A parallel FPGA design of the Smith-Waterman
traceback

Zubair Nawaz#*', Muhammad Nadeer¥?, Hans van Somereri, Koen Bertels#**

# Computer Engineering Lab, Delft University of Technology

The Netherlands

1z. nawaz@ udel ft . nl

2m nadeem@ udel f t. nl

“kK.l.mbertel s@udel ft.nl
* ACE Associated Compiler Experts bv

The Netherlands
Shvs@ce. nl

Abstract—The Smith-Waterman (SW) algorithm is the only a traceback was performed. They only used the edit distance
optimal local sequence alignment algorithm. There are many formula, which is a special case of Smith-Waterman algorith
SW implementations on FPGA, which show speedups of Up 10 This method requires substantial memory bandwidth which is

100x as compared to a general-purpose-processor (GPP). lhis . . . . .
paper, we propose a design of the SW traceback, which is done not available, as will be shown in Section IIl. Yamaguchi et

in parallel with the matrix fill stage and which gives the optimal  al. [5] and Moritz et al. [6] implemented SW on a linear
alignment after once scanning through the whole database.€ide systolic array. They both applied compression and saved
that, we have proposed the hardware design for the RVEP SW direction vectors o bits for each element instead b bits.
Eep?é Ilir;é)éevrci?r?tgftflgﬂ’e\-l\é?g? ggg%”itéztrzss.that this solutie can - 1¢ compression reduced the memory bandwidth requirement,
However, still it was too high to be implemented using off-
the-shelf FPGA boards and became the bottleneck as dedcribe
later in Section Il
QUENCE alignment is one of the most widely used op- Most of the implementations follow the second method, in
erations in computational biology. The Smith-Watermawhich FPGAs are only used to find the maximum value after
(Sw) algorithm [1] is the only optimal algorithm to find thefilling the matrix [7], [8], [9], [10], [11].
local sequence alignment. Our implementation is more close to the first method. Our
There are two stages in the Smith-Waterman (SW) algorithgoal was to avoid the memory bandwidth problem such that
namely matrix fill and traceback. First, we fill the matrix Wit off the shelf FPGAs can be used.
the optimal score found, then we find the maximum of the In this paper, we propose a parallel FPGA design of the
optimal score [2]. Finally we perform the traceback staytinSW traceback, which gives the alignment immediately after
from the maximum value. This procedure is performed for atiompleting the matrix fill for all the sequences in the dasgba
the sequences in the database. Since the matrix fill stage takhis way, we can avoid the second matrix fill stage for the
98.6% of the overall time [3], all FPGA implementations useshortlisted sequences at the expense of more area consampti
FPGAs for accelerating the matrix fill stage. It can be easily implemented on off-the-shelf FPGA boards
There are two methods to perform the sequence alignmestit uses the bandwidth within limits of the current FPGA
on a reconfigurable system. In the first method, the optimadards. The main benefits of the proposed technique are as
value matrix is filled on an FPGA and then the matrix datillows:
is sent to the GPP, where the traceback is performed. Thisl) The proposed solution gives the alignment after scan-
method creates a memory bottleneck in any off-the-shelf ning the database once. We show that the bandwidth
FPGA. In the second method, a sequence is shortlisted by requirements is within the limits of current day FPGAs.
finding the maximum value after performing the matrix fill 2) The whole solution can be easily implemented as a pure
stage for the whole database. Later, that maximum value and FPGA based implementation without needing a GPP.
the index of the corresponding sequence is transferredeto th3) Our solution is generic and can be used to design
GPP. The matrix fill stage for the shortlisted sequences is hardware for any dataflow systolic array implementation.
repeated on the GPP and the traceback is performed to lgethis paper, we propose a hardware design for an RVEP SW
the optimal alignment. [2] implementation, which has a higher bandwidth requiretne
Several people have worked on approaches using the fitsin the classical dataflow implementation for the same size
method. Hoang and Lopresti [4] gave a linear systolic arraf matrix. Nevertheless, this design can be easily adapted
implementation on a SPLASH reconfigurable logic array, ito address the bandwidth issue for a dataflow systolic array
which the data of the matrix fill was stored in memory and theamplementation.

I. INTRODUCTION



The rest of the paper is organized as follows. In the
next section, we describe the background to understand the
SW problem, the classical dataflow implementation and the
way RVEP is applied. Section Ill describes the resulting
memory bottleneck problem. Section IV gives the overview
of the proposed solution. Our hardware design for avoiding
the memory bottleneck in RVEP SW is proposed in Section
V. Section VI describes the memory bandwidth requiremefigure 1. Matrix for an example of the SW algorithm, wher= —2 and
for our solution and compares it with the normal bandwid s(gVJV'%E ;ﬁd""he” S[I=TO] otherwise—1. Elements in the traceback are
requirement. Finally, the paper is concluded in Section VII '

vlo|lo|o|olo|lole

ofln|o|o|eo[N|o]+

mlolo|nm|nlo]eo]o

vlolr|le|[N]|o]e|o

w|la|s|o|lo|lofo|>
rlowfnvnv]olo]lO

[cR BN NN Kol ]

olo|o|o|le|e]|e
olo|m|N[v]|o]e|o
NN LIRS

II. BACKGROUND
A. The Smith-Waterman algorithm

Let S[1..m] and T'[1..n] be two sequences of length
and n for sequence alignment. Thaptimal alignment score
F(i,j) for two sub-sequence$[1..i] andT[1..j] is given by
the following recurrence equation.

F(Z j) — max F(@ -1Lj-1)+ x(%]) (1) _FigL_Jre 2. Data dependence gr_aph for Equation 1 ((_:iiffereadem of gray
’ F(z —1,))+yg in circles show the elements which can be executed in phralle
0

where F(0,0) = F(0,5) = F(i,0) =0, for1 < i < m executed first, due to the data dependences. However, if we
and1 < j < n. Thex(i, ;) is the score for match/mismatch,traverse the elements in a wavefront manner starting fr@m th

depending upon whethéi{i] = T'[j] or S[i] # T[j]. g is some top-left corner as shown in Figure 2, all the elements in the
constant pena|ty for inserting a gap in any sequence. diagonal can be executed in paraHEL This paraIIeI exeouti

The two sequences to be aligned are placed along igecalleddataflowimplementation, as all the computations are
row and column of the matrix. The matrix is filled row-wisedone when their data is available.
starting from_the top-left corner. After the matrix is filled C. Smith-Waterman RVEP implementation
a traceback is performed starting from the maximum value
in the matrix, like6 from Figure 1. The traceback traverses ; e .
to one of the three elements from which its alignment scofidt@flow manner instead of anti-diagonals of elements in
is computed. This process is repeated till the score droggssmal dataf!ow. This is shown in Flgure_S, which shows the
below a certain threshold or to zero. In the traceback phaé@ﬂ“?”ce of fill for the blocks with blocking factaB- = 2.
if the corresponding row and column element match then tﬂ—@e size of the block i% = B x B. Eaph block .con'galns four
alignment is computed from the top-left element otherwige i €/éments O1, 02, O3 and O4. In Figure 3, first it computes
computed from any of the three elements depending on whizh €léments in the block with cyclé, then it computes all
of them produces a maximum. When an element is compuf@§Ments in the anti-diagonal of blocks with cydeand so
from the top element then there is a gap in the sequence al§fly ThiS structure suggests us to use a linear systolic array
the row and similarly when an element is computed from tHa do_the computation, whgre a same t_’IOCk circuit is used
left element then there is a gap in the sequence along ﬁyé,.tollcally fo_r the computation of blocks in the same catum
column. The local optimal alignment for the example in Fegur2S the anti-diagonal of blocks progresses.
1 is as follows.

TCGCA Block 1  Block 2 Block 3  Block 4

H‘H 000000000/
TC-CA 04|02|04|02|04 02

The next two sections briefly describe the two parallel
implementations of SW on the FPGAs.

RVEP [12] is like computing anti-diagonals of blocks in

B. Classical dataflow implementation

o/lo|o|o|o|o|o|o

To parallelize the matrix fill in the SW algorithm we need
to look at its data dependence graph as shown in Figure 2.
Blank circles are the elements after the initializationhwthe Figure 3. Sequence of fill foB = 2. Blocks at the top show the hardware

boundary conditions. Any iteratio(¥, j) cannot be executed o be used in each column. Number in red represent the bloett asd the
until iterations (z — 1,]‘)' (z - 1,5 — 1) and (ivj — 1) are number in blue represent the cycle in which it is used.




Table |

G|T|C|G|C|A|A]|C

BANDWIDTH REQUIREMENT FOR DIFFERENT IMPLEMENTATIONS ol0lo]o]o]o]o]o]o

T|o|o|2]|0o]o]|o]|o]|oO]|oO

Implementations| p dw Freq. Time | Bandwidth | clofofo]|2]{1]2|o]0]2

bits MHz. sec Gbh/sec clofojof3]|2[2]|1|o0]2

Zhang07 [10] | 384 | 20 | 66.7 | 1.56 x 10— % 49.36 Aloololo|a|s|2]1]1

Oliver05 [13] 252 16 55 1.86 x 10~4 27 T|lo|lo|l2|ofofof3|2]1

Jiang07 [8] 80 20 82 1.23 x 10~ % 13.04 Glof2|o]|2|2|0|3]|a]2
Nawaz10 [2] 40 | 16 | 79.3 | 6.33x10°° 12.6

Figure 4. Direction matrix for example in Figure 1

I1l. M EMORY BOTTLENECK

In this section, we describe the memory bandwidth bof? the context of the RVEP for Smith Waterman, it can
tieneck that arises when we use the first method. Here, W& €asily modified to be useful for any classical dataflow
assume to store only the direction vector, which i€ dfits as MPlementation. In this section, we are usifig= 2, p = 40,
in [5], [6]. A double buffering technique can be used, in whic” = 10000, n = 1000 andd,, = 16, whereB is the blocking
one can keep two copies of the direction matrix in which orf@CtOT » represents the maximum number of PEs that can be
stores the data alternatingly. When the FPGA is computi@gcéommodated on the FPGA,andm are the lengths of the
the next sequence alighment and storing that result in opfedUences and, is the data width of the optimal values in
buffer, the other buffer can be transferring its contenthe ¢ bits. . o )
shared memory for later traceback use by the GPP. The time t®Urng the matrix fill, the elements in a block can be
transfer the direction matrix from memory should not be mof@mMputed only from the adjacent elements in the preceding
than the matrix fill time for the next pair of sequences, sa th10¢K [2]. As depicted in Figure 3, all the elements in the
the memory bandwidth does not become the bottleneck. anti-diagonal of blocks in cyclé can be computed using the

In order to better quantify the memory bottleneck problenfdiacent elements from the preceding anti-diagonal ofksloc
we discuss the memory requirements for different implemen@S Shown by the pattern filled elements. Hence to compute the
tions. In Table I, we present the numbers for four different S OPtimal score for the current anti-diagonal of blocks, wéyon
implementations. The first three are dataflow implememtatioN€€d to store the optimal score data for the adjacent element
and the last is the RVEP implementatign.represents the from the preceding anti-diagonal in the BRAM using a FIFO
maximum number of PEs that can be accommodated on fdfer. We thus avoid needing to store the entire matrix of
FPGA available in the respective implementation. We tai@ptimal values. The size of memory required to store this is
m = 10000, which is a higher end value for a sequencd, X 2B X duw =20 x 2 x 2 x 16 = 1280 bits.
as only 13 out of 468851 protein sequences are longer than Instead of the optimal value matrix, we only store the
10000 symbols in the UniProt database af@l.5% of the direction matrix which contains direction vectors to counst
sequences are less than 1000 symbols [14]. The storage i Sequence alignment. There are oflydirections from
of an element in the optimal value matrix is defineddas Which an element can be computed. So similar to [5], [6],
The frequency used for computing each element in case ofRly 2 bits are needed to indicate the direction it is computed
dataflow implementation and for computing a block in case §©0m. As described earlier in Section II-A, the traceback is
the RVEP implementation is given under Frequency. TimeSfopped beyond a threshold value. We give the directiorevalu
is the time needed to fill the whole matrix for one sequenéen the direction matrix for the corresponding thresholdueal
alignment by the respective implementations. Bandwidth | i an optimal value matrix. Similarly we fill al,2 or 3
Table 1 is computed for the transfer of the direction matri¥@lue in the current element of the direction matrix, if the

and is computed by the following formula: current element is computed from the left, top left or top
element respectively. The maximum valu@ the matrix from
. 2 i i -
Bandwidth 1= _Pm @) Figure 1 is -computed frqm the tc_)p Ieft eIeme_nt, therefoee th
Time | corresponding element in the direction matrix containas

When combining all these data, we obtain a bandwidghown in Figure 4. The required storage space is determined
requirement of up tet9.36 Gb/sec which is more than whatby two factors: the first is the row to keep the optimal values
is available on even the largest FPGAs. The Xilinx-6 FPGAiven by p x 2B x d,, and second to keep the direction
Connectivity Development Kit enables advanced connegtivimatrix which is2nm. So the total space required in BRAM
designs with PCI Express 1.1/2.0, Ethernet, SATA and othiérp x 2B x d., + 2nm = 1280+ 2 x 107 bits, which is less
proprietary high-speed serial protocols with line ratestop than d,,(nm) = 16 x 107 bits which are required without

6.5 Gb/sec [15]. compression. Now there are FPGAs available witk 107
bits BRAM [16].
IV.  COMPRESSION AND BACKTRACKING Since the bandwidth requirement is still high after compres

In order to solve the bottleneck as quantified above, veon, we propose to move the traceback stage to the FPGA,
propose to perform back tracking in addition to the conwhich further reduces the required bandwidth. It means the
pression. Even though this twofold solution is presente@ hecomplete solution is now on the FPGA only, which is easier



Block1 Block2  Block 3
Max to
next 0|0j0|0O|0O0|O|O
block
0
(111 [ oloy | (210
0
0
Block | |- 2312 413)
A 0
23 a1y | galoy | reloy
0
0
(al9y | (c oy | raloy
o) (o) T (919)
Max from 0
Previous
block . .
4 (a) Computation block. A number in red

represent the block used and the number

Figure 5. Block Max in blue represents the cycle in which it is

used.

T - Time 1 Block 1 Block 2 Block3 | column
to maintain in one place. So, the traceback is performed on | (cycles) max
the FPGA and alignment results are sent to the main memory, 1 |cuw
which are far less than the whole matrix. We perform another

. . . ) 2 Co1|[Mia| T11]Cop

task, which starts the traceback from the direction value in P VI T PO PV N
the direction matrix corresponding to the maximum value in 3 St 21) e p2) 22| el
the optimal value matrix in BRAM and transfer only direction 4 |Caa{Msa| Taa] Caz[Msz| Taz[ CasfMss| Tas
vectors which come across the traceback path. The length of 5 Mat| Taz|Cs2|Mao| Tao| Css| Mas| Tas
the traceback path i©(maxz(m,n)), which is the worst case 6 Vo oo | Con| Moa| Tos
and usually the length of the traceback is far less than this. S T s

y g 7 m%‘ my

8 [,
V. DESIGNOVERVIEW o

; ; ; ; (b) Computation sequence for the computation block in Fgur
In this section, we present the design overview for the 6a, C stands for Computing the optimal value, M for finding the

proposed technique to reduce the memory bottleneck problem  paximum of the optimal value in a block and T for generating

in case of RVEP implementation of SW with = 2, when the direction vectors for elements in the block. Red arrows

traceback stage is done in parallel with the matrix fill stage ~ Show the computation of maximum blocks and direction vector
. . . . . . for the corresponding computation block. Blue arrows shiogv t

This design will be on top of the circuit for optimal value computation of maximum of block columns.

computation. The proposed design is composed of computing

the maximum in the optimal value matrix, generating the cor-

responding direction matrix, storing direction values RAV

and finally doing the traceback on the direction vectorgis@r js computed. The resource and time used for computing the

from the maximum optimal value. This implementation can bgptimal value and then the maximum for the matrix shown

easily modified for RVEP with higher blocking factors. Then Figure 6a is given in Figure 6b. It shows that first the

details are as following: optimal value for block(1,1) i.e. C; 1 is computed. In the

next cycle,Cs ; is computed systolically and the maximum of

block (1,1), i.e. My, is computed. The maximum of block
We need to find the maximum value in the optimal valugolumn1 is computed in cyclé and similarly the maximum

matrix. We do it by first finding the maximum of the blockof block column2 is computed in cycles. The maximum

and then finding the maximum among all the blocks in a bloal block column1 and2 is computed in cycle 7 by using a

column and then finding the maximum value among all thgingle comparator as given by; ». At the same cycle 7, the

block columns to find the maximum of the matrix. maximum of the column 3 is computed and then the same
As mentioned earlier, we compute the optimal values itomparator that is used to computg » in cycle 7 is used

a systolic array. After the optimal values are computed fes compute the maximum of block and all block columns

a block, we compute the maximum of the optimal values 3, we call itmy_s in cycle8. This way the maximum of all

from the previous and current blocks in the same blogdements of the optimal value matrix is computed.

column by using the circuit in Figure 5. In the meanwhile, the ) o )

optimal values for the next block in the same block columB- Generating the direction matrix

are computed systolically by the computation block. This The direction vectors for a direction matrix block are

continues till the optimal values for the column block andomputed after the computation of the optimal value block.

later in the next cycle the maximum of the whole columin Figure 6b, the direction vectoff ; for any block(s, j) are

Figure 6. Computation block and the sequence to compute it

A. Computing max in the optimal value matrix



if (F[i,j]=0) GetTrape(i,j,trace){

out put =0 k =j mdb )
. S e if (( (i<r) and ((j>2) and
else if (F[i,j]=F[i,]j-1]+a) L( (j>=i*4) and (j<i*4+3) ) ) )
out put =1 or ((i>=r) and ((j>2) and !( (j>=r+4-4)
elseif (F[i,j]l=F[i-1,j]+a) and (j<r+4-1) ) ) ) and (m0) {
output:S I = Getl(k,m(i,j)) // Get | fromFigure 11
el se J = GetJI(k,m(i,j)) /] Get J fromFigure 11

trace = trace + m(i,j) // + is concatenation

out put =2 Get Trace(l, J, trace)
} else { o
Figure 7. Code to generate the direction vector for an elértien) }t race = trace + n(i,j)
j= o 1 2 3 tb-1 !
oslosloz2] o1 o1 Figure 10. Pseudo-code for traceback
Figure 8. Elements stored in BRAM m(i.)
1 2 3
- I=i-1 | =2 | 1=
computed in the next cycle t0; ;. Similar to computing op- - J=j-2+d| J=j-1+e| J=j+1+
timal values and computing a maximum for a block, direction I=i-1 | =il I=i
vectors of a block are also computed_ sys_tolically. k=1 J=j-2+d| J=j-3+d|  J=j1
The pseudo-code to generate a direction value for an ele- =i =il =il
i in Fi k=2
ment is shown in Figure 7. I 2+d| Jmried Jepeir
C. Storing direction vectors in BRAM k=3 I=i I=i I=i
After the direction vectors for a block have been generated, Jzj2+d| I8 | Il

they are stored in BRAM as intermediate result. In this secti
we are considering =8, B=2,b=4andr = 3 =4asan
example. We choose BRAM widtk 2rb = 32 bits to store Figure 11. BRAM Address translation
rb = 16 elements. The way elements are stored is shown in
Figure 8. This whole BRAM width is filled in one cycle using
one write port. The data is always filled starting from There are three regions classified by the direction vectors
between the blocks as shown in Figure 9. The traceback is
possible to three neighboring blocks and its direction mext
The traceback is started from the point in the directioare different in different regions. The direction vectonscamg
matrix corresponding to the maximum value of the optimahe neighboring blocks remain the same in each region and
value matrix. The data is stored in a different coordinatéence the traceback formula too. The traceback code, which
system (rotated at5 degree to horizontal) as compared teiso takes care of each of these regions is given in Figure 10.
what was earlier suggested by the formula in Equation 1 amée first call to the traceback code is GetTracefi,jwheres
secondly eacte-dimensional block is linearized as showrs the empty string andi, 5) is the position of the maximum
in Figure 8. We need to translate the traceback formulalue in the optimal value matrix. The trace variable in Fegu
accordingly. 10 will finally give the traceback path from which alignment
can be easily computed. The traceback code has already a
linear time complexity and takes less time than the timeriake

where d=0,e=0 if i<r; d=b, e=b if i=r and d=b, e=2b if i>r

D. Traceback

S ) D) ) N for matrix fill by dataflow or RVEP. The address translation is
ARV RV \b:" ™ | summarized in Figure 11. The(i, j) refers to the direction
PGS \90\?\2 - 9 value at the(i, j) position in the BRAM.
Ny NN )
of 9 U &R #‘Qﬂ) <oq> bq) VI. EXPERIMENTAL VALIDATION
"7 = S ~ ~
\\u JLO\ @‘i \ X\JLH | In order to assess the impact of our compression scheme and
rvb %%T' ) ~ ! traceback, we explore two extreme cases of memory transfer.
U & e N SELRAN . ) C
4 el \HDCCH The memory bandwidth required for these two cases is given
S\ &c‘s": in Table Il, which is a extension of Table I. The first case,
o \)9\ S\ N S) A N considered as the worst case is as follows. We keep two
\ \eh \eh OF & direction matrices for double buffering to do the sequence

alignment continuously. When one matrix is being filled, the
Figure 9. Classification of BRAM according to the directiogctors among other can b_e used to transfer the traceback result .Of t.he
the neighboring blocks, Region 4: < r; Region II:i = r and Region IIl. Sequence alignment done recently. We generate the dinectio
i>r, herer =4 matrix for every alignment one after the other; however, we d



Table Il
COMPARISON OF BANDWIDTH REQUIREMENT FOR DIFFERENT IMPLEMERATIONS

Implementations| p. dw Freq. Time | Time Il | Bandwidth | | Bandwidth Il | Bandwidth Il
bits | MHz. sec sec Gb/sec Mb/sec Kb/sec
Zhang07 [10] | 384 | 20 | 66.7 | 1.56 x 10— % 2.48 49.36 128.8 8
Oliver05 [13] 252 | 16 55 1.86 x 10~4 3.02 27 107.2 6.64
Jiang07 [8] 80 20 82 1.23 x 10~ % 2.02 16.3 162.4 9.92
Nawaz10 [2] 40 | 16 | 79.3 | 6.33x 1075 1.13 12.6 316 17.6

not transfer the traceback direction vector for every atignt. Our solution addresses this issue, and we have proposed a
We find the maximum optimal score for each sequence in thardware design for a SW RVEP implementation that can be
database and send its traceback direction vector only wheasily extended to any other dataflow systolic array imple-
the current maximum optimal score is greater than the globrakntation. The proposed solution can be easily implemented
maximum. on current off-the-shelf FPGA boards. In the future, we will
In the worst case, we need to transfer the traceback vémplement our memory bandwidth reduction solution, and
tor for every comparison when every next sequence in thgegrate it with the matrix fill solution for both dataflow @n
database has a higher maximum optimal value than the currBMEP implementations to find the hardware overhead of our
sequence. In that case, we need to séxd x maxz(m,n)) proposed scheme.
bits for some unit time (which is equal to the time to fill the
matrix, Time | in Table I1) instead 0 (2nm) bits, which is
linear as compared to quadratic in normal case. The chaficesl8 T- Smith and M. Waterman, “Identification of common malér
this worst case are close to impossible. We have also comtputg, S-bscduences). Mol Biol, vol. 147, pp, 195-197, 1981.
- : p : . p . E] Z. Nawaz, H. Sumbul, and K. Bertels, “Fast smith-watennteardware
the bandwidth requirement for our proposed technique k&epi  implementation,” inRAW 2010 April 2010.
in mind the worst case referred as Bandwidth Il in Table I1[3] O St(’faasé'_i and E]f- ﬁtfe”Skivﬁ‘EXPe”‘inces Onf_54 ""?,? pgaSyst;r%s,"
. . ; i ; in Proceedings of the Fourth Annual Reconfigurable Systemsn8&um
Her_e, the maximum bandwidth &6 Mb/sec which is easily Institute (RSSI'08)2008.
achievable in normal FPGA boards. [4] D. T. Hoang and D. P. Lopresti, “Fpga implementation oftsjic
The best case |S descnbed as fo”ows We f|nd the max|mum sequence alignment,” iimternational WOI'kShOp on Field Programmable
ti lval in th i val trix f Il th Logic and Applications1992.
_Op Imal value in the optimal value m_a nxor a € SequEmC 5] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagay#&ligh
in the database and send that maximum optimal value and itS speed homology search using run-time reconfiguration,FRL '02,

REFERENCES

corresponding traceback direction vector to main memary. | (London, UK), pp. 281-291, Springer-Verlag, 2002. ,
thi nario. the traceback path and maximum is sent on[% G. L. Moritz, C. Jory, H. S. Lopes, and C. R. E. Lima, “Implentation
S scenario, p of a parallel algorithm for protein pairwise alignment wgireconfig-

after the whole scanning of the database, whichlG8851 urable computing,” pp. 1 -7, sep. 2006.

protein sequences in case of UniProt [14]_ The time it takelg] P.- Faeset al, “Scalable hardware accelerator for comparing dna and
. . . tei /" imfoScale '06 (New York, NY, USA), p. 33, ACM,
to scan the whole database is given under the header Time II. %%gfn sequences,” infoScale ‘06 (New Yor )P

The memory bandwidth requirement for this implementations] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfigbla ac-
using Time Il is shown as Bandwidth Il in Il. The maximum celerator for smith-waterman algorithmiEEE Transactions on Circuits

. . . and Systems |ivol. 54, pp. 1077-1081, 2007.
bandwidth under headmg Bandwidth 11l i5.6 Kb/sec. [9] O. O. Storaasli and D. Strenski, “Exploring accelergtiscience appli-

The implementation strategy can be changed easily, if there cations with fpgas,” irRSSI'07 2007.
is a requirement for computing sonkebest alignments from [10] P. Zhang, G. Tan, and G. R. Gao, “Implementation of theitsm

. . . waterman algorithm on a reconfigurable supercomputingapfat”’ in
the database. The bandwidth for any such strategy will fall i preTA 07 2007.

between Bandwidth Il and Bandwidth III. [11] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameteéd and effi-
Our solution is better than the traditionally used solution \C/iem If_pga‘bgse? S:‘e'eton.for R";Ii_rgli)szbio'ogica:Eség"?“@”me”t'"
. . . . ery Large oscale ntegratlon ystems, ransaston
[13], [7], [9] in the sense that it gives the best allgnme_nt vol. 17, pp. 561 570, apr. 2009.
between the unknown sequence and the known sequence intkiez. Nawaz, T. P. Stefanov, and K. Bertels, “Efficient haade generation
database after once scanning through the database and the glor dynamic programming problems,” #£FPT'09, December 2009.
. d h l t f ﬁei T. Oliver, B. Schmidt, and D. Maskell, “Reconfigurablechitectures
IS no need to repeat the Sequence_a |g_nmen or some sm for bio-sequence database scanning on fpgHEEE Transactions on
subset. Secondly, the whole solution is based on FPGA, so Circuits and Systems II: Express Brigi®l. 52, no. 12, pp. 851-855,

there is no need to maintain the solution at two differentgda Dec. 2005. . . . . :
. . . [14] E. J. Houtgast, “Scalability of bioinformatics apgli®ns for multicore
which is easier. architectures,” Master’s thesis, T U Delft, 2009.
[15] “New xilinx virtex-6 and spartan-6 fpga connectivitewvklopment Kkits.
VIlI. CONCLUSION online: www.xilinx.com/products/devkits/EK-V6-ML60&-htm.”

. _516] “Stratix v fpga family overview. online: http://wwwitgra.com/products/
In this paper, we have. proposed a parallel_ FPGA design’ devices/stratix-fpgas/stratix-v/overview/stxv-ovew.html."
of the SW traceback, which constructs the optimal alignment

between the unknown sequence and its genetically closest
known sequence from the database. We have seen how a naive
approach to parallel design can lead to bandwidth problems.



