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e extensive applications of support vector machines (SVMs) require e�cient method of constructing a SVM classi�er with high
classi�cation ability. 
e performance of SVM crucially depends on whether optimal feature subset and parameter of SVM can
be e�ciently obtained. In this paper, a coarse-grained parallel genetic algorithm (CGPGA) is used to simultaneously optimize the
feature subset and parameters for SVM. 
e distributed topology and migration policy of CGPGA can help �nd optimal feature
subset and parameters for SVM in signi�cantly shorter time, so as to increase the quality of solution found. In addition, a new �tness
function, which combines the classi�cation accuracy obtained from bootstrap method, the number of chosen features, and the
number of support vectors, is proposed to lead the search of CGPGA to the direction of optimal generalization error. Experiment
results on 12 benchmark datasets show that our proposed approach outperforms genetic algorithm (GA) based method and grid
search method in terms of classi�cation accuracy, number of chosen features, number of support vectors, and running time.

1. Introduction


e overwhelming amount of data that is currently available
in any �eld provides great opportunities for researchers
to obtain knowledge that is impossible to obtain before.
However, the enormous amount of data also requires the
ability of e�ciently extracting the essential knowledge from
existing data and generalizing the obtained knowledge to the
future unseen new data. Support vector machines (SVMs),
proposed by Vapnik [1], have become the references for
many classi�cation problems because of their exibility,
computational e�ciency, and capability of handling high
dimensional data. Despite all the promising results that SVMs
provided, it is still a challenge to e�ciently construct a
SVM classi�er which can provide accurate prediction on
the unseen new samples. 
is so-called generalization ability
crucially depends on two tasks, namely, feature selection and
parameter optimization [2–4].

Feature selection is used to identify a subset of available
features which is most essential for classi�cation. Feature
selection is important for a variety of reasons, including
generalization performance, computational e�ciency, feature

interpretability, and learning convergence [5–7]. Classi�-
cation problems typically involve a number of features.
However, not all of these features are equally important for
a speci�c task. By extracting the essential information from a
given dataset while using the smallest number of features, one
can save signi�cant computation time and build classi�ers
that have better generalization ability.

Along with feature selection, parameter optimization is
another key factor that a�ects the generalization ability of
SVMs. Proper parameter setting can not only improve the
classi�cation ability of a learned SVM model, but also lead
to an e�cient classi�cation on the unseen new samples.

e parameters that need to be optimized include the error
penalty parameter � and the kernel function parameter,
such as parameter � for the Gaussian kernel function. 
e
performance of a SVM largely depends on the choice of
parameter. 
us, the selection of parameter is an important
research topic in the study of SVMs [8–13].

Both feature selection result and parameter setting have
signi�cant impact on the accuracy and e�ciency of SVMs.
Besides, the choice of feature selection and the setting
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of parameter are inuenced by each other, and indepen-
dently performing these two tasks might result in a loss
of classi�cation ability [2, 4]. Motivated by these views,
the trend in recent years is to turn these two tasks into a
multiobjective optimization problem so that global search
algorithms, such as genetic algorithm (GA) [2, 14, 15], particle
swarm optimization (PSO) [3], and ant colony optimization
(ACO) [4], can be used to jointly perform these two tasks.
However, jointly performing these two tasks results in a
largely expanded solution space, and it requires strong search
ability to �nd optimal feature subset and parameter for SVMs.
Besides, given the fact that training SVM even only once
needs a great deal of computations, it will be computationally
infeasible to apply these global search algorithms into practi-
cal use, when the number of training samples increases.


e aimof this paper is to present an e�cient and e�ective
method of constructing SVM classi�er, so that SVMs can
be applied into wider range of practical use and provide
promising results. In this paper, a coarse-grained parallel
genetic algorithm (CGPGA) is used to jointly select feature
subset and optimize parameters for SVMs. 
e key idea of
CGPGA is to divide the whole GA population into several
separate subpopulations, and each subpopulation can search
the whole solution space in parallel way. A�er every certain
number of generations, best individual of each subpopulation
will migrate to other subpopulations. 
e distributed topol-
ogy and the migration policy can signi�cantly accelerate the
process of feature selection and parameter optimization, so as
to increase classi�cation accuracy of SVM.

Another key issue addressed in this paper is the design of
a proper �tness function which can be used to assess the true
generalization ability of learned SVM and direct the search
of CGPGA to the direction of optimal generalization error.
An essential part in model selection process (i.e., choosing
one classi�er over another) is to evaluate the performance
of classi�ers and choose the best one. However, the classi�er
derived from the training data is o�en overoptimistic, due to
overspecialization of the learning algorithm to the data [16].
In this paper, a new �tness function, which combines clas-
si�cation accuracy obtained from k-fold bootstrap method,
the number of chosen features, and the number of support
vectors, is proposed to measure the generalization ability
of learned SVM. Experiments on 12 benchmark datasets
show that our proposed method not only achieves higher
classi�cation accuracy, smaller feature subset, and smaller
number of support vectors, but also takes signi�cantly shorter
processing time.


e remainder of this paper is organized as follows. A
brief introduction to the SVM is given in Section 2. Section 3
introduces basic concept of parallel genetic algorithms. Sec-
tion 4 gives a detailed description of our proposed approach.

e results of our evaluation are given in Section 5. Section 6
concludes this paper.

2. Support Vector Machines

2.1. Linear SVM. First, we briey describe the SVM formu-
lation. SVM is designed for binary-classi�cation problems.
Given the training data (��, ��), � = 1, . . . , �, �� ∈ 	� and

�� ∈ {+1, −1}, where 	� is the input space, �� is the sample
vector, and �� is the class label of ��. A hyperplane in the

feature space can be described as 
�� + � = 0, where 
 is
normal to the hyperplane and � is a scalar. 
e distance �(�)
from a point �� in the feature space to the hyperplane is

� (�) = 
��� + �‖
‖ , � = 1, . . . , �. (1)

When the training samples are linearly separable, the
SVM �nds an optimal separating hyperplane that maximizes
the minimum value of �(�), by solving the following opti-
mization problem:

min
�,�

12 ‖
‖2
s.t. �� (
��� + �) ≥ 1, � = 1, . . . , �. (2)

For linearly nonseparable case, there is no such a hyper-
plane that is able to classify every training sample correctly.
In order to relax the separable case to nonseparable one, the
slack variable �� is introduced into the optimization problem:

min
�,�

12 ‖
‖2 + �
�∑
�=1
��

s.t. �� (
��� + �) ≥ 1 − ��, � = 1, . . . , �,
(3)

where parameter � is the tuning parameter used to balance
the margin and the training error. Optimization problem (3)
can be solved by introducing the Lagrange multipliers �� that
transform it to dual form:

max� �(�) = �∑
�=1
�� − 12

�∑
�,	=1

���	���	���	
s.t. 0 ≤ �� ≤ �, � = 1, . . . , �

�∑
�=1
���� = 0.

(4)

In the classi�cation phase, a sample � in the feature space
is assigned a label � according to the following equation:

� = sign( ∑

� :SV

������� + �) . (5)

2.2. Kernel. When linear SVM cannot provide satisfactory
performance, nonlinear SVM is suggested. 
e basic idea
is to map �� by a nonlinearly mapping function �(��) to
a higher dimensional feature space, in which the data are
sparse and possiblymore separable. Based on the observation
that only the inner product of two vectors is needed in (4)
and (5), the mapping is o�en not explicitly given. Instead,
a kernel function �(��, �	) = �(��) ⋅ �(�	) is incorporated
to simplify the computation of the inner product value. 
e
kernel function �(��, �	) = �(��) ⋅ �(�	) gives the inner
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product value of �� and �	 in the feature space. Choosing a
kernel function is therefore choosing a feature space and the
decision function (5) becomes

� = sign( ∑

� :SV

�����(��, �) + �) . (6)

Among a variety of kernel functions available, the gener-
ally used kernel functions include

Linear kernel:�(��, �	) = �� ⋅ �	,
Polynomial kernel:�(��, �	) = (1 + �� ⋅ �	)� ,
Gaussian kernel:�(��, �	) = exp (−� ������� − �	�����2) .

(7)

3. Parallel Genetic Algorithms

GAs are stochastic search algorithm based on principles of
natural selection and recombination. 
ey attempt to �nd
optimal solution to the problem at hand by manipulating a
population of candidate solutions. 
e population is evalu-
ated and the best solutions are selected to reproduce andmate
to form the next generation. A�er a number of generations,
good traits dominate the population, resulting in an increase
in the quality of the solutions. In most cases, GAs are e�cient
enough to �nd acceptable solutions. However, while being
applied to more complex problems, they su�er the risk of
premature convergence to local optima [17] and large increase
in the time required to �nd adequate solutions.


ere have been multiple e�orts [18, 19] to make GAs
faster, and one of themost promising choices is to use parallel
implementations. 
e basic idea behind most PGAs is to
divide the whole population into several subpopulations and
evolve all the subpopulations simultaneously using multiple
processors. APGAbasically consists of variousGAs, and each
processes a part of population or independent subpopulation,
with or without communication between them. 
erefore,
PGAs can increase the diversity of population and signi�-
cantly reduce computation time.


ere are three main types of PGAs: (1) master-slave
type, (2) �ne-grained type, and (3) coarse-grained type [18].
A master-slave PGA acts like GA and does not a�ect the
behavior of the algorithm. 
is model uses a single global
population and the �tness evaluation is distributed among
available processors or cores. Since, in this type of PGAs,
selection and crossover consider the entire population, it is
also known as global PGA. As for the �ne-grained algorithm,
the population is divided into a large number of very small
subpopulations, which are maintained by di�erent proces-
sors. In ideal case, each processor will be allocated only one
individual.
ismethod is rarely utilized; due to that it strictly
requires too many processors and high communication cost
for each generation.


e coarse-grained type is also known as distributed GA
or island model, which divides the whole population into
a few large subpopulations. Genetic operators are carried
out within the subpopulation. A�er several generations,

GA1 GA2

GA3GA4

Migration path

Individual
Genetic algorithm

Subpopulation

GA

Figure 1: 
e schematic of coarse-grained type PGA.
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Figure 2: 
e chromosome comprises three parts, parameters C
and � and feature subset.

individuals from di�erent subpopulations will be exchanged
and form the new subpopulations for further evolution.

e exchange process is named as “migration,” which is
the essential part inside the CGPGA that could diversify
the population and prevent the premature convergence. 
e
schematic of CGPGA is given in Figure 1.

In this paper, CGPGA is applied to simultaneously select
feature subset and optimize parameters of SVM. 
e whole
population is divided into several subpopulations. Each of
these subpopulations will take an independent evolution,
and di�erent evolutionary strategies will be applied on them.
A�er every certain number of generations, the best individual
will migrate to every other subpopulation and replace the
worst one.

4. Method


e chromosome design, �tness function, and system archi-
tecture of the proposed CGPGA are described as follows.

4.1. Chromosome Design. 
e design of chromosome is an
important step for the proposedCGPGAmethod. In this step,
Gaussian kernel is chosen as kernel function of SVM clas-
si�er. Each chromosome comprises three parts, parameters
C and � and feature subset. Binary code is used to present
the chromosome. Figure 2 shows the binary chromosome
representation of our design.

In Figure 2, �1� ∼ ���� represents the binary code of

parameter �, �1 ∼ ��� represents the binary code of
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parameter �, !� is the number of bits representing parameter�, and ! is the number of bits representing parameter �. Note
that the selection of !� and ! is according to the compu-
tational precision. Besides, the binary code representing the
genotype of the parameters (�, �) should be transformed into
phenotype by

" = min
�

+ max� −min�2� − 1 × #, (8)

where p is phenotype (true value) of bit string, min� is
minimum value of the parameter, max� is maximum value of
the parameter, # is decimal value of bit string, and n is length
of bit string.

In the coding of feature subset, “1” indicates that the
feature is selected and “0” indicates that the feature is not
selected. !� represents the number of features in the original
dataset.

4.2. Fitness Function. Fitness function is an essential part of
CGPGA. It evaluates the performance of each individual in
the population and predicts which one has the best general-
ization ability. 
e classi�cation accuracy obtained from k-
fold bootstrap method, the number of selected features, and
the number of support vectors in a SVM model are used to
construct a �tness function. All these measurements have
been proven to be good indicators of good generalization
ability [5, 20, 21]. A high �tness value will be assigned to the
individual with high classi�cation accuracy, small number of
chosen features, and small number of support vectors. 
e
�tness function is

�tness = �� × Accuracy +��� +��V,
� = 1 − (∑���=1 %�)!� ,

V = 1 − (∑��=1 &�)� ,
(9)

where �� is classi�cation accuracy weight, Accuracy is
average prediction accuracy of 5-time bootstrap,�� is weight
of feature score, � is score of chosen feature subset, and for %�
“1” indicates that �th feature is selected. “0” indicates that �th
feature is not selected. !� is the number of original features,�� is weight of support vector value and is set to 0.05 in
our experiment, v is score of support vectors number, for &�
“1” indicates that �th sample is a support vector, and l is the
number of samples in training set.

4.3. System Architectures of the Proposed CGPGA-SVM.
System architecture of CGPGA-based feature selection and
parameters optimization method is shown in Figure 3. Main
steps are described as follows.

(1) Input Dataset. Input dataset includes all the labeled
samples. It will be randomly split into a training set and a
testing set using bootstrap method. Training set is used to

construct the SVMmodel while testing set is used to test the
generalization ability of learned SVM.

(2) Preprocess the Data. Data preprocess is important for a
variety of reasons. It can avoid attributes in greater numeric
ranges dominating those in smaller numeric ranges and
increase SVM accuracy [2]. Each feature of the dataset can
be linearly scaled to the range [0, 1] by

V
� = V −min

max −min
, (10)

where V is the original value, V� is the scaled value, max is
upper bound of the feature value, and min is the low bound.

(3) Initialize the Population. Generally, the original popula-
tion is randomly generated. However, in our experience, it
is useful to randomly generate the genotype of parameters� and � but select all the features. 
is will make the �rst
generation of CGPGA run like a grid search procedure.

(4) Decide the Topology andMigrating Strategy.
e important
characteristics of CGPGA are the use of a few relatively
large subpopulations and migration. By dividing the whole
population into several separate subpopulations, one can
apply di�erent searching strategies (i.e., di�erent crossover
rates and mutation rates) to di�erent subpopulations.

Speci�cally, the whole population will be divided into 2
subpopulations, and each subpopulation has 60 individuals.
A�er every 10 generations, the best individual in each
subpopulation will be sent to other subpopulations and
replace the worst individual. 
e purpose of this constant
communication is to ensure a good mixing of individuals.

(5) Apply Genetic Operation. Genetic operations, such as
selection, crossover, andmutation, will be applied to generate
better solutions. However, in a CGPGA, genetic operations
will be carried out within the subpopulation, which means
di�erent subpopulations will take di�erent crossover rates
and mutation rates.

(6) Get the Parameters. 
is step refers to converting each
parameter from its genotype into phenotype. 
e converting
of parameters can be done by (8).

(7) Select Feature Subset. According to the binary code
of feature set in each chromosome, related features can
be chosen and unrelated features will be discarded. A�er
training dataset and testing dataset discard unrelated features,
they can be used to construct the SVM model and test the
generalization ability of learned SVM.

(8) Evaluate the Individuals Using Bootstrap. Each individual
in the population refers to a certain pair of parameters (�, �)
and a certain choice of feature selection. To obtain a reliable
performance estimate of this individual, bootstrap method
will be used ' times. During each phase of bootstrap, 50% of
the samples in the input dataset will be randomly chosen as
the training set, while the rest of samples will be chosen as the
testing set. Training set is used to construct the SVM model
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Fitness evaluation�e �owchart of proposed CGPGA
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Figure 3: System architecture of the proposed method.

with the chosen parameters and feature subset, and testing set
is used to predict the classi�cation ability of learned SVM.
e' classi�cation accuracies from the k-time bootstrap then can
be averaged to produce a single classi�cation accuracy. A�er
obtaining the classi�cation accuracy, the �tness value can be
calculated by (9). It must be mentioned that the evaluation of
an individual is independent from the rest of the population,
and there is no need to communicate during this phase.
us,
the evaluation of individuals is parallelized by assigning a
fraction of the population to each of the available processors.

(9) Termination Criteria. In our approach, if the generation
number reaches generation 100 or the highest �tness value
of the whole population does not improve during the last 30
generations, process will stop.

5. Experiments

5.1. Experiment Settings. 
eused platform is Intel CoreCPU
i7-3770 (3.4GHz, 4 cores), 4 G RAM, Windows 7 operating
system. 
e development environment is MATLAB (2012a).

e so�ware of SVM is Libsvm (3.1) [22]. In our experiment,

the search range of parameter� is set to [0.01, 2048], while the
search range of parameter � is set to [0.0001, 10]. 
e whole
population will be divided into 2 subpopulations, and each
subpopulation has 60 individuals. A�er every 10 generations,
the best individual in each subpopulation will be sent to
other subpopulations and replace the worst individual. 
e
crossover rate and mutation rate of �rst subpopulation are
0.8 and 0.05. 
e crossover rate and mutation rate of second
subpopulation are 0.7 and 0.02.

To evaluate the classi�cation ability of the proposed
approach in di�erent classi�cation tasks, 12 real world
datasets from the UCI database [23] have been adopted.

eir number of classes, number of samples, and number of
original features are shown in Table 1.

In order to show the e�ectiveness of our proposed
method, we conduct several comparisons between our pro-
posed method and two other methods, including grid search
method and GA-SVM [2]. Speci�cally, grid search is a widely
used method of parameter optimization. In most cases,
grid search can get a satisfactory result. GA-SVM, proposed
by Huang and Wang [2], is the most widely used feature
selection and parameter optimization method for SVMs. It
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Table 1: Datasets from UCI repository.

ID Name Number of classes Number of instances Number of features

1 Ionosphere 2 351 34

2 Breast cancer 2 683 10

3 Australia 2 690 14

4 Diabetes 2 768 8

5 Vehicle 4 846 18

6 Vowel 11 990 13

7 Car 4 1,728 6

8 Splice 2 3,175 60

9 DNA 3 3,186 180

10 WaveForm 3 5,000 40

11 Svmguide1 2 7,089 4

12 Mushrooms 2 8,124 112

can deal with feature selection and parameter optimization
simultaneously and provide promising results.

To guarantee the result obtained by proposed method
is valid, we adopt k-fold cross validation. 
e dataset will
be partitioned into ' independent subsets randomly, and
the size of each subset is approximately equal. 
e k-fold
cross validation process is then repeated ' times, with each
of ' subsets being used exactly once as the testing dataset,
while the remaining (' − 1) datasets are used as a training
set. 
e training set will be used as the input dataset of
our proposed approach, and the performance of obtained
parameters and feature subset will be tested on the testing set.

e ' results from the folds then can be averaged to produce
a single estimation. In our experiment, ' is set to 10. 
e
evaluation procedure of our proposed approach using a 10-
fold cross validation is shown in Figure 4. Take the Australian
dataset as an example; the best pairs of parameters (�, �),
the classi�cation accuracy, the number of chosen features,
and the number of support vectors for each fold obtained by
our proposed approach and grid search method are shown in
Table 4.

5.2. Classi�cation Results. Table 2 gives the comparison of
our proposed approach CGPGA-SVM and GA-SVM [2].
Tenfold cross validation is used to estimate the classi�ca-
tion accuracy of each approach. 
e obtained classi�cation
accuracy is illustrated with the form of “average ± standard
deviation.” As shown in Table 2, our proposed approach
achieves higher classi�cation accuracies on 11 datasets, except
on “Svmguide1.”

Table 3 gives the experiment results of our proposed
approach and grid search. Tenfold cross validation is used
to estimate the classi�cation accuracy of each approach. 
e
obtained classi�cation accuracy is illustrated with the form of
“average ± standard deviation.” As we can see, the proposed
approach produces smaller feature number, and grid search
uses all the original features. Besides, the proposed approach
achieves higher classi�cation accuracy. To validate if this
higher classi�cation accuracy actually indicates stronger clas-
si�cation ability, we used nonparametric Wilcoxon-signed-
rank test for all the 12 datasets. As shown in Table 4, the

Table 2: Comparisons between CGPGA-SVM and GA-SVM.

Dataset CGPGA-SVM GA-SVM

Ionosphere 98.85 ± 2.01 98.03 ± 2.64

Breast cancer 98.53 ± 1.16 98.39 ± 1.75

Australia 90.13 ± 2.39 87.10 ± 2.64

Diabetes 81.76 ± 3.37 79.04 ± 2.44

Vehicle 86.05 ± 3.54 83.69 ± 2.64

Vowel 99.29 ± 0.68 98.58 ± 1.44

Car 99.83 ± 0.39 99.36 ± 0.51

Splice 92.66 ± 1.43 89.07 ± 1.81

DNA 96.79 ± 1.31 95.83 ± 1.01

WaveForm 87.81 ± 1.60 82.60 ± 2.56

Svmguide1 96.66 ± 0.76 96.69 ± 0.98

Mushrooms 100.0 ± 0.00 99.96 ± 0.06

" values for Splice, Svmguide1, and Mushrooms are larger
than the prescribed statistical signi�cance level of 0.05, but
all other " values are smaller than the signi�cance level of
0.05. Generally, compared with the grid search, the proposed
approach shows higher classi�cation ability and produces
smaller feature number.

5.3. Number of Support Vectors. 
e time taken for a SVM to
compute the class label of a new pattern is proportional to the
number of support vectors. A large number of support vectors
indicate a slow classi�cation on the new pattern. A small
number of support vectors can extend the application of SVM
to a wider �eld where classi�cation has to be done in great
speed.We compared the number of support vectors produced
by CGPGA-SVM, GA-SVM, and grid search method. Since
10-fold cross validation was proposed in our experiment, 10
SVMmodels will be constructed for each of the datasets. We
averaged the number of support vectors in 10 SVM models
and compared them in Figure 5. Two conclusions can be
drawn fromFigure 5. (1) Inmost cases, our proposedmethod
is capable of producing SVM with less support vectors than
GA-SVM and grid search method (except on dataset of
Svmguide1). (2)
e number of support vectors does not scale
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Figure 4: 
e procedure of experiment on the benchmark dataset using our proposed approach.
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Figure 5: Average number of support vectors obtained from 10-fold
cross validation.

with the number of training samples. In fact, the proportion
of support vectors in model produced by CGPGA-SVM was
maintained at a low level. 
is could enable the practitioners
to apply the SVM to wider �elds where classi�cation has to
be done in great speed, for example, online applications.

5.4. Computational Eciency. A serious limitation of global
search methods is that they involve high computational
complexity. By using parallelization strategy, our proposed
approach can signi�cantly reduce the running time, while
getting an enough adequate solution. We run our proposed
approach and GA-SVM on all 6 datasets and recorded the
average time involved in one generation of evolution. To get
a fair enough comparison, both our approach and GA-SVM
have 120 individuals in their populations. Table 5 gives the
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Table 3: Comparisons between CGPGA-SVM and grid search.

Dataset
CGPGA-SVM Grid search

p valuesTenfold cross validation
accuracy (%)

Number of
selected features

Tenfold cross validation
accuracy (%)

Number of
selected features

Ionosphere 98.85 ± 2.01 13.8 ± 3.46 93.16 ± 3.00 34.0 ± 0.00 0.005∗

Breast cancer 98.53 ± 1.16 2.60 ± 0.84 96.77 ± 1.81 10.0 ± 0.00 0.039∗

Australia 90.13 ± 2.39 5.10 ± 1.60 85.51 ± 4.46 14.0 ± 0.00 0.011∗

Diabetes 81.76 ± 3.37 3.90 ± 0.99 76.44 ± 3.74 8.00 ± 0.00 0.014∗

Vehicle 86.05 ± 3.54 10.3 ± 1.34 78.60 ± 3.29 18.0 ± 0.00 0.005∗

Vowel 99.29 ± 0.68 6.70 ± 0.48 98.88 ± 1.00 13.0 ± 0.00 0.037∗

Car 99.83 ± 0.39 6.00 ± 0.00 99.48 ± 0.51 6.00 ± 0.00 0.046∗

Splice 92.66 ± 1.43 26.7 ± 3.53 92.03 ± 1.52 60.0 ± 0.00 0.386

DNA 96.79 ± 1.31 87.1 ± 4.53 96.05 ± 1.09 180. ± 0.00 0.005∗

WaveForm 87.81 ± 1.60 21.1 ± 2.69 86.68 ± 1.47 40.0 ± 0.00 0.037∗

Svmguide1 96.66 ± 0.76 2.40 ± 0.52 96.32 ± 0.71 4.00 ± 0.00 0.594

Mushrooms 100.0 ± 0.00 42.5 ± 3.54 99.98 ± 0.04 112. ± 0.00 0.317

∗ indicates signi�cance at 0.005 level.

Table 4: Experiment results for Australian dataset using our proposed approach and grid search.

Fold number
Our proposed approach Grid search method

� � Number of
features

Number of
support
vectors

Accuracy (%) � � Number of
features

Number of
support
vectors

Accuracy

1 368.08299 1.48664 5 173 85.5072 32 0.125 14 202 82.6087

2 827.07180 1.65084 6 206 91.3043 0.5 2.0 14 324 89.8551

3 529.60439 0.32159 7 203 89.8551 0.5 1.0 14 261 86.7647

4 1845.7247 0.95494 3 198 94.2857 0.125 0.03125 14 499 81.1594

5 115.07262 4.63776 6 215 92.8571 512 0.0625 14 193 86.9565

6 347.31311 0.29031 7 197 89.8551 1024 0.03125 14 197 89.8551

7 379.01391 6.52218 3 214 89.7059 0.5 2.0 14 319 88.2353

8 131.80564 4.06696 5 204 90.0000 128 0.125 14 189 76.8116

9 584.01293 5.78718 3 229 88.2353 32 0.125 14 205 82.8571

10 74.464588 3.41797 6 188 89.7059 0.125 0.015625 14 504 90.0000

Avg 5.1 202.7 90.1312 14 289.3 85.5104

results. As we can see, on a common used 4-core CPU, our
approach takes signi�cant shorter time than GA-SVM.

6. Limitations and Conclusions


e overwhelming amount of data that is currently available
in any �eld poses new challenges for machine learning tech-
niques. To extract essential knowledge from these enormous
data and generalize obtained knowledge to the future unseen
new data, two problems must be e�ciently addressed for
SVM, namely, feature selection and parameter optimization.

e number of input features in a classi�er should be limited
without losing its predictive power.With a smaller feature set,
the classi�cation decision is more easily explained and can
be made in shorter time. Parameter optimization is another
important factor that a�ects the generalization ability of

SVMs. With a proper setting of parameters, the classi�cation
accuracy on the unseen new patterns can be ensured.


is work investigated a hybrid CGPGA-based model
that hybridized the coarse-grained parallel genetic algorithm
and support vector machines to maintain the classi�cation
accuracy with a small and suitable feature subset. 
e dis-
tributed topology and migration policy of CGPGA enable us
to search the solution space with di�erent search strategies in
parallel way, thereby providing strong search ability and high
e�ciency.

Experiment results obtained from several real world
datasets of UCI database showed promising performance
in terms of 10-fold accuracy, the size of selected feature
subset, the number of support vectors, and training time.

ey revealed that the proposed approach not only optimized
SVMs’ model parameters, but also correctly obtained the
discriminating feature subset in an e�cient way. Moreover,
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Table 5: Comparisons of computational e�ciency.

Dataset Proposed approach(s) GA-SVM (s) Speedup

Ionosphere 1.52 6.54 4.30×
Breast cancer 4.51 18.61 4.13×
Australian 15.98 70.68 4.42×
Diabetes 25.90 97.43 3.76×
Vehicle 12.50 57.41 4.59×
Vowel 12.40 52.37 4.22×
Car 64.39 256.26 3.98×
Splice 141.35 580.97 4.11×
DNA 253.59 1108.20 4.37×
WaveForm 202.05 846.59 4.19×
Svmguide1 480.78 2077.00 4.32×
Mushrooms 244.74 996.11 4.07×

the proportion of support vectors in model produced by our
method was maintained at a low level. 
is could result in
faster classi�cation on the unseen new pattern and extend the
applications of SVM towider �elds where classi�cation has to
be done in great speed.

Despite all of the promising results, our proposed work
also has its limitations. Training SVM is a computation-
intensive task. Our proposed work does not reduce the
number of SVMmodels constructed during the optimization
procedure or the time needed for training one SVM. 
e
acceleration is achieved by assigning multiple SVM learning
processes to each of the available processors, so that the
SVM learning processes can be done in parallel way and
the computational resources can be used in cost-e�cient
way.When the problem becomes large enough, our proposed
work may show its burden.
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