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Abstract
Background: Identification of coordinately regulated genes according to the level of their
expression during the time course of a process allows for discovering functional relationships
among genes involved in the process.

Results: We present a single class classification method for the identification of genes of similar
function from a gene expression time series. It is based on a parallel genetic algorithm which is
a supervised computer learning method exploiting prior knowledge of gene function to identify
unknown genes of similar function from expression data. The algorithm was tested with a set of
randomly generated patterns; the results were compared with seven other classification
algorithms including support vector machines. The algorithm avoids several problems associated
with unsupervised clustering methods, and it shows better performance then the other
algorithms. The algorithm was applied to the identification of secondary metabolite gene clusters
of the antibiotic-producing eubacterium Streptomyces coelicolor. The algorithm also identified
pathways associated with transport of the secondary metabolites out of the cell. We used the
method for the prediction of the functional role of particular ORFs based on the expression data.

Conclusion: Through analysis of a time series of gene expression, the algorithm identifies
pathways which are directly or indirectly associated with genes of interest, and which are active
during the time course of the experiment.

Background
Large scale technologies, such as DNA microarrays or pro-
teomics, provide biologists with the ability to measure the
expression levels of thousands of genes in a single experi-
ment. Both methods provide quantitative information
about the state of the cell regulatory networks at the
moment when the sample was collected. When a particu-
lar process is monitored over a longer period of time, sam-
ples can be collected in short time intervals. Such an

approach generates time series vectors for all detectable
genes or proteins, which record activity of the regulatory
networks involved in the observed process. Previous
experiments suggest that genes sharing similar functions
yield similar expression patterns in the microarray or pro-
teomic experiments [1]. Identification of genes that have
similar patterns of expression allow for the identification
of gene clusters controlled by the same regulator or the
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identification of processes parallel to the process in which
the gene of interest is involved.

So far the identification of specific patterns has been
achieved mostly by application of various clustering
methods [2-8], where all gene expression time series (pro-
files) were classified into disjoint groups according to a
predefined distance metric. The profiles similar to the pro-
file of the gene of interest are then identified as members
of these clusters. Also other approaches based on neural
networks [9-11], support vector machines [12-15], or
genetic algorithms [16], and others [17] were applied for
the classification of transcriptomic and proteomic data. A
comprehensive review on the analysis of time series gene
expression data was written by Bar-Joseph [18]. Classifica-
tion methods lead to the identification of genes associated
with the cell cycle [19,20], antibiotic biosynthesis [21] or
proteins involved in the stress response [22] to name a
few.

The classification of genes according to the shapes of their
expression profiles has thus become an important issue in
the field of systems biology, which allows for the identifi-
cation of coordinately controlled genes and their associ-
ated networks. With the accumulation of knowledge
about the role of individual genes, pathways and regula-
tory networks, it is possible to base the identification of
coordinately controlled genes on the previously known
roles of particular genes. Those genes then serve as tem-
plates for the identification of the other genes which are
co-expressed or controlled in the same way as the tem-
plate gene. In general, such a goal represents a supervised
single-class classification problem which was, in the field
of transcriptomics, addressed by support vector machine
algorithms for the classification of cancer tissue samples
[13-15]. Except for the work of Pan et al. [17] that used a
rule based system for the gene of interest search in a tran-
scriptomic database, Vohradsky [11] who applied neural
networks in the classification of a proteomic time series,
and Brown [12] who used SVM, a supervised method
based on the previous knowledge of the particular role of
a gene or a group of genes has not been reported. Pan et
al. identified genes with similar expression profile by
using modified Pearson correlation coefficient formula,
where a tested gene is compared with a template gene
expression profile. Here, we address this problem by uti-
lizing general geometrical concepts and genetic algo-
rithms.

Gene profiles can be viewed as points in multidimen-
sional space with the dimensionality given by the number
of measurements. Coordinately controlled genes form a
cluster in this space which is more or less separated from
the other points. This feature was utilized in cluster anal-
ysis which could successfully identify such genes if they

were sufficiently separated, otherwise the clustering failed.
In this paper, an initial set of genes that are known to
share the same function is used as a training set for the
suggested algorithm. These points are fitted with a hyper-
plane which is identified by the genetic algorithm. Other
genes are identified as points close to this hyperplane.

Genetic algorithms (GA) are computational methods
inspired by Darwinian evolution theory. The variable (or
variables) are coded into the vector which is called a chro-
mosome; an initial population of chromosomes is gener-
ated randomly. The evolution is performed in an iterative
manner where in each step the fitness of chromosomes is
evaluated and the population is altered by the operations
of crossover, mutation and selection.

Each chromosome can be thought of as a point in the
search space of the candidate solutions. The GA processes
populations of chromosomes, successively replacing one
population by another. The GA most often requires a fit-
ness function that assigns a score (fitness) to each chro-
mosome in the population. In crossover, the operator
randomly chooses a locus in the chromosome and
exchanges it between two chromosomes to create two off-
spring. Mutation randomly flips some of the bits in a
chromosome. The selection selects chromosomes for
reproduction according to their fitness. The fitter the chro-
mosome is, the higher the probability that it will be
selected for the next generation. The procedure iterates
until the desired fitness is reached or a predefined number
of iterations are reached. As the GA is a stochastic process
where the initial population is randomly created, and the
other operations are also random, usually several runs are
done for the same task and the results are evaluated.

In recent years, parallel computing has been applied in
evolutionary computing and it has shown not only
increased speed, but also the creation of high quality solu-
tions. The parallel scheme can be classified [23] into the
following: single population master-salve, multiple-pop-
ulation, fine-grained, and hierarchical hybrids. In this
paper, the island model (multiple-population) was
applied and we demonstrate here that it can solve the
problems better than the sequential GA.

The influence of the parameters of the GA was tested with
a set of artificial profiles with different levels of superim-
posed noise and different dimensions. The performance
of the algorithm was demonstrated using the analysis of
secondary metabolite gene clusters in the eubacterium S.
coelicolor. The data were obtained from [24].
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Results and discussion
Implementation of GA
a) Chromosome
Each chromosome was encoded as a fixed-length string of
(n + 1) real numbers (value encoding). The first n real val-
ues represented ui (i = 1..n); the last real value represented
v.

b) Control parameters of the algorithm
After extensive testing for different sizes of the template
vector, we chose the following values of the control
parameters, which gave satisfactory results: number of
generations = 500, population size = 1000, probability of
crossover = 0.9, probability of reproduction = 0.1. Muta-
tion was excluded from the scheme as it substantially
increased the computational requirements and did not
cause proportional improvement of the algorithm's per-
formance. The choice of parameters was thoroughly dis-
cussed in the conference papers of To et al. [25]

c) Fitness function
Each chromosome represented a hyperplane, i.e. each
chromosome of the initial population was created as a set
of (n + 1) real numbers whose values were within the
range [-1, 1] satisfying Eq. (5). Eq. (4) was used to calcu-
late the fitness value of each chromosome. The best chro-
mosome, i.e. the chromosome with the smallest value of
the fitness function, was selected.

d) Parallel scheme
We applied the parallel GA with the following parameters:
the ring topology, the migration rate was set to 5% to
10%, migration was executed every 10 generations, and
sub-population sizes were 500 for 2 islands and 260 for 4
islands.

Test using simulated data
The performance of the algorithm was tested by the appli-
cation of the algorithm to artificial random datasets with
different expression profile vector dimensions. The fitness
of the population was calculated according to Eq. 4. The
template patterns were created randomly and the training
set with 20 members from each of the template patterns
was created by adding random Gaussian noise to the tem-
plate profile. The creation of the artificial database (set B)
of the profile vectors and the search procedure is summa-
rized in the following steps:

Step 1. Random set R of 5000 n-dimensional expression
profiles was generated.

Step 2. Search pattern x was defined.

Step 3. 100 patterns were created by adding 50% Gaus-
sian noise to the search pattern x which generated a set of
patterns to be searched (C).

Step 4. Set C and R were mixed to form set B (5100 pro-
files).

Step 5. The algorithm was applied to search the set C
within the set B.

Performance of the algorithm was tested using two criteria
– sensitivity (Se) and specificity (Sp).

Where

- TP (true positive): the classifier predicts that the pattern is
in the set C and the pattern belongs to the set C.

- FP (false positive): the classifier predicts that the pattern is
in the set C but the pattern does not belong to the set C.

- |C|: total number patterns in set C (size of set C).

- |R|: total number of other patterns in set R (size of set R).

Results are summarized for the profiles of sizes |x| = 30
and 40 in Table 1 and 2. Patterns 1–3 mentioned in the
Table 1 are shown in Figure 1.

The execution time for one training loop with a training
set of size 250 is approximately 3s. For the streptomycetes
datasets, which are smaller, the execution time was below
1 s on a Pentium 4 2.4 GHz PC

Identification of secondary metabolite clusters in S. 
coelicolor
A transcriptomic dataset monitoring 9 time points in the
cell cycle of eubacterium Streptomyces coelicolor [21] was
chosen for evaluation of the algorithm. The database con-
tained temporal expression profiles of 5068 genes form-
ing a 5068 × 9 data matrix. Streptomycetes are known as
producers of antibiotics and other secondary metabolites.
About 22 gene clusters encoding the secondary metabo-
lites were identified by genome sequence analysis [26].
Identification of such gene clusters from time series exper-
iments serve as a good example of a case where the utili-
zation of a single class classification algorithm is essential.
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Table 1: Comparison of classification performance of the parallel and sequential GA with other classification algorithms |x| = 30.

Pattern Sequent GA Parallel GA (2 islands) Parallel GA (4 islands) Binary SVM Single SVM LogitBoost LR LDA LS

Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

1 1 0.9874 1 0.988 1 0.9902 1 0.987 0.95 0.8576 1 0.837 1 0.8168 1 0.8664 0.9875 0.8666

2 1 0.9764 1 0.9772 1 0.9784 1 0.9766 0.95 0.6488 0.9875 0.8296 1 0.2624 0.9375 0.8766 0.9 0.8768

3 1 0.9644 1 0.966 1 0.9708 1 0.9682 0.8375 0.9378 0.9625 0.9018 0.9625 0.8876 0.95 0.9016 0.9375 0.9018

Sequential GA, parallel GA (2 and 4 islands mode) and support vector machines (SVM binary and single), logitBoost, linear discriminant analysis (LDA), logistic regression (LR), and linear least squares 
regression (LS) for three sets of template vectors of different dimensions were tested. Se and Sp are defined in Eq. 7 and 8.

Table 2: Comparison of classification performance of the parallel and sequential GA with other classification algorithms |x| = 40.

Pattern Sequent GA Parallel GA (2 islands) Parallel GA (4 islands) Binary SVM Single SVM LogitBoost LR LDA LS

Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

01 1 0.9786 1 0.9862 1 0.9922 1 0.9884 0.925 0.959 1 0.4906 1 0.6602 1 0.2076 0.9625 0.6234

02 1 0.9836 1 0.9858 1 0.9866 1 0.9556 0.8375 0.9918 0.9875 0.6846 1 0.326 1 0.2152 0.975 0.8174

03 1 0.9928 1 0.995 1 0.9972 1 0.9844 0.8875 0.8452 - - 1 0.7042 1 0.3732 0.3375 0.3866

Sequential GA, parallel GA (2 and 4 islands mode) and support vector machines (SVM binary and single), logitBoost, linear discriminant analysis (LDA), logistic regression (LR), and linear least squares 
regression (LS) for three sets of template vectors of different dimensions were tested. Se and Sp are defined in Eq. 7 and 8.
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We found that when the data matrix was subjected to sin-
gular value decomposition and the first two eigenvectors
were subtracted from the matrix, the members of two
chromosomal clusters coding for the polyketide antibiotic
actinorhodin, the so-called RED complex, and another
secondary metabolite cluster specifying the biosynthesis
of siderofore coelichelin, exhibited increased similarity
(data not shown). Nonetheless, even after such cleaning,
the correlation coefficient between the members of the
two groups still ranged from -0.92 to 0.67 for the RED
gene cluster (-0.99 to 0.83 for the coelicheline cluster)
indicating rather high variability in the set which made a
search of similar profiles according to the level of correla-
tion or other distance metrics virtually impossible. Not
surprisingly, clustering methods failed in the identifica-
tion of the gene clusters. Individual gene expression pro-
files of the eleven gene clusters analyzed are shown in
Figure 2.

The profiles of these two clusters were used as training sets
for GA and through application of the trained algorithms
to the whole database of 5068 profiles other genes with
kinetics similar to these two templates were identified.
The procedure was performed 200 times with random ini-
tiation of the chromosomes in each run. All genes identi-
fied in each run were scored. This means that if a gene was
identified in every run, it got a score of 200. If it was not
identified at all, it got a score of zero. Genes were sorted
according to their scores and those having scores higher
than the threshold were selected. Sorted score values for
each gene for both training sets are plotted in Figure 3.
Table 3 summarizes the results of the identification of
common antibiotic and secondary metabolic clusters with
the algorithm trained for the two training sets.

Close inspection of Table 3 shows that genes with an
expression profile similar to the RED cluster represented
genes of the CAD complex almost exclusively where 28
out of 39 genes were found similar to the RED cluster. This
template was found only rarely in other gene clusters. Sur-
prisingly, three genes of the second template, the coeli-
cheline gene cluster, were also found to be similar to the
RED template. Comparison of the individual profile
shapes of the two gene clusters (see Figure 2) shows that
such overlap is possible. Following the logic of the selec-
tion, the similar genes of the coelicheline template should
be found in the RED gene cluster. Indeed, two were found
(see Table 3).

The coelicheline template profiles were also found in two
gene clusters – deoxysugar synthase and desferioxamines.
Other gene clusters did not show a gene cluster specific
profile shape (see Figure 2) and the two template profiles
were not found among them, indicating a different con-
trol.

Other genes identified as similar to the two template gene
clusters are listed in Tables 1 and 2 [see additional file 1]
together with their function in the cell metabolism, as
defined by The Sanger Institute that sequenced the organ-
ism [27]. The threshold value (see above) for inclusion of
a gene to the search list was arbitrarily set to 200 for RED
and to 100 for coelicheline clusters respectively, generat-
ing output sets of similar sizes. It can be expected that
these genes are directly or indirectly associated with the
secondary metabolite production.

All together 135 genes were identified as similar to the
RED gene cluster. Out of these 89 were annotated, 9 were

Three 30 (a), and 40 (b) – dimensional patterns used to test the algorithmFigure 1
Three 30 (a), and 40 (b) – dimensional patterns used to test the algorithm. A training set of 20 patterns from each 
of the templates was created by adding 50% random Gaussian noise to these templates.

a

b

Pattern 01 Pattern 02 Pattern 03 

Pattern 01 Pattern 02 Pattern 03 
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not classified, most of them (46 genes, 58%), fell into a
group "Secondary metabolism" as expected. Second larg-
est group (14 genes, 18%) was associated with the cell
envelope. The remaining genes were associated with the
metabolism of small molecules, regulation and transport/
binding processes.

Huang et al. [21] using the same dataset identified, using
GABRIEL software [17], so called ECR genes i.e genes cor-
related with RED gene expression cluster. They were
(SCO6423, SCO6421, SCO6422, SCO4332, SCO2716,
SCO2518, SCO2517, SCO2519). Our algorithm identi-
fied none of them. In order to find the reason for such dif-
ference, we plotted the expression profiles of the RED

cluster genes together with the expression profiles of the
genes found by Huang et al. (plotted in red in Figure 4).
Figure 4 shows that the ECR genes follow the RED gene
profiles only in the early and late phases therefore our
algorithm could not identify them.

Using the coelicheline gene cluster as a training set, a total
of 97 genes were identified and annotated, of which 20
were not classified or were classified as "others". Out of
the remaining 77 genes, 24 (31%) were classified as "sec-
ondary metabolism" genes. The second largest group was
formed with 20 genes (26%) associated with membrane
function and building, similar to the previous case. As the
secondary metabolites have to be exported from the cell,

SVD corrected gene expression profiles of 11 antibiotic and secondary metabolite gene clustersFigure 2
SVD corrected gene expression profiles of 11 antibiotic and secondary metabolite gene clusters. The horizontal 
axis represents time points, whereas the vertical axis represents normalized gene expression level. Expression profiles of RED 
and coelicheline chromosomal clusters were used in training of the algorithm.
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Scores for identification of expression profiles using (a) coelicheline gene cluster profiles as a training set and (b) RED gene cluster profilesFigure 3
Scores for identification of expression profiles using (a) coelicheline gene cluster profiles as a training set and 
(b) RED gene cluster profiles. The procedure was performed 200 times with random initiation of the chromosome. If a 
profile was identified in each run it got a score of 200, if it was not found at all it got a score of zero. Vertical axis – scores, hor-
izontal axis – genes sorted according to decreasing scores.
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most of the gene clusters coding for their pathways
include also genes coding for membrane proteins. There-
fore identification of genes involved in cell wall function
is in good agreement with previous findings.

The remaining individual genes similar to the templates
were associated with transport, regulation and other dif-
ferent particular functions (Table 2 [see additional file 1]).
The association of the genes of the transport mechanism
can also be expected as the secondary metabolites have to
be exported out of the cell. This diversity can be caused by
true similarity of the regulation of different processes by
different regulators without any connection among the
corresponding networks. In individual cases, the similar-
ity to the given template can also be caused by experimen-
tal inaccuracies or noise which are both known to be
rather high in microarray experiments. Such cases have to
be assessed individually and where appropriately verified
by independent methods such as qPCR. More detailed
biological interpretation of the results is out of scope of
this paper.

Conclusion
The presented algorithm falls into a class of single-class
problems which has gained increasing attention in bioin-
formatics over the last few years (see e.g. [28]). For the sin-
gle-class problem, we want a given dataset to estimate a
subset such that the probability that a test point drawn
from the dataset lying outside of the subset equals some a
priori specified value between 0 and 1. The goal is to find
a function which is positive on the desired subset and zero
or negative on the complement. In this paper, we provide

evidence that the identification of a hyperplane using a
GA is quite suitable for this task, allowing for the identifi-
cation of user-defined gene expression time series tem-
plates in a large set of profiles.

The demand for the identification of user-defined tem-
plates of gene expression profiles increases with the avail-
ability of large-scale gene expression data when
microarray or proteomic experiments cover whole cell
cycles or other time evolving processes. The typical
genome size, and thus the number of genes immobilized
on a microarray, exceed tens of thousands. The number of
time series in an experiment also exceeds this number. To
search through such a database is a nontrivial task. With
the increasing knowledge about the regulation of gene
expression such datasets can be approached with existing
knowledge of the system. Therefore the initial classifica-
tion of the profiles into disjoint clusters can now be
replaced by targeted searches for genes which have kinet-
ics similar to the gene with already known function. Such
genes can be under the control of the same promoter, or
they can participate in the same regulatory process, or the
processes in which they are involved can be parallel to the
process represented by the genes of the training set. Their
identification is essential for elucidating both their con-
trol and their role in the studied process. In such cases
approaching the problem as a single-class problem is
appropriate.

Here we demonstrate that application of the algorithm
presented here, trained on one known gene cluster, can be
used in the search of other gene clusters of a similar type

Table 3: Results of the search of eleven secondary metabolic gene clusters of S. coelicolor using the GA algorithm trained with kinetic 
profiles of RED antibiotic and coelicheline gene clusters (in bold).

cluster SCO beginning SCO end n RED template % Coelicheline template %

CAD complex 3210 3249 39 28 72 2 5
whiE 5327 5350 5 0 0 0 0
RED 5877 5898 22 NA NA 2 9
desferioxamines 2782 2785 4 1 25 3 75
coelicheline 489 499 11 3 27 NA NA
TW95a 5314 5320 7 1 14 0 0
isorenicratein 185 191 7 0 0 0 0
eicosapentoic acid 124 129 6 0 0 0 0
NRPS 6429 6438 9 0 0 0 0
siderophore synthase 5799 5801 3 0 0 0 0
deoxysugar synthase 381 401 21 1 5 12 57

Gene clusters for act, coelibactine, tetrahydroxy naftalene, type I polyketide, chalcone synthase, sesquiterpene, type III fatty acid synthase were not 
present in the chip data matrix. Geosmine and butyrolactone represented only one gene and were therefore excluded from evaluation. SCO 
beginning and end represent beginning and end of the gene cluster on the chromosome, where n = number of genes in a gene cluster, RED 
template refers to the number of genes of a gene cluster identified using RED gene cluster as a training set, and coelicheline template refers to the 
number of genes of a gene cluster identified using the coelicheline gene cluster as a training set.
Page 8 of 13
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even when the variability of the correlation between the
members of the training set is quite high (see Results and
Discussion). Such variability makes identification based
on correlation or other distance metrics impossible. Com-
pared to other classifiers, our algorithm displays better
accuracy.

Besides the identification of known gene clusters in gene
expression data of a model organism S. coelicolor, which
confirm the capability of the method to identify known
patterns, new genes similar to the template gene clusters
were identified. As expected, most of them fall into a
group of genes of secondary metabolism located on differ-
ent parts of the chromosome. Their function can be
deduced from sequence similarity but it can not be proven

that the genes are controlled in the same way as the
known gene clusters. The method presented here provides
such evidence. In contrast with the genome annotation
methods which can identify potential gene clusters, this
method is capable of identifying pathways associated with
the searched function which are active. The algorithms
not only identify the genes of the main pathway, in this
case antibiotic biosynthesis, but also genes which are
associated with it. Here, the genes are those of the trans-
port mechanism or cell wall function. Therefore this
method allows the identification of whole active networks
participating in the expression of genes of interest. Results
showed that the method presented here is more powerful
in identification of associated pathways than other pat-
tern recognition algorithms and/or frequently used corre-

Expression profiles of RED gene cluster (black) and ECR genes identified by Huang et al. [21] (red)Figure 4
Expression profiles of RED gene cluster (black) and ECR genes identified by Huang et al. [21] (red).
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lation analysis. Also the application of this algorithm to a
less studied organism can lead to the identification of
unknown gene clusters and associated pathways.

In general the disadvantage of evolutionary methods is
the high computational requirement. We bypassed this
problem by the introduction of a parallel computational
scheme which greatly increases the speed of computation.
Moreover, the parallel scheme suggested here improves
the performance of the algorithm. Nowadays, multiproc-
essor machines or computer clusters are easily available
and the parallel programming is no longer only in the
domain of large computers. Therefore, implementation of
the parallel algorithm is feasible. In closing, the algorithm
presented here is very fast, and the execution of one run is
counted in seconds or fractions of seconds on an ordinary
PC.

Methods
The goal of the presented algorithm is the supervised iden-
tification of expression profiles. In this paper, the term
'expression profile' or just 'a profile' means a time series
vector of individual mRNA amounts measured during a
particular process x = [x1, x2,..., xn]T, where n is the number
of measurements. In principle, the profile can be any vec-
tor formed by a series of measurements. Initially, a small
set of gene profiles that are known to be coordinately con-
trolled is selected. This set is called a training set. During
the training process, the genetic algorithm identifies a
hyperplane which has a minimum distance from the vec-
tors of the training set. Then all profiles from the database,
which have the same or smaller distance from the hyper-
plane than the training set, are selected. Thus, these pro-
files have the desired similarity to the template profile.

Concepts from geometry
Hyperplane
Let u1, u2, ..., un, v ∈ R, where at least one of the ui is
nonzero. The set of all points x = [x1, x2,..., xn]T that satisfy
the linear equation

is called a hyperplane in the space Rn. We may describe the
hyperplane by

{x ∈ Rn : uT x = v} (2)

Distance from the point to the hyperplane
Given a point a = [a1, a2, ..., an]T and a hyperplane H = {x
∈ Rn : uT x = v}, the distance from the point to the hyper-
plane is defined as

Algorithm
Let define a training set as a set of similar pattern TS = {xi
∈ Rn, i = 1..m}. As the gene expression profile similarity
does not depend on the amplitude, all profiles are nor-
malized to the interval <0,1> (x ⇐ x/max (x)). The main
idea of the algorithm is to find a hyperplane H that can
contain all points of the training set. In other words, find
a hyperplane H that minimizes the total distance from all
points in the training set to the hyperplane H. Therefore it
is necessary to find

z = [u1, u2, ..., un, v]T which minimizes

Subjected to:

To solve the above nonlinear programming problem, we
used a genetic algorithm.

Genetic algorithm
The initial population of chromosomes is created ran-
domly. Here we use value encoding of the variables to the
chromosome where each chromosome contains real
numbers representing the vector z. Using the crossover
and reproduction operations a new generation is created.
The fitness of the chromosomes is evaluated using the fit-
ness function defined by Eq. 4. The whole scheme can be
summarized into the following steps:

(1) Generate an initial population of random chromo-
somes.

(2) Iteratively perform the following sub-steps until the
termination criterion is satisfied:

(a) Calculate the fitness function of each chromosome in
the population.

(b) Create a new population of chromosomes by applying
the crossover and reproduction operations with probabil-
ity given by the fitness of individual chromosomes.
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(3) The best chromosome, i.e. the chromosome with the
lowest value of the fitness function appearing in any gen-
eration, is selected as the result of the GA. This represents
the best approximation of the solution.

Each chromosome of the population is a candidate solu-
tion of the problem. The termination criterion can be
either a maximum number of generations which are
allowed to be generated or a desired minimal value of the
fitness function.

The training process was performed 100 times for ran-
domly set initial values of parameters and a parameter set
giving the best fitness level was selected.

Implementation for large templates
With increasing profile vector length, the demands for the
memory and computer time increase. Additionally the
probability of obtaining better fitness by reproduction
and crossover decreases with the length of the template.
Therefore to get the desired accuracy it is necessary to
compute more generations and thus to increase the
processing time. We have adapted the algorithm to
improve the computational efficiency in the following
way:

Let assume that the dimension of vector x is r. We split the
problem rs of classification of pattern x into k disjunctive
sub problems rsi (i = 1, k) whose dimensions are ri and

.

The results for k sub-patterns are then combined accord-
ing to Eq. (6) to get the result for the original pattern:

where:

- rsi is the resulting set of the problem of the i-th sub pat-
tern and rs is the resulting set of the original pattern.

In principle, it means searching the best hyperplanes for
all subintervals of dimension r.i. Their combination is
then used to search the profiles similar to the desired pat-
tern from the database.

Parallel scheme
Among the four major types of parallel GAs mentioned in
the introduction, the island model is rather complicated
but shows very good performance [23]. In the island
model, the population is partitioned into sub-popula-
tions. Each sub-population, called an island, is assigned to

one processor and runs independently. After a predefined
number of generations, islands exchange part of the chro-
mosomes with each other, this process is called migration.
This model has been applied to many problems [29-31]
and has shown that not only does it increases the perform-
ance of the algorithm, but it also gives better results than
the sequential algorithm. In order to use the island model,
we had to determine its parameters i.e. topology, migra-
tion rate, migration frequency, and sub-population size.

The topologies which can be considered are the following:
grid, ring, and random. de Vega [31] introduced a random
topology and compared it with the grid and ring topolo-
gies. He concluded that if all other parameters are kept
fixed, there is no significant difference among the topolo-
gies. By testing four model problems, he showed that the
best migration rate is between 5% to 10% of the sub-pop-
ulation of chromosomes and the best convergence results
appear when about 10% from each sub-population was
exchanged every 5–10 generations.

Calegari [30] showed that the performance of the algo-
rithm grows with an increasing number of islands imple-
mented and a decreasing number of chromosomes in
each single island.

Classification
After the hyperplane H is identified, the distances of all
points of the training set to the resulting hyperplane H is
calculated. Then the maximum distances fmax(xi, i = 1..m)
of the points of the training set from the hyperplane are
calculated. If the distance d(a, H) of the tested point a
from the resulting hyperplane H lies between the hyper-
plane and fmax, then the tested point a is defined as similar
to the training set TS. A more sophisticated criterion based
on the analysis of distribution of the distances of the
points of the training set from the hyperplane can be
implemented. Instead we chose the simplest criterion
mentioned above which despite its simplicity gives satis-
factory results. The procedure gradually tests all profiles in
the database and selects those satisfying this criterion.
Selectivity of the procedure is given by the mutual similar-
ity of the profiles in the training set. The more similar the
profiles in the training set are, the more selective the algo-
rithm is.

The training set can be created from a selection of profiles
in the database or by defining one profile where the train-
ing set is created by adding random noise to this profile.

The algorithm presumes that the expressions of the indi-
vidual genes of the database were measured at the same
time points. If the measurement time points differ for dif-
ferent genes, it is necessary prior to the analysis to align
the time scales of the different measurements. The way to
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align such experiments was thoroughly discussed in the
work of Bar-Joseph [18].

User interaction
When the classification of patterns has to incorporate par-
ticular knowledge which is either difficult to cast into an
algorithm or which is intuitive or difficult to define, user
interaction with the pattern search algorithm is imple-
mented into the process. We wanted to incorporate an
undefined expert knowledge by introducing the user's
decision to each iteration step during the training process.
The intervention of the user is based on a modification of
the training set after each run. From the point of view of
the GA, the task is further specified between two consecu-
tive runs by the user through the addition of new profiles
or the removal of selected profiles from the training set.
The whole procedure involving the user interaction is
summarized below:

Step 1. The user inputs the patterns in the training set. The
patterns can be selected either from a database of patterns
or alternatively, the user defines one template profile and
the training set is created by adding random noise to this
template.

Step 2. GA finds the hyperplane.

Step 3. Max and min distance (fmax(xi, i = 1..m) and
fmin(xi, i = 1..m)) of the members of the training set from
the hyperplane are identified.

Step 4. The algorithm searches through the database and
the patterns whose distance from the hyperplane is within
<fmin(xi, i = 1..m), fmax(xi, i = 1..m) > are selected.

Step 5. The selected patterns are checked by the user. The
misclassified (false positive) ones are removed from the
set. The set becomes a new training set.

Step 6. If new correct patterns are found go to step 2, or
else terminate.

The overall scheme including pattern splitting is given in
Figure 5.
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