:

Tcomp = α
√

px3

In each parallel step, there are only two memory accesses that are parallelized by two helper threads, so
the data transfer time is:

Ttran = βpx2

Because the helper and computation threads proceed in parallel, the time fortransferring data and exe-
cuting⊗ operation for a tile is overlapped (the execution time should be determined by thelonger one).
In the startup and end of the pipeline, two extra load/store are required.Therefore, the execution time
ParallelStepsis

T⊗ = max{Tcomp, Ttran} = max{α√px3, βpx2} (5)

Combining equation 4 with 5, we get the execution time of all parallel pipelined steps:

T0(x) = n
2x

√
p
× 2βpx2 + I⊗ × 8 × T⊗

= nβ
√

px + 8 × I⊗ × max{α√px3, βpx2}

=

{

T1(x) = nβ
√

px + 8I⊗ × βpx2 x <
β
√

p

α

T2(x) = nβ
√

px + 8I⊗ × α
√

px3 x ≥ β
√

p

α

(6)

The triangular blocks on the diagonal is self-contained and their runningtime is:

T3(x) = (
m′

∑

i=1

i ×
4
√

p
∑

j=1

+m′
2
√

p
∑

j=1

)x3α = nαpx2 +
n2α(4

√
p + 1)

4
x (7)

So the optimalx is selected to minimize following formulation:

P : Minimize T (x) = T0(x) + T3(x)

s.t.
β
√

p

α
≤ x < min{

√

C
48p

, n
4
√

p
} (8)

Therefore, the objective is to select a optimal tile parameterx to minimize the functionT (x).

Theorem 2.The optimal tile parameter of parallel tiling pipelined algorithm is selected by the rule:

if 2 < p < α
β
min{

√

C
48 , n

4 }, x∗ =
β
√

p

α
;

otherwise,

x∗ =







⌊ n
4
√

p
⌋ − const n ≤

√

C
3

⌊
√

C
48p

⌋ − const n ≥
√

C
3

Proof: See Appendix 2.
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Figure 9: Finding the global minimum of the tile parameterx according to Theorem 2,p = 16, n =

1024, x∗
mid = 12 min{

√

C
48p

, n
4
√

p
} = 64, x∗ = 12

We have some observations for solving this non-linear optimizaiton problem.According to the
solution toT0(x), x is expected to be larger, however the portion of computing triangular blocks is
more with increase ofx–that is, the portion of parallelism decreased even though the execution time
of parallel pipeline algorithm is reduced. An important implication from the solving this optimal tiling
problem is the scalability of the parallel algorithm. The whole solution space is partitioned byx∗

mid. The
case that the optimal solution falling into the left ofx∗

mid meansn
p

< β
α

.That is, the execution time is
determined by the memory data transfer when the number of thread is larger than some value. Corollary
2 shows that the optimal solution locates the right ofx∗

mid, which means the scalability of our algorithm
is determined by the arithmetic operation instead of memory latency. So our proposed parallel algorithm
on multi-core architecture has fine scalability with large scale processors. The solution for the global
minimum in case ofn = 1024 andp = 16 is shown in Figure 9

5 Numerical Experiments

IBM Cyclops64 supercomputer is an on-going project and there is no real machine to date. The simula-
tion tool, named Functionally Accurate Simulation Toolset (FAST) [10] [12], is designed for the purpose
of architecture design verification and software development. Based onthe FAST simulator, a thread
virtual machine (TNT) [11] is implemented to support a multi-thread programming environment. The
parallel algorithms are implemented using TNT library on the simulator. Becausethe DP algorithm only
needs to fill an upper triangular matrix, the data layout is very important towards improve its locality.
However, this topic is beyond the scope of this paper. We use a linear array to store the triangular DP
matrix with row-wise order. For theICAsfor row and column data that is depended on by other entities,
the data layouts are row-wise and column-wise respectively.
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Figure 10: The comparison of theoretical and experimental execution time.p = 16, n = 1024,x∗
mid =

12 x∗ = 12

5.1 Model Validation

We validated the performance model by comparing the theoretical to experimental execution time, which
was measured on the FAST simulator. Figure 10 plots the trends of the theoretical and experimental exe-
cution time. The performance model accurately predicts the trend of execution time and gets the correct
the optimal tile parameterx∗. Because the model does not take the synchronization into account, the
theoretical execution time is less than the experimental execution time. When the tile size increases, the
number ofparallel stepsfor a given problem size decrease, thus the synchronization overhead becomes
less because there is a synchronization at the end of each step. The plots in figure 10 demonstrates that
the difference between theoretical and experimental execution time is reduced with the increasing tile
size. Because the synchronization on the C64 is implemented by hardware efficiently [34], the perfor-
mance model, which does not consider the synchronization overhead, can simulate the trend of running
time and the optimal tile parameter. However, as shown in the next performanceevaluation experiment,
it is important to reduce synchronization overhead in order to achieve better scalability.

5.2 Performance

In this test, the execution time is obtained at the optimal tile parameter for different cases. For emphasiz-
ing the importance of locality optimization, we keep the initialized DP matrix in off-chip DRAM. Table
1 presents the running time of the original serial and optimized parallel algorithm. This work attempts
to demonstrate some optimization schemes on multi-core architectures. So the naive serial algorithm is
is implemented as a three nested loops iteration. The proposed parallel algorithm achieves sub-linear
speedup. The locality and scalability of the algorithms are evaluated:
Locality. The computation strategy inParallelStepsimproves data reuse, which reduces the amount of

off-chip memory access, reducing the overhead of memory access. Figure 11 plots the distribution of
computation and off-chip memory access time for problem size256, 512 and1024. Even though we do
not take helper thread into account in this experiment, the cost of off-chip memory access is reduced
greatly. The number of computation threads is4, so we estimate the number of off-chip memory ac-
cesses is approximate3 times less than the naive implementation according to the algorithmic analysis
in section 3.2.3. In our implementation, tiling is also used to improve the locality, so the real cost of
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Table 1: The execution time of different problem size. The first row represents the running time of the
serial algorithm which is implemented as three nested loops iteration. Time: seconds

#threads 256 512 1024 2048
serial 1.407 11.289 90.435 226.546
4 0.362 2.469 17.946 42.720
16 0.168 1.014 6.996 15.751
64 0.120 0.623 4.579 7.579

off-chip memory access is reduced by more than3 times. In other words, the pipeline algorithm actually
reduecd the DRAM bandwidth through the on-chip data reuse. When the algorithm is implemented in
IBM Cyclops64-like multi-core architecture, an more aggressive optimizationtrick is to useLDM/STM
composed of fourLDD/STD(load/store double word) instructions to aggregate multiple memory access.
Hence, DRAM requests are reduced by1

4 times so that the utilization of DRAM bandwidth is improved.
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Figure 11: Comparison of the cost of off-chip memory access for different problem size.
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Figure 12: The speedup of our proposed parallel pipelined algorithm ondifferent number of threads
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Figure 13: The total execution time for problem size256, 512, 1024 and2048

Scalability. First, we have measured the scalability of the proposed parallel pipelined algorithm
in weak scaling experiments. In a weak scaling study, we increase the problem size as the number of
compute threads increases. The speedup is defined as the ratio of the execution time of parallel program
to the execution time of the original serial program. Figure 12 clearly demonstrates the scalability of
our parallel DP scheme. For all problem sizes, the parallel algorithm achieves sub-linear speedups
because of the greatly improvement of locality and the pipeline scheduling scheme which hide the
off-chip memory access latency. This is most evident in the case where thenumber of threads is less
than 16, and the parallel algorithm get linear speedups. The plots show that the algorithm has a fine
scalability that means higher speedup for a larger scale problem size on a larger scale processor size.
Second, we have conducted strong scaling experiments. In contrast toweak scaling, we fixed the size
of the problem size while increasing the number of processors in the strong scaling experiments. Figure
13 presents the strong scaling experiments results. As shown in this experiment, for a given problem
size, as the number of threads increase, the reduction in execution time becomes less significant.
Although there is an efficient hardware synchronization on C64, the overhead becomes significant
when the cost of arithmetic and memory latency is greatly reduced for a givenproblem size on large
scale threads. Figure 14 and 15 plot the synchronization overhead trends. For the small problem sizes
such as256 and512, the percentage of synchronization overhead determines the the total execution time.
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Figure 14: The synchronization overhead percentage in total executiontime
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Figure 15: The synchronization overhead time

A barrier synchronization is inserted at the end of each stepParallelStepsto implement the above
pipelined scheme. This guarantees that computation happens after loading all the required data, and
that storing follows the corrresponding computation stage. Although a barrier can be finished in as
little as dozens of cycles, since the pipeline algorithm hides the memory accesslatency and the time of
arithmetic operations is reduced greatly by parallel thread units, the overhead of barrier synchronization
become significant (see Figure 14). Because of the limitation of the simulator,we can not test larger
problem sizes in time, but the experiments give some reasonable implications. Itis certain that the cost
of one synchronization operation increases with the larger scale of threads, but the percentage of the
overhead of synchronization decreases with increasing of problem size in Figure 14. This implicates
that the algorithm has a fine scalability with problem size. An interesting casein Figure 15 is that
the total synchronization time decreases with the larger scale of threads. This performance benifits
from the optimal tiling parallel technique. On one hand, while a larger scale ofthreads results in more
synchronization time, it reduces the number of synchronization operations. On the other hand, the
volume of a tile determines the number ofParallelStepsto fill the DP matrix. However, although
most of the barrier synchronizations occur inParallelSteps, a proper tile parameters can reduce the
synchronization overhead. This causes the parallel algorithm to have reasonable scalability with the
number of threads.

6 Conclusion and Future Work

We have demonstrated an efficient scheme to exploit fine grain parallesim and locality of a dynamic
programming algorithm with non-uniform data dependence on a multi-core architecture. In order to
generalize program optimization technique, we have presented a programming and execution model for
C64-like multi-core architectures. Moreover, this model is an extension conventional out-of-core model,
therefore our proposed algorithm can be adapted to achieve high performance on conventional out-of-
core model. Because experiments have shown that our proposed performance model is reasonable,
we can apply a similar technique to optimize other algorithm on multi-core architecture. In fact, our
solution of the optimal parameter can be incorporated into the development ofautomatic optimization
tools or runtime functions in compilers. Besides, if we ignore thehelper threads, the decomposition
and pipeline technique in the parallel algorithm can be efficiently ported to other conventional parallel
architectures.
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Although the hardware synchronization technique is very efficient on IBM Cyclops64, it is not without
cost. In order to achieve high scalability with parallel agorithms on large scalethreads, it is necessary to
optimize synchronization overhead further. Another chanllenge is to develop a method to analytically
determine the optimal number of helper threads which is used to tolerate memory access on multi-
core architecture. This topic is very important to port more applications to the emerging multi-core
architectures. In our on-going work, we are optimizing a graph theory algorithms bechmark SSCA#2 [5]
on C64 platform. Under the framework of our proposed execution/programming model on multi-core
architecture, the preliminary results show that the optimized algorithms achieve2 − 6 speedups for the
original bechmark. Since SSCA#2 bechmark is memory intensive and its memory access is irregular, the
determination of the optimal helper threads plays a very important role in achieving better performance.
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8 Proof of Corollary 1

Proof: Diagonal traverse, horizontal traverse and vertical traverse can beused to fill the DP matrices,
for simplicity, we only give the proof with diagonal traverse. Because the diagonal in the transformed
domainD′ is unused, it is ignored.
Base case:When diagonald = j−i = 0, m[i, j] = a(i) is the initial value andm′[i′, j′] = m′[i, j+1] =

a(i) also is the initial value, som[i, j] = m′[i′, j′] or m[i, j] = m′[i, j + 1], where(i′, j′) = (i, j + 1)

Induction step: Assumed = j − i < p, m[i, j] = m′[i′, j′] where(i′, j′) = (i, j + 1), it has to be
proven true ford = j − i = p. For(i′, j′) = (i, j + 1) andd > 0, we have

m′[i′, j′] = mini′+1≤k′<j′{m′[i′, j′], m′[i′, k′] + m′[k′, j′]}
= mini+1≤k′<j′{m′[i, j′], m′[i, k′] + m′[k′, j′]}
= mini+1≤k′<j+1{m′[i, j + 1], m′[i, k′] + m′[k′, j + 1]}

and
m[i, j] = mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}

According to the definition of domain transformation function, the initial value ofm′[i, j + 1] equals
to that ofm[i, j]. So we only have to proof thatm′[i, k′] + m′[k′, j + 1] = m[i, k] + m[k + 1, j] for
i + 1 ≤ k′ < j + 1 andi ≤ k < j. In the process of calculating DP formulation,k andk′ is increased
by 1 fromi + 1 andi, respectively, that is to say,k′ = k + 1, so we have

m′[i, k′] + m′[k′, j + 1] = m′[i, k + 1] + m′[k + 1, j + 1]
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Sincek < j ⇒ k − i < j − i < p andi ≤ k ⇒ j − k − 1 < j − i < p, according to the induction
hypothesis, we have

m[i, k] = m′[i, k + 1]

m[k + 1, j] = m′[k + 1, j]

Thus, fori + 1 ≤ k′ < j + 1 and i ≤ k < j, m′[i, k′] + m′[k′, j + 1] = m[i, k] + m[k + 1, j].
Furthermore:

mini≤k<j{m[i, j], m[i, k] + m[k + 1, j]}
= mini+1≤k′<j+1{m′[i, j + 1], m′[i, k′] + m′[k′, j + 1]}

That is, whend = j − i = p, m[i, j] = m′[i′, j′] or m[i, j] = m′[i, j + 1], where(i′, j′) = (i, j + 1).
This finishes the proof for Corollary 1.

9 Proof of Theorem 2

Before we give a proof of theorem 2, we prove the following corollary 2and 3. Note that the following
properties hold:

T1(x) ≥ T2(x) x ≤ β
√

p

α

T1(x) = T2(x) x =
β
√

p

α

T1(x) ≤ T2(x) x ≥ β
√

p

α

Therefore we need to solve the following optimization problem:

P′ : Minimize T0(x) = 8 × min{max{T1(x), T2(x)}}
s.t. x = O(

√
C)

(9)

In our parallel algorithm, there are at least six SRAM buffers with sizes of p tiles, whose data type is
double, and therefore, we get the first constraint condition:

x <

√

C

48p
(10)

Next, noting thatI⊗ > 0, we get the second constraint condition:

x <
n

4
√

p
(11)
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Therefore, by combining equations 4, 9, 10, 11 an instance of the optimization problem is produced as
follows:

P ′ : Minimize T0(x)

= 1
24

{

T1(x) = n3β√
px

+ 9nβ
√

px − 6n2β x ≤ β
√

p

α

T2(x) = 8nαx2 + (nβ
√

p − 6n2α√
p

)x + n3α
p

x ≥ β
√

p

α

s.t. x <
√

C
48p

x < n
4
√

p

(12)

By denotingx∗ as the solution of problemP ′, we have following corollary:

Corollary 2. Given the problem sizen and SRAM sizeC, the optimal tile parameterx∗ for problem
P ′ is:

x∗ =







⌊ n
4
√

p
⌋ − const n ≤

√

C
3

⌊
√

C
48p

⌋ − const n ≥
√

C
3

where const is positive integer which satisfiesx∗ > 0

Proof:If we denote byx∗
1 andx∗

2 as the solutions ofT1(x) andT2(x) respectively, we get:

x∗
1 =

n

3
√

p
x∗

2 =
6nα − pβ

16α
√

p

If we denotex∗
mid =

β
√

p

α
, it partitions the solution space into the two intervals:(0, x∗

mid] and

[x∗
mid,min{

√

C
48p

, n
4
√

p
}). However, it is obviously thatx∗

1 > n
4
√

p
andx∗

2 > n
4
√

p
, that is,x∗

1 and

x∗
2 are out of the valid solution space. In the solution space to the left ofx∗

1 andx∗
2, T1(x) andT2(x) are

descending and they reach a minimum point atmin{
√

C
48p

, n
4
√

p
} − const.

Corollary 3. Given the problem sizen and 2 < p < α
β
min{

√

C
48 , n

4 }, the optimal solution to

problemP is x∗ =
β
√

p

α

Proof:Leta = (8nα+nαp), b = (nβ
√

p− 6n2α√
p

+
n2α(4

√
p+1)

4 ), the global minimum ofT (x) is obtained

at x∗ = −b
2a

. However, the solution space is confined within the interval [β
√

p

α
, min{

√

C
48p

, n
4
√

p
}).

Assume thatx∗ >
β
√

p

α
. we have

n <
4βp(2p + 17)

24α − α
√

p(4
√

p + 1)
(13)

According to equation 13,n > 0 if and only if p ≤ 2. That is, whenp > 2, x∗ <
β
√

p

α
. The property of

quadratic function shows thatT (x) is increasing forx > x∗. So the solution to problemP is β
√

p

α
.

Combining Corollary 2 and 3, we can determine the optimal tile parameterx∗ using following
theorem:
Theorem 2.The optimal tile parameter of parallel tiling pipelined algorithm is selected by therule:

if 2 < p < α
β
min{

√

C
48 , n

4 }, x∗ =
β
√

p

α
;

21



otherwise,

x∗ =







⌊ n
4
√

p
⌋ − const n ≤

√

C
3

⌊
√

C
48p

⌋ − const n ≥
√

C
3
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