
Distribution Category:

Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-94/23

A Parallel Genetic Algorithm

for the Set Partitioning Problem

by

David Levine

Mathematics and Computer Science Division

May 1994

This work was supported by the Office of Scientific Computing, U.S. Department of Energy,

under Contract W-31-109-Eng-38. It was submitted in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy in Computer Science in the Graduate School

of the Illinois Institute of Technology, May 1994 (thesis adviser: Dr. Tom Christopher).

MASTER 4)
A J .0 . - % H&MRW1S

Iu

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

LIST OF TABLES . vi

LIST OF ABBREVIATIONS.. viii

LIST OF SYMBOLS ix

ABSTRACT..... xi

CHAPTER

I. INTRODUCTION.. 1

1.1 The Set Partitioning Problem...............1

1.2 Parallel Computers.................. .. 4

1.3 Genetic Algorithms 5

1.4 Thesis Methodology 13

II. SEQUENTIAL GENETIC ALGORITHM 16

2.1 Test T.'roblems . 16

2.2 The Genetic Algorithm 18

2.3 Local Search Heuristic 21

2.4 Genetic Algorithm Components 26

2.5 Discussion . 42

III. PARALLEL GENETIC ALGORITHM 44

3.1 The Island Model Genetic Algorithm 44

3.2 Parameters of the Island Model 45

3.3 Computational Environment 49

iii

3.4 Test Problems . 50

3.5 Parallel Experiments 52

3.6 Discussion . 55

IV. CONCLUSIONS . 66

V. FUTURE WORK 68

ACKNOWLEDGMENTS . 71

REFERENCES.. 72

iv

LIST OF FIGURES

Figure

1.1.

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

3.1.

Information

V

Simple Genetic Algorithm..

.

Steady-State Genetic Algorithm . .

.

ROW Heuristic

.

Structure for Storing Row and Column

Example A Matrix before Sorting .

.

Example A Matrix after Sorting . .

.

Modified Chavatal Heuristic

Gregory's Heuristic

.

One-Point Crossover

.

Two-Point Crossover

.

Uniform Crossover 0....

Island Model Genetic Algorithm .

.

Page

6

21

23

26

. . 27

28

. . . . 33

. . . . 34

. . . . 37

. . . . 37

. . 38

47

LIST OF TABLES

Table

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

vi

Page

Sequential Test Problems . 17

Sequential Test Problem Solution Characteristics 17

Comparison of the Use of Elitism in GRGA 19

Number of Constraints to Improve in the ROW Heuristic 24

Choice of Constraint to Improve in the ROW Heuristic 25

Best Improving vs. First Improving in the ROW Heuristic . . . 25

Best Improving vs. First Improving in SSGAROW 25

Comparison of Penalty Terms in SSGA 30

Comparison of Penalty Terms in SSGAROW 30

Comparison of Fitness Techniques in SSGAROW 32

Comparison of Selection Schemes in SSGAROW 33

Comparison of Initialization Strategies in SSGA 35

Comparison of Initialization Strategies in SSGAROW 36

Linear Programming Initialization in SSGAROW 36

Comparison of Crossover Operators Using SSGAROW 39

Parameterized Uniform Probability Using SSGAROW 40

Table Page

2.17. Comparison of Crossover Probabilities in SSGAROW 40

2.18. Comparison of Algorithms . 43

3.1. Migrant String Selection Strategies 48

3.2. String Deletion Strategies . 49

3.3. Comparison of Migration Frequency 49

3.4. Parallel Test Problems . 53

3.5. Solution Characteristics of the Parallel Test Problems 54

3.6. Percent from Optimality vs. No. Subpopulations 56

3.7. Best Solution Found vs. No. Subpopulations 57

3.8. First Feasible Iteration vs. No. Subpopulations.. 58

3.9. First Optimal Iteration vs. No. Subpopulations 59

3.10. No. of Infeasible Constraints vs. No. Subpopulations 61

3.11. Comparison of Solution Time 63

vii

LIST OF ABBREVIATIONS

Abbreviation

CPGA

FPGA

GA

GRGA

IMGA

IP

LP

MIMD

OR

PE

PGA

SCP

SIMD

SISD

SPP

SSGA

SUS

Term

Coarse-grained parallel genetic algorithm

Fine-grained parallel genetic algorithm

Genetic algorithm

Generational replacement genetic algorithm

Island model genetic algorithm

Integer programming

Linear programming

Multiple-instruction multiple-data

Operations research

Processing element

Parallel genetic algorithm

Set covering problem

Single-instruction multiple-data

Single-instruction single-data

Set partitioning problem

Steady-state genetic algorithm

Stochastic Universal Selection

viii

LIST OF SYMBOLS

Symbol Meaning

aij A binary coefficient of the set partitioning matrix.

Ci The cost coefficient of column j.

f The genetic algorithm evaluation function.

A row (constraint) index.

A column (variable) index.

M The number of rows (constraints) in the problem.

n The number of columns (constraints) in the problem.

Pb Probabilistic binary tournament selection parameter.

Pc Crossover probability.

Pm Mutation probability.

Pu Uniform crossover probability parameter.

ri The set of columns such that r C R, and x = 1.

Iri| The number of columns in the set ri.

t A time index, usually the generation of the genetic algorithm.

U The genetic algorithm fitness function.

Xj A binary decision variable.

x A vector of binary decision variables; also used as a bit string.

Z The set partitioning objective function.

Bi The set of column indices that have their first one in row i.

I The set of row indices.

J The set of column indices.

N The genetic algorithm population size.

P The set of row indices that have a one in column j.

|P| The size of the set P.

PAVO The average value of the JP1|.

ix

Symbol Meaning

PMAX The maximum value of the IPiI.

P(t) The genetic algorithm population at time t.

Ri The set of column indices that have a one in row i.

IRi The size of the set Ri.

RAVG The average value of the IRil.

Ai Scalar multiplier of the evaluation function's penalty term.

Aj The change in z when complementing the value of column j.

Aj, The change in z when xj is set to one.

x

ABSTRACT

In this dissertation we report on our efforts to develop a parallel genetic algorithm

and apply it to the solution of the set partitioning problem-a difficult combinatorial

optimization problem used by many airlines as a mathematical model for flight crew

scheduling. We developed a distributed steady-state genetic algorithm in conjunction

with a specialized local search heuristic for solving the set partitioning problem. The

genetic algorithm is based on an island model where multiple independent subpop-

ulations each run a steady-state genetic algorithm on their own subpopulation and

occasionally fit strings migrate between the subpopulations. Tests on forty real-world

set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel

computer. We found that performance, as measured by the quality of the solution

found and the iteration on which it was found, improved as additional subpopula-

tions were added to the computation. With larger numbers of subpopulations the

genetic algorithm was regularly able to find the optimal solution to problems having

up to a few thousand integer variables. In two cases, high-quality integer feasible

solutions were found for problems with 36,699 and 43,749 integer variables, respec-

tively. A notable limitation we found was the difficulty solving problems with many

constraints.

xi

X11

CHAPTER I

INTRODUCTION

In the past decade a number of new and interesting methods have been proposed

for the solution of combinatorial optimization problems. These methods, such as ge-

netic algorithms, neural.networks, simulated annealing, and tabu search are based on

analogies with physical or biological processes. During the same time period parallel

computers have matured to the point where, at the high end, they are challenging the

role of traditional vector supercomputers as the fastest computers in the world. On a

different front, motivated primarily by significant economic considerations, but also

by advances in computing and operations research technology, many major airlines

have been exploring alternative methods for deciding how flight crews. (pilots and

flight attendants) should be assigned in order to satisfy flight schedules and minimize

the associated crew costs. Our objective in this dissertation was to develop a paral-

lel genetic algorithm and apply it to the solution of the set partitioning problem-

a difficult combinatorial optimization problem that is used by many airlines as a

mathematical model for assigning flight crews to flights.

This chapter introduces the major-components of this work-the set partitioning

problem, parallel computers, and genetic algorithms-and then discusses our goals.

Chapter II describes the sequential genetic algorithm and local search heuristic used.

as the basis for the parallel genetic algorithm. Chapter III presents the parallel genetic

algorithm and describes the computational experiments we performed. Chapter IV

presents our conclusions. Chapter V suggests areas of further research.

The outline of this chapter is as follows. In the first section we describe the set

partitioning problem. We give a mathematical statement of the problem, discuss

its application to airline crew scheduling, and review previous solution approaches.

The second section briefly discusses parallel computers. The third section describes

genetic algorithms: their application to function optimization, previous approaches
to constrained problems, and different parallel models. The last section discusses the

motivation for pursuing this work and our specific goals.

1.1 The Set Partitioning Problem

1.1.1 Mathematical Statement. The set partitioning problem (SPP) may
be stated mathematically as

n

Minimize z = cx(1.1)
j=1

subject to

Zaiix = 1 for i=1,...,m (1.2)
j=I

1

x, = Oor 1 for j=1,...,n,

where a,2 is binary for all i and j, and c > 0. The goal is to determine values for the

binary variables xj that minimize the objective function z.

The following notation is common in the literature [24, 46]t and motivates the

name "set partitioning problem." Let I = {1,... ,m} be a set of row indices, J =

{ 1,...,n} a set of column indices, and P = {P,...,P,,}, where P = {i E Ihai3 =

1}, j E J. P3 is the set of row indices that have a one in the jth column. |PjI is the

cardinality of P. A set J C J is called a partition if

U P =' (1.4)

j, k E J*,j 6k=>PiflPk= 0. (1.5)

Associated with any partition J is a cost given by jEJ' c,. The objective of the

SPP is to find the partition with minimal cost.

The following additional notation will be used later on. R, = {j E J~ai, = 1} is

the (fixed) set of columns that intersect row i. ri = {j E R|xj = 1) is the (changing)

set of columns that intersect row i included in the current solution. Aj, is the change

in z as a result of setting xi to one. , is the change in z when complementing

xj. Aj, and A measure both the cost coefficient, c, and the impact on constraint

feasibility (see Section 2.4.3.)

1.1.2 Applications. Many applications of the SPP have been reported in the

literature. A large number of these are scheduling problems where given a discrete,

finite set of solutions, a set of constraints, and a cost function, one seeks the schedule

that satisfies the constraints at minimum cost. A partial list of these applications
includes crew scheduling, tanker routing, switching circuit design, assembly line bal-
ancing, capital equipment decisions, and location of offshore drilling platforms [6].

The best-known application of the SPP is airline crew scheduling. In this for-
mulation each row (i = 1,... , m) represents a flight leg (a takeoff and landing) that
must be flown. The columns (j = 1,..., n) represent legal round-trip rotations (pair-

ings) that an airline crew might fly. Associated with each assignment of a crew to a

particular flight leg is a cost, c.

The matrix elements a,3 are defined by

J 1 if flight leg i is on rotation

0 otherwise.

tNumbers in square brackets refer to the numbered entries in the references.

2

(1.3)

Airline crew scheduling is a very visible and economically significant problem.

The operations research (OR) literature contains numerous references to the airline

crew scheduling problem [2, 3, 4, 7, 25, 36, 46, 47]. Estimates of over a billion dollars

a year for pilot and flight attendant expenses have been reported [1, 7]. Even a small

improvement over existing solutions can have a large economic benefit.

At one time solutions to the SPP were generated manually. However, airline

crew scheduling problems have grown significantly in size and complexity. In 1981

problems with 400 rows and 30,000 columns were described as "very large" [47].

Today, problems with hundreds of thousands of columns are "very large," and one

benchmark problem has been generated with 837 rows and 12,753,313 columns [9].

1.1.3 Previous Algorithms. Because of the widespread use of the SPP (and

often the difficulty of its solution) a number of algorithms have been developed. These

can be classified into two types: approximate algorithms which try to find "good"

solutions quickly, and exact algorithms which attempt to solve the SPP to optimality.

An important approximate approach (as well as the starting point for most exact

approaches) is to solve the linear programming (LP) relaxation of the SPP. In the LP

relaxation, the integrality restriction on xj is relaxed, but the lower and upper bounds

of zero and one are kept. A number of authors [7, 25, 47] have noted that for "small"

SPP problems the solution to the LP relaxation is either all integer, in which case it

is also the optimal integer solution, or has only a few fractional values that are easily

resolved. However, in recent years it has been noted that as SPP problems grow in

size, fractional solutions occur more frequently, and simply rounding or performing

a "small" branch-and-bound tree search may not be effective [2, 7, 25].

Marsten [46] noted twenty years ago that for most algorithms in use at that

time, solving the linear programming relaxation to the SPP was the computational

bottleneck. This is because the LP relaxation is highly degenerate. The past several

years have seen a number of advances in linear programming algorithms and the

application of that technology to solving the LP relaxation of very large SPP problems

[2, 9].

One of the oldest exact methods is implicit enumeration. In this method partial
solutions are generated by taking the columns one at a time and exploring logical im-

plications of their assignments. Both Garfinkel and Nemhauser [24] and Marsten [46]
developed implicit enumeration algorithms. Another traditional method is the use

of cutting planes (additional constraints) in conjunction with the simplex method.

Balas and Padberg [6] note that cutting plane algorithms were moderately successful

even while using genieral-purpose cuts and not taking advantage of the shape of the
SPP polytope. A third method is column generation, where a specialized version of

the simplex method produces a sequence of integer solutions that (one hopes) con-

verge to the optimal integer solution. Applying a generic branch-and-bound program

is also possible. Various bounding strategies have been used, including linear pro-
gramming and Lagrangian relaxation. Fischer and Kedia [21] use continuous analogs

3

of the greedy and 3- opt methods to provide improved lower bounds. Of recent inter-

est is the work of Eckstein [20], who has developed a general-purpose mixed-integer

programming system for use on the CM-5 parallel computer and applied it to, among

other problems, set partitioning.

At the time of this writing the most successful approach appears to be the work

of Hoffman and Padberg [36]. They present an exact approach based on the use

of branch-and-cut-a branch-and-bound-like scheme where, however, additional pre-

processing and constraint generation take place at each node in the search tree. An

important component of their system is a high-quality linear programming pack-

age for solving the linear programming relaxations and a linear programming-based

heuristic for getting good integer solutions quickly. They report optimal solutions for

a large set of real-world SPP problems.

1.2 Parallel Computers

Traditionally, parallel computers are classified according to Flynn's taxonomy

[22]. Flynn's classification distinguishes parallel computers according to the number

of instruction streams and data operands being computed on simultaneously. There

are three main classifications of interest: single-instruction single-data (SISD) com-

puters, single-instruction multiple-data (SIMD) computers, and multiple-instruction

multiple-data (MIMD) computers.

The SISD model is the traditional sequential computer. A single program counter

fetches instructions from memory. The instructions are executed on scalar operands.

There is no parallelism in this model.

In the SIMD model there is again a single program counter fetching instructions

from memory. However, now the operands of the instructions can be one of two

types: either scalar or array. If the instruction calls for execution involving only

scalar operands, it is executed by the control processor (i.e., the central processing

unit fetching instructions from memory). If, on the other hand, the instruction calls
for execution using array operands, it is broadcast to the processing elements.

The processing elements (PEs) are separate computing devices. The PEs do

not have their own program counter. Instead, they rely upon the control processor

to determine the instructions they will execute. Each PE typically has its own,

relatively small, memory in which are stored the unique operands the PE will execute
the instruction broadcast by the control processor on. The parallelism arises from

having multiple PEs (typically 4K-641(in recent commercial machines) executing
the same instruction, but on different operands. This type of parallel execution is

referred to as synchronous since each PE is always executing the same instruction as

other PEs.

In a MIMD computer there exist multiple processors each of which has its own
program counter. Processors execute independently of each other according to what-

4

ever instruction the program counter points to next. MIMD computers are usually

further subdivided according to whether the processors share memory or each has its

own memory.

In a shared-memory MIMD computer both the program's instructions and the

part of the program's data to be shared exist within a single shared memory. Addi-

tionally, some data may be private to a processor and not be globally accessible by

other processors. The processors execute asynchronously of each other. In the most

common programming model, they subdivide a computation that is performed on a

large data structure in shared memory, each processor performing a part of the com-

putation. Communication and synchronization between the processors are handled

by having them each read or write a shared-memory location.

A distributed-memory MIMD computer consists of multiple "nodes." A node
is essentially just a sequential computer, that is, a processor and its own (local)

memory (and sometimes a local disk also). The processor's program counter fetches

instructions from the local memory, and the instructions are executed on data that

also resides in local memory. The nodes are connected together via some type of

physical interconnection network that allows them to communicate with each other.

Parallelism is achieved by having each processor compute simultaneously on the data

in its local memory. Communication and synchronization are handled exclusively

through the passing of messages (a destination address and the processor local data

to be sent) over the interconnection network.

Currently, MIMD computers are more common than SIMD computers. Shared-

memory computers are common when only a few processors are being integrated,

such as in a multiprocessor workstation. Distributed-memory computers are more

common when tens or hundreds of processors are being integrated. The tradeoffs in-
volved are the (widely perceived) ease of use of shared-memory programming relative

to distributed-memory programming versus the difficulty of cost-effectively scaling

shared-memory computers to integrate more than a few tens of processors before
memory access bottlenecks arise. It seems likely that in the next several years we
will see the integration of both shared and distributed-memory as "nodes" in a dis-
tributed memory computer become themselves shared-memory multiprocessors.

Our interest in parallel computers is as an implementation vehicle for our al-
gorithm. As we explain later, a parallel genetic algorithm is a model that can be
implemented on both sequential and parallel computers. For the model of a parallel

genetic algorithm we use, a distributed-memory MIMD computer is the most natural
choice for implementation and the one we pursued.

1.3 Genetic Algorithms

Genetic algorithms (GAs) are search algorithms. They were developed by Holland
[37J and are based on an analogy with natural selection and population genetics. One
important use of GAs, and the one we studied, is for finding approximate solutions to

5

t +-0

initialize P(t)
evaluate P(t)

foreach generation

t +_-t +1

select P(t + 1) from P(t)
recombine P(t + 1)
evaluate P(t + 1)

endfor

Figure 1.1. Simple Genetic Algorithm

difficult optimization problems. As opposed to other optimization methods, genetic

algorithms work with a population of candidate solutions instead of just a single

solution. In the original GAs of Holland, and the ones we use in this paper, each
solution may be represented as a string of bitst, where the interpretation of the

meaning of the string is problem specific.

Genetic algorithms work by assigning a value to each string in the population
according to a problem-specific fitness function. A "survival-of-the fittest" step selects

strings from the old population, according to their fitness. These strings recombine

using operators such as crossover or mutation to produce a new generation of strings

that are (one hopes) more fit than the previous one. A generic genetic algorithm is

shown in Figure 1.1.

Two important but competing themes exist in a GA search: the need for selective

pressure so that the GA is able to focus the search on promising areas of the search
space, and the need for population diversity so that important information (particular

bit values) is not lost. Whitley notes [66]:

Many of the various parameters that are used to "tune" genetic search
are really indirect means of affecting selective pressure and population
diversity. As selective pressure is increased, the search focuses on the top
individuals in the population, but because of this "exploitation" genetic
diversity is lost. Reducing the selective pressure (or using a larger pop-
ulation) increases "exploration" because more genotypes and thus more
schemata are involved in the search.

tIn this dissertation we use the terms bit, value, and string instead of the more common

GA terminology gene, allele, and chromosome.

6

In the context of function optimization, strong selective pressure may quickly focus

the search on the best individuals at the expense of population diversity, and the

lack of diversity can lead the GA to prematurely converge on a suboptimal solution.

Conversely, if the selective pressure is relaxed, a high diversity may be maintained,

but the search may fail to improve values.

Three performance measures for genetic algorithms are in common use: online

performance, offline performance, and best string found. The online performance is

the average of all function evaluations up to and including the current trial. This

measure gauges ongoing performance. The offline performance is the average of the

best strings from each generation. The offline performance is a running average of all

the best performance values to a particular time. The best string found is the value

of the best string found so far in any generation and is the best metric to measure

function optimization ability.

1.3.1 Constiained Problems. One trait common to many combinatorial

problems solved by GAs is that feasible solutions are easy to construct. For some

problems, however-the SPP in particular-generating a feasible solution that satis-

fies the problem constraints is itself a difficult problem. Three approaches to handling
problem constraints have been discussed. In the first, solutions that violate a con-

straint(s) are infeasible and therefore are declared to have no fitness. This approach

is impractical because many problems are tightly constrained and finding a feasible

solution may be almost as difficult as finding the optimal one. Also, infeasible so-

lutions often contain valuable information and should not be discard outright. In

the second approach, the GA operators are specialized for the problem, so that no

constraints are violated. In the third, a penalty term is incorporated into the fitness

function to penalize strings that violate constraints. The idea is to degrade the fitness

of infeasible strings but not throw away valuable information contained in the cost

term of the fitness function. Below we discuss some examples of the second and third
approaches.

Jog, Suh, and Gucht [39] summarize many of the crossover operators used for

the traveling salesperson problem (TSP). In general, these operators try to include
as much of the parent strings as possible in the offspring, subject to the constraint

that the offspring contain a valid tour. In the TSP, since all cities are connected to
all other cities, it is relatively easy to 'fix up" an offspring that contains either an

invalid tour or a partial tour, by adding missing cities and removing duplicate cities.

As an example, Muhlenbein [48 uses a specialized crossover operator for the TSP
called the maximal preservative crossover operator (MPX). The idea is to retain
as many valid edges from the parent strings as possible. MPX works by randomly
selecting an arbitrary length string from one of the parents to initialize the offspring.
Edges are then added from either parent to the offspring, starting at the last city
in the offspring, as long as a valid tour is still possible. Otherwise, the next city in
one of the parent strings is added. The aim of MPX is to preserve as much of the
parent's subtours as possible.

7

Von Laszewsski and Muhlenbein [65] define a structural crossover operator for

the graph partitioning problem that copies whole partitions from one solution to

another. Since the copy process may violate the "equal size partition" constraint, a

"repairing" operator is applied to "fix things up." For this problem, mutation may

also create invalid solutions (mutation is defined as the exchange of two numbers in

order to avoid infeasibilities).

Penalty methods allow constraints to be violated. Depending on the magnitude

of the violation, however, a penalty that is proportional to the size of the infeasibility

is incurred that degrades the objective function. If the cost is large enough, highly

infeasible strings will rarely be selected for reproduction, and the GA will concentrate

on feasible or near-feasible solutions. A generic evaluation function is of the form

c(x) +p(x),

where c(x) is a cost term (often the objective function of the problem of interest)

and p(x) is a penalty term.

Richardson et al. [55] provide advice and experimental results for constructing

penalty functions. The authors suggest not making the penalty too harsh, since

infeasible solutions contain information that should not be ignored. As an example,

they point out that if one removes a column from the optimal solution to a set covering

problem, an infeasible solution results. This implies that the optimal solution is

separated from infeasible solutions by a Hamming distance of one. Using a similar

argument, they note that a single, one-bit mutation can produce the optimal solution

from an infeasible one. They suggest that the cost of the penalty term reflect the

cost of making an infeasible solution into a feasible one.

Siedlecki and Sklansky [56] use a dynamically calculated penalty coefficient in a

GA applied to a pattern recognition problem. Two interesting properties of their

problem are that (1) the minimum occurs on a boundary point of the feasible region,

and (2) the penalty function is monotonically growing. They report that a variable

penalty coefficient outperforms the fixed coefficient penalty.

Cohoon, Martin, and Richards [13] use a penalty term when solving the K-
partition problem. The penalty is exponentially increasing with the degree of con-

straint violation. They observe that the GA tends to "exploit" the penalty term by
concentrating its search in a particular part of the search space, willingly incurring a

small penalty if the scalar multiplier of the penalty term is not too large.

Smith and Tate [57] suggest a dynamic penalty function for highly constrained
problems. They apply this to the unequal area facility layout problem. The severity
of their penalty varies and depends on the best solution and best feasible solution

found so far. Their intent is to favor solutions that are near feasibility over solutions
that are more fit but less feasible.

8

In conjunction with rank-based selection, Powell and Skolnick [53] scale the ob-

jective function for their problem so that all the feasible points always have higher

fitness than the infeasible points. This approach avoids difficulties with choosing an

appropriate penalty function, but still allows infeasible solutions into the population.

1.3.2 Parallel Genetic Algorithms. When referring to a parallel genetic

algorithm (PGA) it is important to distinguish between the PGA as a particular

model of a genetic algorithm and a PGA as a means of implementing a (sequential or

parallel model of a) genetic algorithm. In a parallel genetic algorithm model, the full

population exists in a distributed form; either multiple independent subpopulations

exist, or there is one population but each population member interacts only with a

limited set of neighbors.

One advantage of the PGA model is that traditional genetic algorithms tend to

convergence prematurely, an effect that PGAs seem to be able to partially miti-

gate because of their ability to maintain more diverse subpopulations by exchanging

"genetic material" between subpopulations. Also, in a traditional GA the expected

number of offspring of a string depend on the string's fitness relative to all other

strings in the population. This situation implies a global ranking that is unlike the

way natural selection works.

Many GA researchers believe a PGA is a more realistic model of species in nature

than a single large population; by analogy with natural selection, a population is typ-

ically many independent subpopulations that occasionally interact. Parallel genetic

algorithms also naturally fit the model of the way evolution is viewed as occurring;

a large degree of independence exists in the "global" population.

Parallel computers are an attractive platform for the implementation of a PGA.

The calculations associated with the sequential GA that each subpopulation performs

may be computed in parallel, leading to a significant savings in elapsed time. This
is important since it allows the global population size, and hence the overall number
of reproductive trials, to grow without much increase in elapsed computation time.

A parallel implementation of the traditional sequential genetic algorithm model

is also possible. A simple way to do this is to parallelize the loop that creates the

next generation from the previous one. Most of the steps in this loop (evaluation,
crossover, mutation, and, if used, local search) can be executed in parallel. The se-
lection step, depending on the selection algorithm, may require a global sum that
can be a parallel bottleneck. When such an approach has been taken, it is often on a

distributed-memory computer. However, unless function evaluation (or local search)

is a time-consuming step, the parallel computing overheads associated with distribut-

ing data structures to processors, and synchronizing and collecting the results, can

mitigate any performance improvements due to multiple processors. Instead, this
type of parallel implementation is an obvious candidate for the "loop-level" paral-
lelism common on shared-memory machines. This has important implications for
anticipated future parallel computers. Such machines are expected to have multiple

9

processors sharing memory on a node, and many such nodes in a distributed-memory

configuration. It will be natural to map a PGA onto the distributed nodes, and speed

the sequential GA at each node by using the multiple processors to parallelize the

generation loop.

Parallel genetic algorithms can be classified according to the granularity of the

distributed population, coarse grained vs. fine grained, and the manner in which the

GA operators are applied [39]. In a coarse-grained PGA the population is divided

into several subpopulations, each of which runs a traditional GA independently and

in parallel on its own subpopulation. Occasionally, fit strings migrate from one

subpopulation to another. In some implementations migrant strings may move only

to geographically nearby subpopulations, rather than to any arbitrary subpopulation.

In a fine-grained PGA a single population is divided so that a single string is

assigned to each processor. Processors select from, crossover with, and replace only

strings in their neighborhood. Since neighborhoods overlap, fit strings will migrate

throughout the population.

1.3.2.1 Coarse-Grained Parallel Genetic Algorithms. In a coarse-

grained parallel genetic algorithm (CPGA), also referred to later as an island model,

multiple processors each run a sequential GA on their own subpopulation. Processors

exchange strings from their subpopulation with other processors. Some important

choices in a CPGA are which other processors a processor exchanges strings with,

how often processors exchange strings, how many strings processors exchange with

each other, and what strategy is used when selecting strings to exchange.

Tanese [62] applied a CPGA to the optimization of Walsh-like functions using

a 64-processor Ncube computer. Periodically, fit strings were selected and sent to

neighboring processors for possible inclusion in their future generations. Exchanges

took place only among a processor's neighbors in the hypercube. These exchanges

varied over time, taking place over a different dimension of the hypercube each time.

Tanese found that the CPGA was able to determine the global maximum of the
function about as often as the sequential GA. Tanese reported near-linear speedup

of the CPGA over the traditional GA for runs of 1,000 generations. In most cases

Tanese's main metric, the average of which generation the global maximum was
found on, preferred eight as the optimal number of subpopulations. Tanese also

experimented with variable mutation and crossover rates among the subpopulations

and found these results at least as good as earlier results.

In [63] Tanese experimented with the partitioned genetic algorithm (a CPGA
with no migration between processors allowed). A total population size of 256 was

partitioned into various power-of-two subpopulation sizes. In all cases the partitioned

GA found a better "best fitness value" than the traditional GA, even with small

subpopulations sizes such as eight or four. The average fitness of the population at
the last generation, however, was consistently worse than that calculated with the

traditional algorithm.

10

Experiments with migration found that a higher average fitness could be obtained

if many migrants were sent infrequently or if only a few migrants were sent more

frequently. Each processor generated extra offspring during a migration generation

and selected migrants uniformly from among the overfilll" population. Often the

partitioned GA found fitter strings than the CPGA with migration. Best results were

achieved with a migration rate such as 20% of each subpopulation migrating every

20 iterations.

In [60] Starkweather, Whitley, and Mathias describe another CPGA. Each pro-

cessor sent copies of its best strings to one of its neighbors, which replaced its worst

string with these. A ring topology was used where, on iteration one, po sends to pi,

pi sends to P2, etc., and on iteration two, po sends to P2, Pi sends to p3, etc. All

sends were done in parallel. In their tests the total population size was fixed, and

they experimented with various-sized partitions of the total population among the

processors. When no mutation was used, performance improved for two of the four

problems as the number of subpopulations was increased, but degraded on the other

two. When adaptive mutation was used, with the mutation probability increasing to

some predefined maximum as the similarity of the two parents increased, the runs

were more successful and achieved good results relative to the serial runs. The more

distributed the GA, the more often adaptive mutation was invoked, since smaller sub-

populations converge more rapidly than larger ones. Their experiments also indicate

that migrating strings too often, or not often enough, degrade performance.

Cohoon, Martin, and Richards [13] applied the CPGA to the K-partition problem
using a 16-processor hypercube. Each processor had its own subpopulation of eighty

strings, and fifty iterations were run between migrations. An interesting feature

of their work was the random choice of scaling coefficient for the penalty term in

their fitness function c(x) + Ap(x). The scaling factor A influences how much weight

infeasibilities have in evaluating a string's fitness. Two experiments were done. One

used A = 1 for each subpopulations. In the other, each processor chose a value for A

uniformly on the interval (0,1). When the metric "best observed fitness" was applied,
the runs with uniformly distributed A were consistently better than those with A fixed

at one in each processor.

Kroger, Schwenderling, and Vornberger [41] used a CPGA on a network of 32
transputers to solve the two-dimensional bin packing problem. At "irregular inter-

vals" a processor received strings from neighboring processors. A "parallel elitist

strategy" was used whereby, whenever a processor improved upon the best string in

its population, it sent a copy of that string to all other processors in its neighbor-

hood. The best results were found with a "medium size" neighborhood and a local

population of ten strings.

Pettey, Leuze, and Grefenstette [51] ran a CPGA on an Intel iPSC hypercube.

Each generation each processor sent its best strings to each neighbor and received its

neighbor's best strings. These were then inserted into each processor's subpopulation
by using a replacement scheme. Subpopulation size was fixed at 50 strings; and 1,

11

2, 4, 8, and 16 processors were used. They believe their results indicate an increased

likelihood of premature convergence. This work is at an extreme from most CPGAs,

because strings are exchanged every generation and always with the same neighbors.

These conditions explain the apparent increased likelihood of premature convergence.

Gordon and Whitley [28] compare eight different parallel genetic algorithms and a

version of Goldberg's Simple Genetic Algorithm [26] on several function optimization

test problems. Among their conclusions is that island models (CPGAs) perform well,

particularly on the hardest problems in their test suite.

1.3.2.2 Fine-Grained Parallel Genetic Algorithms. In a fine-grained
parallel genetic algorithm (FPGA) exactly one string is assigned to each processor.

In the FPGA the model is of one population in which the strings have only local

interactions and neighborhoods, as opposed to global ones. Choices in an FPGA

include neighborhood size, processor connection topology, and string replacement

scheme.

Muhlenbein [48] applied an FPGA to the traveling salesperson problem and the

graph partitioning problem. Each string selected a mate from within a small neigh-

borhood of its own processor. Within its neighborhood each processor performed

selection, crossover, and mutation without any central control. In addition, each

string attempted to improve itself by applying a local search heuristic.

Muhlenbein's objective was to avoid premature convergence by allowing only slow

propagation of highly fit strings across the full population. This is dependent on the

topology of the processor's neighborhood, which he calls the population structure. By

choosing a population structure that takes a long time to propagate strings through-

out the population, Muhlenbein claimed he avoided premature convergence. The

topology used was a two-dimensional circular ladder with two strings per "step." A

neighborhood size of eight was used by each string. Some overlap occurred among

neighborhoods, enabling fit strings to propagate through the population.

In [65] an FPGA was applied to the graph partitioning problem. Strings were

mapped to a 64-processor transputer system. Selection was done independently by

each string within a small neighborhood of the two-dimensional population structure.

The parent string was replaced if the offspring was at least as good as the worst

string in the neighborhood. A small neighborhood size in conjunction with a large

population size gave the best results.

In [29] Gorges-Schleuter implemented an FPGA on a 64-processor Parsytec trans-

puter system using a sparse graph as the population topology. An elitist strategy was

used whereby offspring are accepted for the next generation only if they were more

fit than the local parent. A string's fitness was defined relative to other strings in its

neighborhood, and neighborhoods could overlap. The algorithm was applied to the

TSP problem, using a population size of 64 and a neighborhood size of eight. Results

12

showed that, with a small neighborhood.siz?, communication costs were negligible,

and linear speedup was achieved.

1.3.2.3 Other Parallel Genetic Algorithms. Fogarty and Huang [23]

used a transputer array for the parallel evaluation of a population of 250 strings

applied to a real-time control problem. For this problem, evaluating the fitness of a

member of the population takes a relatively long time. A host processor ran the main

GA program and distributed strings for evaluation to the other transputer processors

for evaluation. Maximum speedups in the range of 25-27 were obtained on 40-72

processors. The incremental improvement in speedup was slightly sublinear up to

about 16-20 processors, but then fell off quickly.

Liepens and Baluja [44] used a parallel GA with a central processor phase. In

parallel, 15 subpopulations of ten strings each run a GA on their own subpopulations.

Next, during the central processor phase, the most fit string from each subpopulation

is gathered along with an additional 15 randomly generated strings. Under the con-

trol of the central processor a recombination phase of these 30 strings occurs. The

best string is then injected into the populations of one-third of the processors. Com-

menting about parallelism, Liepens and Baluja believe that smaller subpopulations

remain more heterogeneous.

1.4 Thesis Methodology

In this section we explain the motivation and objectives of this thesis, and the

performance metrics used.

1.4.1 Motivation. There were a number of motivations for applying (parallel)

genetic algorithms to the set partitioning problem. One was the particularly chal-

lenging nature of the problem. The challenges include the NP-completeness of finding

feasible solutions in the general case, and the enormous size of problems of current

industrial interest. Also, because of its use as a model for crew scheduling by most

major airlines, there is great practical value in developing a successful algorithm.

Genetic algorithms can provide flexibility in handling variations of the model

that may be useful. The evaluation function can be easily modified to handle other

constraints such as cumulative flight time, mandatory rest periods, or limits on the

amount of work allocated to a particular base. More traditional methods may have

trouble accommodating the addition of new constraints as easily. Also, at any it-

eration genetic algorithms contain a population of possible solutions. As noted by

Arabeyre et al. [3],

The knowledge of a family of good solutions is far more important than

obtaining an isolated optimum.

13

This reality has been noted also by many operations research practitioners. Often, for

political or other reasons, it is not possible to implement the best solution, but it may

be desirable to find one with similar behavior. Traditional operations research algo-

rithms do not maintain knowledge of solutions other than the current best, whereas

GAs maintain the "knowledge of a family of good solutions" in the population.

Additionally, the problem has attracted the attention of the operations research

community for over twenty-five years, and many real problems exist, so it is possible

to compare genetic algorithms with a number of other algorithmic approaches. One

advantage of a GA approach is that since it works directly with integer solutions

there is no need to solve the LP relaxation.

Finally, as parallel computers move into mainstream computing. the challenge

to researchers in all areas is to develop algorithms that can exploit the potential of

these powerful new machines. The model of genetic algorithm parallelism we pursue

in this dissertation has, we believe, great potential for scaling to take advantage of

larger and larger numbers of processors. Since we believe the algorithm maps well

to parallel computers, it motivates us to see whether this can help us to solve hard

problems of practical interest.

1.4.2 Thesis Objectives. This thesis had several objectives which span the

fields of genetic algorithms, operations research, and parallel computing. The primary

objective was to determine whether a GA can solve real-world SPP problems. Current

real-world SPP problems have been generated of almost arbitrary length. Even many

smaller problems have posed significant difficulties for traditional methods. Also, in

the general case, just finding a feasible solution to the SPP is NP-complete [49]. We

wished to see how well a GA could perform on such a problem.

We also wished to identify characteristics of SPP problems that were hard for a

genetic algorithm. The SPP is both tightly constrained and, in many cases, very large.

It also has a natural bit string representation and so is an interesting problem on

which to study the effectiveness of GAs. Most applications of GAs have traditionally

been to problems with tens or hundreds of bits. We wished to see whether GAs could

handle larger problems without the "disruption factor" hindering the search ability.

Also, tightly constrained problems have not been the forte of genetic algorithms, and

one of our objectives was to see how accurately this limitation carried over to the

SPP problem.

Finally, we also wished to study aspects of the parallel genetic algorithm model.

We wished to determine the role and influence of parameters such as migration fre-

quency and how strings are selected to migrate or be replaced. We were interested in

the algorithmic behavior with the addition of increasing numbers of subpopulations;

whether there would be an improvement in the quality of the best solution found, or

if it would be found faster, or both.

14

1.4.3 Performance Metrics. The main performance metric we used was the
"quality" of the solution found. This was measured by how close to optimality the
best solution found was. A second metric was the "efficiency" of the parallel genetic
algorithm model we used. As we increased the number of subpopulations (and hence
the total population size) we wished to determine whether the number of GA itera-
tions required to find a solution decreased. The third metric of interest, "robustness",
was the ability of the algorithm to perform consistently well on a wide range of prob-
lem types. This was studied by choosing a large set of test problems and trying to
characterize on different "problem profiles" how well the GA performed. Finally, we
also compared the parallel GA with traditional operations research methods to see
which were more effective.

15

CHAPTER II

SEQUENTIAL GENETIC ALGORITHM

The motivation for the work presented in this chapter was to develop a sequential

genetic algorithm that worked well on the set partitioning problem. This would then

be used as a building block upon which to develop the parallel genetic algorithm.

Although much theoretical work on GAs exists, and much more is currently being

pursued by the GA community, there does not yet exist a complete theory for GAs
that says which GA operators and their parameter values are best. Often when

implementing a GA, practitioners rely upon a large body of empirical research that

exists in the literature. In some cases this work is theoretically guided; in others it

is the result of extensive experiments or specific application case studies. It is in this

context that the work in this chapter was performed.

In Section 2.1 we discuss the test problems we use in this chapter. Section 2.2

discusses the basic genetic algorithm we tested. Section 2.3 discusses the local search

heuristic we developed. Section 2.4 discusses specific components of the genetic

algorithm and provides a complexity analysis. Finally, Section 2.5 summarizes the

results.

2.1 Test Problems

The test problems used in this chapter are given in Table 2.1 where they are

sorted by increasing number of columns. These problems are a subset of those used

by Hoffman and Padberg in [36]. They are "real" set partitioning problems provided
by the airline industry. The columns in this table are the test problem name, the

number of rows and columns t in the problem, the total number of nonzeros in the

A matrix, the objective function value for the linear programming relaxation, and

the objective function value for the optimal integer solution. By the standards of

SPP problems solved by the airline industry today, these problems can be classified
as small (nw4I, nw32, nw4O, p08, nw15, nw20), medium (nw33), and large (aaO4,

nu18), according to the num er of rows and columns in the problem. This particular

subset was selected so that/we would have several smaller models and a few larger

ones.

/

We can characterize l ow difficult the test problems are in several ways. First,

we can look at the prob em parameters, such as the number of rows, columns, and

nonzeros. In general, e assume that the larger and more dense a problem is, the

harder it is to solve. F r the GA, this is justified from a complexity standpoint, since

various components 4f the GA and local search heuristic we use have running time

tIn the rest of this dissertation we use rows and columns interchangeably with constraints

and variables.

16

Table 2.1 Sequential Test Problems

Problem No. No. No. LP IP
Name Rows Cols Nonzeros Optimal Optimal
nw4l 17 197 740 10972.5 11307
nw32 19 294 1357 14570.0 14877
nw40 19 404 2069 10658.3 10809
nw08 24 434 2332 35894.0 35894
nwl5 31 467 2830 67743.0 67743
nw20 22 685 3722 16626.0 16812
nw33 23 3068 21704 6484.0 6678

aa04 426 7195 52121 25877.6 26402

nwI8 124 10757 91028 338864.3 340160

Table 2.2 Sequential Test Problem Solution Characteristics

Problem LP
Name Iters.
nw4l
nw32
nw40
nwO8
nwi5
nw20
nw33
aa04 >7

nvI8 >162

174
174
279

31
43

240
202
428
947

LP LP IP
Nonzeros Ones Nodes

7 3 9
10 4 9
9 0 7

12 12 1
7 7 1

18 0 15
9 1 3

234 5 >1
68 27 >62

17

of the order of the number of rows or columns, or the number of nonzeros in a row

or column (see Section 2.4.7).

We can also gain some insight into the difficulty of the test problems by solving

them with a traditional operations research algorithm.t The test problems have been

solved using the public-domain lp..solve program [8]. lp..solve solves linear pro-

gramming problems using the simplex method and solves integer programming (IP)

problems using the branch-and-bound algorithm. The results are given in Table 2.2.

The columns are the test problem name; the number of simplex iterations required

to solve the LP relaxation, plus the additional simplex iterations when solving LP

subproblems in the branch-and-bound tree; the number of variables in the solution

to the LP relaxation that were not zero; the number of the nonzero variables in the

solution to the LP relaxation that were one (i.e., not fractional); and the number of

nodes searched in the branch-and-bound tree before an optimal solution was found.

lp.solve found optimal solutions for problems nw4l, nw32, nw40, nwO8, nwIS,

nw20, and nw33. lp-solve found the optimal solution to the LP relaxation for nw18,

but not the optimal integer solution before a CPU time limit was reached. The large

number of simplex iterations and nodes searched for this problem, relative to the

others (except aa04), indicate (at least for lp.solve) it is a hard problem. aa04

was the most difficult-lp-solve was not able to solve the associated LP relaxation

and, in fact, aborted after over 7,000 simplex iterations. aaO4 seems to be a difficult

problem for others as well [36]. We conclude that the seven smaller problems are

"relatively easy," nwl8 is more difficult, and aa04 is very difficult.

2.2 The Genetic Algorithm

One way to classify genetic algorithms is by the percentage of the population that
is replaced each generation. Two choices, at extremes from each other, are common

in the literature. The first, the generational replacement genetic algorithm (GRGA),

replaces the entire population each generation and is the traditional genetic algorithm

as defined by Holland [37] and popularized by Goldberg [26]. The second, the steady-

state genetic algorithm (SSGA), replaces only one or two strings each generation and

is a more recent development [61, 66, 691.

In the GRGA the entire population is replaced each generation by their offspring.

The hope is that the offspring of the best strings carry the important "building

blocks" [26] from the best strings forward to the next generation. The basic outline

of the GRGA is given in Figure 1.1. The GRGA allows the possibility that the best
strings in the population do not survive to the next generation. Also, as Davis points

out [15], many of the best strings may not be allocated any reproductive trials. It is

also possible that mutation or crossover destroy or alter important bit values so that

they are not propagated into the next generation by the parent's offspring. Many

tWe defer discussion of a comparison with Hoffman and Padberg to the next chapter.

18

Table 2.3 Comparison of the Use of Elitism in GRGA

Problem No Elitism Elitism

Name Opt. Feas. Trials Opt. Feas. Trials

nw4l 2 559 863 2 737 864
nw32 0 412 840 0 562 841

nw40 0 491 864 0 705 864

nuO8 2 23 860 0 35 861

nul5 0 3 856 0 4 862

nw20 0 267 863 0 440 863

nw33 0 3 575 0 22 576

aa04 0 0 859 0 0 858

nwl8 0 0 473 0 0 474

implementations of the GRGA use elitism; if the best string in the old population is

not chosen for inclusion in the new population, it is included in the new population

anyway. The idea is to avoid "accidentally" losing the best string found so far. GA

practice has shown this is usually advantageous.

Table 2.3 compares the use of elitism in the GRGA. The column Problem Name

is the name of the test problem. The subheadings Opt. and Feas. are the number

of optimal and feasible integer solutions found, out of the number of trials given in

the '&ials column, respectively. In these experiments we varied several parameters at

once (elitism, selection algorithm, penalty term, fitness function, crossover operator,

crossover probability, and initialization strategy). The population size was fixed at 50

and the mutation rate at 1/n. For each choice of parameter value or operator, we per-

formed one computer "run" for each test problemt. In each run the random number

generator was initialized by using the microsecond portion of the Unix gettimeof day

system call as a seed.

Comparing the results using as the metric the number of feasible solutions found,
we find with a x2 test that elitism is beneficial on five of the problems (nw41, nw32,
nw40, nw20, nw33). However, the most obvious result from Table 2.3 is the lack of
optimal solutions found, even on the smaller problems. The main difficulty was the

population's premature convergence, so that all the strings in the population were
duplicates and no new search was occurring (see also [43] for more on our earlier

work). It was this that led us to pursue alternative GA approaches, and in the rest

of this dissertation we will report results only for the steady-state genetic algorithm

which we found more successful.

tBecause of resource limits, scheduling conflicts, and system crashes, not all runs com-

pleted for all problems.

tAll x2 tests reported in this dissertation use a significance level of 5 percent.

19

The steady-state genetic algorithm is an alternative to the GRGA that replaces

only a few individuals at a time, rather than an entire generation. In practice, the

number of new strings to create each generation is usually one or two. The new

string(s) replace the worst-ranked string(s) in the population. In this way the SSGA

allows both parents and their offspring to coexist in the same population (in fact,

this is the usual case).

The SSGA has a "built-in" elitism since only the lowest-ranked string is deleted;

the best string is automatically kept in the population. Also, the SSGA is immedi-

ately able to take advantage of the "genetic material" in a newly generated string

without having to wait to generate the rest of the population as in a GRGA. A dis-

advantage of the SSGA is that with small populations some bit positions are more

likely to lose their value (i.e., all strings in the population have the same value for

that bit position) than with a GRGA. For this reason, SSGAs are often run with

large population sizes to offset this.

SSGA practitioners advocate discarding a child string if it is a duplicate of a

string currently in the population. By avoiding duplicate strings the population is

able to maintain more diversity. In our implementation we do not discard a duplicate

string, but repeatedly mutate it until it is unique. Not allowing duplicates turned

out to be important. Before implementing a method to avoid duplicate strings, we

found SSGA populations experienced a similar problem with premature convergence

as did the GRGA. Avoiding duplicate strings had a noticeable effect in avoiding or

delaying premature convergence.

Figure 2.1 presents the steady-state genetic algorithm we used. Here, we give

a brief outline. Specific details of the operators follow in the next several sections.

P(t) is the population of strings at generation t t. Each generation one new string is

inserted into the population. The first step is to pick a random string, Xra,,do,, and
apply a local search heuristic (Section 2.3) to it. Next, two parent strings, x, and

x2 , are selected (Section 2.4.4), and a random number, r E [0,11, is generated. If r
is less than the crossover probability, pc, we create two new offspring via crossover

(Section 2.4.6) and randomly select one of them, xnw, to insert in the population.
Otherwise, we randomly select one of the two parent strings, make a copy of it, and

apply mutation to flip bits in the copy with probability 1/n. In either case, the new
string is tested to see whether it duplicates a string already in the population. If

it does, it undergoes (possibly additional) mutation until it is unique. The least-fit
string in the population is deleted, x,., is inserted, and the population is reevaluated.
The experiments in this chapter all used a population size of 50.

To implement the genetic algorithm and local search heuristic, we wrote a pro-

gram in ANSI C. It consists of approximately 10,000 lines of source code (including
comments) and is portable and runs on all Unix systems it has been tested on. It

tWe use generation and iteration interchangeably.

20

t +- 0

initialize P(t)
evaluate P(t)

foreach generation

local.search (X,-andomn E P(t))

select(xI,x2) from P(t)

if(r < pc) then

Xnew = crossover(xi,x2

)

else

Xnew = mutate(xI, x2)

endif
delete (Xworat E P(t))
while (Xnew E P(t))

mutate(xnew)

P(t + 1)4- P(t) U Xnew

evaluate P(t + 1)

t4- t +1
endfor

Figure 2.1. Steady-State Genetic Algorithm

is capable of running on one or more processors. When run on one processor, it is

functionally equivalent to a sequential program. For the experiments described in

this chapter three different types of computers were used: Sun Sparc 2 workstations,

IBM RS/6000 workstations, and an IBM SP1 parallel computer (for these experi-

ments, the SP1 was used as if it were a collection of independent workstations-we

ran multiple sequential jobs, each using one SP1 node with no interaction between
the jobs). Details of the parallel aspects of the program are given in the next chapter.

2.3 Local Search Heuristic

A local search heuristict attempts to improve a solution by moving to a better

neighbor solution. Whenever the neighboring solution is better than the current

solution, it replaces the current solution. When no better neighbor solution can be
found, the search terminates.

Parker and Rardin [50] describe two important neighborhoods. In the k-change

neighborhood, up to k bits are complemented at a time. In the k-interchange neigh-
borhood, up to k bits are changed at a time, but in a complementary manner. Trade-

offs exist between speed and solution quality; searching a large neighborhood will pre-
sumably lead to a better solution than searching a smaller one, but at an increased

tIn the GA literature such methods often go by the name hill-climbing.

21

cost in solution time. A related issue is the extent of a given neighborhood that

should be searched. At one extreme, every point in the neighborhood is evaluated

and the one that improves the current solution the most accepted as the move. Al-

ternatively, we can also make the first move fond that improves the current solution.

We refer to these two choices as best-improving and first-improving, respectively.

The experimental evidence of many researchers [15, 39, 40, 48] is that hybridizing

a genetic algorithm with a local search heuristic is beneficial. It combines the GAs

ability to widely sample a search space with a local search heuristic's hill-climbing

ability. There are, however, theoretical objections to the use of a local search heuris-

tic. An important one is that changing the "genetic material" in the population in

a nonevolutionary manner will affect the schema represented in the population and

undermine the GA. Gruau and Whitley [35] comment:

Changing the coding of an offspring's bit string alters the statistical

information about hyperplane subpartitions that is implicitly contained

in the population. Theoretically, applying local optimization to improve

each offspring undermines the genetic algorithm's ability to search via
hyperplane sampling. The objection to local optimization is that chang-

ing inherited information in the offspring results in a loss of inherited
schemata, and thus a loss of hyperplane information.

Hybrid algorithms that incorporate local optimizations may result in

greater reliance on hill-climbing and less emphasis on hyperplane sam-

pling. This reliance could result in less global exploration of the search

space because it is hyperplane sampling that is the basis for the claim

that genetic algorithms globally sample a search space.

Our early experience with the GRGA [43], as well as subsequent experience with

the SSGA, was that both methods had trouble finding optimal (sometimes even

feasible) solutions (the SSGA was better than the GRGA, but still not satisfactory).

This led us to develop a local search heuristic to hybridize with the GA to assist in
finding feasible, or near-feasible, strings to apply the GA operators to.

A local search heuristic for the SPP must address the following. First, since the
SPP is tightly constrained, an initial feasible solution may be difficult or impossible

to construct. Second, in considering a k-change or k-interchange move, many of
the possible moves may destroy or degrade the degree of feasibility. An effective
local search heuristic for the SPP will most likely not be uniform in the size of
the neighborhoods it explores, but will vary according to the context of the current

solution. For example, if no column covers a row, the heuristic may pick a single

column to set to one. For a row that is overcovered, however, the heuristic may try

to set to zero all but one of the columns.

We developed a heuristic we call ROW (since it takes a row-oriented view of the

problem). The basic outline is given in Figure 2.2. ROW works as follows. For some

22

foreach niters

i = chose-row(random.or..max)

improve (i, Iri|, besLor-pfrst)

endfor

Figure 2.2. ROW Heuristic

number of iterations (a parameter of the heuristic), one of the m rows of the problem

is selected (another parameter). For any row there are three possibilities: Iril = 0,

Iri| = 1, and Irdl > 1. The action of ROW in these cases varies and also varies

according to whether we are using a best-improving or first-improving strategy. In

the case of best-improving we apply one of the following rules.
I

I. |ri1 = 0: For each j E Ri calculate Ai,. Set to one the column that minimizes

Ail.

II. Ird|= 1: Let k be the unique column in ri. Calculate ', the change in f when

4- 0 and x, +- 1, j E R,. If ' < 0 for at least one j, set Xk +- 0 and x, +- 1,

for A' < A'g Vj.

III. 1ri1 > 1: For each j E r calculate Y'j, the change in f when Xk +- 0,Vk E
r;,k #j. Set k +- 0, Vk E r;,,k 54j, where A' < A',Vk.

We note that strictly speaking this is not a best-improving heuristic. The reason
is that in cases I and III we can move to neighboring soltions that degrade the

current solution. The reason we allow this is that we know that whenever |riI= 0 or

|r;l > 1, constraint i is infeasible and we must move from the current solution even if

neighboring solutions are less attractive. The advantage is that the solution "jumps

out" of a locally optimal, but infeasible domain of attraction.

The first-improving version of ROW differs from the best-improving version in
the following ways. If IrdI= 0, we select a random column j from Ri and set x3 +- 1.

If 1ri| = 1, we set Xk +-- 0 and x3 +- 1 as soon as we find any A' < 0, j E R,. Finally,
if IrI| > 1, we randomly select a column k E ri, leave X& = 1, and set all other
j = 0,j E r. In the cases where IrI|= 0 and Ir;d > 1, since we have no guarantee

we will find a "first-improving" solution, but know that we must leave the current

solution, we make a random move that makes constraint i feasible, without measuring

all the implications (cost component and (in)feasibility of other constraints).

We compared the different options for ROW. The results are given in Tables 2.4-

2.7. In these runs we also varied the initialization scheme and penalty term used.

23

Table 2.4 compares the number of iterations (1, 5, and 20) of ROW that were

applied to try to improve a string. A x2 test shows no difference between these on

any of the test problems. The explanation appears to be that ROW gets stuck in a

local optimum and cannot escape within the neighborhood defined by the possible

moves specified earlier.

Table 2.5 compares two methods for choosing the constraint to apply ROW to.

Random means one of the m constraints is selected randomly. MaxViolation means

that the constraint with the largest value of | 1' a,,x, - 11 is selected. The x2 test

shows that the results on four problems (nw4l, nw32, nuIS, nw33) are improved when

the selected constraint is chosen randomly. In fact, the maximum violation strategy

never found an optimal solution. The implication is that the use of randomness plays

an important role in escaping local optima.

Table 2.6 compares the best-improving and first-improving strategies. The x2

test shows that the first-improving strategy is significantly better on problems nw4l,

nw40, nuIS, and nu33. It appears that the randomness in two of the steps of the

first-improving strategy helps escape from a locally optimal solution.

Table 2.7 shows the hybrid of the SSGA used in combination with the ROW
heuristic. We refer to this hybrid as SSGAROW. For six problems (nw4l, nw32,

nw40, nw08, nuiS, nw33), the first-improving strategy performs significantly better

according to the x2 test. This table is interesting because we could argue that we

would expect exactly the opposite result. That is, since the GA itself introduces

randomness into the search we would expect to do better combining the best solution

found by ROW rather than the first or a random one, which are presumably not as

good. A possible explanation is that the GA has prematurely converged and so the

only new search information being introduced is from the ROW heuristic. ROW,

however, in its best-improving mode gets trapped in a local optimum, and so little

additional search occurs.

Table 2.4 Number of Constraints to Improve in the ROW Heuristic

Problem 1 5 20
Name Opt. Trials Opt. Trials Opt. Trials
nw4l 12 288 8 288 10 284
nw32 1 288 4 287 2 286
nwO8 0 285 0 287 0 282

nwI5 40 142 40 142 36 141

nw20 2 259 0 257 0 258

nw33 1 280 3 277 5 264

aa04 0 225 0 220 0 213

nwl8 0 276 0 277 0 267

24

Table 2.5 Choice of Constraint to Improve in the ROW Heuristic

Problem Random MaxViolation

Name Opt. Trials Opt. Trials

nw4l 14 284 0 288
nw32 4 285 0 288
nw40 3 286 0 288
nw08 0 281 0 286
nwi5 59 139 0 143
nw20 1 256 0 259
nw33 5 272 0 276
aaO4 0 212 0 216
nwl8 0 272 0 278

Table 2.6 Best Improving vs. First Improving in the ROW Heuristic

Problem Best First

Name Opt. Trials Opt. Trials

nw4l 3 432 27 428
nw32 1 432 6 429
nw40 0 431 4 430
nw08 0 427 0 427
nwl5 26 210 90 215
nw20 2 387 0 387
nw33 0 409 9 412
aa04 0 304 0 334

nwl8 0 405 0 415

Table 2.7 Best Improving vs. First Improving in SSGAROW

Problem Best First

Name Opt. Trials Opt. Trials
nw4l 21 212 53 213

nw32 8 214 34 211

nw40 3 214 16 213

nw08 4 215 15 212

nwI5 21. 211 47 210

nw20 2 213 4 213

nw33 0 195 7 189

aa04 0 209 0 209

nwI8 0 152 0 154

25

typedef struct {

int cost;

int ncv;

int *cover;

} AMATRIX;

Figure 2.3. Structure for Storing Row and Column Information

2.4 Genetic Algorithm Components

In this section we discuss some aspects of the genetic algorithm we examined.

2.4.1 Problem Data Structures. For solving the large SPP problems that

arise in the airline industry [7, 9], data structures that are memory efficient and lend

themselves to efficient computation are necessary. In the SPP, both the A matrix

and the solution vector are binary, and it is possible to devise special data structures

that make efficient use of memory.

A solution tc the SPP problem is given by specifying values for the binary decision

variables x 3 . The value of one (zero) indicates that column j is included (not included)

in the solution. This solution may be represented by a binary vector xt with the

interpretation that x3 = 1(0) if bit j is one (zero) in the binary vector.

Representing a SPP solution in a GA is straightforward and natural. A bit in a

GA string is associated with each column j. The bit is one if column j is included

in the solution, and zero otherwise. To make efficient use of memory, we had each

bit in a computer word represent a column. Because most computers today are

byte addressable, this approach improves storage efficiency by at least a factor of

eight compared with integer or character implementations. It does, however, require

the development of specialized functions to set, unset, and toggle a bit and to test

whether a bit is set.

Since the SPP matrix is typically large and sparse and contains only the values

zero and one, it is necessary only to store the indices of the rows and columns where

a,3 = 1. At different points in the algorithm we require a list of the rows intersected

by a particular column (P) or a list of the columns intersected by a particular row

(R,). We use the data structure shown in Figure 2.3 for both cases. In the column

version, this structure holds c in the cost field, jPjj in the ncv field, and P1 in the

cover array. The row version holds Ai in the cost field, Rid in the ncv field, and R

in the cover array.

tWe use x interchangeably as the solution to the SPP problem or as a bitstring in the

GA population, that is, x E P(t).

26

12 12 5 7 14 24 8 4 9 2 2 18 4 12 12 2 5 4 1 4

0 1 0 0 0 0 0 1 0 0 00100 000 00

1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 1 0 0

0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.4. Example A Matrix before Sorting

2.4.2 Block Column Form. A useful initial step is the ordering of the SPP
matrix into block "staircase" form [52]. Block Bi is the set of columns that have their

first one in row i. Bi is defined for all rows but may be empty for some. Within B

the columns are sorted in order of increasing c3

.

Figures 2.4 and 2.5 show an example of an SPP matrix before and after sorting

into block staircase format. The numbers at the top of the matrix are the column

costs, c3 . The numbers at the bottom of the matrix are the column indices. In this

example, I = {1,...,8}and B,1= {13,8,2},..., B 7 ={19, 11}, and Bs= 0.

Ordering the matrix in this manner is helpful in determining feasibility. In any

block,- at most one x may be set to one. Our algorithm takes advantage of this

ordering in two ways. First, one initialization scheme (randomly) sets at most one xj

per block to one. Second, the block crossover operator defined in Section 2.4.6 takes

advantage of the block column structure.

2.4.3 Evaluation Function. Three functions are of interest: the SPP ob-
jective function, the evaluation function, and the fitness function. It is the SPP

objective function, z, that we wish to have the GA minimize. However, the difficulty

with using z directly is that it does not take into account whether a string is feasi-

ble. Therefore, we introduce an evaluation function to incorporate a cost term and a

penalty term. Since GAs maximize fitness, however, we still must map the evaluation

function (which is being minimized) to a nonnegavtive fitness value. This is the role

of the fitness function.

The SPP objective function (Equation 1.1) is given by the definition of the prob-

lem. The evaluation function and the fitness function, however, are design choices we

must make. Currently, no definitive theory exists to say which choice is best. For the

27

4 4 12 4 8 12 12 12 2 4 9 18 24 5 7 14 5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0

13 8 2 20 7 14 15 1 10 18 9 12 6 3 4 5 17 16 19 11

Figure 2.5. Example A Matrix after Sorting

evaluation function we investigated three choices, each reflecting a different penalty

term.

The evaluation function measures "how good" a solution to the SPP problem a

string is. This must take into account not just the cost of the columns included in

the solution (the SPP objective function value), but also the degree of (in)feasibility

of a string. Traditional OR algorithms restrict their search to feasible solutions, and

so no additional term is included in the SPP objective function to penalize constraint
violations. In the GA approach, however, the GA operators often produce infeasible

solutions. In fact, since just finding a feasible solutio. to the SPP is NP-complete

[49], it may be that many or most strings in the population are infeasible. Therefore,

we need an evaluation function that takes into account the degree of infeasibility of

the string. We used as the generic form of our evaluation function

f = c(x) +p(x), (2.1)

where f is the evaluation function; c(x), the cost term, is the SPP objective function;

and p(x) is a penalty term. The choice of penalty term can be significant. If the

penalty term is too harsh, infeasible strings that carry useful information but lie

outside the feasible region will be ignored and their information lost. If the penalty

term is not strong enough, the GA may search only among infeasible strings [55]. We

investigated three penalty terms.

The countinfz penalty term is

Z AA(x), (2.2)
i=1

where
1 if constraint i is infeasible,

0 otherwise.

28

2 1 2

The countinfz penalty term indicates whether a constraint is infeasible, but does not

measure the magnitude of the infeasibility.

In Equation (2.2) (and Equation (2.3) below), A, is a scalar weight that penalizes

the violation of constraint i. Choosing a suitable value for A, is a difficult problem.

In [55] Richardson et al. studied the choice of A for the set covering problem (SCP).

In the SCP, the equality in Equation (1.2) is replaced by a > constraint. The SCP,

however, is not a highly constrained problem; in the SCP constraint i is infeasible

only if Iri| = 0. However, it is easily made feasible by (even randomly) selecting an

x,,j E Ri to set to one. For the Iril = 0 case, however, such an approach will not

work for the SPP, since any x,,j E Ri set to one, while it will satisfy constraint i,

may introduce infeasibilities into other currently feasible constraints. Similarly, if we

try to make a constraint with IrI > 1 feasible by setting all but one of the x3 , j E ri

to zero, we may undercover other currently feasible constraints.

A good choice for A, should reflect not just the "costs" associated with making

constraint i feasible, but also the impact on other constraints (in)feasibility. We know

of no method to calculate an optimal value for A,. Therefore, we made the empirical

choice of Ai = max{cIj E Ri}. This choice is similar to the "P2" penalty in [55],

where it provided an upper bound on the cost to satisfy the violated constraints of

the SCP. In the case of set partitioning, however, the choice of Ai provides no such

bound, and it is possible the GA may find infeasible solutions more attractive than

feasible ones (for several problems discussed in the next chapter this situation did

happen.)

The linear penalty term is

M n

Z:AiE aijxj - 1|. (2.3)
i=1 j=1

This penalty does measure the magnitude of constraint i's infeasibility.

The ST penalty term ([57]) is

M

Z(<P(x)/2) [z.., - zk,t]. (2.4)
i=1

Here, Z,, is the best feasible objective function value found so far, and Z,t is the

best objective function value (feasible or infeasible) found so far. According to Smith

and Tate [57]

... the explicit goal of our penalty function is to favor solutions

which are near a feasible solution over more highly-fit solutions which are

far from any feasible solution.

29

Following Smith and Tate, we used a distance-from-feasibility metric which was de-
pendent on the number of violated constraints, but not the magnitude of their vio-
lations.

Table 2.8 compares the three penalty terms using SSGA. Only the ST penalty
shows a significant result (problems nw41 and nwO8.) One point to note, is the paucity
of optimal solutions found with any of the penalties using SSGA by itself. Table 2.9
contains a similar comparison using SSGAROW. Interestingly, the opposite effect is
observed. Both the countinfz and linear penalty terms perform better than the ST
penalty. Compared with each other, the only difference that showed up with the x2

statistic was on nul5 where the linear penalty term performed better.

Table 2.8 Comparison of Penalty Terms in SSGA

Problem Linear Countinf ST
Name Opt. Trials Opt. Trials Opt. Trials
nw4I
nw32

nw40

nw08

nulS

nw20

nw33

aa04

nwl8

3

3

0

0
1
0
0

0
0

284
286
284
287
286
288
288
277
276

4
0
0
0
0
1
0
0

0

284
282
287
288
285
287
286
272
276

14
0
1
8
0
0
0
0
0

286
288
288
287
286
285
288
275
279

Table 2.9 Comparison of Penalty Terms in SSGAROW

Problem Linear Countinf ST
Name Opt. Trials Opt. Trials Opt. Trials
nw4l 35 143 28 141 11 141
nw32 18 142 24 142 0 141

nw40 8 143 9 142 2 142

nv08 6 142 8 143 5 142

nwI5 42 139 24 143 2 139

nw20 4 141 2 142 0 143

nw33 2 128 5 129 0 127

aa04 0 144 0 136 0 138

nu8 0 103 0 103 0 100

2.4.4 Fitness and Selection. The fitness function is used during the selec-
tion phase to determine the expected number of reproductive trials to allocate to a

string. Genetic algorithms require that the fitness function be nonnegative and that

the more highly fit a string, the larger its fitness function value (although see [42] for

30

a discussion of the use of a nonmonotonic fitness function). For the SPP this requires

a mapping from the evaluation function to the fitness function. As has been pointed

out, however, the evaluation function value itself is not an "exact" measure of fitness

[66]. The mapping from the evaluation function to the fitness function "should be

considered a design parameter of the genetic algorithm, not a feature of the opti-

mization problem" [31]. In general, the fitness function is given by u(x) = g(f(x)).

If selection is done via a binary tournament (see below), any fitness function that

reflects the monotonicity of the evaluation function will suffice. If selection is to be

done by calculating the expected number of reproductive trials and then sampling

those, however, the choice of fitness function can play a significant role. We tested

two choices for the fitness function.

A dynamic linear fitness function [26, 30] is given by

u(x) = af(x) + b(t).

We used a = -1 and b(t) = 1.1 - max{f(x)|x E P(t)}. De la Maza and Tidor [16]
point out that the choice of b(t) can significantly affect the selective pressure. Our

choice of b(t) is intended to interfere with the selective pressure as little as possible,

while still converting the minimization of f into the maximization of u.

We also tested a linear rank fitness function [5, 66] given by

Mnrank(x, t) - 1
u(x) = Min + (Max - NMin), (2.5)

N - 1

where rank(x, t) is the index of x in a list sorted in order of decreasing evaluation

function value. Ranking requires that 1 < Max < 2, and Min + Max = 2. We

used Max = 2. The advantage of ranking over other methods, when selection is pro-

portional to a string's fitness, is that ranking is less prone to premature convergence

caused by a super-individual.

Tables 2.10 contains the results of experiments we did comparing the dynamic fit-

ness function to ranking using SSGAROW. Sampling was done using both stochastic

universal selection and tournament selection. The x2 test shows that neither method

performed significantly better than the other on any of the test problems.

The selection phase allocates reproductive trials to strings on the basis of their

fitness. Depending on the type of GA, strings selected from the old generation are

either included directly in the new generation or become the parents of new strings

created by the GA recombination operators. We compared two choices for the selec-

tion algorithm: stochastic universal selection and tournament selection.

Baker's stochastic universal selection (SUS) is an optimal sampling algorithm

[5]. SUS may be thought of as constructing a roulette wheel using fitness propor-

tionate selection and then spinning the wheel once, where the number of equally

31

Table 2.10 Comparison of Fitness Techniques in SSGAROW

Problem Cmax

Name

nw4l
nw32
nw40

nw08

nul5
nw20
nw33
aa04

nwl8

Opt.
40
19
11
8

30
5
5
0
0

Trials

213
210
213
214
210
210
196
209
152

Ranking
Opt. Trials

34 212
23 215
8 214

11 213
38 211

1 216
2 188
0 209
0 154

spaced markers on the wheel is equal to the population size. This method guarantees
that each string is allocated [expectedvalue] reproductive trials and no more than

[expectedvalue].

In binary tournament selection [26, 27] two strings are chosen randomly from the
population. The more fit string is then allocated a reproductive trial. In order to
produce an offspring, two binary tournaments are held, each of which produces one
parent string. These two parent strings then recombine to produce an offspring. A
variation of binary tournament selection is probabilistic binary tournament selection
where the more fit string is selected with a probability Pb, .5 < Pb < 1. [54] Proba-
bilistic binary tournament selection does a~low for the possibility that the best string
in the population may be lost. Its advantage is a reduction in the selective pressure.

Table 2.11 contains the results comparing SUS to tournament selection using the
SSGAROW. The x2 test again shows that neither method performs better than the
other on any of the problems tested.

2.4.5 Initialization. We tested a total of six initialization schemes. Two are
random, three are heuristics, and one uses the solution to the LP relaxation. The
two random schemes are applied directly to all strings in the population. For the
nonrandom methods we initialize a single string via the method being used and then
randomly modify it to initialize the rest of the population.

Heuristic initialization violates the "usual" GA strategy of trying to achieve a
highly diverse solution space search by random initialization. For quite a while we had
trouble finding feasible solutions, however. Heuristic initialization was an attempt to
bias the search in a more favorable direction. Below we describe the different methods
we tested.

32

Table 2.11 Comparison of Selection Schemes in SSGAROW

SUS
Opt. Trials

39 214
21 212

8 212
6 215

29 210
4 210
1 195
0 207
0 165

Tournament
Opt. Trials

35 211
21 213
11 215
13 212
39 211

2 216
6 189
0 211
0 141

JChavatal = 0
do until (P = 0,Vj)

k = min{A,/lPj|lxj = 0}

Chavatal = JChavatal U k

P = P -Pi
enddo

Figure 2.6. Modified Chavatal Heuristic

2.4.5.1 Modified Chavatal Heuristic. This method is a modification
of a heuristic proposed by Chavatal [12] for the set covering problem. For the set
covering problem Chavatal notes:

Intuitively, it seems the desirability of including j in an optimal cover
increases with the ratioI1PI /c, which counts the number of points covered
by P per unit cost.

Our modification was to use A /IPj| as the quantity to minimize. The algorithm
calculates a set of column indices, JChavatal, and is given in Figure 2.6.

2.4.5.2 Greedy Heuristic. The greedy heuristic is similar to the modified
Chavatal heuristic. The difference is that the criterion used to decide which column to
next set to one in Figure 2.6 is to use min{zy,|jx, = 0} instead of min{A, /IPjI x, =

3 j

0}.

2.4.5.3 Gregory's Heuristic. Gregory's heuristic [32] is a generalization
of the Vogel approximation method for generating a starting solution to a Hitchcock

33

Problem

Name

nw41

nw32

nw40

nw08

nul5

nw20

nw33

aa04

nwl8

while(3 i s.t. r = 0)

for(i = 1, m)
if(r = 0)

,= min{A,Ij E Ri}

A,= min{Aj, j E R,,j $ k}

di - ZAl - A, 1
end if

end for
q = min{d, < d3 ,Vj s.t. rj = 0}

Xq +- 1

end while

Figure 2.7. Gregory's Heuristic

transportation model. For each row i with r = 0, the idea is to find the two columns

that minimize Ai,, j E R, calculate their difference, and find the minimum difference

over all such rows. The algorithm is given in Figure 2.7.

2.4.5.4 Random Initialization. Random initialization sets x3 +- 1, for

all columns j, with probability 0.5.

2.4.5.5 Block Random Initialization. Block random initialization, based
on a suggestion of Gregory [32], uses information about the expected structure of an

SPP solution. A solution to the SPP typically contains only a few "ones" and is

mostly zeros. We can use this knowledge by randomly setting to one approximately

the same number of columns estimated to be one in the final solution. If the average

number of nonzeros in a column is PAVG, we expect the number of x 3 = 1 in the

optimal solution to be approximately miPAVG-

We use the ratio of miPAVG to the number of nonnull blocks as the "probability"

of whether to set to one some x2 in block B,. If we do choose some j E B to set to

one, that column is chosen randomly. If the "probability" is > 1, we set to one one

column in every block.

Table 2.12 contains a comparison of four initialization strategies: the three heuris-

tics (Chavatal, Gregory, and Greedy) and block random initialization using the

SSGA. Since the SSGA algorithm by itself was unable to find many optimal solutions,

it is not possible to make meaningful comparisons. However, the results suggested

that Gregory's heuristic and block random initialization were the two most promising

approaches. These were further compared using SSGAROW; the results are shown

in Table 2.13. The new results are more meaningful; the x2 comparison shows that

block random initialization out performs Gregory's heuristic on five problems (nw4I,

nw4O, nwIS, nw20, nw33) and is outperformed on one (nw32). We conclude that by

34

giving the GA a wider selection of points in.the search space to sample from, it does
a better job than if we try to guide it.

In additional testing of block random initialization versus random initialization,
we observed that with random initialization SSGA by itself faired poorly. This result

is explained as follows. Approximately half the initial string will be one bits; however,
a feasible SPP string has only a few one bits. SSGA alone has only mutation to "zero

out" the one bits or crossover to combine "building blocks" of zero bits, and these
processes are too slow.

When we compared block random initialization versus random initialization using

SSGAROW, the results from the two methods were about the same. In this case
the large neighborhood moves ROW makes when Iril > 1, which is true for most
constraints initially, quickly zeros out most of the one bits. After a few generations
the number of one bits left in a randomly initialized string quickly approaches the
same number found in a block randomly initialized string.

Table 2.12 Comparison of Initialization Strategies in SSGA

Problem Chavatal Gregory Greedy Brandom
Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials

nw4l
nw32
nw40
nwO8
nulS
nw20
nw33
aa04

nwI8

1
0
0
0
0
0
0
0
0

214
214
215
215
215
214
216
205
207

13
2
0
8
0
0
0
0
0

214
214
215
215
214
215
216
208
208

0
0
0
0
0
0
0
0
0

212
214
215
216
214
215
214
202
206

7 214
1 214
1 214
0 216
1 214
1 216
0 216
0 209
0 210

2.4.5.6 Linear Programming Initialization. We also tried initializing
the population using the solution to the LP relaxation of the test problem. The results
in Table 2.14 were all obtained using the solution to the LP relaxation to initialize
the population. This was done in a manner similar to the way the other heuristics
were applied. First, the first string in the population was initialized using the LP
relaxation and then was randomly perturbed to seed the rest of the population. Since
the LP solution can be fractional, we experimented with three ways to "integerize"
it. One was to use the nonzero value of a variable in the LP solution as a probability;
if the, value of a random number, 0 < r < 1, was less than the variable's value, we
set the corresponding bit to one, otherwise to zero. This is column Flip. In the
second case, we set a bit to one if the corresponding value in the solution to the LP
relaxation was > 0.5, otherwise to zero. This is column Round. In the third case, we
set to one any bits whose corresponding variable in the solution to the LP relaxation
was nonzero, otherwise to zero. This is column Ceil.

35

Table 2.13 Comparison of Initialization Strategies in SSGAROW

Problem
Name
nw4l
nw32
nw40
nw08

nui5
nw20
nw33
aa04

nui8

Gregory
Opt. Trials

11 215
36 213

0 216
7 212

24 211
0 213
0 195
0 212
0 155

Brandom
Opt. Trials

63 210
6 212

19 211
12 215
44 210

6 213
7 189
0 206
0 151

Between themselves Ceil outperforms Flip and Round on two problems (nw4l,
nw08) but otherwise none of the other results are significant at the 5 percent level
of the x2 test. A direct comparison of the the Ceil results with the block random
results in Table 2.13 is not appropriate since the ten trials in Table 2.14 all used a
particular set of parameters, whereas those in Table 2.13 were varied. However, we
do note that for the smaller problems LP initialization does well, but for the larger
ones (aaO4, nw18) it was unable to help SSGAROW find a feasible solution to either.
Since one of our motivations was to see whether we could develop an algorithm for
the SPP that did not need to solve the LP relaxation as a starting point, we did not
pursue LP initialization further.

Table 2.14 Linear Programming Initialization in SSGAROW

Problem Flip Round Ceil
Name Opt. Trials Opt. Trials Opt. Trials
nw4l
nw32
nw40
nw08
nwiS
nw20
nw33

aa04

nwi8

3 9
4 9
2 9
4 9
8 9
1 8
2 8
0 7
0 9

3
3
3
6

6
5
6

0

0

9

9

8
9

8
9
8
8
9

8
5

2
10

10

2
6

0

0

10
9

10
10

10
10
10

9

9

2.4.6 Crossover. The crossover operator takes bits from each parent string
and combines them to create child strings. The motivating idea is that by creating
new strings from substrings of fit parent strings, new and promising areas of the
search space will be explored. Figure 2.8 illustrates the classical one-point crossover

36

t

L

L

I

Parent Strings Child Strings

a a a a a a a a a a b b b b b b

b b b b b b b b b b a a a a a a

Figure 2.8. One-Point Crossover

Parent Strings Child Strings

a a a a a a a a a a b b b a a a

b b b b b b b b b b a a a b b b

Figure 2.9. Two-Point Crossover

operator. Starting with two parent strings of length n = 8, a crossover site c = 3 is

chosen at random. Two new strings are then created; one uses bits 1-2 from the first

parent string and bits 3-8 from the second parent string; the other string uses the

complementary bits from the two parent strings.

In the past several years, however, GA researchers have preferred either two-point

or uniform crossover. It is these, along with a specialized two-point "block crossover"

we developed for the SPP problem, that we compared.

2.4.6.1 Two-Point Crossover. Booker [10] cites DeJong [17] who noted
that one-point crossover is really a special form of two-point crossover where the

second "cut" point is always fixed at the zero location. Figure 2.9 illustrates two-

point crossover. Starting with two parent strings of length n = 8, two crossover sites

cl = 3 and c2 = 6 are chosen at random. Two new strings are then created; one uses

bits 1-2 and 6-8 from the first parent string and bits 3-5 from thr. second parent

string; the other string uses the complementary bits from each parent string.

Two-point crossover (and one-point crossover) are special cases of n-point crossover

operators. In the n-point crossover operators, more than one crosspoint is selected,

and several substrings from each parent may be exchanged. Experiments by Booker

[10] showed a significant improvement in off-line performance at the expense of on-

line performance when using two randomly generated crossover points. In the case

of function optimization, off-line performance is the more important measure.

2.4.6.2 Two-Point Block Crossover. We experimented with a modifi-
cation of two-point crossover designed to take advantage of the block staircase form

we sorted the SPP problem into. We define two-point block crossover to be crossover

such that the crossover columns,, c and c2 , c1 < c2 , are always selected to be the first

columns of two blocks, Bi, and B 2

-

Block crossover was developed as an attempt to preserve feasibility (or at least

not make a solution more infeasible.) From the definition of block Bi we know

37

Parent Strings Child Strings

a a a a a a a a b a a b a b b a

b b b b b b b b a b b a b a a b

Figure 2.10. Uniform Crossover

that all columns in Bi have their first one in row i. It follows that at most one

column in any block can be set to one in a feasible solution. The intent of two-point

block crossover was to avoid introducing additional infeasibilities in the blocks that

contain the crossover columns, since all columns in that block come from only one

parent. Two-point block crossover can, however, still introduce infeasibilities into

other blocks.

2.4.6.3 Uniform Crossover. One way to think of uniform crossover is as

randomly generating a bit-mask that indicates from which parent string to take the

next bit when creating the offspring [61]. Figure 2.10 illustrates uniform crossover.

Starting with two parent strings of length n = 8, the bit-mask 01101001 is randomly

generated. This mask is applied to the parent strings such that a "1" bit indicates

that the next bit for the first child string should be taken from the first parent string,
and a "0" bit indicates that the next bit for the first child string should be taken

from the second parent string. The bit-string is then complemented and the process

repeated to create the second child string.

Spears and DeJong [59] and Syswerda [61] give evidence to support the claim

that uniform crossover has a better recombination potential-the ability to combine

smaller building blocks into larger ones-than do other crossover operators. Testing

by Syswerda showed that uniform crossover performed significantly better than one-

or two-point crossover on most problems. DeJong and Spears [19] present empiri-

cal results on a set of n-peak problems (those with one global optima, but n - 1

local optima) comparing two-point and uniform crossover with varying population
sizes. Their results show that uniform crossover is better than two-point crossover

for smaller values of n and for smaller values of the population size N. In [58],

however, Spears and DeJong note just the opposite effect as both n and N increase:

This suggests a way to understand the role of multi-point crossover. With

smaller populations, more disruptive crossover, such as uniform or n-point

(n > 2) may yield better results because they help overcome the limited
information capacity of smaller populations and the tendency for more

homogeneity. However, with larger populations, less disruptive crossover

operators (two-point) are more likely to work better, as suggested by the

theoretical analysis.

Syswerda [61] notes that uniform crossover replaces the need for the inversion

operator. Inversion moves bits around so that related sets of bits are less likely to

38

be disrupted and more likely to be grouped with similar bit groupings. Because
uniform crossover chooses bits randomly to mask, however, it does not have the
same disrupting effect on long defining length schemata that n-point crossover does,
and so inversion is not necessary. Thus uniform crossover may be advantageous for
SPP problems because the long strings associated with large problems may make the
interruption of long defining length schemata a. serious problem.

Table 2.15 contains the results of our tests to compare all three crossover operators
using SSGAROW. The x2 test showed no significant difference between any of the
crossover operators on any of the problems.

Table 2.15 Comparison of Crossover Operators Using SSGAROW

Problem Two-Point Uniform Two-Point Block
Name Opt. Trials Opt. Trials Opt. Trials
nw4l
nw32

nw40

nw08

nulS
nw20

nw33
aa04
nwl8

24
15

5
8

25
1
3
0
0

142
139
142
140
140
141
141
133
143

24
16
8
6

22
1
1
0
0

141
144
142
143
140
141
143
143
141

26
11
6
5

21
4
3
0
0

142
142
143
144
141
144
100
142
22

Spears and DeJong [59] suggest parameterizing uniform crossover with a param-
eter pu that is the probability of swapping two parents bit values. Normally in
uniform crossover pu = 0.5, however, Spears and DeJong note that with pu = 0.1,
uniform crossover is less disruptive than two-point crossover with no defining length
bias. They believe this is useful in being able to achieve a proper balance between
exploration and exploitation. Table 2.16 shows the results of experiments we did
to compare three values of pu (0.6, 0.7, and 0.8) with 0.5. The x2 test showed no
significant differences among any of the results.

Studies of crossover rate suggest that a high rate, which disrupts many strings
selected for reproduction, is important in a small population. Further studies show a
decreasing crossover rate as the population size increases. Some classical results using
generational replacement GAs have suggested N = 50-100 and pc = 0.6 (DeJong [17]),
and N = 80 and p, = 0.45 (Grefenstette [30]) as good values for offline performance.
More recently, steady-state GAs have become prominent; but no set of parameter
values is yet a default.

To try to determine a good crossover rate, we tested three crossover probabilities,
0.3, 0.6, and 0.9, in conjunction with the three crossover operators described earlier.
The results are shown in Table 2.17. The x2 test shows little conclusive evidence; 0.6

39

Table 2.16 Parameterized Uniform Probability Using SSGAROW

Problem Pb = 0.5 Pb = 0.6 Pb = 0.7 Pb = 0.8
Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials
nw4I
nw32
n40
nw08

nulS
nw20
nw33
aa04
nwl8

7
4
5
1
5
0
1
0
0

10
10
10
9
8
8
9
8
9

7

0
4
2
8
1
3

0
0

8
10
10
10
10
9

9
Q

8

6
3

2
3

4
1
4
0
0

10
9
6
8
9

10
10
6
8

9 10
0 7
2 6
3 10
6 8
0 10
3 10
0 1
0 10

superior to 0.9 on two problems (nw4l, nwO8) and

problem (nw40).

0.3 superior to 0.6 and 0.9 on one

Table 2.17 Comparison of Crossover Probabilities in SSGAROW

30%
Opt. Trials

23 141

13 144

12 144

7 142
24 141
2 140

3 144

0 136

0 116

Opt
3:

14

2

60%
Trials

3 142
4 139
4 140
0 144
4 141
1 142
1 136
0 141
0 95

90%
Opt. Trials

18 142
15 142
3 143
2 141

20 139
3 144
3 104
0 141
0 95

40

Problem
Name

nw4l
nw32
nw40
nw08
nulS

nw20

nw33

aa04

nwl8

2.4.7 Computational Complexity.

Here we give a complexity analysis for the average cost per iteration for the

algorithm given in Figure 2.1. We note that the analysis is particular to specific

operator choices we made (e.g., uniform crossover vs. two-point crossover) and also

reflects the particular data structures being used. For the test problems used in the

next chapter, N was 100, m varied from 17 to 823 and was typically 20-40, and n

varied from 197 to 43,749 and was typically 600-3000.

The ROW heuristic is applied to one randomly selected string each generation,

and one constraint is randomly selected to try to improve. A first-improving strategy

is used. We define PMAX = max{IPI} ; K < m. That is, PMAX is the largest
3

number of nonzeros in a column, and is bounded by a constant K, less than the

number of rows. We will use PMAX below as an upper bound on IP|. We define

RAVG to be the average number of nonzeros in a row. Since the choice of constraint

is equally likely, we use RAVG when determining complexity terms dependent on the

number of nonzeros in a row. For the test problems used in the next chapter, PMAX

was typically 7-17, and RAVG was typically 150-200.

If Iri| = 0, a single column is randomly selected in constant time, and an 0(PMIAx)

step follows to update the count of how many columns cover each row. If 1r7-i = 1, we

must first determine which column covers this row in time O(RAVG). Next, we loop

over each j E R, (O(RAVG)) and consider a 1-interchange move with the column

currently one. Each such comparison requires evaluations of the cost to add and

delete the respective columns. Each of these requires a loop over all the rows covered

by that column (O(PMAx)) so the total complexity is O(RAVGPMAX). If r!ij > 1, a

single column is randomly selected in constant time. Next, to determine the set of

columns in IrI| requires a search through R, at complexity O(RAVG), to see which

columns can cover this row. These are then set to zero, which takes time 0(Ir I). We

conclude that the complexity of ROW is O(RAVGPMAX)-

Selection was done using a binary tournament. This requires randomly selecting

two parents and may be done in constant time. We chose to use uniform crossover,

which requires a bit mask for every bit position; its complexity is 0(n). Mutation

is also 0(n), since we call a random number generator for each bit to determine

whether we should flip it. Determining the string to delete required looking through

the whole population, which takes time O(N).

Not allowing duplicate strings requires comparing the new offspring to each string

in the population (O(N)). Each of these comparisons requires comparing each bit

position (O(n)). Therefore, the total complexity of the comparisons is 0(nN). If

we do find a duplicate, we go through an unknown number of mutate steps, each of

which takes time (O(n)), until the string is no longer a duplicate.

Function evaluation is done twice each generation, once for the newly created

offspring of the GA, and once for the string that ROW was applied to. Evaluating

41

the function requires determining the cost and penalty terms. Calculating the cost

component is 0(n), since we must test each bit to see which c to include in the cost

term. To determine the penalty term, we must first determine 1ri| for each i E I. To

do this, we loop over each column j (O(n)) and, if x = 1, update ri for all iE Pj.

So the complexity to calculate the penalty term is O(nPMAx). Using the up-to-date

rail's , we loop over each constraint 0(m) to determine the total penalty term. Once
we have the evaluation function values, we calculate the fitnesses by searching through

the population O(N) to find the least fit string and then calculating Equation (2.4.4)

for each string (O(N)).

Collecting the largest terms the cost of an average iteration is

CAVG = 0(nN) + O(RAVGPMAX) + 0(m).

We make the following empirical observations. First, as described in Section 2.4.1,

our implementation works directly with the bits stored in a computer word. If the

word length is WL, in many cases steps in the algorithm that have complexity 0(n)

can be done in time 0(n/WL), since we can often test for equality or nonzero bits at

the word level rather than the individual bit level. Since an SPP solution is mostly

zero bits, in practice this will usually be advantageous. Second, we did not keep a

sorted list of evaluation function values. However, this could be used to reduce the

complexity to determine the string to delete and calculate the fitness values. Third,

it is possible to use some hashing of the indices of the one bits in a string to make

testing for duplicates more efficient.

2.5 Discussion

One early conclusion we reached was that the generational replacement GA, even
with elitism, was not very good at finding solutions to SPP problems. In fact, even

finding feasible solutions to relatively small problems proved a difficult challenge. The

primary cause of this was premature convergence. The SSGA proved more successful,

particularly at finding feasible solutions. However, the SSGA still had considerable

difficulty finding optimal solutions. This situation motivated us to develop a local

search heuristic to hybridize with the SSGA.

The ROW heuristic we developed is specialized for the SPP. ROW has three

parameters: how many iterations it is applied, how to select the constraint to apply

it to, and how to select a move to make. In general, the most successful approach

with ROW seems to be to "work quicker, not harder." We found that applying ROW

to just one constraint, choosing this constraint randomly, and using a first-improving

strategy (which also introduces randomness when a constraint is infeasible) is more

successful than attempts to apply ROW to the most infeasible constraint or find the

best-improving solution.

The advantages of ROW relative to a best-improving 1-opt heuristic we also im-

plemented [43] are its ability to make moves in large neighborhoods such as when

42

iri| > 1, its willingness to move downhill to escape infeasibilities, and the random-
ness introduced by the first-improving strategy. Even with ROW we detected a
convergence in the population after some period of time. When all constraints are
feasible, ROW no longer introduces any randomness since in the case IriI = 1 it
is in a "true" first-improving strategy mode. When most constraints are feasible,
the 1 - interchange moves examined degrade the current solution, so ROW remains
trapped in a local optima.

Table 2.18 compares the SSGA, the ROW heuristic, and the SSGAROW hybrid.
SSGA and ROW are not much different. Using the x2 test, SSGA outperforms ROW
on problem nvO8, and ROW outperforms SSGA on nul5 and nw33. SSGAROW,
however, outperforms both ROW and SSGA on five and seven of the test problems,
respectively. The search heuristic is able to make good local improvements to the
strings, and the GA's recombination ability allows these local improvements to be
incorporated into other strings and thus have a global effect.

We tested several operator and parameter value choices. In most cases we con-
cluded that the different options we compared all worked about the same. More
specifically, the linear amd countinfz penalty terms performed about the same. There
was no significant difference between either fitness techniques or selection method.
The different crossover operators and crossover probabilities we tested also all be-
haved about the same. An exception was our attempt to initialize the population
using some type of heuristic method. We found the wide sampling of the initial search
space provided by block random initialization was preferred.

Table 2.18 Comparison of Algorithms

Problem SSGA ROW
Name Opt. Trials Opt. Trials
nw4l
nw32
nw40
nw08
nuI5
nw20
nw33
aa04

nwl8

21
3
1
8
1
1
0
0
0

854
856
859
862
857
860
862
824
831

30
7
4
0

116
2
9
0
0

860
861
861
854
425
774
821
649
820

SSGAROW
Opt. Trials

74 425
42 425
19 427
19 427
68 421

6 426
7 384
0 418
0 306

43

CHAPTER III

PARALLEL GENETIC ALGORITHM

In this chapter we discuss the parallel genetic algorithm we developed. First,

we give an overview of the island model that is the basis for the parallel genetic

algorithm. Next, we discuss several parameters of the island model and experiments

we carried out to try and determine good ones. Third, we describe the hardware and

software environment in which the experiments were performed. Fourth, we present

the results of our experiments applying the parallel genetic algorithm to a test suite

of set partitioning problems. We conclude with a discussion of our results.

3.1 The Island Model Genetic Algorithm

In population genetics an island model is one where separate and isolated subpop-

ulations evolve independently and in parallel. It is believed that multiple distributed

subpopulations, with local rules and interactions, are a more realistic model of species

in nature than a single large population.

The island model genetic algorithm (IMGA) is analogous to the island model of

population genetics. A GA population is divided into several subpopulations, each

of which is randomly initialized and runs an independent sequential GA on its own

subpopulation. Occasionally, fit strings migrate between subpopulations.

The migration of strings between subpopulations is a key feature of the IMGA.

First, it allows the distribution and sharing of above average schemata via the strings

that migrate. This serves to increase the overall selective pressure since additional

reproductive trials are allocated to those strings that are fit enough to migrate [67].

At the same time, the introduction of migrant strings into the local population helps

to maintain genetic diversity, since the migrant string arrives from a different sub-

population which has evolved independently.

The IMGA may be subject to premature convergence pressure if too many copies

of a fit string migrate too often, and to too many subpopulations. It is possible that

after a certain number of migration steps each subpopulation contains a copy of the

globally fittest individual, and copies of this string (and only this string) migrate

between subpopulations. In fact, this occurred often in our early experiments when

we were not checking to see whether the arriving string was a duplicate of one already

in the subpopulation. The "fix" was to extend the test for duplicate strings (see

Section 2.2) to the arriving string.

The IMGA is itself a logical model. By this we mean that the underlying computer

hardware used for the implementation is not specified, only the high-level model. For

example, an IMGA can be executed on a sequential computer by time-sharing the

processor over the computations associated with each subpopulation's sequential GA.

However, the most natural computer hardware on which to implement an IMGA is a

44

distributed-memory parallel computer. In this case each island is mapped to a node,

and the processor on that node runs the sequential GA on its subpopulation. Since

the nodes execute in parallel, it is possible to perform more reproductive trials in a

fixed (elapsed) time period as processors are added, assuming the parallel comput-

ing overheads associated with communicating migrating strings do not increase the

computational effort significantly. Because selection and other GA operators are ap-

plied locally, no global synchronization is required. Finally, strings migrate relatively

infrequently, and the amount of data sent is usually small. The result is a very low

(attractive) communication to computation ratio.

A word about terminology. Since we always maintain a one to one mapping of

subpopulations to processors, in the rest of this thesis we will use the words processor,

node, and subpopulation interchangeably. That is, when we say node or processor,

we mean the subpopulation that resides on that node or processor.

The IMGA is programmed using a single-program multiple-data (SPMD) pro-

gramming model; each processor is executing the same prograip, but on different

data (their respective subpopulations). "Synchronization" occurs between proces-

sors only when strings are exchanged. A generic IMGA is shown in Figure 3.1. The

difference between Figure 3.1 and Figure 2.1 is the addition of a test to see whether

on this iteration a string is to be migrated. If so, the neighboring subpopulation to

migrate the string to is determined, and the string to migrate, xm ,.te, is selected

and sent to the neighbor. A migrant string, x,.,,,, is then received from a neighboring

population, and the string to delete, Xdelete is determined and replaced by x,.,c.

3.2 Parameters of the Island Model

An IMGA is characterized by several choices: the type of sequential GA to run

on each node, how many strings to migrate and how often to migrate them, how to

choose the string(s) to migrate and the string(s) to replace, the logical topology the

subpopulations are arranged in, and which subpopulations communicate on a migra-

tion step. From our work in the previous chapter, we concluded that a steady-state

genetic algorithm in conjunction with the ROW heuristic was an effective choice for

the sequential GA. For the other choices, however, a number of possibilities existed.

The choice of "communication" parameters in the IMGA echoes the competing

themes of selective pressure and population diversity noted in sequential GAs. Fre-

quently migrating many fit strings and deleting the least fit strings serve to increase

the selective pressure, but decrease the population diversity. The choice of logical

topology and neighbors to communicate with will affect how "fast" fit strings may

migrate among subpopulations.

We chose to fix the number of strings to migrate to one. There were two reasons

for this choice. First, it seemed intuitively appealing in conjunction with a SSGA;

integrating a single arriving migrant string is similar to how the SSGA integrates

its own newly created offspring. The primary differences are that the migrant string

45

arrives from a different subpopulation and is presumably of above-average fitness.

The second reason was simply to cut down on the size of the parameter space being

explored and to focus on choices for the other parameters. For a similar reason to

the latter, we also chose to fix the logical topology of the subpopulations to a two-

dimensional toroidal mesh. Each processor exchanged strings with its four neighbors,

alternating between them each migration generation (i.e., north, east, west, south,

north, ...).

To determine suitable values for the other parameters, we performed a set of

experiments, similar in philosophy to those described in the preceding chapter. Each

of these experiments was performed using eight processors on the IBM SP1. Each

processor ran the SSGAROW algorithm on its own subpopulation of size 50. Each
run was terminated either when an optimal solution was found or when an iteration

limit of 50,000 was reached. Except for the population size and limit on the number

of iterations, all other parameters used in these tests were the same as those used in

the main experiments described in more detail in Section 3.5.

We restricted these experiments to the seven smaller problems used in our se-

quential tests. Our intention was to reduce the computational effort required. For

each of these seven test problems we ran a total of 72 trials. On each trial we varied

one of the parameters: the string to migrate, the string to delete, and the migration

frequency. Each trial was randomly initialized as described in Section 3.3.

3.2.1 String to Migrate. There are two reasons to send a string to another

subpopulation. One is to increase the fitness of the other subpopulation. The other

is to help the other subpopulation maintain diversity. As in the sequential GA,

the competing themes of selective pressure and diversity arise. If a subpopulation

consistently and frequently receives similar, highly fit strings, these strings become

predominant in the population, and the GA will focus its search on them at the

expense of lost diversity. If, on the other hand, random strings are received, diversity

may be maintained, but the subpopulation's fitness will likely not improve.

We compared two ways to choose the string to migrate. In the first, the fittest

string in a subpopulation was sent to a neighbor. This strategy tends to increase

the selective pressure. In the second case, the string to migrate was selected via a

probabilistic binary tournament with parameter Pb = 0.6. The second choice serves

to reduce the selective pressure while still attempting to migrate strings with above-

average fitness.

Table 3.1 compares the two strategies. The results in the Tournament column

used a probabilistic binary tournament to select the string to migrate. The results

in the Best column selected the best string in the subpopulation to migrate. The

column labeled OptIter is an average, over all runs where an optimal solution was

found, of the iteration in which the optimal solution was found. The x2 test shows no

significant difference between either strategy using the number of optimal solutions

found as the comparison metric. From the OptIter column we note that the strategy

46

t -0

initialize P(t)
evaluate P(t)
foreach generation

local.search randomm E P(t))
select(xI, x 2) from P(t)
if(r < pc) then

xne, = crossover(x 1 , x2

)

else
Xnew = mut ate(x1, x2

)

endif
delete (xwo,-t E P(t))
while (Xne. E P(t))

mutate(xnew)

P(t + 1) +- P(t) U Xnew
if (migration generation) then

to = neighbor(myid, gen)

Xmigrate = string.to-migrate(P(t+1))
send.string(to, xmigrate)

Xrecv = recv..string (

)

Xdelete = string..to.delete(P(t+1))
replace.string(xdelete, Xrecv, P(t + 1))

endif
evaluate(Pt+i)

t +- t + 1

endfor

Figure 3.1. Island Model Genetic Algorithm

47

Table 3.1 Migrant String Selection Strategies

Problem Tournament Best
Name Opt. Trials OptIter Opt. Trials OptIter
nw4l 36 36 601 36 36 586
nw32 24 36 4865 22 36 5172

nw40 29 36 6596 30 36 4147

nw08 34 36 5375 31 36 8135

nwI5 36 36 986 36 36 942

nw20 18 36 10601 18 36 5677

nw33 24 36 6807 31 36 4148

that is the fastest at finding an optimal solution varies by problem, although nw40,
nw20, and nw33 show the tournament strategy is significantly slower, most likely
implying less selective pressure. We conclude that both the tournament and best
strategy are effective and that the choice is not significant as long as above-average
fitness strings are being migrated.

3.2.2 String to Delete. We tested two strategies for determining the string
to delete. The first was to delete the least fit string in the subpopulation. The other
was to hold a probabilistic binary tournament with parameter PA = 0.4 and delete the
"winner." Deleting the worst-ranked string more aggressively enforces the selective
pressure.

Table 3.2 compares the two strategies. The column labeled Tournament was
defined previously. The column labeled Worst refers to selecting the least fit string
in the subpopulation to be deleted. The x2 test shows the tournament strategy
performs significantly better on three problems (nw32, nw40, and nw33). From the
OptIter column we see that the tournament strategy is again significantly slower at
finding the optimal solution. Here, however, the reduction in selective pressure pays
dividends, as this strategy is more successful at finding the optimal solution.

The result on nw20 is interesting. More optimal solutions are found using the
worst strategy, although it is just below the 5 percent significance level of the x2 test.
From Table 2.2 we note that of the seven smaller test problems, nw20 is in some ways
the hardest; it had an all fractional solution to the linear programming relaxation and
required the most nodes to be searched in the branch-and-bound tree. It would seem
deleting the worst-ranked subpopulation member more severely enforces selective
pressure than the choice of string to migrate leading to results similar to what has
been observed for sequential GAs; the population converges to a solution faster, but
the solution is not necessarily as good as can be found by moderating some of the
selective pressure. The increased selective pressure may be necessary on more difficult
problems, however.

48

Table 3.2 String Deletion Strategies

Problem Tournament Worst
Name Opt. Trials OptIter Opt. Trials OptIter
nw41 36 36 638 36 36 549

nw32 28 36 5611 18 36 4080

nw40 34 36 5857 25 36 4661

nwO8 33 36 7285 32 36 6079

nwl5 36 36 978 36 36 950

nw20 14 36 8926 22 36 7638

nw33 32 36 6202 23 36 4065

Table 3.3 Comparison of Migration Frequency

Problem No Migration 100 1000 5000
Name Opt. Trials Opt. Trials Opt. Trials Opt. Trials

nw4I
nw32
nw40
nw08
naw5

nw20
nw33

24
15
22

0
8

14
15

24
24
24
24
24
24
24

24
15
17
21
24
14
21

24
24
24
24
24
24
24

24
17
20
23
24
11
16

24
24
24
24
24
24
24

24
14
22
21
24
11
18

24
24
24
24
24
24
24

3.2.3 Frequency of Exchange. We tested three string migration frequencies
and no migration. The results, given in Table 3.3, are not conclusive. The only
significant result with the x2 test was that all three migration choices performed
better on nwO8 and nwl5 than no migration. Even without migration, however, the
GA still found a number of optimal solutions.

As an example of an ambiguous result, we note that for nw20, which we earlier
described as possibly the most difficult of the seven test problems, the most optimal
solutions were found both by migrating as frequently as possible and by not migrating
at all.

3.3 Computational Environment

The IBM SP1 parallel computer used to run the multiple independent sequential
trials described in Chapter II was used in a tightly coupled mode for the parallel
experiments described in this chapter. The IBM SP1 we used had 128 nodes, each
of which consisted of an IBM RtS/6000 Model 370 workstation processor, 128 MB of
memory, and a 1 GB disk. Each node ran its own copy of the AIX operating system.
The SP1 makes use of a high-performance switch for connecting the nodes.

49

The parallel program was initially developed on Unix workstations making use of

the message passing capabilities of the p4 [11] parallel programming system. For the

parallel experiments on the SP1, the code was ported to the Chameleon [34] message-

passing system. Chameleon is designed to provide a portable, high-performance

message-passing system. Chameleon runs on top of many other message passing

systems, both vendor-specific and third party, allowing widespread portability. In our

case Chameleon's p4 interface allowed us to continue development on workstations

and, at the same time, begin experiments on the SP1 where we used Chameleon's

EUIH interface. EUIH is an experimental low-overhead version of IBM's External

User Interface message passing transport layer. The primary advantage of EUIH is its

efficiency for applications that need high-speed communications. Although we do not

consider the PGA such an application, since small amounts of data are communicated

relatively infrequently, EUIH is the standard transport layer in use on the SP1 system

that we used at Argonne National Laboratory.

The parallel program itself is based on the single-program multiple-data (SPMD)

model in common use today on distributed-memory computers. It uses explicit sends

and receives for communicating strings between processors. Broadcasts from proces-

sor zero to other processors handle various initialization tasks. A number of statistical

calculations, not part of the algorithm but used for periodic report writing, are han-

dled by collective (global) operations.

Random number generation was done using an implementation of the univer-

sal random number generator proposed by Marsaglia, Zaman, and Tseng [45], and

translated to C from James' version [38]. Each time a parallel run was made, all sub-

populations were randomly seeded. This was done by having processor zero get and

broadcast the microsecond portion of the Unix gettimeof day system call. Each pro-

cessor then added its processor id to the value returned by the Unix gettimeof day

and used this unique value as its random number seed. For the random number

generator in [45] each unique seed gives rise to an independent sequence of random

numbers of size ; 1030 [38].

3.4 Test Problems

To test the parallel genetic algorithm we selected a subset of forty problems from

the Hoffman and Padberg test set [36]. This included the nine problems used in

Chapter II and thirty-one others. The test problems are given in Table 3.4, where

they have been sorted according to increasing numbers of columns. The columns in

this table are the test problem name, the number of rows and columns in the problem,

the number of nonzeros in the A matrix, the optimal objective function value for the

LP relaxation, and the objective function value of the optimal integer solution.

Table 3.5 gives attributes of the solution to the LP relaxation and results from

50

solving the integer programming problem with the lp..solvet program. The columns

in this table are the name of the test problem, the number of simplex iterations

required by 1p.solve to solve the LP relaxation plus the additional simplex itera-

tions required to solve LP subproblems in the branch-and-bound tree, the number

of variables in the solution to the LP relaxation that were not zero, the number of

the nonzero variables in the solution to the LP relaxation that were one (rather than

having a fractional value), and the number of nodes searched by lp..solve in its

branch-and-bound tree search before an optimal solution was found.

The optimal integer solution was found by lp-solve for all but the following

problems: aaO4, k101, aa05, aa0, nwl8, and k102, as indicated in Table 3.5 by the

">" sign in front of the number of simplex iterations and number of IP nodes for

these problems. For aaO4 and aa0l, lp..solve terminated before finding the solution

to the LP relaxation. For aaO5, kl01, and k102, lp..solve found the solution to

the LP relaxation but terminated before finding any integer solution. A nonoptimal

integer solution was found by lp-solve for nI before it terminated. Termination

occurred either because the program aborted or because a user-specified resource

limit was reached.

Many of these problems are "long and skinny", that is, they have few rows rel-

ative to the number of columns (it is common in the airline industry to generate

subproblems of the complete problem that contain only a subset of the flight legs the

airlines are interested in, solve the subproblems, and try to create a solution to the

complete problem by piecing together the subproblems). Of these test problems, all

but two of the first thirty have fewer than 3000 columns (nw3'3 and nw09 have 3068

and 3103 columns, respectively). The last ten problems are significantly larger, not

just because there are more columns, but also because there are more constraints.

For lp-solve many of the smaller problems are fairly easy, with the integer opti-

mal solution being found after only a small branch-and-bound tree search. There are,

however, some exceptions where a large tree search is required (nw23, nw28, nw36,

nu29, nu3O). These problems loosely correlate with a higher number of fractional
values in the LP relaxation than many of the smaller problems, although,this cor-

relation does not always hold true (e.g., nw28 with few fractional values requires a

"large" tree search, while nw33 with "many" fractional values does not). For the

larger problems lp..solve results are mixed. On the nw problems (nw07, nwO6, nw11,

nuwi8, and nwO3) the results are quite good, with integer optimal solutions found for

all but nw18. Again, the size of the branch-and-bound tree searched seems to corre-

late loosely with the degree of fractionality of the solution to the LP relaxation. On

tWe note that as a public-domain program lp-solve should not be used as the standard

by which to judge the effectiveness of linear and integer programming solution methodology.

Our interest here was in being able to characterize the solution difficulty of the test problems
and to make a "ballpark" comparison against traditional operations research methodology.

For this purpose we believe lp..solve was adequate.

51

the k1 and aa models, lp-solve has considerably more difficulty and does not find

any integer solutions.

3.5 Parallel Experiments

Our hypothesis was that a parallel genetic algorithm could be developed that

would solve real-world set partitioning problems and, further, that the effectiveness

of the parallel GA would improve as the number of subpopulations increased.

Our work in Chapter II concentrated on finding a sequential GA that worked

well on the SPP. The work in Section 3.2 concentrated on finding a good set of

"communication" parameters to use with the IMGA. While we do not claim to have

found the optimal set of values in either case, we do believe we have made reasonably

good choices.

All the results to be presented were made with the following operators and pa-

rameter settings. The sequential GA used was steady-state, with one new individual

generated each generation. Fitness was calculated using a dynamic linear fitness func-

tion. The penalty term used in the evaluation function was the countinfz penalty term

(Equation (2.2)). In order to generate a new individual, two strings were selected

by holding two binary tournaments. A random number, 0 < r < 1, was generated

to decide whether a string should undergo crossover or mutation. If r < Pc = 0.6,

uniform crossover (with p. = 0.7) was performed, and one of the two offspring was

randomly selected to insert into the population. If r > p, one of the two parent

strings was randomly selected, a clone of that parent string was made, and the clone

underwent mutation. The mutation rate was fixed and set to the reciprocal of the

string length. The least fit string in the population was selected to be deleted. Before

inserting a new string into the population, it was first tested to see whether it was

a duplicate of a string already in the population. If so, mutation was applied to the

string until it was no longer a duplicate of any string in the population.

The ROW heuristic was applied to one randomly selected string each generation.

A constraint was randomly selected, and ROW attempted to improve the string

with respect to that constraint. The first-improving strategy was used. A run was

terminated either when the optimal solution was foundt or when all subpopulations

had performed 100,000 iterations.

For the communication parameters, the best string in a subpopulation was se-

lected to migrate to a neighboring subpopulation every 1,000 iterations. The string

to delete was selected by holding a probabilistic binary tournament (with PA = 0.4).

Note that the probabilistic deletion strategy allows a chance that the best string

t For these tests, the value of the (known) optimal solution was stored in the program
which tested the best feasible solution found each iteration against the optimal solution

and stopped if they were the same.

52

Table 3.4 Parallel Test Problems

Problem No. No. No. LP IP
Name Rows Cols Nonzeros Optimal Optimal
nw4l

nw32
nw40
nw08

nwls

nw2l

nw22
nwl2

nw39

nw20
nw23
nw37

nw26
nulO

nw34

nw43

nw42
nw28

nw25

nw38

nw27

nw24

nw35
nw36
nw29
nw30
nw3l
nw19

nw33
nW09

nw07

nw06

aa04

kiOl

aaOS

nwll

aa01l

nwl8

k102

nwO3

17 197
19 294
19 404
24 434
31 467
25 577
23 619
27 626
25 677
22 685
19 711
19 770
23 771
24 853
20 899
18 1072
23 1079
18 1210
20 1217
23 1220
22 1355
19 1366
23 1709
20 1783
18 2540
26 2653
26 2662
40 2879
23 3068
40 3103
36 5172
50 6774

426 7195
55 7479

801 8308
39 8820

823 8904

124 10757
71 36699
59 43749

740 10972.5
1357 14570.0
2069 10658.3
2332 35894.0
2830 67743.0
3591 7380.0
3399 6942.0
3380 14118.0
4494 9868.5
3722 16626.0
3350 12317.0
3778 9961.5
4215 6743.0
4336 68271.0
5045 10453.5
4859 8897.0
6533 7485.0
8553 8169.0
7341 5852.0
9071 5552.0
9395 9877.0
8617 5843.0

10494 7206.0
13160 7260.0
14193 4185.3
20436 3726.8
19977 7980.0
25193 10898.0
21704 6484.0
20111 67760.0
41187 5476.0
61555 7640.0
52121 25877.6
56242 1084.0
65953 53735.9
57250 116254.5
72965 55535.4
91028 338864.3

212536 215.3
363939 24447.0

53

11307
14877
10809
35894
67743

7408
6984

14118
10080
16812
12534
10068
6796

68271
10488

8904
7656
8298
5960
5558
9933
6314
7216
7314
4274
3942
8038

10898
6678

67760
5476
7810

26402
1086

53839
116256
56138

340160
219

24492

Table 3.5 Solution Characteristics of the Parallel Test Problems

Problem

Name

nw4l
nw32
nw40
nw08

nuIS

nw2l
nw22
nw12

nw39

nw20
nw23
nw37

nw26
nwlO

nw34

nw43

nw42
nw28
nw25
nw38
nw27

nw24
nw35
nw36
nw29
nw3O

nw31
nwl9

nw33
nw09

nw07

nw06

aaO4

k1iO

aaO5

nwl1

aa01

nwl8

k102
nw03

LP

Iters

174
174
279
31

43

109
65

35

131
1240
3050

132
341

44
115
142
274

1008
237
277
118
302
102

74589
5137
2036

573
120
202
146
60

58176
>7428

>26104
>6330

200
>23326

>162947
>188116

4123

54

LP

Nonzeros

7
10
9

12

7
10
11
15

6

18
13

6

9

13

7
9

8
5

10
8
6

10
8
7

13

10

7
7
9

16
6

18
234

68
202
21

321
68
91

17

LP

Ones

3

4

0

12

7
3

2

15
3

0
3

2

2

13

2

2

1
2

1
2

3

4
4
1
0

0

2

7
1

16
6
2

5

0

53

17
17
27

1
6

IP
Nodes

9
9

7
1

1
3

3

1
5

15
57
3

11

1
3

3

9

39

5
7

3

9

3

789
87
45

7
1

3

1
1

151
>1

>37
>4

3

>1
>62
>3

3

in the population is replaced. The logical topology was fixed to a two-dimensional

toroidal mesh as described earlier in Section 3.2.

Each problem was run once using 1, 2, 4, 8, 16, 32, 64, and 128 subpopulations.

Each subpopulation was of size 100. As additional subpopulations were added to

the computation, the total number of strings in the global population increased.

Our assumption was that even though we were doubling the computational effort

required whenever we added subpopulations, by mapping each subpopulation to an

SP1 processor, the total elapsed time would remain relatively constant (except for the

parallel computing overheads associated with string migration, which we felt would

be relatively small).

The results of our experiments are summarized in Tables 3.6-3.9. Table 3.6 shows

the percent from optimality of the best solution found in any of the subpopulations

as a function of the number of subpopulations. An entry of "0" in the table indicates

the optimal solution was found. An entry of "X" in the table means no integer feasible

solution was found by any of the subpopulations. A numerical entry is the percent

from the optimal solution of the best feasible solution found by any subpopulation

after the 100,000 iteration limit was reached. A blank entry means that the test

was not made (usually because of a resource limit or an abort). The solution values

themselves are given in Table 3.7. Table 3.8 contains the first iteration on which

some subpopulation found a feasible solution. Table 3.9 is similar except that it

contains the first iteration on which some subpopulation found an optimal solution.

In Table 3.9 an entry of "F" means a nonoptimal integer feasible solution was found.

Entries in the tables marked with a superscript a did not complete. If an entry is

given, it is from a partially completed run. We give the specific results here. Since

output statistics were reported only every 1,000 iterations, that is the resolution with

which results are reported in Table 3.8. nulO aborted at 37,000 iterations when

run using 128 subpopulations. nwl2 aborted at 11,000 iterations when run using 128

subpopulations. nw09 aborted at 63,000 iterations when run using 64 subpopulations.

k101 aborted at 76,000 iterations when run using 128 subpopulations. k102 aborted
at 76,000 iterations when run using 1 subpopulation, and at 76,000 iterations when

run using 16 subpopulations. nw03 aborted at 24,000 iterations when run using 1

subpopulation, at 50,000 iterations when run using 2 subpopulations, and at 24,000

iterations when run using 4 subpopulations.

3.6 Discussion

One way of looking at Table 3.6 is to consider it as consisting of four parts (recall

that the rows of the table are sorted by increasing numbers of columns in the test

problems). The first two parts are defined by the rows between and including nw41

and nwO6 (the first thirty two problems). We can think of dividing this rectangle into

two triangular parts by drawing a diagonal line from the upper left part of the table

(nw4l with one subpopulation) to the bottom right (nw06 with 128 subpopulations).

Most of the results in the "upper triangle" are "0," indicating that an optimal

55

Table 3.6 Percent from Optimality vs. No. Subpopulations

Number of Subpopulations

See text for discussion.

Problem
Name

nw41

nw32

nw40

nuO8

nulS

nw2l1

nw22
nvl2

nw39

nw20

nw23

nw37

nw26
nuwO
nw34

nw43
nw42

nw28
nw25

nw38

nw27

nw24

nw35
nw36
nw29
nw30
nw31
nw19

nw33

nv09
nwO7

nwO6

aaO4

k101

aaOS

nu1l

aa01l

n18

k102
nw03

1
0

0.0006
0

x
0

0.0037
0.0735
0.1375
0.0425
0.0091

0

0

0.0011
x

0.0203
0.0831
0.2727
0.0469
0.1040
0.0323
0.0818
0.0826
0.0770
0.2038
0.0580
0.1116
0.0069
0.159
0.0128
0.0398
0.3089
2.0755

x
0.0524

x
x
x
x

0.1004
0.2732

2

0

0

0

0.0219
0

0.0037
0.0455
0.0912

0

0

0

0.0163
0

x
0.0214
0.0626
0.0229

0

0.1137
0

0.0567
0.0215

0

0.0010
0

0

0.0069
0.1332

0

x
0

0.2532
x

0.0359
x
x
x
x.

0.1004

4 8
o o

0.0006 0
0.0036 0

o o
o 0.0001
o 0

0.0252 0
0.0332 0.0218

o o
o 0

o o
o o
o o
x x
o 0

0.0350 0
0 0
0 0

o o
o 0

0 0.0039
0 0.0015

0.0171 0
0.0194 0.0010

0 0.0116
o 0

o 0

0.0715 0.0880
o 0

0.0363 0.0231
o 0

0 0.1779
x x

0.0368 0.0303
x
x x
x x
x x

16

0

0

0

0

4.4285
0

0
0.0094

0

0

0.0006
0

0

x
0

0

0

0

0

0

0

0.0038
0

0.0019
0

0

0

0.0148
0

0.0155
0

0.0448
x

0.0239
x
x
x
x

0.1125a 0.1371a

x

X
0.0045
0.0481

56

32
0

0

0

0

0

0

0

0

0

0

0

0

0
x
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.0151
0

0.0291

64
0

0

0

0

0

0

0

0

0

0
0

0

0

x
0
0
0

0
0

0
0

0

0

0

0

0

0

0

0

0.154"
0

0

128
0
0

0

0

0

0
0

0.0246 a
0

0
0

0
0

0
0

0
0

0

0
0
0

0

0

0
0
0

0
0

0

0

0

0.0184 0.0082 0.0092

X
X
x

0.0502 0.0593 0.0593a

x

x
0.0410

Table 3.7 Best Solution Found vs. No. Subpopulations

Problem
Name

nw4I
nw32

nw40

nw08

nui5

nw21

nw22

nwI2

nw39

nw20

nw23

Number of Subpopulations
2 4 8 16 32_

11307 11307 11307 11307 11307
14877 14886 14877 14877 14877
10809 10848 10809 10809 10809

36682 35894 35894 35894 35894

67743 67743 67755 67746 67743
7436 7408 7408 7408 7408

7302 7160 6984 6984 6984
15406 14588 14426 14252 14118

10080 10080 10080 10080 10080
16812 16812 16812 16812 16812
12534 , 12534 12534 12542 12534

nw37 10068 10233 10068

nw26 6804 6796 6796

nuw0 X X X
nw34 10701 10713 10488

nw43 9644 9462 9216

nw42 9744 7832 7656

nw28 8688 8298 8298

nw25 6580 6638 5960

nw38 5738 5558 5558

nw27 10746 10497 9933

nw24 6836 6450 6314

nw35 7772 7216 7340

nw36 7342 7322 7456
nw29 4522 4274 4274
nw30 4382 3942 3942
nw3l 8094 8094 8038
nwI9 12598 12350 11678

nw33 6764 6678 6678
nWO9 70462 X 70222
nw07 7168 5476 5476
nw06 24020 9788 7810

aaO4 X X X
kiOl 1143 1125 1126

aaO5 X X X
nyu1 X X X
aa0 X X X
nwl8 X X X
k102 241a 241 230
nwO3 31185 27249a 27852a
a See text for discussion.

10068 10068 10068
6796 6796 6796

x x x
10488 10488 10488
8904 8904 8904
7656 7656 7656
8298 8298 8298

5960 5960 5960

5558 5558 5558
9972 9933 9933
6324 6338 6314
7216 7216 7216
7322 7328 7314
4324 4274 4274
3942 3942 3942
8038 8038 8038

11858 11060 10898
6678 6678 6678

1
11307
14886
10809

X
67743

7436
7498

16060

10509

16965

12534

67760
5476
7810

1096a

x

x
220

25671

57

69332 68816 68784 68804 a

5476 5476 5476 5476
9200 8160 8038 7810

x x
1119 1112 1106 1095

x
x x x x
x x x
x x x x

232 232a 228

64 128
11307 11307
14877 14877
10809 10809
35894 35894
67743 67743

7408 7408
6984 6984

14118 14466a
10080 10080
16812 16812
12534 12534

10068 10068
6796 6796

x Xa

10488 10488
8904 8904
7656 7656
8298 8298
5960 5960
5558 5558
9933 9933

6314 6314

7216 721G
7314 7314

4274 4274
3942 3942

8038 8038
10898 10898
6678 6678

Table 3.8 First Feasible Iteration vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nw41 676 299 393 353 233 127 310 89

nw32 185 590 520 562 415 373 257 145

nw40 376 710 434 384 204 223 211 275

nwO8 X 5893 33876 8067 6669 8393 6167 4819

nuIS 2031 1233 1019 1228 766 767 501 624

nw21 786 813 618 584 654 627 471 392

nw22 860 597 540 504 466 426 143 235

nv12 3308 2007 2379 2586 1615 1963 1847 2000
nw39 1017 755 923 516 530 347 447 325

nw20 1128 895 912 893 380 619 316 324

nw23 .2291 2089 1686 1498 525 1178 1249 956

nw37 734 384 620 544 196 502 361 165

nw26 1055 978 971 881 760 331 423 474

nulO X X X X X X X Xa

nw34 1336 672 865 505 354 436 462 295

nw43 1036 989 1025 736 636 675 320 437

nw42 1178 936 774 540 460 500 323 361

nw28 784 372 494 71 289 199 228 13

nw25 474 731 788 221 328 315 356 369

nw38 875 1040 873 662 693 418 311 398

nw27 874 726 516 658 313 540 437 403

nv24 1020 772 898 763 749 670 456 507

nw35 1505 1263 1084 926 721 893 812 634

nw36 696 625 493 400 390 361 286 104

nw29 1070 604 441 556 424 558 342 294

nw30 500 622 584 649 481 498 377 356

nw31 1447 1118 1029 675 358 369 580 236

nwl9 1656 807 933 1020 857 812 602 616

nv33 986 550 815 645 538 493 296 281

nw09 20787 X 18414 11324 11593 11737 8000 9025

nw07 1132 1278 589 1307 928 777 636 677

nwO6 7472 10036 5658 3920 2846 3440 1788 2385

aaO4 X X X X X
k1Ol 3095 5146 3641 4836 3324 3299 3573 4000

aaO5 X X X X
nu1l X X X X X X X X
aa0l X X X X X X
nui8 X X X X X X X X
k102 6000" 4436 6626 4721 4000a 4840 4521

nw03 10563 9000a 7000a 3944
a See text for discussion.

58

Table 3.9 First Optimal Iteration vs. No. Subpopulations

Problem Number of Subpopulations

Name 1 2 4 8 16 32 64 128
nw4I 3845 1451 551 623 758 402 398 362

nw32 F 1450 F 3910 2740 2697 2054 1006

nw40 540 1597 F 1658 2268 958 979 696

nw08 X F 34564 8955 14760 10676 8992 10631

nwI5 4593 17157 5560 F F 929 692 1321

nw2l F F 7875 3929 4251 1818 1868 2514

nw22 F F F 29230 3370 3037 2229 1820

nw12 F F F F F 62976 34464 Fa

nw39 F 2345 3738 1079 1396 900 1232 913

nw20 F 2420 3018 5279 27568 2295 2282 1654

nw23 2591 6566 3437 3452 F 1723 2125 1477

nw37 75737 F 1410 1386 1443 1370 835 779

nw26 F 84765 52415 24497 13491 1660 1512 2820

nwIO X X X X X X X Xa

nw34 F F 2443 1142 1422 1110 1417 843

nw43 F F F 11004 3237 21069 4696 3296

nw42 F F 2702 3348 1070 1223 1187 724

nw28 F 903 1897 1232 776 718 371 191

nw25 F F 2634 70642 4351 5331 1024 1896

nw38 F 68564 27383 1431 1177 1093 603 514

nw27 F F 610 F 2569 1669 3233 2135

nw24 F F 908 F F 11912 2873 4798

nw35 F 3659 F 3182 1876 1224 1158 634

nw36 F F F F F 3367 2739 4200

nw29 F 17212 5085 F 17146 1368 2243 795

nw30 F 3058 1777 1154 1650 846 866 949

nw3l F F 1646 3085 1287 1890 1682 732

nul9 F F F F F 79125 27882 37768

nw33 F 1670 1659 7946 1994 2210 829 873

nw09 F X F F F F F 71198

nw07 F 29033 7459 4020 4831 1874 2543 1935

nw06 F F 51502 F F F 48215 19165

aaO4 X X X X X
k101 F F F F F F F F
aaO5 X X X X
nw11 X X X X X X X X
aa0l X X X X X X
nwI8 X X X X X -X X X
k102 Fa F F F Fa F F
nwO3 F F4 Fa F
a See text for discussion.

59

solution was found. For these problems the hybrid SSGAROW algorithm was able

to find the optimal solution to all but one problem. For approximately two thirds of

these problems only four subpopulations were necessary before the optimal solution

was found. For the other one third of the problems, additional subpopulations are

necessary in order to find the optimal solution. For numerical entries in the "lower

triangle," we observe that in general the best solution found improves as additional

subpopulations participate, even if the optimal solution was not reached. Using 64

subpopulations, the optimal solution was found for 30 of the first 32 test problems.

nwO6, with 6,774 columns, was the largest problem for which we found an optimal

solution.

The next two parts of Table 3.6 are defined by rows aaO4 to nw18 (k101 is similar

to k102 and nvO3 in that increasingly better integer feasible solutions were found as

additional subpopulations were added, and so we "logically" group k101 with k102

and nw03) and by the last two problems k102 and nw03. The first of these, aa04

through nwI8, define the group of problems we were not able to solve. For these

problems we were unable to find any integer feasible solutions. One obvious point to

note from Table 3.4 is the large number of constraints in aa0, aaO4, aaO5, and nwl8

(we will return to nw18 in a moment). We note from Table 3.5 that these problems

have relatively high numbers of fractional values in the solution to the LP relaxation

and that they were difficult for lp-solve also.

For these problems, Table 3.10 summarizes the average number of infeasible con-

straints across all strings in all subpopulations as a function of the number of sub-

populations. One trend is the general decrease in the average number of infeasible

constraints as additional subpopulations are added. For the aa problems the incre-

mental improvement, however, appears to be decreasing.

For nu11 and nwl8 (and also nwI0 for which no feasible solution was found),

the GA was able to find infeasible strings with higher fitness than feasible ones and

had concentrated its search on those strings. For these problems the best (infeasible)

string had an evaluation function value approximately half that of the optimal integer

solution. In this case the GA has little chance of ever finding a feasible solution. This

is, of course, simply the GA exploiting the fact that for these problems the penalty

term used in the evaluation function is not strong enough. For the three aa problems

this is not the case. On average, near the end of a run an (infeasible) solution has an

evaluation function value approximately twice that of the optimal integer solution.

The last two problems, k102 and nwO3, have many columns and an increasing

number of constraints. However, the GA was able to find integer feasible solutions

on all runs we tried and a very good one for k102 with 128 subpopulations. The trend

here is similar to all but the infeasible problems. We conjecture that with "enough"

subpopulations the GA would compute optimal solutions to these problems also. We

caution, however, that this is speculation.

60

Table 3.10 No. of Infeasible Constraints vs. No. Subpopulations

Problem Number of Subpopulations
Name 1 2 4 8 16 32 64
nwu1 1.6 1.7 2.7 2.1 2.1 2.4 2.4
nwl8 17.7 12.4 14.5 15.2 14.5 14.1 14.2
aa04 26.3 22.9 25.5 17.9 16.3

aaOS 95 .Ot 84.5 62.2 56.2
aa0l 70.1 66.0 75.2 70.0 53.0 54.6

Table 3.8 shows the first iteration when a feasible solution was found by one
of the subpopulations. If we recall that the migration frequency is set to 1,000,
we see that even on one processor, over one fourth of the problems find feasible
solutions before any migration takes place. The number of problems for which this
occurs grows as subpopulations are added. Using 128 subpopulations 27 problems
have feasible solutions before the first migration occurs. The ones that do not are
the problems where the penalty term was not strong enough, no feasible solution
was ever found, or they are the largest problems we tried. The implication is that
the ROW heuristic does a good job of decreasing the infeasibilities; and by simply
running enough copies of a sequential GA, the likelihood of one of them "getting
lucky" increases. The excessive iterations nwO8 takes to get feasible is, again, due
to the fact that the penalty term is not strong enough. In this case, however, the
penalty is "almost strong enough"; hence, less fit feasible solutions eventually are
found "in the neighborhood" of the best (infeasible) strings in the population. A
similar problem occurred with nwO9.

Table 3.9 is similar to Table-3.8; here it is the iteration when an optimal solution
was found by one of the subpopulations that is shown. Again, we see a general
trend of the first optimal iteration occurring earlier as we increase the number of
subpopulations. With one subpopulation an optimal solution was found for only one
problem (nw4O) before migration occurred. With 128 subpopulations the optimal
solution was found for 13 problems before migration occurred. Several problems
show significant decrease in the iteration count as the number of subpopulations
increases. As an example, by the time 128 subpopulations are being used to solve
nw37, nw38, and nw29, which initially take tens of thousands of iterations to find the
optimal solution, the optimal solution has been found before any string migration
has occurred.

Table 3.11 compares the solution value found (the subcolumn Result) and time in
CPU seconds (the subcolumn Secs.) of lp.solve, the work of Hoffman and Padberg
[36] (the column HP), and our work (the column SSGAROW). The subcolumn Result
contains a "0" if the optimal solution was found, a numerical entry which is the
percentage from optimality of the best suboptimal integer feasible solution found, or
an "X" if no feasible solution was found.

61

The timings for lp-solve were made on an IBM RS/6000 Model 590 workstation

using the Unix time command which had a resolution of one second. These times

include the time to convert from the standard MPS format used in linear program-

ming to lp..solve's input format. The timings for Hoffman and Padberg's work are

from Tables 3 and 8 in [36]. These runs were made on an IBM RS/6000 Model 550

workstation. The results for SSGAROW are the CPU time charged to processor zero

in a run that used the number of processors given in the Nprocs column. This is

the best solution time achieved where an optimal solution was found. If the entry

is numerical, it is the percentage from optimality of the best solution found and the

number of processors used for that run. If no feasible solution was found, it is the

time and number of processors used. When either lp-solve or SSGAROW did not

find the optimal solution, the time is prefaced with a >.

We offer the comparative results in Table 3.11 with the following caveats. All the

timings were done using a heavily instrumented, unoptimized version of our program

that performed many global operations to collect statistics for reporting. A number

of possible areas for performance improvement exist. Additionally, as noted above,

the timings in Table 3.11 are all from different model IBM RS/6000 workstation

processors. As such, the reader should adjust them accordingly (depending on the

benchmark used, the Model 590 is between a factor of 1.67 and 5.02 times faster

than the Model 370, and between a factor of 3.34 and 5.07 times faster than a Model

550). Nevertheless, we include Table 3.11 in the interest of providing some "ballpark"

timings to complement the algorithmic behavior.

For many of the first thirty-two problems, where all three algorithms found op-

timal solutions for all problems (except SSGAROW on nw10), we observe that the

branch-and-cut solution times are approximately an order of magnitude faster than

the branch-and-bound times, and the branch-and-bound times are themselves an or-

der of magnitude faster than SSGAROW. For problems where the penalty term was

"not strong enough," but the optimal solution was still found (nwO8, nwl2, nw09) SS-

GAROW performs poorly. In two other cases (nw19, nwO6) the search simply takes

a long time, the problems have larger numbers of columns (2,879 and 6,774, respec-
tively), and the complexity of the steps in the algorithm that involve n become quite

noticeable. There are also some smaller problems for which, if we adjust the times

according to the performance differences due to the hardware, SSGAROW seems

competitive with branch-and-bound as implemented by lp-solve.

On the larger problems we observe that branch-and-cut solved all problems to

optimality, in most cases quite quickly. Both lp-solve and SSGAROW had trouble

with the aa problems, neither found a feasible solution to any of the three problems.

For the two ki problems, SSGAROW was able to find good integer feasible solutions

while lp.solve did not find any feasible solutions. Although SSGAROW's k1 com-
putations take much more time than is allotted to lp-solve, we note from Table 3.8

that is was able to find less good feasible solutions much earlier in its search. For the

larger nu problems, 1p-solve did much better than SSGAROW, proving two optimal

(n11, nwO3) and finding a good integer feasible solution to the other. SSGAROW

62

Table 3.11 Comparison of Solution Time

HP SSGAROW

63

Problem lp..solve

Name Result Secs. b

nw4l 0 1

nw32 0 2
nw40 0 3
nwO8 0 2
nuw5 0 3

nw21 0 1
nw22 0 1
nwl2 0 1
nw39 0 1

nw20 0 1
nw23 0 6
nw37 0 1
nw26 0 2
nuIO 0 1

nw34 0 2
nw43 0 2

nw42 0 3
nw28 0 6
nw25 0 3
nw38 0 4
nw27 0 3
nw24 0 4
nw35 0 4
nw36 0 237
nw29 0 29
nw30 0 20
nw31 0 10
nw19 0 9
nw33 0 26
nwO9 0 8
nw07 0 16
nw06 0 589
aaO4 X >3600
kl01 X >1000
aaOS X >1200
nw1 0 27
aa0l X >600
nwI8 .0110 >3600
k102 X >3600
nwO3 0 375
b See text for discussion.

Result

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Secs.b

0.1
0.2
0.2
0.1

0.1

0.3
0.3
0.1
0.2
0.6
0.3
0.2
0.3
0.1
0.3

0.4
1.0
0.4
0.6

1.4
0.3
0.6
0.5

3.7
1.0

0.8
1.4
0.5
1.5
0.5
0.7

10.4
139337

35.4
215.3

2.1
14441

62.5
134.4
24.0

Result

0

0

0

0

0

0

0

0

0

0

0

0

0

x
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

x
.0092

x
x
x
x

.0045

.0481

Secs. b

4
8
1

135
14
43
65

1188
16
17
9

16
41

>431
18
73
23

8
36

23

7

12
33

128
49
33

34

1727
25

5442
129

2544
>1848

>11532

>3014
>2548
>2126
>2916

>43907
>64994

Nprocs

4
2
1
8
1

32

64
64
8

2
1

4
32

1
8

16
16
2

64
128

4
4

128
64

128

8
4

64

2

128
32

128
1

128
2

1
1
1

128
128

has "penalty troubles" with two of these and takes a long time on nwO3 to compute

an integer feasible, but suboptimal solution.

We stress that the times given in Table 3.11 are not just when the optimal solution

was found using either the branch-and-bound or branch-and-cut algorithms, but when

it was proven to be optimal. In the case of SSGAROW we have "cheated" in the

sense that for the test problems the optimal solution values are known and we took
advantage of that knowledge to specify our stopping criteria. This was advantageous

in two ways. First, we knew when to stop (or when to keep going). Second, we

knew when a solution was optimal, even though SSGAROW inherently provides no

such mathematical tools to determine this. For use in a "production" environment

the optimal solutions are typically not known, and an alternative stopping rule would

need to be implemented. Conversely, however, we believe that if we had implemented

a stopping rule, then in the case of many of the problems we would have given up

the search earlier when it "became clear" that progress was not being made.

From Table 3.11 we note that the branch-and-cut work of Hoffman and Padberg

clearly provides the best results in all cases. Comparing SSGAROW with lp-solve,

we see that neither can solve the aa problems: lp-solve does better than SSGAROW

on most (but not all) of the nu problems, and SSGAROW does better than lp..solve

on the two ki problems. John Gregory has suggested [33] that the nu models, while

"real world," are not indicative of the SPP problems most airlines would like to be

able to solve, in that they are relatively easy to solve with little branching and that

more difficult models may be in production use now, being "solved" by heuristics

rather than by exact methods.

In conclusion, it is clear that the branch-and-cut approach of Hoffman and Pad-

berg is superior to both lp..solve and SSGAROW in all cases. With respect to

genetic algorithms this is not surprising; several leading GA researchers have pointed

out that GAs are general-purpose tools that will usually be outperformed when spe-

cialized algorithms for a problem exist [15, 18]. Comparing SSGAROW with the
branch-and-bound approach as implemented by lp..solve, we find that lp-solve

fares better for many but not all of the test problems. However, the expected scal-

ability we believe SSGAROW will exhibit on larger numbers of processors and the

more difficult models that may be in production usage suggest that the parallel ge-

netic algorithm approach may still be worthy of additional research.

In closing this discussion, we offer the following caution about the results we have

presented. Each result is stochastic; that is, it depends on the particular random

number seed used to initialize the starting populations. Ideally, we would like to be

able to present the results as averages for each entry obtained over a large number of

samples. However, at the time we did this work, computer time on the IBM SP1 was

at a premium, and we were faced with the choice of either running a large number of

repeated trials on a restricted set of test problems (which itself would raise the issue

of which particular test problems to use) or running only a single test at each data

64

point (test problem and number of subpopulations), but sampling over a larger set
of test problems. We believe the latter approach is more useful.

65

CHAPTER IV

CONCLUSIONS

The main conclusions of this thesis are the following.

I. The generational replacement genetic algorithm performed poorly on the SPP,

even with elitism. Difficulties were experienced just finding feasible solutions

to SPP problems, let alone optimal ones. The primary cause was premature

convergence. The SSGA proved more successful, particularly at finding feasible
solutions. However, the SSGA still had considerable difficulties finding optimal

solutions. This situation motivated us to develop a local search heuristic to

hybridize with the SSGA.

II. The local search heuristic we developed (ROW) is specialized for the SPP. We
found that ROW was about as effective as the SSGA in finding (feasible or

optimal) solutions. We found that in many cases ROW was more effective with

a "work quicker, not harder" approach. We found that applying ROW to just

one constraint, choosing this constraint randomly, and using a first-improving

strategy (which also introduces randomness when a constraint is infeasible) was

more successful than attempts to apply ROW to the most infeasible constraint

or find the best-improving solution. One reason ROW was relatively successful
was its willingness to degrade the current solution in order to satisfy infeasi-

ble constraints. However, when all constraints were feasible, ROW no longer

introduced any randomness and was often trapped in a local optimum.

III. A hybrid algorithm that combines the SSGA and ROW heuristic was more
effective than either one by itself (a combination we called SSGAROW). The

ROW heuristic is effective at making local improvements, particularly with
respect to infeasibilities, and the SSGA helps to propagate these improvements

to other strings and thus have a global effect.

IV. Performance of the hybrid algorithm was relatively insensitive to a large number

of operator choices and parameter values tested. In most cases performance

remained essentially unaffected. An exception was the attempts to initialize
the population using heuristic methods. We concluded that we were better off

initializing the population randomly and letting SSGAROW take advantage of

the wider distribution of points to sample from and make its own way through

the search space. Also, we found that not allowing duplicate strings in the

population was important in avoiding or delaying premature convergence.

V. The island model genetic algorithm has several parameters related to string

migration. On a limited set of tests we found that, overall, migration was

preferable to no migration (although on some problems no migration was just
as effective as migration), but that the migration interval itself made no sig-
nificant difference. To determine the string to migrate (delete), we compared

66

the choice of the best- (worst-) ranked string with holding a probabilistic bi-

nary tournament. For the choice of string to migrate, we found both choices

performed about the same. For the choice of string to delete, we found hold-

ing a probabilistic binary tournament worked best. Deleting the worst-ranked

string seemed to significantly increase the selective pressure and sometimes led

to premature convergence.

VI. Running the hybrid SSGAROW algorithm on each subpopulation in an island
model was an effective approach for solving real-world SPP problems of up

to a few thousand integer variables. For all but one of the thirty-two small

and medium-sized test problems the optimal solution was found. For several

larger problems, good integer feasible solutions were found. We found two

limitations, however. First, for several problems the penalty term was not

strong enough. The GA exploited this by concentrating its search on infeasible

strings that had (in some cases significantly) better evaluations than a feasible

string would have had. For these problems, either no feasible solution was ever

found or the number of iterations and additional subpopulations required to

find the optimal solution was much larger than for similar problems for which

the penalty term worked well. A second limitation was the fact that three

problems had many constraints. For these problems, even though the penalty

term seemed adequate, SSGAROW was never able to find a feasible solution.

VII. Adding additional subpopulations (which increase the global population size)

was beneficial. When an optimal solution was found, it was usually found on

an earlier iteration. In cases where the optimal solution was not found, but a

feasible one was (i.e., on the largest test problems), the quality of the feasible

solution improved as additional subpopulations were added to the computation.

Also notable was the fact that, as additional subpopulations were added, the

number of problems for which the optimal solution was found before the first

migration occurred continued to increase.

VIII. We compared SSGAROW with implementations of branch-and-cut and branch-
and-bound algorithms, looking at the quality of the solutions found and the
time taken. Branch-and-cut was clearly superior to SSGAROW and branch-

and-bound, finding optimal solutions to all test problems in less time. Both

SSGAROW and branch-and-bound found optimal solutions to the small and

medium-sized test problems. On larger problems the results were mixed, with

both branch-and-bound and SSGAROW doing better than each other on differ-

ent problems. The branch-and-bound results seem to correlate with how close

to integer feasible the solution to the linear programming relaxation was. In

many cases branch-and-bound took less time, but we note that the implemen-

tation of SSGAROW used was heavily instrumented.

In conclusion, as a proof of concept, we have demonstrated that a parallel genetic

algorithm can solve small and medium-sized real-world set partitioning problems.

A number of possible areas for further research exist and are discussed in the next

chapter.

67

CHAPTER V

FUTURE WORK

A number of interesting areas for future research exist. These include algorithmic

enhancements, performance improvements, exploitation of operation research meth-

ods, and planning for the next generation of parallel computers.

I. Most of the progress made by SSGAROW occurs early in the search. Profiles of

many runs show that the best solution found rarely changes after about 10,000

iterations. This observation seems to hold true irrespective of the number of

subpopulations. More subpopulations lead to a more effective early search, but

do not help beyond that. We believe that both an adaptive mutation rate and

further work on the ROW heuristic can help.

Currently, the mutation rate is fixed at the reciprocal of the string length, a
well-known choice from the GA literature where it plays the role of restoring lost

bit values, but does not itself act as a search operator. One possibility is to use

an adaptive mutation rate that changes based on the value of some GA statis-

tic such as population diversity or the Hamming distance between two parent

strings [68]. Several researchers [14, 64] make the case for a high mutation rate

when mutation is separated from crossover, as it is in our implementation. A

high mutation rate may also be more successful in an SSGA since, although it

may disrupt important schemata in the offspring, those schemata remain intact

in the parent strings that remain in the population [64].

We found that the random choice of variables to add or delete to the current

string that the ROW heuristic made when constraints were infeasible helped

the GA sample new areas of the search space. However, when all constraints

are feasible, ROW no longer introduces any randomness. This is because when

all constraints are feasible, all of the alternative moves ROW considers degrade

the current solution. Therefore no move is made and ROW remains trapped
in a local optimum. We believe some type of simulated annealing-like move in

this case would help sustain the search.

II. One limitation of the SSGAROW algorithm was its inability to find feasible so-
lutions for six problems. For three of those, and several others for which optimal

solutions were found but with degraded performance, the penalty function was

not strong enough. A number of possibilities exist for additional research in this

area, including stronger penalty terms (e.g., quadratic), the ranking approach

of Powell and Skolnick [53], and revisiting the ST penalty term for which we

had mixed results. However, for the aa problems, we are less optimistic. Ta-

ble 3.10 appears to indicate diminishing returns with respect to the reduction

in infeasibilities in these problems as additional subpopulations are added to

the computation. Much further work on penalties remains to be done.

68

III. In order to be of practical value, an effective termination strategy is needed.

Currently, we stop after either a specified number of iterations or, in the cases

of the test set, when we find the known optimal solution; such an aproach

is not viable in practice. One approach might be to stop when the evaluation

function value has not changed in a specified number of iterations. A more

GA-like approach might use some measure of population similarity such as the

average Hamming distance as a convergence test.

IV. Additional work in determining good choices for the parameters of the island

model is another area for further research. Selecting the string to migrate or

delete seems closest to what has been studied for sequential genetic algorithms

(see, for example, Goldberg and Deb's [27] comments about deleting the worst-

ranked string in Genitor, and compare that with our empirical findings in Sec-

tion 3.2.2). However, the appropriate choice of migration interval remains an

open question. In fact, the results in Table 3.9, where increasing numbers of

problems are solved before before any migration occurs as subpopulations are

added, raise the questions of whether migration is necessary or even beneficial.

Finally, although we have not explored it here, the choice of logical topology

for the subpopulations warrants investigation. For example, is it better for a

subpopulation to communicate with many other subpopulations or with the

same one?

V. The performance of SSGAROW is not currently optimized. We believe perfor-

mance improvements are available in several areas. For example, implementa-

tion improvements would include incremental updating of certain population

statistics that are currently recomputed in full each generation, hashing to make

the search for duplicates more efficient, or a faster random number generator.

As an example of an algorithmic improvement, uniform crossover requires 0(n)

calls to a random number generator to determine the bit mask to apply to

the parent strings, whereas two-point crossover requires only two calls. Also,

in the case where a constraint is feasible, it is computationally desirable to

have ROW make a move in constant time, rather than incurring an expensive
O(RAVGPMAX) cost.

VI. We might also be able to take advantage of operations research work. One

example might be to revisit the use of the solution to the LP relaxation to

initialize (perhaps just some of) the population. Both Fischer and Kedia [21]

and Hoffman and Padberg [36] suggest heuristics for finding integer solutions

to SPP problems that might also be incorporated in the initial population.

A number of methods for preprocessing a set partitioning problem and using

logical reductions to reduce the number of constraints and/or variables have

been suggested. These make the problem smaller and (intuitively we assume)

easier for the GA to solve.

VII. The current implementation of the IMGA is synchronous. By this we mean that

after a string has been migrated from a subpopulation, that subpopulation does

not continue executing the sequential GA until it receives a migrant string from

69

a different subpopulation. An asynchronous implementation is also possible. In
that case a processor periodically checks its message queue for migrant strings
that have been sent from other subpopulations. If any are found, they can be
integrated into the subpopulation in the usual manner. If the message queue
is empty, the processor continues running the sequential GA on its subpopu-
lation and periodically continues checking its message queue. The advantage
of this approach is that the processor is not idle while waiting to receive new
strings from neighboring processors, but is instead improving the fitness of its
subpopulation.

VIII. We believe the next important class of parallel computer will be distributed-
memory MIMD machines, where each node is a shared-memory multiprocessor.
From a GA implementation perspective, this raises the question of how best to
take advantage of such hardware. "Loop-level" parallelism is available in the
generational replacement genetic algorithm when creating generation t +1 from
t that can exploit such hardware. For the steady-state genetic algorithm, how-
ever, because only one new string is created each generation, no such "outer"
loop exists. Perhaps in that case, for long enough strings, a fine-grained ap-
proach that exploits parallelism within an individual GA operation (e.g., mu-
tation, function evaluation) would be appropriate.

70

ACKNOWLEDGMENTS

I thank my adviser, Tom Christopher, for allowing me the independence to pursue
this work. I thank the members of my committee, Graham Campbell, Peter Greene,
Rusty Lusk, and Nick Thomopoulos, for their interest. I am grateful to Argonne Na-
tional Laboratory and the Mathematics and Computer Science Division for financial
support, for access to their computing facilities, and for the stimulating environment
they provide their employees.

Although this work is my own, thanks are due to a number of people who helped
me in various ways. Thanks to Greg Astfalk for supplying the airline crew scheduling
problems. Thanks to Bob Bulfin who introduced me to research and academia many
years ago. Thanks to Tom Canfield for statistical advice. Thanks to Remy Evard
for help with C macros. Thanks to John Gregory for solving the test problems
with a branch-and-bound program, suggestions for initialization, numerous helpful
discussions and advice, and a long and valuable friendship. Thanks to Bill Gropp
for IATEX wizardry and for writing wonderfully useful software tools such as the
Chameleon library. Thanks to Karla Hoffman for discussions about her branch-and-
cut work. Thanks to John Loewy for encouragement and statistical advice. Thanks
to Rusty Lusk for many useful suggestions and help with p4. Thanks to Jorge More
for discussions about penalty methods in nonlinear optimization. Thanks to Bob
Olson for patient and helpful answers to numerous Perl questions. Thanks to Gail
Pieper for her usual outstanding job of technical editing. Thanks to Paul Plassmann
for advice and numerous one liners. Thanks to Nick Radcliffe for helpful answers to
many genetic algorithms queries. Thanks to the computer support group in the MCS
Division at Argonne, a small, but dedicated group who keep a complex computing
environment working. Thanks to Xiaobai Sun and Stephen Wright for timely help
with child care. Thanks to David Tate for discussing his penalty function with me.

Finally, and most importantly thanks to my parents, Bernard and Sylvia, for
their love, support, and encouragement through the years. I hope I can be as good a
parent to my children as they have been to theirs.

D.L.

71

REFERENCES

[1] R. Anbil, E. Gelman, B. Patty, and R. Tanga. Recent Advances in Crew Pairing

Optimization at American Airlines. INTERFACES, 21:62-74, 1991.

[2] R. Anbil, R. Tanga, and E. Johnson. A Global Approach to Crew Pairing
Optimization. IBM Systems Journal, 31(1):71-78, 1992.

[3] J. Arabeyre, J. Fearnley, F. Steiger, and W. Teather. The Airline Crew

Scheduling Problem: A Survey. Transportation Science, 3(2):140-163, 1969.

[4] E. Baker and M. Fisher. Computational Results for Very Large Air Crew
Scheduling Problems. OMEGA, 9(6):613-618, 1981.

[5] J. Baker. Reducing bias and inefficiency in the selection algorithm. In

J. Grefenstette, editor, Proceedings of the Second International Conference

on Genetic Algorithms and Their Applications, pages 14-21, Hillsdale, New

Jersey, 1987. Lawrence Erlbaum Associates.

[6] E. Balas and M. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):710-
760, 1976.

[7] J. Barutt and T. Hull. Airline Crew Scheduling: Supercomputers and

Algorithms. SIAM News, 23(6), 1990.

[8] M. Berkelaar. lp-solve, 1993. A public domain linear and integer programming

program. Available by anonymous ftp from ftp.es.ele.tue.nl in

directory pub/lp-solve, file lp..solve. tar. Z.

[9] R. Bixby, J. Gregory, I. Lustig, R. Marsten, and D. Shanno. Very Large-
Scale Linear Programming: A Case Study in Combining Interior Point and

Simplex Methods. Technical Report CRPC, Rice University, 1991.

[10] L. Booker. Improving Search in Genetic Algorithms. In Genetic Algorithms and
Simulated Annealing, pages 61-73. Pitman Publishing, London, 1987.

[11] R. Butler and E. Lusk. Monitors, Messages, and Clusters: The p4 Parallel

Programming System. Parallel Computing, 20, 1994.

[12] V. Chavatal. A Greedy Heuristic for the Set Covering Problem. Mathematics of

Operations Research, 4(3):233-235, 1979.

[13] J. Cohoon, W. Martin, and D. Richards. Genetic algorithms and punctuated
equilibria in VLSI. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature, pages 134-144, Berlin, 1991. Springer-Verlag.

[14] L. Davis. Adapting operator probabilities in genetic algorithms. In J. Schaffer,
editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 61-69, San Mateo, 1989. Morgan Kaufmann.

72

[15] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

[16] M. de la Maza and B. Tidor. An analysis of procedures with particular

attention paid to proportional and Boltzmann selection. In S. Forrest, editor,

Proceedings of the Fifth International Conference on Genetic Algorithms,

pages 124-131, San Mateo, 1993. Morgan Kaufmann.

[17] K. DeJong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.

PhD thesis, University of Michigan, Ann Arbor, 1975. Department of

Computer and Communication Sciences.

[18] K. DeJong. Genetic algorithms are NOT function optimizers. In D. Whitley,

editor, Foundations of Genetic Algorithms -2-, pages 5-17. Morgan

Kaufmann, San Mateo, 1993.

[19] K. DeJong and W. Spears. An analysis of the interacting roles of population

size and crossover in genetic algorithms. In H. Schwefel and R. Manner,

editors, Parallel Problem Solving from Nature, pages 38-47, New York, 1991.

Springer-Verlag.

[20] J. Eckstein. Parallel Branch-and-Bound Algorithms for General Mixed Integer

Programming on the CM-5. Technical Report TMC-257, Thinking Machines
Corp., 1993.

[21] M. Fischer and P. Kedia. Optimal Solution of Set Covering/Partitioning

Problems Using Dual Heuristics. Management Science, 36(6):674-688, 1990.

[22] M. Flynn. Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers, 21:948-960, 1972.

[23] T. Fogarty and R. Huang. Implementing the genetic algorithm on transputer
based parallel processing systems. In H. Schwefel and R. Manner, editors,

Parallel Problem Solving from Nature, pages 145-149, Berlin, 1991. Springer-

Verlag.

[24] R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley & Sons Inc.,
New York, 1972.

[25] I. Gershkoff. Optimizing Flight Crew Schedules. INTERFACES, 19:29-43, 1989.

[26] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Company, Inc., New York, 1989.

[27] D. Goldberg and K. Deb. A comparative analysis of selection schemes used

in genetic algorithms. In G. Rawlins, editor, Foundations of Genetic

Algorithms, pages 69-93. Morgan Kaufmann, San Mateo, 1991.

73

[28] S. Gordon and D. Whitley. Serial and parallel genetic algorithms as function

optimizers. In S. Forrest, editor, Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 177-183, San Mateo, 1993. Morgan

Kaufmann.

[29] M. Gorges-Schleuter. Explicit parallelism of genetic algorithms through

population structures. In H. Schwefel and R. Manner, editors, Parallel

Problem Solving from Nature, pages 150-159, New York, 1991. Springer-

Verlag.

[30] J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.

IEEE Transactions on Systems, Man, and Cybernetics, 16(1):122-128, 1986.

[31] J. Grefenstette and J. Baker. How genetic algorithms work: A critical look

at implicit parallelism. In J. Schaffer, editor, Proceedings of the Third

International Conference on Genetic Algorithms, pages 20-27, San Mateo,

1989. Morgan Kaufmann.

[32] J. Gregory. Private communication, 1991.

[33] J. Gregory. Private communication, 1994.

[34] W. Gropp and B. Smith. Chameleon Parallel Programming Tools Users Manual.

Technical Report ANL-93/23, Argonne National Laboratory, 1993.

[35] F. Gruau and D. Whitley. Adding Learning to the Cellular Development
of Neural Networks: Evolution and the Baldwin Effect. Evolutionary

Computation, 1(3):213-233, 1993.

[36] K. Hoffman and M. Padberg. Solving Airline Crew-Scheduling Problems by
Branch-and-Cut. Management Science, 39(6):657-682, 1993.

[37] J. Holland. Adaption in Natural and Artifcial Systems. The University of

Michigan Press, Ann Arbor, 1975.

[38] F. James. A Review of Pseudorandom Number Generators. Computer Physics
Communication, 60:329-344, 1990.

[39] P. Jog, J. Suh, and D. Gucht. Parallel Genetic Algorithms Applied to the

Traveling Salesman Problem. Technical Report No. 314, Indiana University,

1990.

[40] T. Kido, H. Kitano, and M. Nakanishi. A hybrid search for genetic algorithms:

Combining genetic algorithms, tabu search, and simulated annealing. In

S. Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, page 614, San Mateo, 1993. Morgan Kaufmann.

[41] B. Kroger, P. Schwenderling, and 0. Vornberger. Parallel genetic packing of

rectangles. In H. Schwefel and R. Manner, editors, Parallel Problem Solving

from Nature, pages 160-164, Berlin, 1991. Springer-Verlag.

74

[42] T. Kuo and S. Hwang. A genetic algorithm with disruptive selection. In

S. Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 65-69, San Mateo, 1993. Morgan Kaufmann.

[43] D. Levine. A genetic algorithm for the set partitioning problem. In

S. Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 481-487, San Mateo, 1993. Morgan Kaufmann.

[44] G. Liepins and S. Baluja. apGA: An Adaptive Parallel Genetic Algorithm.
Technical report, Oak Ridge National Laboratory, 1991.

[45] G. Marsaglia, A. Zaman, and W. Tseng. Stat. Prob. Letter, 9(35), 1990.

[46] R. Marsten. An Algorithm for Large Set Partitioning Problems. Management

Science, 20:774-787, 1974.

[47] R. Marsten and F. Shepardson. Exact Solution of Crew Scheduling Problems
Using the Set Partitioning Model: Recent Successful Applications. Networks,

11:165-177, 1981.

[48] H. Mullenbein. Parallel Genetic Algorithms and Combinatorial Optimization.

In 0. Balci, R. Sharda, and S. Zenios, editors, Computer Science and

Operations Res-arch, pages 441-456. Pergamon Press, 1992.

[49] G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John

Wiley & Sons, New York, 1988.

[50] R. Parker and R. Rardin. Discrete Optimization. Academic Press, San Diego,

1988.

[51] C. Pettey, M. Leuze, and J. Grefenstette. A parallel genetic algorithm. In

J. Grefenstette, editor, Proceedings of the Second International Conference

.on Genetic Algorithms and Their Applications, pages 155-161, Hillsdale,
New Jersey, 1987. Lawrence Erlbaum Associates.

[52] J. Pierce. Application of Combinatorial Programming to a Class of All-Zero-One
Integer Programming Problems. Management Science, 15:191-209, 1968.

[53] D. Powell and M. Skolnick. Using genetic algorithms in engineering design

optimization with non-linear constraints. In S. Forrest, editor, Proceedings

of the Fifth International Conference on Genetic Algorithms, pages 424-431,

San Mateo, 1993. Morgan Kaufmann.

[54] N. Radcliffe. Private communication, 1993.

[55] J. Richardson, M. Palmer, G. Liepins, and M. Hilliard. Some Guidelines
for Genetic Algorithms with Penalty Functions. In J. Schaffer, editor,

Proceedings of the Third International Conference on Genetic Algorithms,

pages 191-197, San Mateo, 1989. Morgan Kaufmann.

75

[56] W. Siedlecki and J. Sklansky. Constrained genetic optimization via dynamic

reward-penalty balancing and its use in pattern recognition. In J. Schaffer,

editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 141-150, San Mateo, 1989. Morgan Kaufmann.

[57] A. Smith and D. Tate. Genetic optimization using a penalty function. In

S. Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 499-505, San Mateo, 1993. Morgan Kaufmann.

[58] W. Spears and K. DeJong. An Analysis of Multi-Point Crossover. In

G. Rawlins, editor, Foundations of Genetic Algorithms, pages 301-315.

Morgan Kaufmann, San Mateo, 1991.

[59] W. Spears and K. DeJong. On the virtues of parameterized uniform crossover.

In R. Belew and L. Booker, editors, Proceedings of the Fourth International

Conference on Genetic Algorithms, pages 230-236. Morgan Kaufmann, 1991.

[60] T. Starkweather, D. Whitley, and K. Mathias. Optimization Using Distributed
Genetic Algorithms. In H. Schwefel and R. Manner, editors, Parallel Problem
Solving from Nature, pages 176-185, New York, 1991. Springer-Verlag.

[61] G. Syswerda. Uniform crossover in genetic algorithms. In J. Schaffer, editor,

Proceedings of the Third International Conference on Genetic Algorithms,

pages 2-9, San Mateo, 1989. Morgan Kaufmann.

[62] R. Tanese. Parallel genetic algorithms for a hypercube. In J. Grefenstette,

editor, Proceedings of the Second International Conference on Genetic

Algorithms and Their Applications, pages 177-183, Hillsdale, New Jersey,
1987. Lawrence Erlbaum Associates.

[63] R. Tanese. Distributed genetic algorithms. In J. Schaffer, editor, Proceedings of

the Third International Conference on Genetic Algorithms, pages 434-440,

San Mateo, 1989. Morgan Kaufmann.

[64] D. Tate and A. Smith. Expected allele coverage and the role of mutation

in genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 31-37, San Mateo,

1993. Morgan Kaufmann.

[65] G. von Laszewsski and H. Muhlenbein. Partitioning a graph with a parallel
genetic algorithm. In H. Schwefel and R. Manner, editors, Parallel Problem

Solving from Nature, pages 165-169, Berlin, 1991. Springer-Verlag.

[66] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based
allocation of reproductive trials is best. In J. Schaffer, editor, Proceedings of

the Third International Conference on Genetic Algorithms, pages 116-121,

San Mateo, 1989. Morgan Kaufmann.

76

[67] D. Whitley. An executable model of a simple genetic algorithm. In
D. Whitley, editor, Foundations of Genetic Algorithms -2-, pages 45-62.
Morgan Kaufmann, San Mateo, 1993.

[68] D. Whitley and T. Hanson. Optimizing neural networks using faster, more
accurate genetic search. In J. Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pages 391-396, San Mateo,
1989. Morgan Kaufmann.

[69] D. Whitley and J. Kauth. GENITOR: A different genetic algorithm. In Rocky
Mountain Conference on Artificial Intelligence, pages 118-130, Denver, 1988.

77

Distribution for ANL-94/23

Internal:

J. M. Beumer (15)

F. Y. Fradin

D. M. Levine (25)

G. W. Pieper

R. L. Stevens

C. L. Wilkinson

TIS File

External:

DOE-OSTI, for distribution per UC-405 (54)

ANL-E Library (2)

ANL-W Library

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

F. Berman, University of California, La Jolla

B. L. Buzbee, National Center for Atmospheric Research

J. G. Glimm, State University of New York at Stony Brook

M. T. Heath, University of Illinois, Urbana

E. F. Infante, University of Minnesota

K. Kunen, University of Wisconsin, Madison

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Office of Scientific Computing

F. Howes, Department of Energy - Office of Scientific Computing

78

