
A Parallel-friendly Majority Gate to Accelerate

In-memory Computation

John Reuben

Chair of Computer Science 3 - Hardware Architecture

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

91058 Erlangen, Germany

johnreuben.prabahar@fau.de

Stefan Pechmann

Chair of Communications Electronics

Universität Bayreuth

95447 Bayreuth, Germany

stefan.pechmann@uni-bayreuth.de

Abstract—Efforts to combat the ‘von Neumann bottleneck’
have been strengthened by Resistive RAMs (RRAMs), which
enable computation in the memory array. Majority logic can
accelerate computation when compared to NAND/NOR/IMPLY
logic due to it’s expressive power. In this work, we propose a
method to compute majority while reading from a transistor-
accessed RRAM array. The proposed gate was verified by sim-
ulations using a physics-based model (for RRAM) and industry
standard model (for CMOS sense amplifier) and, found to tolerate
reasonable variations in the RRAMs’ resistive states. Together
with NOT gate, which is also implemented in-memory, the pro-
posed gate forms a functionally complete Boolean logic, capable
of implementing any digital logic. Computing is simplified to a
sequence of READ and WRITE operations and does not require
any major modifications to the peripheral circuitry of the array.
The parallel-friendly nature of the proposed gate is exploited to
implement an eight-bit parallel-prefix adder in memory array.
The proposed in-memory adder could achieve a latency reduction
of 70% and 50% when compared to IMPLY and NAND/NOR
logic-based adders, respectively.

Index Terms—Resistive RAM (RRAM), majority logic, major-
ity gate, memristor, 1 Transistor-1 Resistor(1T–1R), von Neu-
mann bottleneck, in-memory computing, compute-in-memory,
processing-in-memory, parallel-prefix adder

I. INTRODUCTION

THE movement of data between processing and memory

units in present day computing systems is their main

performance and energy-efficiency bottleneck, often referred

to as the ‘von Neumann bottleneck’ or ‘memory wall’. The

emergence of non-volatile memory technologies like Resistive

RAM (RRAM) has created opportunities to overcome the

memory wall by enabling computing at the residence of data.

RRAMs are two terminal devices (usually a Metal-Insulator-

Metal structure) capable of storing data as resistance. The

change of resistance is due to the formation or rupture of a

conductive filament, depending on the direction of the current

flow through the structure. The word ‘memristor’ is also used

by researchers to denote such a device, because it is essentially

a resistor with memory. Connecting such RRAM devices in

a certain manner, or by applying certain voltage patterns,

or by modifying the sensing circuitry, basic Boolean gates

(NOR, NAND, XOR, IMPLY logic) have been demonstrated

in RRAM arrays [1]–[6]. The motivation for such efforts is

to perform Boolean operations on data stored in the memory

array, without moving them out to a separate processing

circuit, thus mitigating the von Neumann bottleneck. Reviews

of such in-memory computing approaches are presented in

[7], [8]. To construct a memory array using such devices, two

configurations are common: 1Transistor–1Resistor (1T–1R)

and 1Selector–1Resistor (1S–1R). The 1T–1R configuration

uses a transistor as an access device for each cell, isolating

the accessed cell from its neighbours in the array. The 1S–1R

configuration uses a two-terminal device called a ‘selector’

which is fabricated in series with the memristive device.

The 1S–1R is area-efficient, but suffers from current leakage

(sneak–path problem) due to the inability to access a particular

cell without interfering with its neighbours [9].

Majority logic, a type of Boolean logic, is defined to be

true if more than half of the n inputs are true, where n is

odd. Hence, a majority gate is a democratic gate and can be

expressed in terms of Boolean AND/OR as MAJ(a, b, c) =
a.b+ b.c+ a.c, where a, b, c are Boolean variables. Although

majority logic was known since 1960, there has been a

revival in using it for computation in many emerging nan-

otechnologies (spin waves, magnetic Quantum-Dot cellular

automata, nano magnetic logic, Single Electron Tunneling).

Recent research [10]–[12] has confirmed that majority logic is

to be preferred not only because a particular nanotechnology

can realize it, but also because of its ability to implement

arithmetic-intensive circuits with less gates. It must be em-

phasized that majority logic did not become the dominant

logic to compute because it was more efficient to implement

NAND/NOR gate than a majority gate, in CMOS technology.

However, with many emerging nanotechnologies, this is not

the case anymore, therefore, majority logic needs to be re-

evaluated for its computing efficiency. In [13]–[15], majority

logic is implemented in RRAM by applying the two inputs of

the majority gate as voltages across its terminals, and the initial

state of the RRAM (which is also the third input) switches to

evaluate majority. Such an approach complicates the peripheral

circuitry and is also not parallel-friendly, because two of the

three inputs of a majority gate need to be applied as voltages

at wordline/bitline (see Fig.1(a)).

In this paper, we propose a majority gate whose structure

is conducive for parallel-processing in the memory array.

By activating three rows of the array simultaneously, the

This is author’s version of the accepted paper. For the published paper, see the 31st IEEE International Conference on
Application-specific Systems, Architectures and Processors (ASAP) proceedings in https://ieeexplore.ieee.org/

See Conference presentation (20 min video) at https://asap2020.cs.manchester.ac.uk/paper.php?id=72

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
 current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
 of this work in other works.

WL
1

BL
1

SL
1

WL
2

WL
3

BL
2

BL
3

SL
2

SL
3

A

B

C

M3(A,B,C)EN Q
SA

I
READ

WL
1

BL
1

WL
3

M3(A,B,C)

A B C

B BL
3

M3(A,B,C)

A B CA

B

C

C

A

(a) (b)
A B C D E F G H K

(c)

Peripheral ckt.

Mapping for (a)

Mapping for (b)

Fig. 1: (a) In-memory majority gate of previous works [13]–[15]
(b) Proposed parallel-friendly gate (c) When multiple gates have
to be executed in parallel, the majority gates of previous works
[13]–[15] have to be mapped diagonally because two gates cannot
be executed in the same row/column. This manner of computation
complicates both the peripheral circuitry and memory controller
(inputs of the gates influence row/column decoding). In the proposed
method, multiple gates can be mapped to the same set of rows,
thereby simplifying the peripheral and the memory controller (inputs
of the gates are resistance of memory cells and row/column decoders
retain their functionality as in a conventional memory).

resistance of the RRAM cells in a column are in parallel

during the READ operation. A Sense Amplifier (SA) which

can accurately sense the effective resistance implements a ‘in-

memory’ majority gate. This manner of computing majority

enables parallelism and is energy-efficient (both reading and

writing is energy-efficient in 1T–1R when compared to 1S–

1R arrays due to the absence of sneak paths). To demonstrate

the potential of this method to accelerate computation, we

consider a parallel-prefix adder and formulate the steps to

perform eight-bit addition in a 1T–1R array. The remainder

of the paper is organized as follows. Section II-A presents the

principle of reading majority from a 1T–1R array. Since the

read operation is the crucial aspect of the proposed majority

gate, we present the detailed sensing methodology in Section

II-B. Further, we study tolerance to variations in resistive

states by performing Monte Carlo simulations. In Section

III we present the framework to compute in the memory

array, using the proposed majority gate. Section IV-A briefly

presents parallel-prefix technique and the structure of an eight-

bit parallel-prefix adder in terms of majority gates. The adder

is then mapped to a 1T–1R array using the proposed in-

memory computing technique, in Section IV-B. We compare

the proposed eight-bit adder with the state-of-the-art, followed

by conclusions in Section V.

II. MAJORITY GATE IN 1T–1R ARRAY

A. Majority gate: Operating principle

Consider an array of RRAM cells arranged in a 1T-1R

configuration, as depicted in Fig. 2. Each cell can be in-

dividually read/written into by activating the corresponding

wordline (WL) and applying appropriate voltage across the

cell (BL and SL). To read from a cell, the corresponding

WL is activated, a small current is injected into the cell and

the voltage across the cell is sensed in a voltage-mode SA i.e.

WL
1

BL
1

SL
1

BL
64

SL
64

WL
64

WL
2

WL
3

BL
2

BL
3

SL
2 SL

3

R
A

WL
D

S
BL

SL

 RRAM

R
eff

 = R
A
 || R

B
 || R

C

R
B

R
C

WL
4

WL
5

Fig. 2: When three rows are activated (WL1−3) simultaneously
in a 1T-1R array, the resistances of the three RRAM devices are
in parallel. An ‘in-memory’ majority gate can be implemented by
accurately sensing the effective resistance Reff .

the BL voltage is sensed while the SL is grounded. Now, if

three rows are activated simultaneously during read operation

(Rows 1 to 3 in Fig. 2), the resistances in column 1 are in

parallel (neglecting the parasitic resistance of BL and SL).

During read, the access transistor will be in linear region, and

hence the transistor’s resistance will be

rDS = 1
µnCox(

W

L
)(VGS−Vt)

= 544 Ω [16]. The effective

resistance between BL and SL will therefore be Reff =

(RA + rDS)||(RB + rDS)||(RC + rDS) ≈ (RA||RB ||RC),

if the drain-to-source resistance of transistor (rDS) is small

compared to LRS. Table I lists the truth table of 3-input major-

ity gate (M3(A,B,C)) and the effective resistance for all the

eight possibilities. To verify the proposed gate on a real RRAM

device, we choose the 1T-1R cell from IHP1. The 1T–1R

structure consists of a NMOS transistor manufactured in IHP’s

130 nm CMOS technology, whose drain is connected in series

to the RRAM. The RRAM is a T iN/Hf1−xAlxOy/T i/T iN
stack integrated between Metal2 and Metal3 in the BEOL of

the CMOS process. IHP’s 1T–1R cells were modeled using

the Stanford-PKU RRAM model following the methodology

presented in [16]. The cells have a mean LRS and HRS

of 10 KΩ and 133.3 KΩ, respectively. Therefore, the Reff

is ≥ 8.7 KΩ when two or more cells are in HRS (shaded

grey in Table I) and ≤ 4.8 KΩ when two or more cells are

in LRS. Consequently, a majority gate can be implemented

during a READ operation by precisely sensing Reff . As can

be deciphered from Table I, the crucial aspect of the proposed

gate is to be able to differentiate between R001
eff (two LRS and

one HRS) and R110
eff (two HRS and one LRS). Let’s denote

the resistance to be differentiated as sensing window,

Sensing window for majority = 8.7 KΩ – 4.8 KΩ = 3.9 KΩ

1Innovations for High Performance Microelectronics– Leibniz-Institut für
innovative Mikroelektronik, Germany

for IHP’s cell (resistance window = 13.3).

TABLE I: Precisely sensing Reff results in majority: Logic

‘0’ is LRS (10 KΩ) and logic ‘1’ is HRS (133.3 KΩ)

A B C M3(A,B,C) Reff Reff

0 0 0 0 LRS
3

3.3 KΩ

0 0 1 0 HRS·LRS
LRS+2·HRS

4.8 KΩ

0 1 0 0 HRS·LRS
LRS+2·HRS

4.8 KΩ

0 1 1 1 HRS·LRS
HRS+2·LRS

8.7 KΩ

1 0 0 0 HRS·LRS
LRS+2·HRS

4.8 KΩ

1 0 1 1 HRS·LRS
HRS+2·LRS

8.7 KΩ

1 1 0 1 HRS·LRS
HRS+2·LRS

8.7 KΩ

1 1 1 1 HRS
3

44.4 KΩ

B. Sensing methodology

As stated, the methodology to reliably translate Reff into

a CMOS-compatible voltage is the crucial aspect of the

proposed majority gate. R001
eff is 4.8 KΩ and R110

eff is 8.7 KΩ,

and differentiating such a resistance window (≈ 3.9KΩ) needs

a robust SA. It must be noted that this will be exacerbated by

the variability exhibited by the RRAM devices. To meet this

requirement, a time-based SA recently proposed in [17] was

chosen. Different from conventional sensing schemes (voltage-

mode and current-mode), the time-based sensing scheme con-

verts the BL voltage (to be sensed) into a time delay and dis-

criminates in time-domain. This sensing scheme was originally

proposed to read data from STT-MRAM [17], which have a

resistance window of a few KΩ. Therefore, it is ideal for the

proposed majority gate. Furthermore, this time-based sensing

achieves two to three orders of magnitude improvement in

sensing (BER) compared to conventional schemes, in addition

to being reference-less [17].

The time-based sensing circuit is essentially a voltage-to-

time converter followed by a time-domain comparator (D-flip

flop). Voltage-to-time conversion is achieved by the current-

starved inverter (transistors M1−5) followed by transistor M6

and an inverter (Fig. 3). During READ, a current IREAD is

injected into the 1T-1R cell (corresponding three WLs are

activated and SL is grounded). Depending on the effective

resistance Reff , the BL reaches an appropriate voltage. In

the conceptual waveforms of Fig.3, it is assumed that BL
gets charged to 300 mV if Reff is a high resistance (8.7 KΩ)

and 200 mV if Reff is a low resistance (4.8 KΩ), for the

purpose of illustration. Such a VBL (few hundred mV) limits

the current flow through the inverter (transistor M1−3), hence

the name current-starved inverter. When EN goes high, the

current-starved inverter introduces a delay proportional to VBL

i.e. a higher VBL incurs less delay. A VBL of 300 mV incurs

less delay and low-to-high transition of EN reaches the input

of the Flip-flop (IFF) faster i.e. at THRS . For a lower VBL

of 200 mV, the delay is greater and the low-to-high transition

I
READ

1T1R array

EN

BL

 WL

SL

D
out

 Time-Based
Sense Amp.

EN M
1-3

M
4

M
5

M
6

D Q

Q

V
BL

V
BL

t
delay

D
out

EN
delay

I
FF

EN
delay

I
FF

I
FF

D
out

 HRS (V
BL

=300 mV)

 LRS (V
BL

=200 mV)

= 1 if HRS
= 0 if LRS

EN

V
BL 200 or 300 mV

I
READ

= 35 uA

D
out

current-starved

T
DM

T
HRS

T
LRS

Fig. 3: A small current IREAD injected into the cell converts the
resistance to a voltage which is fed to the time-based SA. A current-
starved inverter transforms this voltage into a proportional delay
which is sensed as a CMOS-compatible voltage by the D-FF [17].

occurs at TLRS . tdelay is a chain of inverters programmed

to introduce a delay between THRS and TLRS . ENdelay , the

EN signal delayed by tdelay acts as the edge trigger for the

D-FF. When ENdelay goes high at TDM (Decision Moment),

it latches the signal at IFF and hence the Dout is high for

high resistance (R110
eff = 8.7 KΩ) and low for low resistance

(R001
eff = 4.8 KΩ). It must be noted that for R111

eff = 44.4 KΩ,

VBL will be much larger than 300 mV and will result in a

transition much before THRS . Similarly, for R000
eff = 3.3 KΩ,

VBL will be less than 200 mV and will result in a transition

much later than TLRS . Once designed to differentiate between

R110
eff and R001

eff , the time-based SA will output M3(A,B,C)
correctly for all the eight cases. Furthermore, the same SA can

be used to read a single bit by using a smaller IREAD (and

activating a single WL during normal read operation). Hence

the proposed gate does not necessitate any modification to the

read-out circuit of the regular memory array.

The time-based sensing circuit of Fig. 3 was designed in

IHP’s 130 nm CMOS process, and simulated to verify the

functioning of the majority gate. IREAD of 35 µA was injected

into the 1T-1R cell to sense the BL voltage. For R001
eff and

R110
eff , VBL was 282 mV and 410 mV, respectively. Since

the current-starved transistors M1−3 are the crucial factor in

deciding the delay, they were made large (W
L

= 1.5µm
0.39µm) to

make the circuit less sensitive to CMOS process variations.

tdelay was set to 3 ns using a chain of inverters with MOS

capacitive loads between them. RRAM cells exhibit variability

in their programmed resistive states cycle-to-cycle and device-

to-device [18]. Therefore the majority gate was evaluated by

taking RRAM variations into account. Since majority is com-

puted while reading (memory cell is not switched), the RRAM

was replaced with a resistor and variability was incorporated as

a Gaussian distribution in that resistor. The impact of process

variations was analysed using the statistical model files for

the CMOS transistors provided by the foundry. 2000 Monte

Fig. 4: Sample output of the time-based SA. At 13.5 ns, the ENdelay

goes high deciding the output. Only 100 MC simulations are plotted
(shaded light) with single typical case highlighted dark.

Carlo simulations were performed where the resistance of the

RRAM was Gaussian distributed with a standard deviation, σ
= 10% of mean RRAM resistance i.e σLRS = 1 KΩ and σHRS

= 13.33 KΩ. With combined effects of RRAM variability and

process variability (in transistors of SA), the Bit Error Rate

(BER) was found to be 5.4%. Sample wave-forms are plotted

in Fig. 4. Further failure analysis of the majority gate (incorrect

sensing of R001
eff and R110

eff) revealed that it occurred only when

RRAM variability was more than 2σ from mean LRS/HRS (It

must be noted that 95% of resistances fall within 2σ from the

mean, in a Gaussian distribution).

III. FRAMEWORK TO COMPUTE IN 1T–1R ARRAY

A. Functional completeness and memory controller

As shown in Fig. 5-(a), NOT operation can be implemented

in a 1T–1R array by simply latching Q from the output of the

time-based SA during READ (D-Flip flop of Fig.3 outputs

Q and Q). This is accomplished by using a control signal

INV which is low during READ and majority operation (Q
is latched) and goes high only during NOT operation (Q is

latched). Majority together with NOT is functionally complete

i.e any Boolean logic can be expressed in terms of majority

and NOT gates [19]. In [19], the authors present Majority-

Inverter Graph (MIG), a new logic manipulation structure

consisting of three-input majority nodes and regular/inverted

edges. Fig.5-(b) is the MIG of a 1-bit full adder obtained by

MIGhty (MIG synthesis tool) and, any Boolean logic can be

synthesised in terms of majority and NOT gates in a similar

manner. Since both majority and NOT gates are implemented

EN Q

Q

SL

SA

WL

BL

READ NOT gate Majority gate

A

A

Maj(A,B,C)

0

1
A

INVI
READ

EN Q

Q

SL

SA

WL

BL

A

0

1

INVI
READ

EN Q

Q

SL

SA

WL

BL

B

0

1

INVI
READ

A

C

M
3

A
B C

in

M
3

A
B

C
in

M
3

S (sum)

C
out

C
in

 Memory READ

 & memory WRITE

RRAM memory
array

Peripheral ckt.

Peripheral ckt.

P
e

ri
p

h
e

ra
l

c
k

t.

M
e

m
o

ry
 c

o
n

t r
o

ll
e

r

Control signals & data

READ

WRITE

MIGhty

 S =A⊕B⊕C
in

 C
out

= AB+BC
in
+AC

in

(a)

(b) (c)

Fig. 5: (a) NOT operation implemented with a 2:1 Mux at the
output of the time-based SA; all logic operations are essentially
READ operations (b) 1-bit full adder expressed as Majority-Inverter-
Graph using MIGhty synthesis tool [19], where M3 represents 3-
input majority operation (c) With majority/NOT gate computed as
READ, multiple levels of logic can be executed by writing the data
back to the memory, simplifying computing to READ and WRITE
operations.

as READ, multiple levels of gates can be cascaded by writing

the read data back to the array. In essence, ‘computing’ is

simplified to a sequence of READ and WRITE operations,

orchestrated by the memory controller, as depicted in Fig.5-

(c).

The memory controller of a regular memory (be it DRAM-

based or NVM-based) is responsible for orchestrating the

READ and WRITE operation by issuing the control signals to

the peripheral circuitry of the array. In addition, the memory

controller must be augmented with additional capability to

execute majority and NOT operation. Since both majority and

NOT operations are READ operations in this logic family, the

controller does not require any major alterations. To execute a

majority operation, an additional control signal called MAJ
is needed, which is set to logic ‘1’ during majority operation2

and, the address of the first row (out of three rows in which

majority is to be performed) is placed on the row decoder.

It must be noted that majority operation is executed on three

contiguous bits of data in a column and the triple row decoder

of section III-B will not only select the row corresponding

to the address placed on the row decoder, but also the next

two rows if MAJ is ‘1’. The column address is placed on

the column decoder to select the particular column in which

majority is executed and the SA is activated to get the output.

The NOT operation is the same as the READ operation with

the only exception being the controller issues the control signal

INV , which goes high to invert the read data at the output of

2this signal acts as an additional input to the row decoder, Fig. 6

the SA (Fig. 5-(a)). The control signals activated during logic

operations are summarized in Table II.

TABLE II: Control signals for memory and logic operations

Operation WL BL SL EN(SA) INV MAJ

READ single row
activated

to read
ckt.

grounded 1 0 0

NOT single row
activated

to read
ckt.

grounded 1 1 0

Majority three rows
activated

to read
ckt.

grounded 1 0 1

WRITE
‘0’

single row
activated

VSET grounded 0 0 0

WRITE
‘1’

single row
activated

grounded VRESET 0 0 0

B. Triple-row decoder design

WL
0

WL
1

WL
2

WL
3

 2:4 Dynamic Decoder

EN D
0

D
0

D
1

D
1

Ф

 EN
0

D
1

D
0

 EN
1

D
3

D
2

 EN
2

D
4

D
5

 EN
3

D
6

D
7

WL
0

WL
1

WL
2

WL
3

WL
4

WL
5

WL
6

WL
7

WL
8

WL
9

WL
10

WL
11

WL
12

WL
13

WL
14

WL
15

A
D

D
R

E
S

S

T
R

A
N

S
L

A
T

O
R

 L
O

G
IC

A
3

A
2

A
1

A
0

MAJ
Ф

A
1

A
0

MAJ

 EN
3

 EN
2

 EN
1

 EN
0

A
2

A
3

D
2

D
3

D
1

D
0

D
7
,

D

5

D
6
,

D

4

Fig. 6: Triple-row decoding is achieved by interleaving mul-
tiple single-row decoders. When control signal MAJ is logic
‘0’ (READ/WRITE/NOT), WLi corresponding to row address
A3A2A1A0 is selected. When MAJ is logic ‘1’ (majority),
WLi,WLi+1,WLi+2 are selected.

A conventional decoder for a 1T–1R array can select one

row at a time, while the proposed majority gate needs three

rows to be selected simultaneously. Moreover, the row-decoder

must be versatile to switch between single-row activation and

triple-row activation seamlessly. This is because, as stated

in the previous section, one must be able to read/write a

single bit of the array (READ/WRITE/NOT) as well as read

three bits in a column (majority). To this end, we propose a

robust row decoder which is designed by interleaving multiple

single-row decoders. As depicted in Fig.6, a 4:16 triple-row

decoder can be designed by interleaving four 2:4 dynamic

NAND decoders3. Since single-row decoding must co-exist

with triple-row decoding, an address translator circuit is used

to switch between the two modes using MAJ as a control

3a dynamic decoder uses a precharge signal φ, which when low, all WL
are driven to ‘0’. When φ goes high, WLi corresponding to D1D0 goes
high, provided EN is ‘1’

signal. For example, to select a single row WL5, the address

is A3A2A1A0 = ‘0101’ and MAJ = ‘0’. For these inputs,

the address translator outputs EN3EN2EN1EN0 = ‘0010’

and D7D6D5D4D3D2D1D0 = ‘XXXX01XX’ (green decoder

in Fig. 6 is enabled and it’s second row is selected, thereby

activating WL5). But, for the same row address A3A2A1A0

= ‘0101’ and MAJ = ‘1’, the address translator outputs

EN3EN2EN1EN0 = ‘1110’ and D7D6D5D4D3D2D1D0 =

‘010101XX’ (blue, red and green decoders are enabled and

second row of each of them is selected, thereby activating

WL5, WL6 and WL7). The address translator inputs MAJ
and A3A2A1A0 and generates D7D6D5D4D3D2D1D0 and

EN3EN2EN1EN0 to achieve this desired functionality for

all the 16 cases. With the address translator logic (88 tran-

sistors), the triple-row decoder requires 200 transistors, while

a regular 4:16 dynamic decoder (only single row activation)

requires 136 transistors, a 47% increase in the row-decoder

area. The address translator does not add any significant

latency to the decoding process. The decoder was designed

in 130 nm IHP process and its functionality was verified and

decoding latency was found to be 496 ps.

C. Area of time-based Sense Amplifier

Fig. 7: Layout of time-based SA.

In this work, the primary motivation for pioneering a

parallel-friendly gate was to exploit it to accelerate addition, by

executing gates in parallel. It must be emphasized that the main

drawback of RRAM based in-memory adders is their latency

– numerous cycles of Boolean operations (NAND, NOR,

IMPLY) are needed to perform addition, when compared to

CMOS. To evaluate the number of gates that can be executed

in parallel, we evaluated the area of the time-based SA. The

time-based SA of [17] could sense the BL voltage without an

op-amp, and, this was an important reason for adopting it for

our majority gate (conventional SAs use operational amplifier,

which consume huge silicon area). The layout of the time-

based SA of Fig.3 is drawn in Fig.7 and occupies an area of

20 × 3 = 60 µm2. It must be noted that this area estimate does

not include the area of the delay element since it is shared by

all the SA in the array. (tdelay in Fig.3 is implemented as series

of inverters with MOS capacitive load between them). From

[20], the layout of a single 1T–1R cell occupies 450 nm ×
450 nm = 0.2 µm2 in 130 nm (12.4 F 2). If the SA is stacked

along its height of 3 µm, eight columns can share a SA. This

means that the number of majority gates that can be executed

in parallel in an array is the number of columns divided by a

factor of 8 i.e. 32 gates can be executed simultaneously in a

256×256 array, 8 gates in a 64×64 array etc.

D. Energy for in-memory operations

To assess the energy required for computation, we first

calculate the energy required for each logic operation. We

calculate the energy for a single majority operation, as

EMAJ = VDD

∫ tREAD

0

IREAD · dt+ VDD

∫ tREAD

0

ISA · dt

(1)

where IREAD is the current injected into the 1T–1R cell (see

Fig. 3), ISA is the current consumed by the time-based SA

and tREAD is the READ cycle duration. It must be noted that

in Eq. 1, tREAD was 20 ns and IREAD was 35 µA in our

simulations in IHP’s 130 nm CMOS process. The energy for

a single majority operation, EMAJ = 1.98 pJ. The energy for

the NOT operation is the same as the energy to read a single

bit, and it was calculated to be ENOT = 1.24 pJ. ENOT is

smaller than EMAJ because, IREAD was smaller (22 µA) for

NOT and READ, where a single bit is read. The energy to

write a bit, EWRITE = Vcell ×
∫ tWRITE

0
IWRITE .dt, where

tWRITE was 100 ns in our simulation (although switching

time is ≤ 10 ns for these devices, tWRITE was set to 100 ns
to account for worst-case scenarios). EWRITE was calculated

to be 11 pJ.

IV. EIGHT-BIT ADDER IN 1T–1R ARRAY

A. Parallel-prefix adder using majority logic

Parallel-prefix (PP) adders are a family of adders originally

proposed to overcome the latency incurred by the rippling

of carry in CMOS-based adders. The regular structure of the

memory array and the proposed parallel-friendly majority gate

can be combined to implement PP adders in the memory

array. PP adders have a ‘carry-generate block’ followed by

a ‘sum-generate block’ (Fig. 8). The ‘carry-generate block’

can generate the carry ‘ahead’ and is known to reduce the

latency to O(log n), for n-bit adders. Kogge-Stone, Ladner-

Fischer, Brent-Kung and the like, are examples of PP adders.

For this work, we choose Ladner-Fischer since it minimizes

logical depth at the cost of fan-out (fan-out of a gate translates

to WRITE, as will be elaborated in section IV-B). Since

majority gate is the basic building block for many emerging

nanotechnologies, prior works [11], [12] have formulated such

PP adders in terms of majority gates. The carry-generate and

sum-generate blocks for an eight-bit adder in majority logic

are derived from [11], [12] (Fig. 8). For an eight-bit adder, the

logical depth is six levels of majority gates and one level of

NOT gates, and at most eight gates are needed simultaneously

in each level.

B. Mapping of the eight-bit LF adder to 1T–1R array

In this section, we map the eight-bit Ladner-Fischer adder

structure of Fig. 8 to a 1T–1R array, using the proposed logic

family, and elaborate the sequence of operations. Since the

proposed gates are not stateful4, the output of the majority

4In memristive logic, a logic family is said to be stateful if both the
input and output of a computation are represented as resistance of the
RRAM/memristor [7]

a
0
b

0
a

1
b

1
 C

in
a

3
b

3
a

2
b

2
a

5
b

5
a

6
b

6
a

4
b

4
a

7
b

7

 C
out

 c
7

c
6

c
5

c
4

c
3

c
2

c
1

 a
0
b

0

 C
in

 S
0

 a
1
b

1

 S
1

 c
1

 a
2
b

2

 S
2

 c
2

 a
3
b

3

 S
3

 S
4

 c
4

 c
3

 a
4
b

4
 a

5
b

5

 S
5

 a
6
b

6

 S
6

 S
7

 c
7

 c
6

 a
7
b

7

 c
5

 C
out

1 2 3 4 5 6 7 8

 9 10

 11 12 13 14 15 16

 17 18 19 20

 21 22 23 24 25 26 27 28

 29 30 31 32 33 34 35 36

1

2

3

4

6

7

5

Sum Generate block

C
in

A(a
n-1

a
n-2

 . . . a
1
 a

0
)

B (b
n-1

b
n-2

 . . . b
1
 b

0
)

Sum (S
n-1

S
n-2

 . . . S
1
 S

0
)C

out

Carry
Generate
Block

Fig. 8: Eight-bit PP adder (Ladner-Fischer)expressed as 7 levels of
majority and NOT gates [11], [12]. Majority gates 1–20 constitute
carry generate block and 21–36 constitute sum generate block.

gate (voltage) needs to be written into the array as inputs to

the next logic level. We assume a 5×65 processing area (to

store the intermediate results of the computation), which is

initialized to logic ‘0’, i.e., all cells are in LRS. Further, we

assume that the two numbers to be added (a7a6a5a4a3a2a1a0,

b7b6b5b4b3b2b1b0 and Cin) are arranged in the processing area

as depicted in Fig. 9. To minimize latency, we map the adder

in a way such that all the majority gates in a logic level (see

Fig. 8) are executed simultaneously in a READ operation (see

Fig. 9). In a 1T–1R array, HRS→ LRS transition (SET process

when the conductive filament is created) is accomplished by

applying two pulses simultaneously to the WL and BL,

while SL is grounded. LRS→ HRS transition (RESET process

when the filament is ruptured) is accomplished by applying

two pulses simultaneously to the WL and SL, while BL is

grounded. This is because a voltage of opposite polarity is

needed across the RRAM cell to break the filament. Hence,

SET and RESET cannot be performed on the same row

simultaneously. Therefore, writing multiple bits to a row is

usually done in two steps, i.e, to write ‘1010’, first ‘ 0 0’ is

written by SET process and then ‘1 1 ’ is written by RESET

process. In our mapping, multiple bits can be written in a

single cycle since the 5×65 processing array is initialized

to ‘0’. The contents of the array during the seven levels

are depicted in Fig. 9. As enumerated in Fig.9, two eight-

bit numbers can be added by a sequence of read and write

operations, requiring a total of 19 steps (6 Majority, 2 NOT

and 11 write cycles). The proposed approach is one of the

fastest implementation of eight-bit adder in RRAM array, with

only one other work [2] reporting a lower latency (Table III).

The proposed method naturally enables parallel-prefix ad-

dition by ‘reading’ majority simultaneously from columns of

data. Therefore, the number of steps to compute eight-bit

addition, in a RRAM array is shortened, as summarized in

Table III. For our eight-bit adder, the energy consumption,

calculated from simulations, was 631 pJ (36 majority, 8 NOT

and 50 WRITE operations). In the Table III, we have not

compared the energy for computation since they are either

1
1

SA
1-8

1.Majority at

 (1:1,9,17,25,33,41,49,57)

2.write (m
7
m

1
m

1
m

5
) at (1:2,50,58,65)

3.write (m
8
m

2
m

2
m

6
) at (2:2,50,58,65)

4.write (m
3
m

4
m

3
m

4
) at (3:34,42,50,58)

2

3

4

5

1 2 3 4.. 9 10 11 ..

SA
9-16

SA
17-24

SA
25-32

SA
33-40

SA
41-48

SA
49-56

SA
57-64

SA
65-

17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

a
7
 0 0 a

7
 a

0
 0 a

5
 a

2
 0 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 0 a

5
 a

1
 0 0 0 0

b
7
 0 0 b

7
 b

0
 0 b

5
 b

2
 0 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 0 b

5
 b

1
 0 0 0 0

a
6
 C

in
 0 b

6
 C

in
 0 a

4
 0 0 b

4
 0 0 a

2
 0 0 b

2
 0 0 a

0
 0 0 b

0
 0 0 0 0

 m
1
 m

2
 m

3
 m

4
 m

5
 m

6
 m

7
 m

8

1

5.Majority at (1:2,10)

6.Write (c
1
c

2
c

2
) at (3:1,18,65)

2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

 a m
7
 0 a

7
 a

0
 0 a

5
 a

2
 0 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

 b
7
 m

8
 0 b

7
 b

0
 0 b

5
 b

2
 0 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

a
6
 C

in
 0 b

6
 C

in
 0 a

4
 0 0 b

4
 0 0 a

2
 m

3
 0 b

2
 m

4
 0 a

0
 m

3
 0 b

0
 m

4
 0 0 0

 c
2
 c

1

1

7.Majority
 at (1:18,34,42,50,58,65)

8.write (c
4
c

4
c

4
c

4
c

3
)

at (3:3,11,19,26,34)

9.write (m
11

m
13

m
3
) at (1:3,11,19)

10.write (m
12

m
14

m
4
) at (2:3,11,19)

2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

a
7
 m

7
 0 a

7
 a

0
 0 a

5
 a

2
 0 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

b
7
 m

8
 0 b

7
 b

0
 0 b

5
 b

2
 0 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

c
1
 C

in
 0 b

6
 C

in
 0 a

4
 c

2
 0 b

4
 0 0 a

2
 m

3
 0 b

2
 m

4
 0 a

0
 m

3
 0 b

0
 m

4
 0 c

2
 0

 c
3
 m

13
 m

14
m

11
 m

12

 c

4

1

11.Majority at (1:3,11,19,26)

12.write (c
7
c

2
c

4
c

6
c

3
c

5
c

1
C

out
)

at (4:1,18,26,34,41,51,57,65)

2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

 a
7
 m

7
 m

11
 a

7
 a

0
 m

13
 a

5
 a

2
 m

3
 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

b
7
 m

8
 m

12
 b

7
 b

0
 m

14
 b

5
 b

2
 m

4
 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

c
1
 C

in
 c

4
b

6
 C

in
 c

4
 a

4
 c

2
 c

4
 b

4
 c

4
 0 a

2
 c

3
 0 b

2
 m

4
 0 a

0
 m

3
 0 b

0
 m

4
 0 c

2
 0

 C
out

 c
7

 c

6
 c

5

1

2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

 a
7
 m

7
 m

11
 a

7
 a

0
 m

13
 a

5
 a

2
 m

3
 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

b
7
 m

8
 m

12
 b

7
 b

0
 m

14
 b

5
 b

2
 m

4
 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

 c
1
 C

in
 c

4
b

6
 C

in
 c

4
 a

4
 c

2
 c

4
 b

4
 c

4
 0 a

2
 c

3
 0 b

2
 m

4
 0 a

0
 m

3
 0 b

0
 m

4
 0 c

2
 0

 c
1

c

4

c
2

c

3

c
7

c
6

c
5

C
out

13.NOT at (3:1,11,18,34)

14.write (c
1
 c

3
c

4

c

2
)

 at (3:10,18,41,57)

1
2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

 a
7
 m

7
 m

11
 a

7
 a

0
 m

13
 a

5
 a

2
 m

3
 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

b
7
 m

8
 m

12
 b

7
 b

0
 m

14
 b

5
 b

2
 m

4
 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

c
1
 C

in
 c

4
b

6
 c

1
c

4
 a

4
 c

3
 c

4
 b

4
 c

4
 0 a

2
 c

3
 0 c

4
 m

4
 0 a

0
 m

3
 0 c

2
 m

4
 0 c

2
 0

 c
7

c

6

c
5

C

out

c
7

c
6 c

5

15.NOT at (4:1,34,51,65)

16.write (C
out

 c
5

c
7

c

6
)

 at (3:1,26,34,51)

1
2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..

 a
7
 m

7
 m

11
 a

7
 a

0
 m

13
 a

5
 a

2
 m

3
 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

 b
7
 m

8
 m

12
 b

7
 b

0
 m

14
 b

5
 b

2
 m

4
 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

 C
out

C
in
 c

4
b

6
 c

1
c

4
 a

4
 c

3
 c

4
 b

4
 c

5
 0 a

2
 c

7
 0 c

4
 m

4
 0 a

0
 m

3
 c

6
 c

2
 m

4
 0 c

2
 0

c
7

c
6 c

5

C
out

17.Majority
 at (1:1,10,18,26,34,41,51,57)

18.write (m
21

m
28

m
26

m
24

m
22

m
25

m
23

m
27

)

 at (5:1,10,18 ,26,34,41,51,57)

 m
21

 m
28

 m
26

 m
24

 m
22

 m
25

 m
23

 m
27

C
in

c
3

c
1

c
4

c
3

c
2 C

out

C
in

C
in

C
in

C
in

C
in

C
in

1
2

3

4

5

1 2 3 4.. 9 10 11 .. 17 18 19 .. 25 26 27 ... 33 34 35 ... 41 42 43 ... 49 50 51 ... 57 58 59 ... 65 66 ..
 a

7
 m

7
 m

11
 a

7
 a

0
 m

13
 a

5
 a

2
 m

3
 a

5
 a

4
 0 a

3
 a

6
 0 a

3
 a

6
 0 a

1
 m

1
 a

5
 a

1
 m

1
 0 m

5
 0

b
7
 m

8
 m

12
 b

7
 b

0
 m

14
 b

5
 b

2
 m

4
 b

5
 b

4
 0 b

3
 b

6
 0 b

3
 b

6
 0 b

1
 m

2
 b

5
 b

1
 m

2
 0 m

6
 0

 C
out

C
in
c

4
b

6
 c

1
c

4
 a

4
 c

3
 c

4
 b

4
 c

5
 0 a

2
 c

7
 0 c

4
 m

4
 0 a

0
 m

3
 c

6 c
2
 m

4
 0 c

2
 0

c
7

c
6 c

5

 S
7
 S

0
 S

2
 S

4
 S

6
 S

3
 S

5
 S

1

C
in

c
3

c
1

c
4

c
3

c
2 C

out
m

21
m

28
m

26
m

24
m

22
m

25
 m

23
m

27

19.Majority
 at (3:1,10,18,26,34,41,51,57)

Eight-bit SUM

STEPS

c
2

c
4

c
3

c
1

c
2

c
4

c
3

 0 0 0

 0 0 0 0 0 0

 0 0

 0 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0 0

 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0

 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0

 0 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0

 0 0 0

 0 0 0 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0 0 0 0

 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 0

 0

 0 0

 0 0 0 0 0 0

 0 0 0 0

 0 0

 0 0 0 0

 0 0 0 0

 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

 0 0 0

2

3

4

5

5

6

7

Fig. 9: Mapping of the logic levels 1 to 7 of Fig.8 to 1T–1R array. All the majority gates in a level are executed in parallel (shaded yellow).
mi represent the output of the ith majority gate and ci is the carry generated during parallel-prefix addition (denoted green since it is read
as a ‘voltage’ and then written into the array).

not reported [2] or reported for another RRAM technology

[22]. Depending on the RRAM technology in which the adder

is implemented/simulated, the energy will differ (switching

energy depends on HRS, LRS and switching times which

varies from few ns to even 1 µs). Therefore, it would be unfair

to compare the energy of computation across different RRAM

technologies. However, the latency can be a good measure of

energy comparison since, for each logic primitive, we mention

what is the operation performed in each step. It is reasonable to

expect the proposed adder to require a large array area (5×65)

since it executes multiple gates in parallel. However, it must

be emphasized that for a holistic area comparison between

adders, both the array area (memory cells) and the increased

peripheral circuit area must be considered [7].

TABLE III: Comparison of eight-bit adders in RRAM array

Primitive Array Latency Area Comment/Ref

IMPLY 1S-1R 58
steps

72
cells

Each step is IMPLY opera-
tion [21]

NOR 1S-1R 38
steps

19×22 Each step has one or more
NOR operations [22]

Majority 1S-1R 48∗

steps
8×3 Each step is majority (Fig.1

(a)) or READ [22]
OR/AND 1S-1R 37

steps
64
cells

Each step has one or more
OR/AND operation [23]

ORNOR 1S-1R 31
steps

54
cells

Each step has one or more

ORNOR/IMPLY [24]
Majority+NOT 1T-1R 19

steps
5×65 Each step is majority/NOT or

WRITE (this work)

XOR∗∗ 1T-1R 16
steps

three
1×8

Each step is XOR/READ [2]

∗ Latency is calculated as 24 RM3 (Resistive Majority) instructions in [22],
where each RM3 consists of a READ followed by majority of Fig.1 (a)
∗∗ XOR gate of [2] is not parallel-friendly and consequently multiple gates
cannot be executed in parallel in the array (to circumvent this, [2] has used
multiple arrays). Furthermore, XOR is not functionally complete and has
to be used in conjunction with other gates to implement other arithmetic
circuits. In contrast, majority+NOT is functionally complete and can be
implemented with minimal peripheral overhead in the proposed method.

V. CONCLUSION

A memristive logic family formulates a functionally

complete Boolean logic with a memristive device

(RRAM/PCM/STT-MRAM) as the primary switching

device. The proposed method of implementing a majority and

NOT gate in a 1T–1R array forms a new memristive logic

family. The majority gate can be implemented in a 1T–1R

array without necessitating any major change in the peripheral

circuit (except the row decoder which needs to be modified

to activate three rows simultaneously). Majority logic can

be combined with parallel-prefix techniques to design fast

adders, and the proposed gate can be used to implement them

in memory arrays, with minimum latency.

ACKNOWLEDGMENT

John Reuben was partially supported by Emerging Talents

Initiative (ETI) of Friedrich-Alexander-Universität Erlangen-

Nürnberg (FAU). REFERENCES

[1] B. Chen, F. Cai, J. Zhou, W. Ma, P. Sheridan, and W. D. Lu, “Efficient
in-memory computing architecture based on crossbar arrays,” in 2015

IEEE International Electron Devices Meeting (IEDM), Dec 2015, pp.
17.5.1–17.5.4.

[2] Z. Wang, Y. Li, Y. Su, Y. Zhou, L. Cheng, T. Chang, K. Xue, S. M.
Sze, and X. Miao, “Efficient implementation of boolean and full-
adder functions with 1t1r rrams for beyond von neumann in-memory
computing,” IEEE Transactions on Electron Devices, vol. 65, no. 10,
pp. 4659–4666, Oct 2018.

[3] S. Hu, Y. Li, L. Cheng, Z. Wang, T. Chang, S. M. Sze, and X. Miao,
“Reconfigurable boolean logic in memristive crossbar: The principle and
implementation,” IEEE Electron Device Letters, vol. 40, no. 2, pp. 200–
203, Feb 2019.

[4] B. C. Jang, Y. Nam, B. J. Koo, J. Choi, S. G. Im, S.-H. K. Park, and
S.-Y. Choi, “Memristive logic-in-memory integrated circuits for energy-
efficient flexible electronics,” Advanced Functional Materials, vol. 28,
no. 2, p. 1704725, 2018.

[5] W. Chen, W. Lin, L. Lai, S. Li, C. Hsu, H. Lin, H. Lee, J. Su, Y. Xie,
S. Sheu, and M. Chang, “A 16mb dual-mode reram macro with sub-
14ns computing-in-memory and memory functions enabled by self-
write termination scheme,” in 2017 IEEE International Electron Devices

Meeting (IEDM), Dec 2017, pp. 28.2.1–28.2.4.

[6] H. Li, Z. Chen, W. Ma, B. Gao, P. Huang, L. Liu, X. Liu, and J. Kang,
“Nonvolatile logic and in situ data transfer demonstrated in crossbar
resistive ram array,” IEEE Electron Device Letters, vol. 36, no. 11, pp.
1142–1145, Nov 2015, doi: 10.1109/LED.2015.2481439.

[7] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. Ali, P.-E. Gaillardon,
and S. Kvatinsky, “Memristive logic: A framework for evaluation
and comparison,” in Power And Timing Modeling, Optimization and

Simulation (PATMOS), September 2017, pp. 1–8.
[8] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive

switching devices,” Nature Electronics, vol. 1, pp. 333 – 343, 2018.
[9] N. Talati, R. Ben-Hur, N. Wald, A. Haj-Ali, J. Reuben, and S. Kvatinsky,

mMPU—A Real Processing-in-Memory Architecture to Combat the von

Neumann Bottleneck. Singapore: Springer, 2020, pp. 191–213.
[10] L. Amarú, P. Gaillardon, and G. De Micheli, “Majority-based synthesis

for nanotechnologies,” in 2016 21st Asia and South Pacific Design

Automation Conference (ASP-DAC), Jan 2016, pp. 499–502.
[11] G. Jaberipur, B. Parhami, and D. Abedi, “Adapting computer arithmetic

structures to sustainable supercomputing in low-power, majority-logic
nanotechnologies,” IEEE Transactions on Sustainable Computing, vol. 3,
no. 4, pp. 262–273, Oct 2018.

[12] V. Pudi, K. Sridharan, and F. Lombardi, “Majority logic formulations for
parallel adder designs at reduced delay and circuit complexity,” IEEE

Transactions on Computers, vol. 66, no. 10, pp. 1824–1830, Oct 2017.
[13] P. Gaillardon, L. Amaru, A. Siemon, E. Linn, R. Waser, A. Chattopad-

hyay, and G. De Micheli, “The programmable logic-in-memory (plim)
computer,” in 2016 Design, Automation Test in Europe Conference

Exhibition (DATE), March 2016, pp. 427–432.
[14] S. Shirinzadeh, M. Soeken, P. Gaillardon, and R. Drechsler, “Logic

synthesis for rram-based in-memory computing,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1422–1435, July 2018, doi: 10.1109/TCAD.2017.2750064.

[15] D. Bhattacharjee, A. Easwaran, and A. Chattopadhyay, “Area-
constrained technology mapping for in-memory computing using reram
devices,” in 2017 22nd Asia and South Pacific Design Automation

Conference (ASP-DAC), Jan 2017, pp. 69–74.
[16] J. Reuben, D. Fey, and C. Wenger, “A modeling methodology for

resistive ram based on stanford-pku model with extended multilevel
capability,” IEEE Transactions on Nanotechnology, vol. 18, pp. 647–
656, 2019.

[17] Q. Trinh, S. Ruocco, and M. Alioto, “Time-based sensing for reference-
less and robust read in stt-mram memories,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3338–3348,
Oct 2018.

[18] J. Reuben and D. Fey, “A time-based sensing scheme for multi-level
cell (mlc) resistive ram,” in 2019 IEEE Nordic Circuits and Systems

Conference (NORCAS): NORCHIP and International Symposium of

System-on-Chip (SoC), 2019, pp. 1–6.
[19] L. Amarú, P. E. Gaillardon, and G. D. Micheli, “Majority-inverter

graph: A new paradigm for logic optimization,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 5, pp. 806–819, May 2016.

[20] A. Levisse, B. Giraud, J. . Noel, M. Moreau, and J. . Portal, “Rram
crossbar arrays for storage class memory applications: Throughput and
density considerations,” in 2018 Conference on Design of Circuits and

Integrated Systems (DCIS), Nov 2018, pp. 1–6.
[21] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.

Weiser, “Memristor-based material implication (imply) logic: Design
principles and methodologies,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 22, no. 10, pp. 2054–2066, Oct 2014.
[22] J. Reuben, N. Talati, N. Wald, R. Ben-Hur, A. H. Ali, P.-E. Gaillardon,

and S. Kvatinsky, A Taxonomy and Evaluation Framework for Memris-

tive Logic. Cham: Springer International Publishing, 2019, pp. 1065–
1099.

[23] A. Siemon, S. Menzel, D. Bhattacharjee, R. Waser, A. Chattopadhyay,
and E. Linn, “Sklansky tree adder realization in 1s1r resistive switching
memory architecture,” The European Physical Journal Special Topics,
vol. 228, no. 10, pp. 2269–2285, 2019.

[24] A. Siemon, R. Drabinski, M. J. Schultis, X. Hu, E. Linn, A. Heittmann,
R. Waser, D. Querlioz, S. Menzel, and J. S. Friedman, “Stateful three-
input logic with memristive switches,” Scientific Reports, vol. 9, no. 1,
p. 14618, 2019.

