
A parallel finite element software package:

design and implementation

F.H. Chishti, M. Razaz

School of Information Systems, University of East

Anglia, Norwich, UK

ABSTRACT

This paper describes the design and implementation of a parallel finite element

software package capable of solving linear boundary value problems on a

network of transputers. Many of the design and development issues are

discussed that had to be considered in the evolution of efficient software for

running on a distributed memory MIMD computer. Typical experimental

results are presented and discussed.

INTRODUCTION

Users of finite element techniques would undoubtedly benefit from increased

computer resources since this would enable the consideration of more complex

problems, finer meshes, larger models and higher order elements and will result

in faster solution times. Parallel processing offers a natural approach to

improving computational power and achieving significantly improved

performance. Therefore there is a strong need to implement finite element

programs to run on multi-processors machines.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

464 Applications of Supercomputers in Engineering

Despite the simplicity of the parallel processing concept, its implementation

is not so straightforward. The exploitation of parallelism within algorithms and

the efficient use of the hardware calls for a much deeper understanding of such

issues in order to derive any benefit.

This paper describes the design and implementation of a parallel finite

element software package capable of solving linear boundary value problems

on a network of transputers. In particular, we consider the general form of the

2-D quasiharmonic equation as given by Equation (1), which is applicable to a

wide range of problems including heat flow, electronic device simulation, fluid

flow, electromagnetics, structural analysis and computational mechanics.

d f au(x,y>
«x(x,y) , -T- Oyfry)-

ay

P(x,y)U(x,y) = f(x,y)

(1)

In heat flow problems, which are of most interest to the authors, U(x,y)

represents the steady-state temperature, â fay) and tty(x,y) the thermal

conductivities, (3(x,y) the thermal convective coefficient and f(x,y) a heat

source. Both Dirichlet and Neumann boundary conditions are considered and

the domain is typically a finite, closed region in the jc,j-plane which may

possibly contain interior holes, as illustrated in Figure 1. Any combination of

2-D linear and quadratic isoparametric elements can be used to discretise the

domain.

Figure 1. General domain for a 2-D boundary value problem.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 465

U(x,y) on each element can be expanded approximately as,

(c)
where n is the number of degrees of freedom in the element, {(^ (x,y)} are the

element shape functions and {aj } are constant coefficients.

Using the expansion given in Equation (2) and applying the weighted

residual Galerkin method [1], [2] to a typical element governed by Equation (1)

we can derive equations of the form;

[Kf (4* = (Ff (3)

where,

(4)

and

T_^ represents the inward normal component of the boundary flux and all the

other symbols have their usual meanings [2].

Next we need to develop expressions for the shape functions (which depend

upon the elements used in the domain discretisation) and to substitute these

terms into the element equations such that we can transform the integrals into a

form appropriate for numerical evaluation.

The resultant system equations, derived from the summation of the

individual element matrices, will have the form

[K] {a} = {F} (6)

where the system stiffness matrix [K] has the properties of being symmetric,

positive definite and banded, and can be factorised using Gaussian elimination.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

466 Applications of Supercomputers in Engineering

DESIGN AND IMPLEMENTATION

Software Structure

The structure of the parallel software has been broken down into independent

modules as shown in Figure 2. This modular structure follows closely the

design of the sequential software from which it was developed [3].

/*** pre-processor ***/

• declarations

• system initialisation

• read in mesh data

• read in physical property data

• read in load data

/+++ Solution **+/

• form the system equations

• apply the boundary conditions

• solve the system equations

/*** Post-processor ***/

• print/plot results

Figure 2. General structure of the parallel program.

The sequential software used in this work is based on algorithms, code and

good programming practices found in Akin [4], Burnett [1], Carey et al [5],

Hinton et al [6] and Zienkiewicz et al [2]. It was observed that the serial FE

approach in Burnett [1] would be a useful method to adopt. A command

reference language similar to that found in Burnett [1] and Zienkiewicz [2] has

been incorporated to make the pre-processing phase more user-friendly. The

I/O is handled by this instruction language [3].

The overall software can be divided into three sections: pre-processor,

solution and post-processor. We have considered the parallel design and

implementation of each of these, concentrating predominantly on the solution

phase as this is generally regarded as being the most computationally expensive

part. Within the solution phase we initially focused on the parallel

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 467

implementation of the system equation solver module. This is again by far the

most compute intensive part, and that without efficient implementation of this

module the parallel implementation of the rest of the program would be

rendered worthless.

The solver module incorporates a direct solution strategy based on Gaussian

elimination. The parallel implementation of this algorithm and the other

solution phase modules are based on the well documented technique of

geometric decomposition [7]. Our decomposition strategy considers the

solution algorithm first.

There are three basic efficient strategies for implementing Gaussian

elimination on a distributed memory MIMD computer, namely block-scattered

decomposition, column-scattered decomposition and row-scattered

decomposition, see for example, [7], [8], [9]. The major difference between

these three approaches is the way in which the system matrices are mapped

onto the processor network. The row-scattered decomposition was chosen for

its parallel efficiency and ease of implementation and is implemented on a ring

processor topology and used as the decomposition strategy for both the solution

and pre-solution stages. A detailed description of the parallel Gaussian

elimination solution strategy is given in [10]. Various methods for

implementing the Gaussian elimination algorithm were tested in order to find

the most efficient implementation. The results of our findings are presented in

[3] and [11].

Assuming the number of rows per processor np -n I P is a natural number

(where P is the total number of processors and n is the number of degrees of

freedom), the decomposition divides up the matrices evenly such that the rows

with indices p + 1 + /P, (0 < / < np - 1 and 0 < p < P - 1), are placed on

processor p. Figure 3 shows how this decomposition is performed across a

three processor network (see [10] for further details).

The classical way to generate and assemble the FE matrix equations is based

upon the element principle, that is, for every element in the mesh we formulate

its stiffness and load vector contributions, and then add these terms into their

relevant positions in the system stiffness matrix and load vector.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

468 Applications of Supercomputers in Engineering

K

row 1

row 2

row 3

row 4

row 5

row 6

row?

row 8

Processor 0

Processor 1

Processor 2

Processor 0

Processor 1

Processor 2

Processor 0

Processor 1

Figure 3. Row-scattered data decomposition across a three processor

network.

We considered the implementation of this element-based method on a

network of transputers and found that although the element stiffness matrix and

load vector can be generated independently for each element, the assembly of

the distributed system of equations according to the row-scattered

decomposition required a large amount of communication between the

processors for assembling the matrix terms into the correct global positions.

The large communication overhead results in the parallel element-based

scheme being highly inefficient. To avoid this we designed a new algorithm

based upon a nodal assembly criterion. The description of which can be found

in [3] and [12]. Although the code necessary to implement the node-based

method is more verbose, it has the advantage that both the generation and

assembly stages can be done independently and thus, no information has to be

communicated between the processors.

The independent nature of each of the solution phase modules has made

their inclusion into the overall software quite straightforward. Furthermore, as

some of the arrays are distributed across the network of processors it is possible

to reduce their size. In particular, we can define the data structures for storing

the system matrices to be half their original size and therefore make large

savings on memory space.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 469

In order to introduce parallelism into parts of the sequential software a

partitioned array is used to refer to any array that has been split up amongst the

processors as part of the geometric decomposition. Whereas in the sequential

software, for example, a DO-loop might range over all the FE nodes, in the

parallel version it might range over a (different) sub-section on each processor.

Extra code was added to the system initialisation module so that each

processor can: establish its unique numerical identifier; discover how many

other processors are working on the problem; calculate which part of the

problem it is to work on; and set up all the variables it will need for subsequent

inter-processor communication necessary for the solution phase.

The mesh, property and load data modules remain unchanged from their

sequential counterparts. Each processor is run in parallel and executes each of

these routines in sequence. For efficient concurrent implementation new

parallel code has been written for each of the solution phase modules. At the

end of a simulation each processor stores its results in a file. A utility program

then takes these files and creates a single results file, which is then used for

post-processing such as plotting, printing and so on.

Each processor runs a copy of the same program but works with a different

section of the problem. Where necessary, different actions are programmed for

different processors by branching on a processor's unique, numerical identifier.

This identifier is allocated to each processor, by the system, according to the

processor's position in the network. At the beginning of each run (i.e. through

the execution of the system initialisation module) a processor discovers this

identifier and the number of other processors used, and hence its own role in

the overall scheme. This information is used by each processor, for example, to

calculate what part of the problem it is to handle.

This new ensemble of code (see Figure 2) outlines the implementation of the

software package for solving linear boundary value problems [13].

Implementation Firmware

The targeted multiprocessor machine is the Meiko Computing Surface, a

high performance transputer-based parallel computer [14]. The Meiko system

consists of 32 T800 transputers (each rated at 10 MIPS and 1.5 MFLOPS),

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

470 Applications of Supercomputers in Engineering

together with a number of older T414 transputers, which perform system

functions [15]. Each T800 has 2 megabytes of memory. The architecture of

the transputer does not readily permit the use of virtual memory so a program

must fit in the available memory on a processor or it cannot be run. The

processor also includes a micro-coded scheduler which allows multiple

processes to be run on the processor by time-slicing between them.

The Meiko system is hosted by a Sun-4 SPARC workstation, and runs under

SunOS4.1 which is a version of the UNIX operating system. The host provides

the main user environment, holds all the Meiko related filestore and manages

the usage of the Meiko processors.

The provision of tools and facilities required specifically for parallel

programming are provided through a program development toolset known as

CSTools (Communicating Sequential Tools) [14]. This allows parallel code to

be written in FORTRAN 77. Parallel programming in CSTools is based on the

Communicating Sequential Processes model [16]. The basis of the model is the

structuring of a single application as a set of ordinary sequential programs,

organised to co-operate on improving the performance of a single overall task.

These programs exchange data and synchronise only by means of message-

passing. To exploit a multi-processor machine, different processes are arranged

to execute simultaneously on different processors.

All inter-processor communications are handled by a set of Meiko specific

libraries within CSTools. The communication routines are designed to provide

a high level model through which the application software can communicate

with the hardware. Different modes of communication are available to the

programmer. In our work we have adopted a non-blocking synchronous

message-passing protocol [17] because, firstly, it enables us to overlap

communication work with calculation work and secondly, Meiko recommend it

as being the most efficient, safest way to pass messages.

The CSTools routines provide point-to-point communications. That is, they

allow any one message to be sent from any given process to another specific,

given process. Operations such as "broadcast this message to a group of other

processes in the network" or "synchronise all processes in the network" or

"swap this data between two processes" are not supported as primitives in

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 471

CSTools. Such high-level operations must be programmed explicitly using the

lower-level routines provided.

In designing our parallel algorithms we needed to take into account the

targeted hardware, as a transputer network forces a specific set of constraints on

the user which are not often applicable to other parallel machines currently in

use. Some of these constraints are:

• relatively slow inter-processor communications;

• four inter-processor links per transputer;

• simultaneous communication and calculation;

• small amount of memory on each processor;

• finite, often small, number of processors.

These characteristics have to be taken into consideration if optimal efficiency is

to be exploited.

The Programming Environment

In order to run the parallel software a configuration file must be created which

specifies what code will run on each processor. For example, assuming the

program is stored in a binary file called feprog, the text shown in Figure 4

would form a valid configuration file.

par

processor 0 for 16 feprog

network is unarytree

closeto 0 15

endpar

Figure 4. Configuration file for a 16 processor ring network.

This configuration file instructs the operating system to select 16 processors

and to connect them in a linear list. The first and the last processors should be

connected and the program feprog should be run on each processor. Assuming

this information was stored in the file 16.par, the software would actually be

run by executing the following command:

mrun 16.par

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

472 Applications of Supercomputers in Engineering

The configuration file is very flexible as it allows the user to define the

number of processors, the processor types, the memory specification and other

network topologies.

Input and Output

Reading data into the program proved to be straightforward since the

underlying parallel software allows multiple processors to open the same file

for reading. However, a problem arose when the software was run on a large

number of processors, because the host operating system places a limit on the

number of files that can be simultaneously open. This necessitated the addition

of some extra code to synchronise the processors when opening files for

reading or writing. We established that it would be more efficient during the

pre-processing stage if every processor were to read in the data file separately.

In this way, although there is some duplication in work in generating initial

data values, we avoid processors from remaining idle and having to pass large

quantities of data between themselves.

At the end of the pre-processing phase [K] and {F} are distributed across the

network of processors in the form required by our parallel Gaussian elimination

solver. During the software verification stage these matrices were tested for

correctness against those derived from the sequential code. This involves each

processor writing its output, in a straightforward fashion, to a different file. A

simple utility program has been written which can rehash these output files to

reproduce [K] and {F} in a single data file.

EXPERIMENTAL RESULTS

In this section we present the performance of various parts of the parallel

software for a steady-state heat conduction test problem. Table 1 shows

execution times, speed-up and efficiency for the generation and assembly of

system equations, the Gaussian elimination, forward reduction, back

substitution and the whole program execution times on different numbers of

processors.

This example considers the problem of uniform heat generation in a unit

square plate. In non-dimensional form the governing differential equation is

represented by

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 473

^ + ̂ + 8 = 0 (7)3x^ 3y^

and the boundary condition on the perimeter of the square is, temperature T =0.

Myers [18] presents the closed form solution and shows that the steady-state

temperature at the centre is 0.5894 for this problem. We can use this value to

check the accuracy of our simulations.

The complete domain is discretised using a uniform 32x32 nodal mesh

consisting of 961 linear quadrilateral elements. It can be observed that we can

also solve over a quarter of this domain as the problem has symmetric

geometry, properties and boundary conditions.

The centre temperature derived using our parallel finite element analysis

software is 0.5888. This result shows that the centre temperature is in excellent

agreement (i.e., to within 3 decimal places) with the exact value stated by

Myers.

It is important to note that the sequential generation and assembly times

reported in Table 1 are for an element based assembly, as this is the fastest

serial method. The parallel timings are for the new node based generation and

assembly technique developed. Although, against a node based serial

implementation our parallel algorithm showed near linear speed-up, when we

compare against the element based routine the efficiency is not so impressive.

It should be noted, however, that the serial element based generation and

assembly algorithm did not translate well on to our transputer network, a

consequence of which was to develop the new node based scheme.

It can be noted that the time taken to execute the whole program is

considerably longer than the time for performing all the other steps defined in

the tables. This is because the total execution time includes the time taken for

I/O during both the pre-processing and post-processing stages (i.e. reading and

writing data to the external memory). These times are highly system dependent

and can therefore vary from run to run. Furthermore, to explain the trend it was

observed that when many processors request disk access a bottle-neck may

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

474 Applications of Supercomputers in Engineering

occur as only a single processor can access the disk at any one time. If there

are many processors requesting access then this can lead to substantial

processor idle time, and hence the program execution time goes up.

No. of Procs Time, T (sec) Speed-up, S Efficiency, E

Generation and Assembly
1
2
4
8
16

3.81
4.63
2.26
1.19
0.60

1.00
0.82
1.69
3.20
6.35

100.00
41.14
42.15
40.02
39.69

Application of 124 Dirichlet Boundary Conditions
1
2
4
8
16

0.35
0.52
0.68
1.18
2.22

1.00
0.67
0.51
0.30
0.16

100.00
33.65
12.87
3.71
0.01

Gaussian Elimination
1
2
4
8
16

96.80
53.18
27.87
17.57
12.35

1.00
1.82
3.47
5.51
7.84

100.00
91.01
86.83
68.87
48.99

Forward Reduction
1
2
4
8
16

1.43
3.18
4.38
4.56
4.60

1.00
0.45
033
0.31
0.31

100.00
22.48
8.16
3.92
1.94

Back Substitution
1
2
4
8
16

1.45
1.39
1.54
1.43
1.41

1.00
1.04
0.94
1.01
1.03

Whole Program execution excluding
1
2
4
8
16

103.84
62.90
36.73
25.93
21.18

1.00
1.65
2.83
4.00
4.90

100.00
52.16
23.54
12.67
643

'A/O
100.00
82.54
70.68
50.01
30.64

Whole Program execution including I/O
1
2
4
8
16

114.39
77.95
53.30
44.40
51.76

1.00
1.47
2.15
2.58
2.21

100.00
73.37
53.65
32.20
13.81

Table 1. Performance of the parallel software for linear steady-state

heat conduction in a square plate.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 475

The results shown in the table are typical of the trends observed in other

examples. Here we summarise our general observations, more detailed

analyses can be found in [3]. We have noticed that parallel implementations

for Gaussian elimination and the generation and assembly phase perform well

on transputer networks, whilst the boundary conditions, forward reduction and

back substitution algorithms do not. The total execution times of these parts of

the software are relatively minor, and therefore do not adversely affect its

performance. However, the time taken for disk I/O can severely affect the

overall performance of the software.

CONCLUSION

We have aimed to show that efficient design and implementation of parallel

finite element software depends on many factors, such as, the properties of the

system equations concerned, the topology of the targeted multi-processor

architecture and the number of processing elements available.

Our parallel software package does offer some advantage for solving linear

boundary value problems on transputer networks.

The Gaussian elimination and generation and assembly algorithms perform

well on transputer networks. These algorithms also happen to form the most

computationally expensive part of the overall software. The implementation of

the forward reduction and back substitution algorithms and boundary

conditions do not perform so well.

Speed-ups for the whole software can be achieved, but this depends on the

size of the problem considered and is marred by the I/O constraints. Much

better overall speed-ups can be achieved if the I/O constraints are removed.

The parallel algorithms implemented provide encouraging results, however,

a comparison between the performance of the sequential and parallel codes

reveals that the present implementation only records modest performance

improvement. For example, on larger processor networks there is an upper

bound on the overall efficiency of our parallel approach to the solution of

medium sized finite element problems. Quite often the limitations to efficiency

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

476 Applications of Supercomputers in Engineering

are imposed by hardware restrictions, such as those caused by access to

external memory and the speed at which messages can be transmitted between

processors.

REFERENCES

1. Burnett, D. S., Finite Element Analysis from Concepts to Applications,

Addison-Wesley Pub. Co., 1987.

2. Zienkiewicz, O. C. and R. L. Taylor, The Finite Element Method Volume

I, McGraw-Hill, 1989.

3. Chishti, F. H., Finite Element based Thermal Analysis: Sequential and

Parallel Methods, PhD thesis, University of East Anglia, England, Spring

1993.

4. Akin, J. E., Application and Implementation of Finite Element Methods,

Academic Press Inc., 1984.

5. Carey, G. F. and J. T. Oden, Finite Elements: Computational Aspects

Volume III, Prentice-Hall, 1984.

6. Hinton, E. and D. R. J. Owen, Finite Element Programming, Academic

Press, London, 1977.

7. Fox G., M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker,

Solving Problems on Concurrent Processors Volume /, Prentice-Hall

International, 1988.

8. Ortega, J. M., Introduction to Parallel and Vector Solution of Linear

Systems, Plenum Press, 1988.

9. Saad, Y. and M. H. Schultz, 'Parallel Direct Methods for Solving Banded

Linear Systems', Linear Algebra and its Appl. 88/89, pp. 623-650, Apr.

1987.

10. Chishti, F. H., A. R. Clare and M. Razaz 'Gaussian Elimination of

Symmetric, Positive Definite, Banded Systems on Transputer Networks,'

in Transputer/Occam Japan 4 (Ed. S. Noguchi and H. Umeo), pp. 73-84,

Proceedings of the 4th Transputer/Occam Int. Conf., Tokyo, Japan, IOS

Press 1992.

11. Chishti, F. H., A. R. Clare and M. Razaz 'Parallel Solution of Symmetric

Banded Systems on Transputers', Vol. 3, pp. 1949-1952, Proceedings of

the 26th IEEE International Symposium on Circuits and Systems

(ISCAS'93), Chicago, USA, 1993, IEEE, 1993.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Applications of Supercomputers in Engineering 477

12. Chishti, F. H., A. R. Clare and M. Razaz Transputer Implementation of

Parallel Generation and Assembly for Finite Element Systems,' submitted

to World Transputer Congress '93 (WTC'93), Sept. 1993, Aachen,

Germany.

13. Chishti, F. H. and M. Razaz, 'Parallel Solution of FE-based Heat

Conduction Problems on Transputer Networks,' accepted Proc. 8th Int.

Conf. Numerical Methods for Thermal Problems, July 1993, Swansea,

UK.

14. Meiko Scientific Ltd., Meiko Hardware Reference Guide, Meiko

Scientific Ltd., Bristol, 1992.

15. Inmos Ltd., Transputer Reference Manual, Prentice-Hall, 1988.

16. Hoare, C. A. R., 'Communicating Sequential Processes', Comm. ACM,

21/8 pp. 65-93, 1978.

17. Clare, A. R., Introductory User Guide for the Meiko Computing Surface at

UEA, Computing Centre, University of East Anglia, 1991.

18. Myers G. E., Analytical Methods in Conduction Heat Transfer, Genium

Pub., Schenectady, New York, 1971.

 Transactions on Information and Communications Technologies vol 3, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

