
A parallel FPGA design of the Smith-Waterman
traceback

Zubair Nawaz#1, Muhammad Nadeem#2, Hans van Someren∗3, Koen Bertels#4

Computer Engineering Lab, Delft University of Technology
The Netherlands

1 z.nawaz@tudelft.nl
2 m.nadeem@tudelft.nl

4 k.l.m.bertels@tudelft.nl
∗ ACE Associated Compiler Experts bv

The Netherlands
3 hvs@ace.nl

Abstract—The Smith-Waterman (SW) algorithm is the only
optimal local sequence alignment algorithm. There are many
SW implementations on FPGA, which show speedups of up to
100x as compared to a general-purpose-processor (GPP). In this
paper, we propose a design of the SW traceback, which is done
in parallel with the matrix fill stage and which gives the optimal
alignment after once scanning through the whole database. Beside
that, we have proposed the hardware design for the RVEP SW
FPGA implementation, which demonstrates that this solution can
be realized with off-the-shelf FPGA boards.

I. I NTRODUCTION

SEQUENCE alignment is one of the most widely used op-
erations in computational biology. The Smith-Waterman

(SW) algorithm [1] is the only optimal algorithm to find the
local sequence alignment.

There are two stages in the Smith-Waterman (SW) algorithm
namely matrix fill and traceback. First, we fill the matrix with
the optimal score found, then we find the maximum of the
optimal score [2]. Finally we perform the traceback starting
from the maximum value. This procedure is performed for all
the sequences in the database. Since the matrix fill stage takes
98.6% of the overall time [3], all FPGA implementations use
FPGAs for accelerating the matrix fill stage.

There are two methods to perform the sequence alignment
on a reconfigurable system. In the first method, the optimal
value matrix is filled on an FPGA and then the matrix data
is sent to the GPP, where the traceback is performed. This
method creates a memory bottleneck in any off-the-shelf
FPGA. In the second method, a sequence is shortlisted by
finding the maximum value after performing the matrix fill
stage for the whole database. Later, that maximum value and
the index of the corresponding sequence is transferred to the
GPP. The matrix fill stage for the shortlisted sequences is
repeated on the GPP and the traceback is performed to get
the optimal alignment.

Several people have worked on approaches using the first
method. Hoang and Lopresti [4] gave a linear systolic array
implementation on a SPLASH reconfigurable logic array, in
which the data of the matrix fill was stored in memory and then

a traceback was performed. They only used the edit distance
formula, which is a special case of Smith-Waterman algorithm.
This method requires substantial memory bandwidth which is
not available, as will be shown in Section III. Yamaguchi et
al. [5] and Moritz et al. [6] implemented SW on a linear
systolic array. They both applied compression and saved
direction vectors of2 bits for each element instead of16 bits.
The compression reduced the memory bandwidth requirement,
However, still it was too high to be implemented using off-
the-shelf FPGA boards and became the bottleneck as described
later in Section III.

Most of the implementations follow the second method, in
which FPGAs are only used to find the maximum value after
filling the matrix [7], [8], [9], [10], [11].

Our implementation is more close to the first method. Our
goal was to avoid the memory bandwidth problem such that
off the shelf FPGAs can be used.

In this paper, we propose a parallel FPGA design of the
SW traceback, which gives the alignment immediately after
completing the matrix fill for all the sequences in the database.
This way, we can avoid the second matrix fill stage for the
shortlisted sequences at the expense of more area consumption.
It can be easily implemented on off-the-shelf FPGA boards
as it uses the bandwidth within limits of the current FPGA
boards. The main benefits of the proposed technique are as
follows:

1) The proposed solution gives the alignment after scan-
ning the database once. We show that the bandwidth
requirements is within the limits of current day FPGAs.

2) The whole solution can be easily implemented as a pure
FPGA based implementation without needing a GPP.

3) Our solution is generic and can be used to design
hardware for any dataflow systolic array implementation.

In this paper, we propose a hardware design for an RVEP SW
[2] implementation, which has a higher bandwidth requirement
than the classical dataflow implementation for the same size
of matrix. Nevertheless, this design can be easily adapted
to address the bandwidth issue for a dataflow systolic array
implementation.

The rest of the paper is organized as follows. In the
next section, we describe the background to understand the
SW problem, the classical dataflow implementation and the
way RVEP is applied. Section III describes the resulting
memory bottleneck problem. Section IV gives the overview
of the proposed solution. Our hardware design for avoiding
the memory bottleneck in RVEP SW is proposed in Section
V. Section VI describes the memory bandwidth requirement
for our solution and compares it with the normal bandwidth
requirement. Finally, the paper is concluded in Section VII.

II. BACKGROUND

A. The Smith-Waterman algorithm

Let S[1..m] and T [1..n] be two sequences of lengthm
and n for sequence alignment. Theoptimal alignment score
F (i, j) for two sub-sequencesS[1..i] andT [1..j] is given by
the following recurrence equation.

F (i, j) = max



















F (i, j − 1) + g

F (i − 1, j − 1) + x(i, j)

F (i − 1, j) + g

0

(1)

whereF (0, 0) = F (0, j) = F (i, 0) = 0 , for 1 ≤ i ≤ m

and1 ≤ j ≤ n. Thex(i, j) is the score for match/mismatch,
depending upon whetherS[i] = T [j] or S[i] 6= T [j]. g is some
constant penalty for inserting a gap in any sequence.

The two sequences to be aligned are placed along the
row and column of the matrix. The matrix is filled row-wise
starting from the top-left corner. After the matrix is filled,
a traceback is performed starting from the maximum value
in the matrix, like6 from Figure 1. The traceback traverses
to one of the three elements from which its alignment score
is computed. This process is repeated till the score drops
below a certain threshold or to zero. In the traceback phase,
if the corresponding row and column element match then the
alignment is computed from the top-left element otherwise it is
computed from any of the three elements depending on which
of them produces a maximum. When an element is computed
from the top element then there is a gap in the sequence along
the row and similarly when an element is computed from the
left element then there is a gap in the sequence along the
column. The local optimal alignment for the example in Figure
1 is as follows.

The next two sections briefly describe the two parallel
implementations of SW on the FPGAs.

B. Classical dataflow implementation

To parallelize the matrix fill in the SW algorithm we need
to look at its data dependence graph as shown in Figure 2.
Blank circles are the elements after the initialization with the
boundary conditions. Any iteration(i, j) cannot be executed
until iterations (i − 1, j), (i − 1, j − 1) and (i, j − 1) are

G T C G C A A C

0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0

C 0 0 0 4 2 2 0 0 2

C 0 0 0 2 3 4 2 0 2

A 0 0 0 0 1 2 6 4 2

T 0 0 2 0 0 0 4 5 3

G 0 2 0 1 2 0 2 3 4

Figure 1. Matrix for an example of the SW algorithm, wheng = −2 and
x(i, j) = +2 when S[i]=T[j] otherwise−1. Elements in the traceback are
shown in bold.

(i, j)(i, j-1)

(i-1, j-1) (i-1, j)

Figure 2. Data dependence graph for Equation 1 (different shades of gray
in circles show the elements which can be executed in parallel).

executed first, due to the data dependences. However, if we
traverse the elements in a wavefront manner starting from the
top-left corner as shown in Figure 2, all the elements in the
diagonal can be executed in parallel. This parallel execution
is calleddataflowimplementation, as all the computations are
done when their data is available.

C. Smith-Waterman RVEP implementation

RVEP [12] is like computing anti-diagonals of blocks in
dataflow manner instead of anti-diagonals of elements in
classical dataflow. This is shown in Figure 3, which shows the
sequence of fill for the blocks with blocking factorB = 2.
The size of the block isb = B×B. Each block contains four
elements O1, O2, O3 and O4. In Figure 3, first it computes
all elements in the block with cycle1, then it computes all
elements in the anti-diagonal of blocks with cycle2 and so
on. This structure suggests us to use a linear systolic array
to do the computation, where a same block circuit is used
systolically for the computation of blocks in the same column
as the anti-diagonal of blocks progresses.

O4

O4

O4O4

O4

O4

0 0 0 0 0 0 0 0 0 0

0 O2 O2 O2

0 O3 O1 O3 O1 O3 O1

0 O2 O2

0 O3 O1 O3 O1

0 O2

0 O3 O1

0

(1,1) (2,2)

(2,1)

(3,3)

(3,2)

(3,1)

Block 1 Block 2 Block 3 Block 4

Block
Cycle

Figure 3. Sequence of fill forB = 2. Blocks at the top show the hardware
to be used in each column. Number in red represent the block used and the
number in blue represent the cycle in which it is used.

Table I
BANDWIDTH REQUIREMENT FOR DIFFERENT IMPLEMENTATIONS

Implementations p dw Freq. Time I Bandwidth I
bits MHz. sec Gb/sec

Zhang07 [10] 384 20 66.7 1.56× 10−4 49.36
Oliver05 [13] 252 16 55 1.86× 10−4 27
Jiang07 [8] 80 20 82 1.23× 10−4 13.04

Nawaz10 [2] 40 16 79.3 6.33× 10−5 12.6

III. M EMORY BOTTLENECK

In this section, we describe the memory bandwidth bot-
tleneck that arises when we use the first method. Here, we
assume to store only the direction vector, which is of2 bits as
in [5], [6]. A double buffering technique can be used, in which
one can keep two copies of the direction matrix in which one
stores the data alternatingly. When the FPGA is computing
the next sequence alignment and storing that result in one
buffer, the other buffer can be transferring its content to the
shared memory for later traceback use by the GPP. The time to
transfer the direction matrix from memory should not be more
than the matrix fill time for the next pair of sequences, so that
the memory bandwidth does not become the bottleneck.

In order to better quantify the memory bottleneck problem,
we discuss the memory requirements for different implementa-
tions. In Table I, we present the numbers for four different SW
implementations. The first three are dataflow implementations
and the last is the RVEP implementation.p represents the
maximum number of PEs that can be accommodated on the
FPGA available in the respective implementation. We take
m = 10000, which is a higher end value for a sequence,
as only13 out of 468851 protein sequences are longer than
10000 symbols in the UniProt database and99.5% of the
sequences are less than 1000 symbols [14]. The storage size
of an element in the optimal value matrix is defined asdw.
The frequency used for computing each element in case of a
dataflow implementation and for computing a block in case of
the RVEP implementation is given under Frequency. Time I
is the time needed to fill the whole matrix for one sequence
alignment by the respective implementations. Bandwidth I in
Table I is computed for the transfer of the direction matrix
and is computed by the following formula:

Bandwidth I=
2pm

Time I
(2)

When combining all these data, we obtain a bandwidth
requirement of up to49.36 Gb/sec which is more than what
is available on even the largest FPGA’s. The Xilinx-6 FPGA
Connectivity Development Kit enables advanced connectivity
designs with PCI Express 1.1/2.0, Ethernet, SATA and other
proprietary high-speed serial protocols with line rates upto
6.5 Gb/sec [15].

IV. COMPRESSION AND BACKTRACKING

In order to solve the bottleneck as quantified above, we
propose to perform back tracking in addition to the com-
pression. Even though this twofold solution is presented here

G T C G C A A C

0 0 0 0 0 0 0 0 0

T 0 0 2 0 0 0 0 0 0

C 0 0 0 2 1 2 0 0 2

C 0 0 0 3 2 2 1 0 2

A 0 0 0 0 3 3 2 1 1

T 0 0 2 0 0 0 3 2 1

G 0 2 0 2 2 0 3 3 2

Figure 4. Direction matrix for example in Figure 1

in the context of the RVEP for Smith Waterman, it can
be easily modified to be useful for any classical dataflow
implementation. In this section, we are usingB = 2, p = 40,
m = 10000, n = 1000 anddw = 16, whereB is the blocking
factor,p represents the maximum number of PEs that can be
accommodated on the FPGA,n andm are the lengths of the
sequences anddw is the data width of the optimal values in
bits.

During the matrix fill, the elements in a block can be
computed only from the adjacent elements in the preceding
block [2]. As depicted in Figure 3, all the elements in the
anti-diagonal of blocks in cycle4 can be computed using the
adjacent elements from the preceding anti-diagonal of blocks,
as shown by the pattern filled elements. Hence to compute the
optimal score for the current anti-diagonal of blocks, we only
need to store the optimal score data for the adjacent elements
from the preceding anti-diagonal in the BRAM using a FIFO
buffer. We thus avoid needing to store the entire matrix of
optimal values. The size of memory required to store this is
p× 2B × dw = 20× 2× 2× 16 = 1280 bits.

Instead of the optimal value matrix, we only store the
direction matrix which contains direction vectors to construct
the sequence alignment. There are only3 directions from
which an element can be computed. So similar to [5], [6],
only 2 bits are needed to indicate the direction it is computed
from. As described earlier in Section II-A, the traceback is
stopped beyond a threshold value. We give the direction value
0 in the direction matrix for the corresponding threshold value
in an optimal value matrix. Similarly we fill a1,2 or 3
value in the current element of the direction matrix, if the
current element is computed from the left, top left or top
element respectively. The maximum value6 in the matrix from
Figure 1 is computed from the top-left element, therefore the
corresponding element in the direction matrix contains2 as
shown in Figure 4. The required storage space is determined
by two factors: the first is the row to keep the optimal values
given by p × 2B × dw and second to keep the direction
matrix which is2nm. So the total space required in BRAM
is p× 2B × dw + 2nm = 1280 + 2× 107 bits, which is less
than dw(nm) = 16 × 107 bits which are required without
compression. Now there are FPGAs available with5 × 107

bits BRAM [16].
Since the bandwidth requirement is still high after compres-

sion, we propose to move the traceback stage to the FPGA,
which further reduces the required bandwidth. It means the
complete solution is now on the FPGA only, which is easier

�

Max from
Previous

block

O1 O2 O3 O4

� �

�
Max to

next
block

Figure 5. Block Max.

to maintain in one place. So, the traceback is performed on
the FPGA and alignment results are sent to the main memory,
which are far less than the whole matrix. We perform another
task, which starts the traceback from the direction value in
the direction matrix corresponding to the maximum value in
the optimal value matrix in BRAM and transfer only direction
vectors which come across the traceback path. The length of
the traceback path isO(max(m,n)), which is the worst case
and usually the length of the traceback is far less than this.

V. DESIGN OVERVIEW

In this section, we present the design overview for the
proposed technique to reduce the memory bottleneck problem
in case of RVEP implementation of SW withB = 2, when
traceback stage is done in parallel with the matrix fill stage.
This design will be on top of the circuit for optimal value
computation. The proposed design is composed of computing
the maximum in the optimal value matrix, generating the cor-
responding direction matrix, storing direction values in BRAM
and finally doing the traceback on the direction vectors starting
from the maximum optimal value. This implementation can be
easily modified for RVEP with higher blocking factors. The
details are as following:

A. Computing max in the optimal value matrix

We need to find the maximum value in the optimal value
matrix. We do it by first finding the maximum of the block
and then finding the maximum among all the blocks in a block
column and then finding the maximum value among all the
block columns to find the maximum of the matrix.

As mentioned earlier, we compute the optimal values in
a systolic array. After the optimal values are computed for
a block, we compute the maximum of the optimal values
from the previous and current blocks in the same block
column by using the circuit in Figure 5. In the meanwhile, the
optimal values for the next block in the same block column
are computed systolically by the computation block. This
continues till the optimal values for the column block and
later in the next cycle the maximum of the whole column

0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

(1,1) (2,2) (3,3)

(2,1) (3,2) (4,3)

(3,1) (4,2) (5,3)

(4,1) (5,2) (6,3)

Block 1 Block 2 Block 3

Block
Cycle

(a) Computation block. A number in red
represent the block used and the number
in blue represents the cycle in which it is
used.

Time
(cycles)

column
max

1 C1,1

2 C2,1 M1,1 T1,1 C2,2

3 C3,1 M2,1 T2,1 C3,2 M2,2 T2,2 C3,3

4 C4,1 M3,1 T3,1 C4,2 M3,2 T3,2 C4,3 M3,3 T3,3

5 M4,1 T4,1 C5,2 M4,2 T4,2 C5,3 M4,3 T4,3

6 M5,2 T5,2 C6,3 M5,3 T5,3

7 M6,3 T6,3 m1_2

8 m2_3

9

Block 2 Block 3Block 1

(b) Computation sequence for the computation block in Figure
6a, C stands for Computing the optimal value, M for finding the
Maximum of the optimal value in a block and T for generating
the direction vectors for elements in the block. Red arrows
show the computation of maximum blocks and direction vectors
for the corresponding computation block. Blue arrows show the
computation of maximum of block columns.

Figure 6. Computation block and the sequence to compute it

is computed. The resource and time used for computing the
optimal value and then the maximum for the matrix shown
in Figure 6a is given in Figure 6b. It shows that first the
optimal value for block(1, 1) i.e. C1,1 is computed. In the
next cycle,C2,1 is computed systolically and the maximum of
block (1, 1), i.e. M1,1 is computed. The maximum of block
column1 is computed in cycle5 and similarly the maximum
of block column2 is computed in cycle6. The maximum
of block column1 and 2 is computed in cycle 7 by using a
single comparator as given bym1 2. At the same cycle 7, the
maximum of the column 3 is computed and then the same
comparator that is used to computem1 2 in cycle 7 is used
to compute the maximum of block3 and all block columns
< 3, we call itm2 3 in cycle8. This way the maximum of all
elements of the optimal value matrix is computed.

B. Generating the direction matrix

The direction vectors for a direction matrix block are
computed after the computation of the optimal value block.
In Figure 6b, the direction vectorsTi,j for any block(i, j) are

if (F[i,j]=0)
output=0

else if (F[i,j]=F[i,j-1]+a)
output=1

else if (F[i,j]=F[i-1,j]+a)
output=3

else
output=2

Figure 7. Code to generate the direction vector for an element (i, j)

j = 0 1 2 3 rb-1

O4 O3 O2 O1 O1

…

Figure 8. Elements stored in BRAM

computed in the next cycle toCi,j . Similar to computing op-
timal values and computing a maximum for a block, direction
vectors of a block are also computed systolically.

The pseudo-code to generate a direction value for an ele-
ment is shown in Figure 7.

C. Storing direction vectors in BRAM

After the direction vectors for a block have been generated,
they are stored in BRAM as intermediate result. In this section
we are consideringn = 8, B = 2, b = 4 andr = n

B
= 4 as an

example. We choose BRAM width= 2rb = 32 bits to store
rb = 16 elements. The way elements are stored is shown in
Figure 8. This whole BRAM width is filled in one cycle using
one write port. The data is always filled starting from0.

D. Traceback

The traceback is started from the point in the direction
matrix corresponding to the maximum value of the optimal
value matrix. The data is stored in a different coordinate
system (rotated at45 degree to horizontal) as compared to
what was earlier suggested by the formula in Equation 1 and
secondly each2-dimensional block is linearized as shown
in Figure 8. We need to translate the traceback formula
accordingly.

(0
,0

)
(1

,1
)

(2
,2

)
(3

,3
)

(1
,0

)
(2

,1
)

(3
,2

)

(4
,2

)

(2
,0

)
(3

,1
)

(4
,1

)

(5
,1

)

(3
,0

)

(4
,0

)

(5
,0

)
(6

,0
)

(4
,3

)

(5
,3

)

(5
,2

)
(6

,2
)

(6
,1

)
(7

,1
)

(7
,0

)
(8

,0
)

j

i

2,1 1,0

1,1

2,0

1,0

1,1

2,-1

1,1

1,0

Reg
ion

I

Reg
ion

II

Reg
ion

III

Figure 9. Classification of BRAM according to the direction vectors among
the neighboring blocks, Region I:i < r; Region II: i = r and Region III:
i > r, herer = 4

GetTrace(i,j,trace){
k = j mod b
if (((i<r) and ((j>2) and
!((j>=i*4) and (j<i*4+3))))
or ((i>=r) and ((j>2) and !((j>=r*4-4)
and (j<r*4-1)))) and (m>0) {
I = GetI(k,m(i,j)) // Get I from Figure 11
J = GetJ(k,m(i,j)) // Get J from Figure 11
trace = trace + m(i,j) // + is concatenation
GetTrace(I,J,trace)

} else {
trace = trace + m(i,j)

}
}

Figure 10. Pseudo-code for traceback

1 2 3

I=i-1 I=i-2 I=i-1

J=j-2+d J=j-1+e J=j+1+d

I=i-1 I=i-1 I=i

J=j-2+d J=j-3+d J=j-1

I=i I=i-1 I=i-1

J=j-2+d J=j+1+d J=j+1+d

I=i I=i I=i

J=j-2+d J=j-3 J=j-1

where d=0,e=0 if i<r; d=b, e=b if i=r and d=b, e=2b if i>r

k=3

m(i,j)

k=0

k=1

k=2

Figure 11. BRAM Address translation

There are three regions classified by the direction vectors
between the blocks as shown in Figure 9. The traceback is
possible to three neighboring blocks and its direction vectors
are different in different regions. The direction vectors among
the neighboring blocks remain the same in each region and
hence the traceback formula too. The traceback code, which
also takes care of each of these regions is given in Figure 10.
The first call to the traceback code is GetTrace(i,j,ε), whereε
is the empty string and(i, j) is the position of the maximum
value in the optimal value matrix. The trace variable in Figure
10 will finally give the traceback path from which alignment
can be easily computed. The traceback code has already a
linear time complexity and takes less time than the time taken
for matrix fill by dataflow or RVEP. The address translation is
summarized in Figure 11. Them(i, j) refers to the direction
value at the(i, j) position in the BRAM.

VI. EXPERIMENTAL VALIDATION

In order to assess the impact of our compression scheme and
traceback, we explore two extreme cases of memory transfer.
The memory bandwidth required for these two cases is given
in Table II, which is a extension of Table I. The first case,
considered as the worst case is as follows. We keep two
direction matrices for double buffering to do the sequence
alignment continuously. When one matrix is being filled, the
other can be used to transfer the traceback result of the
sequence alignment done recently. We generate the direction
matrix for every alignment one after the other; however, we do

Table II
COMPARISON OF BANDWIDTH REQUIREMENT FOR DIFFERENT IMPLEMENTATIONS

Implementations p. dw Freq. Time I Time II Bandwidth I Bandwidth II Bandwidth III
bits MHz. sec sec Gb/sec Mb/sec Kb/sec

Zhang07 [10] 384 20 66.7 1.56× 10−4 2.48 49.36 128.8 8
Oliver05 [13] 252 16 55 1.86× 10−4 3.02 27 107.2 6.64
Jiang07 [8] 80 20 82 1.23× 10−4 2.02 16.3 162.4 9.92

Nawaz10 [2] 40 16 79.3 6.33× 10−5 1.13 12.6 316 17.6

not transfer the traceback direction vector for every alignment.
We find the maximum optimal score for each sequence in the
database and send its traceback direction vector only when
the current maximum optimal score is greater than the global
maximum.

In the worst case, we need to transfer the traceback vec-
tor for every comparison when every next sequence in the
database has a higher maximum optimal value than the current
sequence. In that case, we need to sendO(2 × max(m,n))
bits for some unit time (which is equal to the time to fill the
matrix, Time I in Table II) instead ofO(2nm) bits, which is
linear as compared to quadratic in normal case. The chances of
this worst case are close to impossible. We have also computed
the bandwidth requirement for our proposed technique keeping
in mind the worst case referred as Bandwidth II in Table II.
Here, the maximum bandwidth is316 Mb/sec which is easily
achievable in normal FPGA boards.

The best case is described as follows. We find the maximum
optimal value in the optimal value matrix for all the sequences
in the database and send that maximum optimal value and its
corresponding traceback direction vector to main memory. In
this scenario, the traceback path and maximum is sent once
after the whole scanning of the database, which is468851
protein sequences in case of UniProt [14]. The time it takes
to scan the whole database is given under the header Time II.
The memory bandwidth requirement for this implementation
using Time II is shown as Bandwidth III in II. The maximum
bandwidth under heading Bandwidth III is17.6 Kb/sec.

The implementation strategy can be changed easily, if there
is a requirement for computing somek-best alignments from
the database. The bandwidth for any such strategy will fall in
between Bandwidth II and Bandwidth III.

Our solution is better than the traditionally used solution
[13], [7], [9] in the sense that it gives the best alignment
between the unknown sequence and the known sequence in the
database after once scanning through the database and there
is no need to repeat the sequence alignment for some smaller
subset. Secondly, the whole solution is based on FPGA, so
there is no need to maintain the solution at two different places,
which is easier.

VII. C ONCLUSION

In this paper, we have proposed a parallel FPGA design
of the SW traceback, which constructs the optimal alignment
between the unknown sequence and its genetically closest
known sequence from the database. We have seen how a naive
approach to parallel design can lead to bandwidth problems.

Our solution addresses this issue, and we have proposed a
hardware design for a SW RVEP implementation that can be
easily extended to any other dataflow systolic array imple-
mentation. The proposed solution can be easily implemented
on current off-the-shelf FPGA boards. In the future, we will
implement our memory bandwidth reduction solution, and
integrate it with the matrix fill solution for both dataflow and
RVEP implementations to find the hardware overhead of our
proposed scheme.

REFERENCES

[1] T. Smith and M. Waterman, “Identification of common molecular
subsequences,”J. Mol. Biol., vol. 147, pp. 195–197, 1981.

[2] Z. Nawaz, H. Sumbul, and K. Bertels, “Fast smith-waterman hardware
implementation,” inRAW 2010, April 2010.

[3] O. Storaasli and D. Strenski, “Experiences on 64 and 150 fpga systems,”
in Proceedings of the Fourth Annual Reconfigurable Systems Summer
Institute (RSSI’08), 2008.

[4] D. T. Hoang and D. P. Lopresti, “Fpga implementation of systolic
sequence alignment,” inInternational Workshop on Field Programmable
Logic and Applications, 1992.

[5] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya,“High
speed homology search using run-time reconfiguration,” inFPL ’02,
(London, UK), pp. 281–291, Springer-Verlag, 2002.

[6] G. L. Moritz, C. Jory, H. S. Lopes, and C. R. E. Lima, “Implementation
of a parallel algorithm for protein pairwise alignment using reconfig-
urable computing,” pp. 1 –7, sep. 2006.

[7] P. Faeset al., “Scalable hardware accelerator for comparing dna and
protein sequences,” inInfoScale ’06, (New York, NY, USA), p. 33, ACM,
2006.

[8] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfigurable ac-
celerator for smith-waterman algorithm,”IEEE Transactions on Circuits
and Systems II, vol. 54, pp. 1077–1081, 2007.

[9] O. O. Storaasli and D. Strenski, “Exploring accelerating science appli-
cations with fpgas,” inRSSI’07, 2007.

[10] P. Zhang, G. Tan, and G. R. Gao, “Implementation of the smith-
waterman algorithm on a reconfigurable supercomputing platform,” in
HPRCTA ’07, 2007.

[11] K. Benkrid, Y. Liu, and A. Benkrid, “A highly parameterized and effi-
cient fpga-based skeleton for pairwise biological sequence alignment,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 17, pp. 561 –570, apr. 2009.

[12] Z. Nawaz, T. P. Stefanov, and K. Bertels, “Efficient hardware generation
for dynamic programming problems,” inICFPT’09, December 2009.

[13] T. Oliver, B. Schmidt, and D. Maskell, “Reconfigurable architectures
for bio-sequence database scanning on fpgas,”IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 52, no. 12, pp. 851–855,
Dec. 2005.

[14] E. J. Houtgast, “Scalability of bioinformatics applications for multicore
architectures,” Master’s thesis, T U Delft, 2009.

[15] “New xilinx virtex-6 and spartan-6 fpga connectivity development kits.
online: www.xilinx.com/products/devkits/EK-V6-ML605-G.htm.”

[16] “Stratix v fpga family overview. online: http://www.altera.com/products/
devices/stratix-fpgas/stratix-v/overview/stxv-overview.html.”

