
A PARALLEL GHOSTING ALGORITHM FOR THE
FLEXIBLE DISTRIBUTED MESH DATABASE (FMDB)

By

Misbah Mubarak

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

Approved:

Mark S. Shephard, Thesis Adviser

Rensselaer Polytechnic Institute
Troy, New York

April 2011
(For Graduation May 2011)

c© Copyright 2011

by

Misbah Mubarak

All Rights Reserved

ii

CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

LIST OF ALGORITHMS . ix

ABSTRACT . x

1. Introduction . 1

1.1 Motivation . 1

1.2 Organization . 3

1.3 Nomenclature . 4

2. Overview of FMDB . 5

2.1 Geometry-based Analysis Environment 5

2.1.1 Geometric Model . 6

2.1.2 Attributes . 6

2.1.3 Mesh . 7

2.1.4 Fields . 9

2.2 ITAPS Mesh Component . 9

2.2.1 Entities . 10

2.2.2 Entity set . 10

2.2.3 Tags . 11

2.2.4 Iterators . 11

2.3 Topology-based Mesh Data Structure 11

2.3.1 Topological entities . 12

2.3.2 Geometric Classification . 13

2.3.3 Geometric Information . 14

2.3.4 Adjacencies . 14

2.4 Distributed Mesh Management . 16

2.4.1 Distributed Mesh Representation 18

2.4.2 Functional Requirements of Distributed Meshes 21

2.5 The Partition Model . 23

2.6 Dynamic load balancing and mesh modification 25

iii

2.6.1 Entity migration . 25

2.6.2 Dynamic load balancing . 26

2.6.3 Ghosting . 27

2.7 ITAPS parallel mesh component . 27

2.7.1 The abstract data model . 27

2.7.2 The iMeshP interface . 28

2.8 Implementation of FMDB . 29

2.8.1 Implementation Structure . 30

2.8.2 Design of Testing suites . 32

3. N-Layer Ghost Creation & Deletion Algorithm 33

3.1 Historical Review . 34

3.2 The Ghosting Process . 38

3.3 Algorithm of N-layer ghost creation 41

3.3.1 Step 1: Ghost collection for first layer 43

3.3.2 Step 2: Process next layer . 48

3.3.3 Step 3: Eliminate duplicate entities 52

3.3.4 Step 4: Exchange entities and update ghost copies 55

3.3.5 Store ghost rule . 58

3.4 N-layer ghost deletion algorithm . 59

3.4.1 Step 1: Process first-layer ghosts 59

3.4.2 Step 2: Process next layer ghost entities 62

3.4.3 Step 3: Mark visited bridge entities 62

3.4.4 Step 4: Delete ghosts collected 62

3.5 Ghosting Tests . 63

3.6 Summary . 64

4. Performance Results . 66

4.1 Strong scaling study of Ghost creation/deletion 67

4.2 Weak scaling study of Ghost creation/deletion 73

4.3 N-layer ghost creation with fixed processor count 74

5. Closing Remarks . 76

BIBLIOGRAPHY . 78

APPENDICES

iv

A. FMDB Unit Tests . 85

A.1 Iterator tests . 85

A.2 Ownership and remote copy tests . 87

B. Mesh Verification Algorithm . 91

toc

v

LIST OF FIGURES

2.1 Example of attributes in a geometry-based problem definition [10] . . . 7

2.2 superquardic: geometric model and the mesh 8

2.3 Example of a field in a geometry-based problem definition [10] 9

2.4 Simple model and the mesh associated through geometric classification
[25]. 14

2.5 12 adjacencies possible in a mesh representation [26] 15

2.6 Edge and vertex order on a face . 16

2.7 Face ordering in a region [25] . 17

2.8 Edge ordering in a region [25] . 17

2.9 Distributed Mesh on three parts [29] . 19

2.10 Example 3D mesh distributed on two parts 21

2.11 Hierarchy of domain decomposition: geometry model, partition model
and distributed mesh on 4 processors [24] 23

2.12 Distributed Mesh and its partition classification [24] 24

2.13 Example of entity migration of a 2-D mesh [33] 26

2.14 FMDB Implementation Structure . 30

3.1 A distributed mesh on four parts with ghost entities [19] 39

3.2 A 2-D ghosted mesh . 40

3.3 Example of 2-D ghost creation with 1-layer 41

3.4 Example of 2-D ghost creation with 2-layers 49

3.5 Ghost deletion algorithm applied on Part 0 of Figure 3.3 61

4.1 A cubic mesh . 67

4.2 Moving air bubbles . 68

4.3 Relationship of ghosted entities created with scalability (165M mesh) . 71

4.4 Relationship of ghosted entities deleted with scalability (165M mesh) . . 72

vi

A.1 Steps for testing generic iterator for mesh entities in a part 86

A.2 Steps for testing generic iterator for geometric model entities 88

A.3 Steps for testing remote copy information 89

vii

LIST OF TABLES

3.1 Contents of vector entitiesToGhost after Step 1 47

3.2 Contents of vector entitiesToGhost after Step 2 52

3.3 Contents of vector entitiesToGhost after Step 3 54

3.4 Contents of vector entitiesToRemove after Step 3 63

4.1 Blue Gene/L vs. Cray XE6 . 67

4.2 Computation time vs. communication time on Cray XE6 (17M cube) . 69

4.3 1-layer ghost creation time(sec) on Cray XE6 and BG/L 70

4.4 1-layer ghost deletion time(sec) on Cray XE6 and BG/L 72

4.5 Weak scaling of ghost creation algorithm 73

4.6 N-layer ghost creation execution time(s) on 1024 processors 75

viii

List of Algorithms

1 createGhosts(M, g, b, numLayer) . 44

2 getGhostEnts(M,g, b, includeCopy, entitiesToGhost, numLayer) 46

3 getDownwardAdjs(M,g, M g
i , destId, entitiesToGhost) 48

4 processNLayers(M, g, b, includeCopy, lyr, entitiesToGhost) 50

5 removeDuplicateEnts(M, d, entitiesToGhost) 53

6 exchangeGhostEnts(M, g, d, entitiesToGhost(d)) 56

7 deleteGhostEnts(M) . 60

8 collectDeleteInfo(M g
j , g, entitiesToRemove) 61

9 Mesh Verify(M) . 93

10 VerifyRemoteCopies(isValid, Md
i) . 94

11 VerifyGhostCopies(isValid, Md
i) . 95

12 VerifyVertices(M, isValid) . 95

13 VerifyRegions(M,isValid) . 96

14 VerifyEdges(M,isValid) . 97

15 VerifyFaces(M,isValid) . 98

ix

ABSTRACT

The scalable execution of parallel adaptive analyses requires the application of mesh

modification operations to modify the partitioned mesh with balanced work load

and minimal communication. The thesis presents a parallel algorithm for ghost cre-

ation and deletion that localizes neighborhood data for computation to minimize

inter-part communication. The ghosting algorithm provides a third-party applica-

tion with the complete parallel neighborhood information in a partitioned mesh.

This reduces the communication pattern in the application to simple point-to-point

transfers of numerical information. The thesis presents a ghost creation and dele-

tion algorithm for the Flexible distributed Mesh Database (FMDB) that can create

1D, 2D or 3D ghost objects in a mesh using bridge entities. The algorithm utilizes

neighborhood communication to create any number of ghost layers up-to a point

where the whole partitioned mesh is ghosted. Ghosting that becomes invalid due

to mesh modification can be synchronized by throwing away old ghosts and creat-

ing new ones. For testing purposes, a mesh verification algorithm that verifies the

validity of the ghosted mesh is also presented.

Strong and weak scaling analysis results of ghost creation and deletion algo-

rithm is presented up-to a core count of 32,768, using two massively parallel archi-

tectures i.e. IBM Blue Gene/L and Cray XE6. Performance results show that the

scalability of the ghosting algorithm is dependent on the ratio of inter-part commu-

nication to computation and the number of ghost entities that keep on increasing

with increasing processor count.

x

CHAPTER 1

Introduction

1.1 Motivation

The Finite Element Method (FEM) is a powerful tool which is a standard

for solving Partial Differential Equations (PDEs) [1]. Adaptive FEMs have gained

importance as they provide reliability, robustness, time and space efficiency. As the

mesh size continues to grow, and the level of geometric complexity of the domain

increases, the application of serial mesh generation become a bottleneck [2]. That is

why in such methods, computationally demanding three-dimensional problems make

parallel computation essential; though, parallelism introduces complications such as

the need to balance processor loading, coordinate inter-process communication, and

manage distributed data.

A distributed mesh representation provides the necessary support for finite

element analysis in parallel. The approach consists of decomposing the domain into

a number of parts, or sub-domains where each part represents a unit of execution.

The scalable execution of parallel adaptive analysis requires the application of dy-

namic load-balancing to re-partition the mesh into sets of parts with balanced work

load and minimal communication [3]. As the adaptive meshes being generated reach

billions of elements and the analysis are performed on massively parallel comput-

ers with 100,000’s of computing cores, a number of complexities arise that need to

be addressed. First, the adaptive mesh modifications change the number of mesh

entities and their adjacencies, thus changing the load balance of the mesh. The

application of dynamic load balancing must be applied to regain the load balance.

The second issue is related to communication and synchronization among the parts.

In an explicit simulation model, parts communicate with each other to exchange

1

2

data needed for the simulation at each step, and the data must be available for

computation in a consistent and up-to-date way. In shared memory systems [4],

data communication is straightforward since all processes reside in the same virtual

memory space and thus memory can be directly used to send/receive data asyn-

chronously. In distributed memory systems [4], each process has its own private

memory space and they are connected by a network. In this case, message pass-

ing is the most common way to communicate data among two or more parts, and

synchronization can be done explicitly using function calls. Many massively parallel

distributed systems have been developed based on large number of computing nodes

connected by very fast networks [5].

In a distributed mesh, most of the time communication occurs only among

neighboring parts. Even then, network communication overheads can be consider-

ably large. To minimize this communication, applications must consider the size

and number of the messages being sent. For each entity, the analysis code usually

tends to access adjacent entities to compute corresponding results for the current

simulation step. Therefore, it is important to cluster elements or nodes in a way to

minimize the number of adjacent entities belonging to different parts, thus minimiz-

ing the need for communication [6]. In addition to requiring data associated with

shared part boundary mesh entities, specific finite element calculations require data

from mesh entities internal to neighboring parts. One means to support providing

the data is by the addition of copies of the data referred to as ghost copies as needed

on neighboring parts. The basic purpose of ghosts is to localize the data that may

be needed by the analysis program for computation on part boundaries. To decrease

the inter-process communication for data exchange, ghosts copies bring along the

data on part boundaries. If some time during mesh modification, the ghost data

becomes invalid, the mesh is synchronized to update the ghost data. In some cases,

applications require more than one layer of ghost data from other parts. In such

3

cases, the mesh databases need to support a N-layer ghost creation and deletion

algorithm.

The goal of the thesis is to develop an efficient and fully 3-D N-layer ghost cre-

ation and deletion algorithm for the Flexible distributed Mesh DataBase (FMDB).

The algorithm was designed flexible enough to provide ghost data for all dimensions

(1-D, 2-D or 3-D) depending upon the application requirements. The algorithm

supports any number of ghost layers as specified by the application. To meet the

goal of efficiency, the performance of the N-layer ghost algorithm was tested on mas-

sively parallel architectures i.e. Cray XE6 at National Energy Research Scientific

Computing Center[7] and IBM BG/L at RPI [8].

1.2 Organization

Chapter 2 introduces general topology based mesh data structures, highlights

the requirements and functionality of distributed meshes and presents an overview

of dynamic load balancing and mesh modification. Chapter 3 presents a review of

the parallel support (including ghosting) provided by various mesh databases, it

then presents the design of N-layer ghost creation and deletion algorithm developed

for FMDB and explains its working with the help of a 2-D mesh example. Chap-

ter 4 provides the performance results and scalability of the N-layer ghost creation

and deletion algorithm. Chapter 5 concludes the thesis by summarizing the con-

tributions and discussing the future work. For readers interested in FMDB unit

testing, Appendix A presents the design of some test suites incorporated in FMDB

for testing parallel functionality. For readers interested in details of mesh verifica-

tion and testing, Appendix B presents the mesh verification algorithm that verifies

the correctness of a ghosted mesh.

4

1.3 Nomenclature
V the model, V ∈ {G,P,M} where V can belong to either of Geo-

metric Model G, partition model P or the mesh model M .

V d
i the ith entity of dimension d in the model V. d = 0 for a vertex,

d = 1 for an edge, d = 2 for a face and d = 3 for a region.

{∂(V d
i)} set of entities on the boundary of V d

i .

{V d
i {V

q}} set of entities of dimension q that are adjacent to V d
i . For e.g.

{M3
1{M

0}} is the set of all vertices that are adjacent to the region

M3
1 .

Udi
i ❁ V

dj
j classification indicating the unique association of entity Udi

i with

entity V
dj
j , di ≤ dj, where U, V ∈ {G,P,M} and U is lower than V

in terms of hierarchy of domain decomposition.

P[Md
i] set of part id(s) where Md

i exists.

{V d
i {V

q}j} The jth entity in the set of entities of dimension q in model V that

are adjacent to V d
i

R[Md
i] Set of remote copies of Md

i on remote parts.

∂(Plocal) Set of part boundary entities on current part Plocal.

CHAPTER 2

Overview of FMDB

The Flexible distributed Mesh Database (FMDB) is a distributed mesh manage-

ment system that provides a parallel mesh infrastructure capable of handling gen-

eral non-manifold models while effectively supporting parallel adaptive analysis [9].

This chapter introduces the data sets involved in the geometry-based analysis envi-

ronment (§2.1) and the ITAPS mesh component (§2.2), followed by a discussion on

general topology-based mesh data structure (§2.3) and an overview of distributed

mesh data structure developed in FMDB (§2.4, §2.6, §2.5). Finally it presents the

ITAPS parallel mesh component (§2.7) and FMDB implementation structures being

used (§2.8).

2.1 Geometry-based Analysis Environment

The geometry based analysis framework starts at the level of mathematical

problem description, allowing multiple numerical problems to be formulated, solved,

and the solution related back to the original problem description. As the analysis

framework must take a problem description consisting of a geometrical model with

appropriate attributes and construct a solution to the problem specified, it should

build on a well-defined set of abstractions for the various types of data that this

framework uses. The structures used to support the problem definition, the dis-

cretization of the model and their interactions are central to the geometry based

analysis framework [10]. The geometry-based analysis environment consists of the

four structures of the geometric model of the domain, the problem attributes, the

domain discretization in terms of a mesh and the solution fields solved for the mesh.

5

6

2.1.1 Geometric Model

The geometric model representation is a boundary representation based on the

Radial Edge Data Structure[11]. It consists of topology and shape description of

the domain of the problem. The model is a hierarchy of topological entities called

regions, shells, faces, loops, edges and vertices. Data structures implementing the

geometric model support operations to find the various model entities that make up

a model and indicate which model entities are adjacent to a given entity. Operations

related to performing geometric queries are also supported [12]. It is important to

understand that there are associations between the model entities, attributes and

mesh entities which are central to support generalized adaptive analysis procedures

that operate from a general problem definition [10].

2.1.2 Attributes

To complete the specification of the analysis problem, additional physical in-

formation in terms of load, material properties, boundary and initial conditions

must be associated with the appropriate geometric model entities. In this form of

definition, this information can be considered attributes of the geometric definition

of the domain [13, 14]. These attributes are tensorial in nature. This viewpoint pro-

vides a means for mathematical consistency in describing the attributes. Thus an

attribute can be defined fully given the tensor order, tensor symmetry, distribution

of tensor components and the coordinate system in which the tensor is defined [14].

These tensor values attributes may vary in both space and time. A simple example

of a problem definition is shown in Figure 2.1, the problem being modeled here is

a dam which is subject to load due to gravity and water behind the dam. There

are a set of attribute information nodes that are under the attribute case for the

problem definition. The attributes here are indicated by triangles with A’s inside

them. When this case is associated with the model, these attributes are created and

7

type: load

name: water load

value: (f(z),0,0)

type: load

name: water load

value: (f(z),0,0)

type: load

name: water load

value: (f(z),0,0)

type: load

name: water load

value: (f(z),0,0)

type: load

name: water load

value: (f(z),0,0)

type: probelm definition

name: ...

Geometric

Model

A

A

A

A

A

u = 0

g

f = f(z)

Case

Attributes

Information Nodes

Figure 2.1: Example of attributes in a geometry-based problem definition
[10]

associated with the appropriate model entities on which they act.

2.1.3 Mesh

The mesh is a discrete representation of the domain used by the analysis pro-

cess. Figure 2.2 represents a solid model and its mesh. Understanding how the mesh

relates to the geometric model allows an understanding of how the solution relates

back to the original problem description [15] and supports the ability to properly

adapt the mesh fully accounting for the geometric domain and attributes as the

mesh is changed. The representation used for a mesh is also a boundary represen-

tation, i.e. there is a topological hierarchy of regions, faces, edges and vertices that

make up a mesh [16]. In addition, each mesh entity in the mesh database maintains

a relation, called the classification of a mesh entity, to the model entity that it was

created to partially represent. The classic element-node approach [17] in the mesh

data structures lacks classification information which is critical for mesh generation

and enrichment procedures as it allows the mesh to relate back to the geometry.

8

Figure 2.2: superquardic: geometric model and the mesh

Geometric classification also allows the specification of analysis attributes in terms

of original geometric model rather than the mesh, which is important in adaptive

analysis environments. Many analysis and mesh modification procedures can be eas-

ily written when a topological hierarchy of mesh entities is used to represent a mesh.

For example, an edge based refinement procedure is much easier to write if it is possi-

ble to loop through all edges in a mesh and get connectivity information of the edge.

An important goal in the development of a mesh data structure is ensuring

its ability to effectively provide the information required by various procedures that

create and/or use that data. The differing needs of such tools requires that such a

mesh database must be general and be able to answer all queries about the mesh.

This general capability can only be achieved by utilizing more general abstraction of

a mesh like the topological hierarchy of mesh entities, not the specific node-element

view that were developed for the needs of performing a single analysis on a fixed

mesh [18]. The detailed discussion on mesh entities and adjacencies is presented in

§2.3.

9

Mesh

Field 1 = {Interpolation 1,

Interpolation 2, ... }

Interpolation 2

Interpolation 1

Figure 2.3: Example of a field in a geometry-based problem definition
[10]

2.1.4 Fields

Fields describe the variation of tensor quantizers over one or more entities in

a mesh model. The spatial variation of the field is defined in terms of interpolations

defined over a discrete representation of the geometric model entities, which is cur-

rently the finite element mesh. A field is a collection of individual interpolations,

all of which are interpolating the same quantity [10]. Each interpolation is associ-

ated with one or more mesh entities in the discrete representation of the model (See

Figure 2.3).

2.2 ITAPS Mesh Component

This section describes the data model of a mesh component which is developed

to provide support for mesh access and manipulation requirements of practical,

large-scale scientific computing applications. This component developed as part of

the Inter-operable Tools for Advanced Petascale Simulation (ITAPS) center [19] is

called iMesh [20]. The iMesh component is intended to define operations required

at a mesh database level so that high level operations including mesh generation,

mesh improvement, mesh adaptation, parallel mesh operations can be implemented

10

as services that store and manipulate data by using the iMesh component and mesh

databases that implement the component’s functionality [21]. The key building

block of the iMesh data model consists of entities, entity sets and tags.

2.2.1 Entities

Entities represent the topological entities in the mesh and geometric model.

Entity adjacency relationships define how the entities connect to each other and both

first-order and second-order adjacencies are supported [22]. The detailed discussions

on the entity and adjacencies is presented in §2.3

2.2.2 Entity set

Entity set support the arbitrary grouping of entities. All topological and

geometric mesh data as well as other entity sets, are contained in a root entity set.

Each entity set may be a true set (in the set-theoretic sense) or it may be a possibly

non-unique ordered list of entities; in the later case entities are retrieved in the

order in which they were added to the entity set [23]. Entity sets are populated by

addition or removal of entities from the set (with the exception of a root-set which

is present by default in the mesh). In addition, set Boolean operations (subtraction,

intersection and union) on entity sets are also supported. An entity set supports

two primary operations. First, an entity set may contain one or more entity sets (by

definition, all entity sets belong to the root set). An entity set which is contained in

another may be a subset or an element (in the set-theoretic sense) of that entity set.

Second, parent/child relationship between entity sets are used to represent logical

relatioships between sets. Examples of entity set could be the ordered list of vertices

bounding a geometric face and the set of all entities in a given level of a multigrid

mesh sequence [21, 22].

11

2.2.3 Tags

A tag is a container of arbitrary data attachable to mesh, entities, geometric

model entities and entity set. Different values of a particular tag can be associated

with mesh, entity or an entity set: for example tags can be used to mark entities

during a specific operation. During mesh smoothing, certain entities are tagged

for smoothing. Once the smoothing operation is performed on them, the tag is

removed. The ITAPS mesh component supports specialized tag types for improved

performance as well as the more general case that allows any type of data to be

attached [22].

2.2.4 Iterators

Iterators are a generalization of pointers which are objects that point to other

objects. An iterator is an object that allows a programmer to traverse through

all elements of a collection, regardless of its specific implementation. If an iterator

points to one element in a range, then it is possible to increment it so that it points

to the next element.

Various kinds of iterators are desirable for efficient mesh entity traversal with various

conditions like entity dimension, entity topology, geometric classification [24].

2.3 Topology-based Mesh Data Structure

The mesh consists of a collection of mesh entities of controlled size, shape,

and distribution. The relationships of the entities defining the mesh are well de-

scribed by topological adjacencies, which form a graph of the mesh. The functional

requirements of a topology-based mesh data structure are: topological entities, clas-

sification, geometric information and adjacencies [16].

12

2.3.1 Topological entities

As the mesh is constructed from a geometric model that is represented using

a boundary based scheme, thus using a similar scheme to also represent the mesh is

advantageous for several reasons. First, topology provides an unambiguous, shape

independent, abstraction of a mesh. Second, maintaining the geometric classification

information is simplified as the same type of entities occur both in geometric model

and the mesh. Each topological entity of dimension d, Md
i is defined by a set of

lower order topological entities of dimension d − 1, {Md
i {M

d−1

i }} which form its

boundary. For example, a region is a 3-D entity with a set of faces bounding it. In

turn, a face is a 2-D entity bounded with a set of edges whereas an edge is a 1-D

entity bounded by a pair of vertices. A vertex is a 0-D entity that is the base of the

hierarchy, it has no lower order entities bounding it.

The proper consideration of general geometric domains also requires consider-

ation of loop and shell topological entities, and, in case of non-manifold models, use

entities for the vertices, edges, loops and faces [11]. However, there are restrictions

on the topology of a mesh that allows a reduced representation which is in terms of

only the basic 0 to d dimensional topological entities [18]. For the three dimensional

case (d=3), these entities are

M = {M{M0},M{M1},M{M2},M{M3}} (2.1)

where {M{Md}}, d = 0, 1, 2, 3 are respectively the set of vertices, edges, faces and

regions defining the primary topological elements of the mesh domain.

The restrictions on the topology of a mesh which allow this reduction include:

• Regions and faces have no interior holes.

• Each entity of order di in a mesh Mdi , may use a particular lower order entity,

13

Mdj , dj < di, at most once.

• For any entityMdi
i there is a unique set of entities of order d−1, {Mdi

i {Mdi−1}}

The first item means that regions may be directly represented by the faces that

bound them, and faces may be represented by the edges that bound them. The

shell and loop entities, required for general models, are therefore not needed in the

mesh.

The second item allows an orientation of an entity to be defined in terms of its

boundary entities (without the introduction of entity uses). For example, the ori-

entation of an edge, M1
i which is bounded by vertices M0

j and M0
k may be uniquely

defined as going from M0
j and M0

k only if j �= k.

The third item means that an interior entity (defined as Mdi
i ❁ Gdi

i where dj ≤ di

and at-least one of ∂(Mdi
i) ❁ Gdi

i) can be uniquely specified by the entities that

bound it [18].

2.3.2 Geometric Classification

The linkage of the mesh to the geometric model is critical for mesh generation

and adaptation procedures. The unique association of a mesh entity of dimension

d, Md
i to a geometric model entity of dimension dj, Gj

dj where di ≤ dj, Mi
d
❁ Gj

dj

where the classification symbol ❁, indicates that the left-hand entity, is classified

on the right hand entity. Multiple Md
i can be classified on a Gj

dj . Mesh entities are

always classified with respect to the lowest-order geometric model entity possible

[16]. Classification of the mesh against the geometric model entity is central to

ensuring that the automatic mesh generator has created a valid mesh [16]. In Figure

2.4, a mesh of a simple square model with entities labeled is shown with arrows

indicating the classification of the mesh entities onto the model entities. All of the

interior mesh faces, mesh edges and mesh vertices are classified on the model face

14

G2
1 [18].

1
3G

1
1G

1
2G1

4G

0
1G 0

2G

0
3G0

4G

2
1G 1

4G

1
1G

0
2G

1
2G

1
3G

0
1G

0
3G0

4G

Figure 2.4: Simple model and the mesh associated through geometric
classification [25].

2.3.3 Geometric Information

Each topological entity in the geometric model has shape information associ-

ated with it that defines the geometry of the model. For the mesh, the geometric

information that is required is limited to pointwise information in terms of the para-

metric coordinates of the model entity that a mesh entity is classified on. Other

shape information that is needed to define the mesh can be obtained from the ge-

ometric model using the classification information and appropriate queries to the

modeler. Zero or more locations may be stored for each mesh entity other than a

mesh vertex [18].

2.3.4 Adjacencies

Adjacencies describe how topological entities connect to each other. Certain

adjacencies are also used to define higher order entities in terms of the lower order

ones (e.g. a region is defined by the faces that bound it). There are orderings for

15

Edge

Region

Face

Vertex

Figure 2.5: 12 adjacencies possible in a mesh representation [26]

adjacencies that are useful when accessing and manipulating the mesh. The form

of adjacencies used are: a linear list of entities adjacent to Md
i , an unordered list

of entities adjacent to Md
i and a cyclic list of entities adjacent to Md

i . For certain

type of entities, there is also a direction component to the adjacency relation that

indicates how the entity is used in the specific adjacency. In these cases, the right

subscript ± on the entity Md
±i indicates a directional use of the topological entity

as defined by its ordered definition in terms of lower order entities. A + indicates

use in the same direction whereas - indicates use in the opposite direction for e.g.

a face M2
i can be defined by a set of edges bounding it as M1

+i,M
1
−k,M

1
−l meaning

that the face is made up of these three edges where M1
+i is used in the positive

direction, from its first to second vertex whereas the edges M1
−k and M1

−l are used

in the negative direction from their second to first vertex.

First order adjacencies are the set of relations which describe, for a given entity

Mk
di , all of the entities,Mdj which are either on the closure of the entity (j < i)

or which it is on the closure of (j > i). For example, the adjacency {M3
i , {M

0}}

represents an ordered list of all the mesh vertices which are on the closure of the

16

mesh regions Mi
3. Figure 2.5 depicts the 12 first order adjacencies possible in the

mesh data structure where a solid box and a solid arrow denote the stored level of

entities and stored adjacencies from outgoing to incoming level [16]. Figure 2.6, 2.7

and Figure 2.8 describes a common canonical ordering of bounding entities.

For an entity of dimension d, second order adjacencies describe all mesh entities

of dimension q that share any adjacent entities of dimension b where d �= b, b �= q.

Second order adjacencies can be derived from first-order adjacencies.

Examples of adjacency requests include: for a given face, the regions on either

side of the face (first-order upward); the vertices bounding the face (first-order

downward); and the faces that share any vertex with a given face (second-order)

[18].

Figure 2.6: Edge and vertex order on a face

2.4 Distributed Mesh Management

Scalable parallel processing techniques are becoming central to the solution of

large scale simulations consisting of millions to billions of finite elements. Therefore,

consideration must be given to parallel mesh generation and management so that

it does not become a computational bottleneck [2]. The development of effective

parallel algorithms for adaptive techniques is challenging due to irregular nature

of adaptive discretization and the constant modification of the discretization. The

17

Face 1

0

1

2

3

(Bottom)
Face 0

Face 3
(Back)

Face 2
0

2
3

4

67

5

1

Face 0

Face 1

Face 2

Face 3

Face 4

Face 5

1

20

4

Face 1

Face 4 Face 3

Face 2

Face 0

0

1

2

5

4

3

Face 0

Face 1

Face 2

Face 3
Face 4

Figure 2.7: Face ordering in a region [25]

7

3

5

0 1

3

2

4
5

0 1

2
3

4 5 6

0

1

2

4

6
7

8

0

13
28

5

6

7

9

10
11

4

Figure 2.8: Edge ordering in a region [25]

18

evolving nature of the discretization in an automated adaptive analysis procedure

dictates the use of structures and constructs that can effectively account for the

processor workload changes. These structures and constructs are dramatically dif-

ferent from those needed for fixed discretization parallel computations in that they

must be able to efficiently maintain load balance, while controlling communications,

as the distributed discretization evolves [27]. In order to optimize adaptive finite

element performance, a static partitioning of the mesh across the cooperating pro-

cesses is not sufficient. Load imbalance caused by adaptive enrichment necessitates

a dynamic partitioning and redistribution of data. A distributed mesh structure

builds directly on the topologically based mesh database in the following manner.

Each process holds data associated with a subset of the complete mesh. The mesh

assigned to each process is housed in a local version of the mesh structure and there

are links to neighboring mesh entities on other processes.

The quality of data partitioning is an important efficiency factor. One measure of

partition quality is the percentage of elements which require access to off-process

data during the computation. A poor partitioning in a distributed mesh results in

a higher communication cost during the finite element solution phase [28].

2.4.1 Distributed Mesh Representation

This section describes the abstract data model and terminologies associated

with a distributed mesh.

Definition 1 (Distributed Mesh) A distributed mesh is a mesh divided into parts

for distribution over a set of processes for specific reasons, for example parallel com-

putation.

Definition 2 (Part) A part consists of the set of mesh entities assigned to a pro-

cess. For each part, a unique global part id within an entire system and a local

19

Figure 2.9: Distributed Mesh on three parts [29]

part id within a process can be given. Parts maintain links with other parts through

shared mesh entities.

Each part is treated as a serial mesh with the addition of mesh part boundaries to

describe entities that are on inter-part boundaries. Mesh entities on part bound-

aries are shared by more than one part and are maintained by a part boundary

data structure. For example in three dimensional distributed mesh, each region is

assigned to a unique part, but bounding faces, edges and vertices of regions along

part boundaries are duplicated on each part that contains a region using that entity.

Figure 2.9 depicts a 2-D mesh distributed on three parts. Vertex M0
1 is common to

three parts and on each part, several edges like M j
1 are common to two parts. The

dashed lines are part boundaries that consist of mesh vertices and edges duplicated

on multiple parts.

In order to denote the parts on which a mesh entity resides, we define the residence

part operator P.

Definition 3 (Residence part equation of Md
i) If {Md

i {M
q}} = 0, d < q, P[Md

i] =

20

{p} where p is the id of the part whereMd
i exists. Otherwise, P[Md

i] = ∪P[M q
j |M

d
i ∈

{∂(M q
j)}]

The residence parts of an entity is determined by the following rules

• For an entity Md
i on part p which does not exist on the boundary of a higher

order mesh entity, P[Md
i] returns {p}. In case, when an entity does not

exist on the boundary of a higher order mesh entity, its residence part is only

determined by the part where it exists for e.g. a region in a 3-D mesh exists

on only one part.

• If Md
i is not a shared part boundary entity then its bounding part is also {p}.

• If Md
i is on the boundary of other higher order mesh entities, Md

i is duplicated

on multiple parts depending on the residence parts of the entities it bounds.

Therefore, the residence part(s) of Md
i is the union of bounding parts of all

entities that it bounds. For a mesh topology where the entities of order d > 0

are bounded by entities of order d − 1, P[Md
i] is {p} if {Mi

d{Mk
d+1}} = φ.

Otherwise,P[Md
i] is ∪P[Md+1

k |Md
i ∈ {∂(Md+1

k)}]. For instance, for the 3D

mesh depicted in Figure 2.10 , M1
3 is shared by P0 and P1. For the vertex

M0
1 , residence part ids are {P0, P1} as the union of the bounding parts of its

bounding edges {M1
0 ,M

1
1 ,M

1
2 ,M

1
3} are {P0, P1}

Definition 4 (Partition Object) A partition object is a mesh entity or a set of

mesh entities that can be marked for migration.

In the case of a mesh of a non-manifold geometric domain with no entity grouping

for migration, the partition objects are

• All mesh regions.

21

Figure 2.10: Example 3D mesh distributed on two parts

• Mesh faces not bounded by any mesh region.

• Mesh edges not bounded by any mesh face.

• Mesh vertices not bounded by any mesh edge. [24].

• In some applications, sets of mesh entities are always migrated together. For

example, the set of mesh regions that form a stack on top of boundary layer

nesg face needs to be migrated together. In this case, the set is defined as a

single partition object,

2.4.2 Functional Requirements of Distributed Meshes

Functional requirements for supporting mesh operations on distributed meshes

are

• Communication Links: Mesh entities on part boundaries must be aware of

where they are being duplicated. This is done by maintaining remote parts

and remote copies.

22

Definition 5 (Remote part) A non-self part where an entity is duplicated.

Definition 6 (Remote copy) Refers to memory location of a mesh entity

duplicated on remote part p.

Definition 7 (Neighboring parts) Part A neighbors Part B if Part A has

remote copies of entities owned by part B or if part B has remote copies of

entities owned by part A.

In parallel adaptive analysis, the mesh and its partitioning can change thou-

sands of time during the simulation. Therefore, an efficient mechanism to

update mesh partitioning is required which can also update the links between

parts [30, 31].

• Entity ownership: For entities on part boundaries, it is beneficial to assign a

specific copy as the owner of the others and let the owner manage communica-

tion or computation between copies. The two basic strategies for determining

the owning part of part boundary entities are

– Static entity ownership: The owning part of a part boundary entity is

always fixed to pi regardless of mesh partitioning [32, 33].

– Dynamic entity ownership: The owning part of a part boundary entity

is dynamically specified. There are several options to determine the dy-

namic entity ownership of part boundary entities.

FMDB determines the part boundary entity ownership based on the rule of

poor-to-rich ownership which assigns the poorest part as the entity owner,

where the poorest part is the one with least number of owner partition objects

[9].

23

2.5 The Partition Model

To meet the goals and functionalities of distributed meshes, a partition model

concept is introduced between the mesh and the geometric model. Figure 2.11

shows how the partition model can be viewed as a part of hierarchical domain

decomposition. Its purpose is to represent mesh partitioning in topology and support

mesh-level parallel operations through inter-part boundary links with ease.

Figure 2.11: Hierarchy of domain decomposition: geometry model, par-
tition model and distributed mesh on 4 processors [24]

Definition 8 (Partition model entity) A topological entity in the partition model,

P d
i which represents a group of mesh entities of dimension d, that have the same

P. Each partition model entity can be uniquely determined by P.

Each partition model entity stores dimension, id, its bounding part(s) and the own-

ing part. By keeping a proper relation to the partition model entity, all needed

services for representing mesh partitioning can be provided and the inter-part com-

munication is easily supported.

Definition 9 (Partition Classification) The unique association of mesh topolog-

ical entities of dimension di, M
di
i , to the topological entity of the partition model of

dimension dj, P
dj
j where di ≤ dj, on which it lies is termed partition classification

and is denoted as Mdi
i ❁ P

dj
j

24

2
1P

2
2P

1
1P

2
3P

3
3P

3
2P

0P 1P

3
1P

2P

(a) distributed mesh

1
1P

3
1P

3
2P2

1P

2
2P

2
3P

3
3P

P0 P1

P2

(b) partition model

Figure 2.12: Distributed Mesh and its partition classification [24]

Definition 10 (Reverse Partition Classification) For each partition entity, the

set of equal order mesh entities classified on that defines the reverse classification

for the partition model entity. The reverse partition classification is denoted as

RC(P d
j) = {Md

i |M
d
i ❁ P

dj
j }. The reverse classification operator only returns the

same order mesh entities.

Figure 2.12 shows a 3D partitioned mesh with mesh entities labeled with arrows

indicating the partition classification of the entities onto the partition model entities

and the associated partition model. The mesh vertices and edges on the thick black

lines are classified on partition edge P 1
1 . The mesh vertices, edges and faces on the

shaded planes are classified on the partition faces pointed with each arrow. The

remaining mesh entities are non-part boundary entities; therefore they are classified

on partition regions. The reverse classification of P 1
1 returns mesh edges located

on the thick black line, and the reverse partition classification of partition face P 2
i

returns mesh faces on the shaded planes [9].

The implementation of partition model is a parallel extension of FMDB, such

that the standard FMDB entities and adjacencies are used on process only with

25

the addition of the partition entity information needed to support operations across

multiple processes [9]. The partition model introduces a set of topological entities

that represents the collection of mesh entities based on their locations with respect

to the partitioning. Grouping mesh entities to define a partition model entity can

be done with multiple criteria based on the level of functionalities and needs of

distributed meshes. At a minimum, the residence part must be a criterion to support

inter-part communication. FMDB uses the residence part criterion in its partition

model [24].

2.6 Dynamic load balancing and mesh modification

The evolving nature of an adaptive discretization introduces load imbalance

into the solution process. Therefore, it is critical that the load be dynamically

rebalanced as the calculations proceeds. The tools needed to support dynamic re

balancing must determine which mesh entities should be migrated and must be able

to move mesh entities from one part to another. The part communication and entity

migration routines control the process of moving mesh entities between processors,

while either a distributed repartitioner or iterative load balancer can be used to

determine which mesh entities should be moved to different parts [27].

2.6.1 Entity migration

The mesh migration procedure uses an owner update rule to collect and update

any changes to the part boundaries after moving entities to other parts. The migra-

tion of mesh entities from a given part to destination parts proceeds in three stages

(See Figure 2.13). In the initial stage, sender parts collect entities to migrate and

clear existing partitioning data. The partition classification of entities-to-migrate

is updated and entities to be removed are collected. In the second stage, entities

are exchanged and the remote copy information is updated. In the last stage, the

26

Figure 2.13: Example of entity migration of a 2-D mesh [33]

owning partition of partition model entities is updated and unnecessary entities

are removed. A detailed explanation of the procedure and demonstration of it’s

scalability is given in [9, 3].

2.6.2 Dynamic load balancing

Mesh adaptation introduces load unbalance in parts. This unbalance is not

acceptable if one wants to achieve scalable parallel software. The solution to this un-

balance is to dynamically re-partition the mesh. For example, the zoltan [34] toolkit

is a package which includes dynamic load balancing libraries based on geometric,

graph and hyper-graph partitioning. Classically, the balancer takes as input a rep-

resentation of the parallel mesh and provides as output a partition vector telling on

which part a mesh entity has to be in order to restore the load balance. The com-

27

pletion of dynamic re-partitioning consists of dynamically moving the appropriate

entities from one part to the other [29].

2.6.3 Ghosting

In order to avoid excessive communication with other parts, it is beneficial to

maintain read-only copies of non-part boundary entities from other parts in specific

applications (See §3.1 for details). These read-only copies are often referred as ghost

entities. Through the introduction of ghost entities, data from remote parts can

be used locally, as long as the data values have not changed on the original part

(the part which owns the entity from which the ghost entity is copied). In the case

where the data does change, the ghost copy data must be updated before it is used

again on the remote parts having ghost copies. Ghosting relies on the concept of

neighborhood of parts to copy data. A detailed account of the ghosting procedure

in FMDB is discussed in chapter 3.

2.7 ITAPS parallel mesh component

The ITAPS [19] parallel mesh component, iMeshP, builds on previous work

that resulted in the definition of a serial abstract data model and interfaces for serial

mesh data (See §2.2). This section describes the ITAPS parallel data model (See

§2.7.1).

2.7.1 The abstract data model

The parallel ITAPS data model extends the concepts described in §2.2 to

handle the requirements of distributed memory applications. These requirements

are addressed through the following additional core concepts.

• A mesh partition is a decomposition of the mesh entities (for example vertices,

edges, faces, and regions) into parts. The partition is responsible for mapping

28

the entities to parts and for mapping the parts to processes. Each process

may have one or more parts and that each part is wholly contained within a

process. Parts are identified globally by unique part IDs and, within a process,

by opaque part handles. A partition has a communicator associated with it.

Thus global operations are performed with respect to data in all parts in the

partition’s communicator and local operations are performed with respect to

either a part’s or process’s data.

• Mesh entities are owned by exactly one part in the partition where ownership

imbues the right to modify. It is important to note that ownership is not

necessarily static during the course of a computation and can be changed due

to a repartitioning of the mesh or due to local micro-migration operations. In

addition, some entities will have read-only copies on other parts, for exam-

ple, along part boundaries and for ghosting operations. No globally unique

entity IDs are required or supplied by the data model although they can be

constructed by the user as a pair [part ID, entity handle].

• Mesh entities can be further classified as an internal entity (an owned entity not

on an inter-part boundary), a part-boundary entity (an entity on an inter-part

boundary which are shared between parts), or a ghost entity (a non-owned,

non-part-boundary entity). Copies are defined to be all ghost entities plus all

non-owned part-boundary entities [20, 35, 22].

2.7.2 The iMeshP interface

Once the abstract data model is defined, the next step to creating inter-

operable technologies is to define common interfaces that support its functionality.

A key aspect of the ITAPS approach is that it does not enforce any particular data

structure or implementation with the interfaces, requiring only that certain ques-

29

tions about the geometry, mesh, or field data can be answered through calls to the

interface. All data passed through the interface is in the form of opaque handles to

objects defined in the data model.

The iMeshP [22, 35] interface is an extension to ITAPS serial mesh interface iMesh

[21, 22]. The extension to iMeshP, the parallel mesh interface, requires the definition

of a number of additional functions; for example, functions to create and modify

partitions, create ghost entities, retrieve ghost and owner entity tag data, and deter-

mine an entity’s ownership status. Additional iMeshP functions provide information

about part boundaries and neighboring parts. Furthermore, the iMeshP interface

supports parallel operations needed for efficient computation, load balancing and

mesh modification. By necessity, these operations involve parallel communication

and both synchronous and asynchronous parallel operations are supported.This de-

sign enables such things as updates of tag data in ghost entities during computation,

large- or small-scale entity migration for dynamic load balancing or edge swapping,

updates of vertex coordinates in non-owned vertices for mesh smoothing, and coor-

dination in the creation of new entities along part boundaries for mesh refinement

[22, 35] etc.

2.8 Implementation of FMDB

One important aspect of building a mesh database is its software design and

implementation. FMDB is implemented with C++ and provides an API (Applica-

tion Programming Interface) for C/C++. It uses several advanced C++ elements

such as STL(Standard Template Library), templates and generic programming con-

cepts. Moreover, FMDB also employs reusable design patterns like singleton, itera-

tors [36] etc. to achieve re-usability of the software. MPI (Message Passing Interface)

[37] and IPComMan [38] are used for efficient parallel communications between pro-

30

Figure 2.14: FMDB Implementation Structure

cessors. It also uses Zoltan library [34] to make partition assignment during dynamic

load balancing. This section briefly describes the design, implementation & testing

of the FMDB for serial and parallel operations.

2.8.1 Implementation Structure

Figure 2.14 illustrates the implementation structure of FMDB. Note that the

FMDB.h interface encapsulates all the internal implementation of FMDB. It is the

single point of contact with component services and their implementations running

on top of FMDB that support simulations involving complex domains, adaptive

techniques and higher order methods for example adaptive mesh refinement, coars-

ening and swapping through meshAdapt [39]. Moreover, the iMesh and iMeshP

component API implementation of FMDB are also built on top of FMDB.h.

• The ’Internal implementation layer’ provides the serial and parallel mesh

data structures like entity, entity set, part, generic iterator, mesh and tag.

It also supports serial and parallel operations on these data structures like en-

tity/entity set/part/mesh management, mesh migration, ghosting, adjacencies

queries, attaching or detaching tag data, dynamic load balancing, etc.

31

• The FMDB APIs is in turn an abstraction describing the FMDB.h interface for

interaction with the set of functions provided in the internal implementation

layer. The interface functions provide the following functionalities

– system: The operation is system wide for example initializing parallel

services, getting system time, getting MPI process ID etc.

– tag : The operation is related to tag data for example create or delete a

tag, get tag information etc.

– mesh: The operation is performed on the mesh for example create/delete

a mesh, read/write a mesh.

– part : The operation is performed on the part or mesh entities in the entire

part for example create/delete a part, read/write a part, get information

about entities in a part, get/set tag data on a part, carry out mesh

migration, load balancing or ghosting.

– entity : The operation is performed on a specific mesh entity for example

create/delete a mesh entity, get entity type/topo/geometric classifica-

tion/adjacency information, get/set tag on an entity, get/set remote or

ghost copy of an entity etc.

– entity set : The operation is performed on a specific entity set for example

create/delete entity set, add/remove entity in an entity set, check entity

existence, get size and type of entity set, traverse entity set with specific

type/topology, get/set tag on entity set, get/set weight of entity set.

– iterator : The operation is performed on a specific iterator (part, entity

set or geometric model entity iterator) with conditions like specific type

or topology.

• The FMDB.h API has all interface functions which provides services to the

32

ITAPS mesh interfaces (iMesh & iMeshP) [19].

For a geometry, partition and mesh model, the term instance is used to indicate

the model data existing on each process. For example, a mesh instance on process

Pi means a pointer to a mesh data structure on process Pi, in which all parts on

process Pi are contained and from which they are accessible. For all other data such

as entity and entity set, the term handle is used to indicate the pointer to the data.

For example, a mesh entity handle means a pointer to the mesh entity data.

2.8.2 Design of Testing suites

Software testing is a fundamental component of software quality assurance

and represents a review of the software’s specification, design and implementation.

The primary purpose of unit testing is to detect software failures such that defects

are discovered and corrected. On the other hand, integration tests seeks to verify

the interfaces between components against a software design. FMDB provides API

unit tests to verify the functionality of its data structures and integration tests to

verify all of the underlying data structures interact with each other according to the

FMDB design. Details on FMDB testing can be found in Appendix A.

CHAPTER 3

N-Layer Ghost Creation & Deletion Algorithm

In a distributed mesh, most of the time communication occurs only among neighbor-

ing parts. Even then, network communication overheads can be considerably large.

To minimize this communication, applications must consider the size and number

of the messages being sent. For each entity, the analysis code usually tends to ac-

cess adjacent entities to compute corresponding results for the current simulation

step. Therefore, it is important to cluster elements or nodes in a way to minimize

the number of adjacent entities belonging to different parts, thus minimizing the

need for communication. The graph based partitioners used by FMDB account for

those needs [3]. In addition to requiring data associated with shared part boundary

mesh entities, specific finite element calculations require data from mesh entities

internal to neighboring parts. One means to support providing the data is by the

addition of copies referred to as ghost entities as needed on neighboring parts. The

ghost entities are non-part boundary entities that are asymmetrically shared, one

side provides values of the ghost from the owner entities, and the other side accepts

read-only copies of these values.

The ghosts are typically adjacent to only part-boundary entities or other ghost

entities. Their basic purpose is to provide data that may be needed by the analysis

program for computations on the part boundary entities adjacent to ghosts and to

ensure local mesh consistency on the boundaries of the mesh. The ghost information

may become invalid after mesh modification that is why ghosts are required to be

consistent with respect to the local part, not with corresponding mesh entities in

other parts. Either the ghost information is synchronized for consistency after mesh

modification [40] or it is thrown away and new ghosts are created [35].

33

34

This chapter presents an N-layer ghost creation/deletion algorithm in FMDB

that can be applied to 1-D, 2-D and 3-D meshes. The ghost algorithm uses dis-

tributed system paradigm[4] where each part has its own private memory space and

the communication is done using MPI [37]. The chapter first analyzes ghosting

support in existing mesh databases and its usage in mesh-adaptive infrastructures

(§3.1), it then explains the ghosting process (§3.2), followed by a N-layer ghost

creation (§3.3) and deletion (§3.4) algorithm with the help of a 2-D mesh example.

3.1 Historical Review

Papers have been published on the issues of parallel adaptive analysis including

parallel mesh generation [41, 42, 43, 44, 45, 46], dynamic load balancing techniques

[47, 48, 33, 49, 50, 51], and data structures and algorithms for parallel structured

[52, 53] or unstructured mesh adaptation [54, 55, 56].

As communication is expensive in distributed meshes, it is important to design

the parallel mesh operations carefully to fully utilize the benefits of parallel program-

ming. Only a small number of libraries handling parallel unstructured meshes exist.

Some of them utilize the ghosting concept for specific applications for example dur-

ing adaptive mesh refinement. Some of them are discussed below.

• ParFUM [40] is a mesh database that deals with unstructured meshes. It is

based on Charm++, a framework for development of parallel object-oriented

applications [57]. ParFUM implements the classic element-node structure,

with domain attributes associated to the mesh entities. It includes some adja-

cency information like node-to-node, node-to-element and element-to-element

for some types of analysis. Mesh partitions are called chunks, and are associ-

ated to exactly one MPI process [58]. Communication between chunks is done

implicitly through shared and ghost entities. ParFUM allows the creation of

35

ghost layers on the boundary of each chunk. The ghost layer consists of read-

only copies of neighboring entities from other parts referred as ghost elements

and nodes. Multiple ghost layers can be added by calling the same ghosting

routine repeatedly, which adds ghost layers one after the other [59].

• Reference [60] uses ghost layers in Triangle which is an implementation of two-

dimensional constrained Delaunay traiangulation and refinement algorithm for

quality mesh generation [61]. The triangle-based divide and conquer algorithm

recursively halves the input vertices until they are partitioned into subsets of

two or three vertices each. Each subset is easily triangulated (yielding an

edge, two collinear edges, or a triangle), and the triangulations are merged

together to form larger ones. Each triangle is surrounded with a layer of ghost

triangles which is useful in efficiently traversing the edges during the merge

step. After the merge step of divide-and-conquer algorithm is completed, the

ghost triangles are thrown away [62].

• The SIERRA [63] framework provides a set of general tools for supporting the

development of mechanics applications. It includes a distributed unstructured

mesh data structure, along with adaptivity and load balancing, an interface

to linear solvers, and support for creating multiphysics applications. The

SIERRA’s FEM data structure represents node, edge, face and element entities

(or objects). Mesh entities on the boundary of a partition can be shared with

other parts, although only one is chosen the owner of the entity. A mesh entity

that resides in a process and is not in the closure of the process’ owned subset

is termed a ghost mesh entity. SIERRA uses ghost entities in computations

that gather field data from an owned entity’s neighbors. Multiple independent

computations may require their own particular subsets of parallel ghosted mesh

entities. These computation-specific ghosted subsets are mesh bulk data that

36

is created, owned, modified and destroyed by an application [64].

• Reference [65, 66] uses ghost layers for parallel adaptive mesh refinement and

coarsening in ALPS (Adaptive Large-scale Parallel Simulations) which is a

library for parallel octree-based dynamic mesh adaptivity and redistribution.

Many grid-based frameworks use ghosting for certain applications like parallel

mesh refinement and boundary conditions calculations [67, 68, 69]. Some selected

infrastructures are dicussed below:

• Reference [70] describes Racoon, a framework that offers a grid-based envi-

ronment for the mesh-adaptive solution of conservative systems and related

systems. It exploits both shared and distributed memory architectures as the

parallelization strategy is a hybrid of multi-threading and inter-process com-

munication through MPI [37] and POSIX-multithreading [71]. It also supports

mesh refinement, re-gridding, load balancing and distribution. During mesh

refinement, bands of ghost cells are created and updated around the individual

grid blocks. At refinement boundaries, finer blocks receive interpolated ghost

cell values from their respective coarser neighbors, while coarser blocks receive

averaged values from the finer region. The existence of ghost cells handles ev-

ery single grid block as a quasi independent piece of work for each integration

step during mesh refinement, and assigns the block to processes for execution.

• Reference [72] describes an Adaptive Mesh Refinement (AMR) infrastructure

for finite difference calculations on block-structured adaptive meshes and a

solver for elliptic Partial Differential Equations. In AMR, grids are often

accreted to accommodate a surrounding layer of ghost cells for handling various

boundary conditions. AMR interpolates ghost values using physical boundary

conditions. Basic operations of AMR include copying values from one grid

37

to another such as exchanging ghost values between grids, perform irregular

computations for updating boundary values like location dependent quadratic

interpolation of ghost values at coarse-fine grid interface. The ghost methods

exchange values between neighbors, for examples whose domains are adjacent

but disjoint and cache those values in local ghost regions.

Some mesh databases provide support for distributed meshes [44, 55, 73, 74,

75, 33].

• The Parallel Algorithm Oriented Mesh Database (PAOMD) [29] extends the

Algorithm Oriented Mesh Database (AOMD) [75] to support distributed meshes.

It provides a general parallel mesh management framework in which mesh rep-

resentation can be adapted to different types of applications. Each partition

is assigned to a processor, and the local mesh is represented by a serial AOMD

mesh. Mesh entities that are classified on partition boundaries must exist in

the parallel data structure and may be shared with other partitions though

ghost entities are not supported.

• Reference [76] presented a general distributed mesh data structure called

PMDB (Parallel Mesh DataBase), which was capable of supporting paral-

lel adaptive simulations. In PMDB, the data related to mesh partitioning

were kept at the mesh entity level and the inter-processor links were managed

by doubly-linked structures. These structures provided query routines such

as processor adjacency, lists of entities on partition boundaries, and update

operators such as insertion and deletion of these entities. An owning parti-

tion update rule which lets the processor owning a shared entity on partition

boundary to collect and inform the updated links to the processors holding

these entities was presented. The owning processor of an entity on the partition

boundary was determined to the processor with minimum processor id. In ref-

38

erence [33], PMDB was enhanced with addition of RPM (Rensselaer Partition

Model) that represents heterogeneous processor and network of workstations,

or some combination of these for the purpose of improving performance by

accounting for resources of parallel computers, though the support for ghost

entities was not there.

Some of the above mesh databases that provide ghosting support are based on

classic element-node representation [55, 40]. Many others provide a partial parallel

support [77, 55] or only use shared part boundary entities without ghosting sup-

port [29, 76, 74]. Ghosting support is essential in selected applications. Therefore,

a general topology-based distributed mesh data structure having all features of a

parallel mesh database is important to efficiently support parallel adaptive analysis

procedures.

3.2 The Ghosting Process

Ghost entities are read-only copies of remote part entities. They are copies of

additional, non-boundary entities which are requested by an application to enable

efficient computation. Ghost entities are specified similar to second order adjacencies

(§2.3.4) i.e. through a bridge dimension [35]. Figure 3.1 depicts a distributed mesh

on four parts with ghost entities along the part boundaries.

The ghost creation and deletion process uses the following criteria

• Ghost dimension: Dimension of the ghost entities created. Permissible options

in a topological mesh representation can be regions, faces or edges. As ghost

entities are specified through a bridge dimension [35], the lowest possible di-

mension of a ghost entity can be an edge since the minimum bridge is a vertex.

Vertices are ghosted if they are part of higher dimension ghost entities. For

example, in a 1-D mesh, the only possible ghost dimension is an edge and the

39

Figure 3.1: A distributed mesh on four parts with ghost entities [19]

vertices that are on the boundary of ghost edges can be ghosted to create the

ghost edges.

• Bridge dimension: Dimension of the bridge entities used for ghost creation.

The bridge entity must be of lower topological order than the ghost and can be

a face, edge or a vertex in a topological mesh representation. Bridge entities

are on the boundary of higher order ghost entities for example if {M1
1{M

2}1}

where M1
1 is the bridge entity, then M2

1 becomes a ghost candidate.

• Number of layers : Number of layers of ghost entities. Layers are measured

from inter-part boundary of the mesh.

The ghost and the bridge dimensions are represented by symbols g and b

through out the thesis. The number of layers of ghost entities are represented by

numLayer.

Definition 11 (Ghost object) A ghost object is a mesh entity of dimension g

that can be marked for ghosting.

40

For example, to get two ghost layers of regions, measured from faces, the ghost

dimension is set to region, bridge dimension to faces and number of layers is 2. In

Figure 3.1, ghost dimension, bridge dimension and number of layers are 2, 1 and 1

respectively. At a minimum, a ghost entity’s owner must store information about

its ghost copies that exist. A ghost entity also stores information about its owner

entity and the part where the owner entity exists [35]. This provides a mechanism

to keep the owners synchronized with their ghost copies.

If there are multiple ghost layers, the ghosting process should start with the

first (innermost) layer of ghosts adjacent to the part boundary. After collecting

entities for the first layer, it collects entities for the second layer by treating the

first layer of ghosts as part of the mesh for the second layer. For multiple layers, it

also marks the elements that share entities with elements of the first layer. Care is

taken that the same element is not added as a ghost again. Figure 3.2 illustrates

the ghosting process by creating ghosts of 2-D triangles. Figure 3.2 (b) depicts a

ghosted mesh with ghosts of faces using edges as a bridge. Figure 3.2 (c) depicts a

ghosted mesh with ghosts of faces using vertices as a bridge.

(a) Mesh without ghosts (b) Ghosted mesh based on edge

bridge

(c) Ghosted mesh based on vertex

bridge

Figure 3.2: A 2-D ghosted mesh

41

3.3 Algorithm of N-layer ghost creation

(a) Initial mesh (b) Partition model of (a)

(c) Mesh during 1-layer ghosting (d) Mesh after 1-layer ghosting

Figure 3.3: Example of 2-D ghost creation with 1-layer

This section presents the N-layer ghost creation algorithm with the help of a

2-D mesh example. An efficient ghost creation and deletion algorithm with mini-

mum resources (memory and time) is useful to achieve high performance in parallel

adaptive mesh-based simulations. Figure 3.3 (a) and (b) illustrate the 2-D parti-

tioned mesh and its associated partition model to be used for the example of ghost

creation throughout this section. In Figure 3.3 (a), the partition classification of

42

entities on the part boundaries is denoted with the lines of the same pattern. For

instance, M0
1 and M4

1 are classified on P 1
1 , and depicted with the dashed line as

P 1
1 . In Figure 3.3 (b), the owning parts of partition model edge (resp. vertex) is

illustrated with thickness (resp. size) of lines (resp. circles).

The input of the ghosting procedure is the dimension of the ghost entities (g), di-

mension of the bridge entities (b) and number of layers of the ghosts (numLayer).

The option whether to include remote copies of bridge entities in the ghosting

collection process can also be specified using the includeCopy parameter. If in-

cludeCopy is true, both remote and owned entities on a part are used as bridge

entities. For example, in Figure 3.1, the input of the ghost creation algorithm is

[g = 2, bDim = 1, includeCopy = 1, numLayer = 1] as a result of which the non-

owned bridge edges (edges shown by color of the other part) on Part0 and Part1

are also used for ghost collection.

The input to ghost creation algorithm in Figure 3.2 (b) is [g = 2, bDim =

0, includeCopy = 1, numLayer = 1] and for Figure 3.1 is [g = 2, bDim = 1, includeCopy =

1, numLayer = 1]. The input to ghost creation algorithm for 2-D mesh in Figure

3.3(a) is [g = 2, bDim = 0, includeCopy = 1, numLayer = 1]. Figure 3.3 shows the

2-D mesh during 1-layer ghost creation. A 2-layer ghost creation of the same 2-D

mesh will be discussed in §3.3.2. Through out this chapter, we will use the example

2D mesh in Figure 3.3 to explain the ghost creation and deletion algorithm. In

Figure 3.3 (c) - (d), first layer bridge entities are depicted with black circles.

The overall procedure for ghost creation is the following:

1. Given the bridge dimension b, ghost dimension g and number of ghost layers

numLayer, find entities of dimension g adjacent to part boundary bridge enti-

ties of dimension b and determine the destination parts of these g dimensional

entities. Store these entities-to-ghost in the container entitiesToGhost[g]

43

2. Process next ghost layer using the destination parts of ghost entities collected

in the first layer.

3. Ghost collection on every part is independent of ghost collection on other parts.

As remote copies exist on multiple parts, more than one part can collect the

same entity (original entity or its remote copy) for ghost creation. Carry out

one round of communication to eliminate duplicate remote copies from the

collected ghost entities.

4. Exchange entities, create ghost entities and update ghost copies.

5. Store ghost rule comprising of ghost entity dimension, bridge entity dimension

and number of ghost layers in the part.

Given b, g and numLayer, the first procedure finds ghost candidates among

the entities of ghost dimension g that are adjacent to part boundary entities of

bridge dimension b. If the bridge dimension entity (M b
i) has a remote copy on a

part p but the ghost dimension entity M g
j does not have a remote copy on p, then

M g
j is collected for ghost creation on part p. Subsequent ghost layers are also termed

as neighbors of neighbors and are processed based on the destination part ids of the

entities collected for ghost creation in the first layer. As a remote copy can exist on

multiple parts, more than one part can send the same entity to the same destination

part. Therefore, duplicate remote copies are eliminated from the entities collected

for ghost creation. After creating ghost of collected entities on the destination parts,

ghost information of the owner entities is updated. Algorithm 1 is the pseudo code

of the ghost creation procedure.

3.3.1 Step 1: Ghost collection for first layer

Step 1 collects mesh entities adjacent to part boundary bridge entities for ghost

creation. The entities collected for ghosting are maintained in vector entitiesToGhost

44

Data: distributed mesh M , ghost dimension g, bridge dimension b,
include copy includeCopy, number of ghost layers numLayer

Result: Creates ghosts on the distributed mesh M

begin
/* Step 1: collect ghost entities in the first layer */

getGhostEnts(M, g, b, includeCopy, entitiesToGhost, numLayer);

/* Step 2: Process next ghost layer if numLayer > 1 */

for lyr← 2 to numLayer do
processNLayers(M, g, b, includeCopy, lyr, entitiesToGhost);

end for

/* Step 3: Do one round of communication to eliminate

duplicate remote copies */

for d ← 0 to g + numLayer do
removeDuplicateEnts(d, entitiesToGhost[d]);

end for

/* Step 4: Exchange entities and update ghost information

*/

for d ← 0 to g + numLayer do
exchangeGhostEnts(M, g, d, entitiesToGhost[d]);

end for
/* Step 5: Store ghost information in the part */

ghostRule → [g, b, numLayer, includeCopy]
end

Algorithm 1: createGhosts(M, g, b, numLayer)

where entitiesToGhost[i] contains the entities of dimension i, i = 0, 1, 2, 3. Each

part maintains the separate entitiesToGhost[i] with different contents. For every

entity collected, ghostParts[M g
i] is a vector that holds its destination parts. An

entity, M g
i is collected for ghost creation using Definition 12. Algorithm 2 collects

ghost entities for the first layer. After an entity is marked for ghost creation, its

downward adjacent entities are also collected for ghost creation.

Definition 12 (Destination part rule for 1st layer ghosts of Md
i) If d = g and

{Md
i {M

b}j}, b < g, and p ∈ R[M b
j], p /∈ R[Md

i] then p ∈ ghostParts[Md
i]. Oth-

erwise, if d < g and Md
i ∈ {M g

k{M
d}} where p ∈ ghostParts[M g

k] and p /∈ P[Md
i]

45

then p ∈ ghostParts[Md
k].

Although the user may only want to add data to use the ghost entities of

dimension g, the downward adjacent entities are only carried along for ghost creation

as FMDB creates higher order entities using the lower order entity information. For

example, to create M2
2 on P0, M

1
5 and M1

1 are carried along to P0 (M1
4 is already

owned by P0).

On P1, the ghost collection algorithm works as follows

1. P1 has three part boundary vertices M0
1 , M

0
5 and M0

9 . As the bridge dimension

specified for ghosting is zero, these three vertices are the first layer bridge

entities. Among these vertices, P1 owns M0
1 only as show by Figure 3.3 (b).

2. Ghost dimension entities adjacent to M0
1 are M2

2 , M
0
5 are M2

2 ,M
2
3 ,M

2
8 and M0

9

is M2
8 (Algorithm 2 Step 1.1).

3. As includeCopy is true, bridge entities M0
5 and M0

9 (remote copies) are con-

sidered for ghost creation. If includeCopy is set to false, only M0
1 would be

considered in the ghosting process (Algorithm 2 Step 1.2).

4. M0
1 has remote copy on P0 but M2

2 does not exist on P0 so according to

Definition 12, M2
2 will be ghosted on P0 (Algorithm 2 Step 1.3).

5. The next part boundary entity visited is M0
5 . M0

5 has remote copies on P0

and P2 so M2
2 and M2

8 will be sent to P0 and P2. M2
2 is was already marked

for ghosting (in 4) on P0 so P1 will be added to ghostParts[M2
2]

6. The next part boundary entity visited is M0
9 . M

0
9 has remote copies on P2 but

M2
8 is already marked for ghosting on P2 (in 5).

7. Downward adjacent entities ofM2
2 , M

2
8 andM2

3 are collected for ghosting using

Algorithm 3 (Step 1.4 of Algorithm 2, See Table 3.1).

46

Data: M , g, b, includeCopy, numLayer

Result: Collect entities to ghost in vector entitiesToGhost

begin
/* Step 1: Collect entities and their downward adjacencies

in entitiesToGhost */

/* Step 1.1 For every part boundary bridge entity M b
i , get

its upward adjacent entity of dimension g, M g
j */

foreach M b
i ∈ {∂(Plocal)} do

/* Step 1.2 includeCopy = false excludes non-owned bridge

entities. */

if includeCopy == true & Plocal not owns M b
i then

continue;
end if
/* Step 1.3 If M g

j does not exist on a remote part p

where M b
i exists, collect M g

j for ghosting */

foreach M g
j ∈ {M b

i {M
g}} do

foreach part ID p ∈ R[M b
i] do

if p /∈ R[M g
j] then

insert M g
j in entitiesToGhost[g];

insert p in ghostParts[M g
j];

/* Step 1.4 collect downward adjacent entities

of M g
i */

getDownwardAdjs(M, g, M g
i , p, entitiesToGhost);

end if

end foreach
/* Step 2: Mark M g

j as visited */

if numLayer > 1 then
set M g

j ← visited = true;

end if

end foreach

end foreach
/* Step 3: Mark the bridge entity as visited */

if numLayer > 1 then
set M b

i ← visited = true;
end if

end

Algorithm 2: getGhostEnts(M,g, b, includeCopy, entitiesToGhost, num-
Layer)

47

Table 3.1: Contents of vector entitiesToGhost after Step 1

P0 P1 P2

entitiesToGhost[0] M0
1 {2},M

0
4 {1} M0

1 {2}
∗
,M0

2 {0, 2},
M0

9 {0},M
0
6 {0, 2}

M0
4 {0, 1}

∗
,M0

7 {0},
M0

8 {0, 1},M
0
9 {2}

∗

entitiesToGhost[1] M1
3 {1, 2},M

1
8 {1},

M1
4 {2}

M1
1 {0, 2},M

1
4 {2}

∗,
M1

5 {0, 2}
∗
,M1

6 {0, 2},
M1

9 {0, 2},M
1
13{0},

M1
14{0, 2}

M1
8 {1}

∗
,M1

10{1},
M1

11{0, 1},M
1
12{0, 1},

M1
13{0}

∗
,M1

15{0},
M1

16{0, 1}

entitiesToGhost[2] M2
1 {1, 2} M2

3 {0, 2},M
2
8 {0, 2},

M2
2 {0, 2}

M2
6 {0, 1},M

2
5 {0},

M2
7 {0, 1}

8. M2
2 , M

2
8 and M2

3 are marked as visited to process the 2-layer ghost creation

(Step 2 of Algorithm 2, See Figure 3.4).

9. Bridge entities M0
1 , M

0
5 and M0

9 are also marked as visited so that the same

bridge entities are not processed repeatedly (Step 3 of Algorithm 2).

For a first-layer entityM g
i adjacent to part boundary bridge entities, ghostParts[M g

i]

are decided using Definition 12. For a downward adjacent entity Md
k of ghost entity

M g
i , destination parts are also decided using Definition 12.

The entities after 1st layer ghost collection are

• M g
i ∈ {M b

j {M
g}} satisfying Definition 12.

• For each M g
i , downward adjacent entities M q

j ∈ {∂(M g
i)}, q < g satisfying

Definition 12. Algorithm 3 collects downward adjacent entities of the ghosts.

The ghost creation algorithm works only on those entities. The remaining

entities are not affected by ghosting, therefore they should not be considered nor

touched. For the example given in Figure 3.3(c), the contents of entitiesToGhost

are given in Table 3.1. Entities listed in Table 3.1 are collected for ghosting to the

destination parts given in curly brackets. entitiesToGhost[2] contains the mesh faces

to be ghosted from each part (g = 2). entitiesToGhost[1] contains the mesh edges

which bound any mesh face in entitiesToGhost[2]. entitiesToGhost[0] contains the

48

mesh vertices that bound any mesh edge in entitiesToGhost[1] . Note that there are

a few duplicate entries for remote copies in entitiesToGhost[0] and entitiesToGhost[1]

marked with a ∗. These entities will be removed after Step 3 (eliminate duplicate

entities).

Data: M , g, M g
i , destId, entitiesToGhost

Result: Given an entity M g
i , get its downward adjacent entities in

entitiesToGhost[i] and set destination parts of downward
adjacent entities using destId.

begin
/* Collect downward adjacent entities of the

entity-to-ghost */

for d ← 0 to g do
foreach Md

k ∈ {M g
i {M

d}} do
/* Store Md

k and update ghostParts[Md
k] only if it has

no remote copy on destId */

if destId ∈ P[Md
k] then

continue;
end if
insert Md

k in entitiesToGhost[d];
insert destId in ghostParts[Md

k];

end foreach

end for

end

Algorithm 3: getDownwardAdjs(M,g, M g
i , destId, entitiesToGhost)

3.3.2 Step 2: Process next layer

If the number of layers specified for ghosting is more than one, the next layer

is added after the first one. For the next layer, entities of dimension g that shares

a bridge entity with any M g
i ∈ entitiesToGhost[g] are collected for ghost creation.

A visited tag is set for each M g
i marked for ghosting so that the same entity is not

added as a ghost multiple times (See Algorithm 2 Step 2). The next layer ghost

entities are collected in entitiesToGhost[g + lyr], lyr = 2 to numLayer i.e. as the

number of layers increase, the size of vector entitiesToGhost grows proportionately.

49

(a) Initial mesh (b) Partition model of (a)

(c) Mesh during 2-layer ghosting (d) Mesh after 2-layer ghosting

Figure 3.4: Example of 2-D ghost creation with 2-layers

For an entity M g
k in the second layer, destination parts are decided using Definition

13. Algorithm 4 gives the pseudo code for N th layer entity collection that decides

destination parts using Definition 13. Figure 3.4 shows ghost entity collection for

second layer. The second layer bridge vertices are depicted by blue circles around

them.

50

Data: M , g, b, includeCopy, n, entitiesToGhost

Result: Collects entities for ghosting in nth layer
begin

/* Step 1 Process n− 1th layer to get nth layer */

foreach M g
i ∈ entitiesToGhost[g + (n− 1)] do

/* Step 1.1 For M g
i , get its downward adjacent bridge

entities */

foreach M b
k ∈ {M g

i {M
b}} do

/* Step 1.2 If M b
k is visited, continue with next

bridge entity */

if M b
k ← visited == true then

continue;
end if
/* Step 1.3 For the downward adjacent bridge M b

k, get

upward adjacent entities of dimension g. */

foreach M g
j ∈ {M b

k{M
g}} do

/* Step 1.4 If the upward adjacent entity M g
j is

not visited, update its ghostParts and collect

it for ghosting */

if M g
j ← visited == true then

continue;
end if
insert M g

j in entitiesToGhost[g + n];

ghostParts[M g
j] ← ghostParts[M g

j] ∪ ghostParts[M g
i];

/* Step 1.5 Set visited tag M g
j so that it is not

processed again */

M g
j ← visited = true;

end foreach

end foreach
/* Step 1.6 Set visited tag of bridge entity M b

k so that

it is not processed again */

M b
k ← visited = true;

end foreach

end

Algorithm 4: processNLayers(M, g, b, includeCopy, lyr, entitiesToGhost)

51

Definition 13 (Destination part rule for next layer ghosts of Md
k) : If d =

g and {Md
k{M

b}i} where {M b
i {M

g}l} {M b
i {M

g}m} s.t. {M g}m....{M
g}l ∈

entitiesToGhost[g], then

ghostParts[Md
k] = ghostParts[{M g}m] ∪ ... ∪ ghostParts[{M g}l]. Otherwise, if

d < g, Md
i ∈ {M g

k{M
d}} where p ∈ ghostParts[M g

i] and p /∈ P[Md
k] then p ∈

ghostParts[Md
k].

For an example, the ghost entity collection example given in Section 3.3.1 is

extended for two layers

1. entitiesToGhost[g] hasM2
2 , M

2
3 andM2

8 on part P1 after Step 1. Its downward

adjacent bridge entities that are not yet visited are M0
2 and M0

6 . The rest of

the downward adjacent bridges are part boundary entities that have already

been visited during 1-layer ghost collection (Algorithm 4 Step 1.1 and 1.2).

2. The entity of dimension g adjacent toM0
2 andM0

6 that is not yet visited during

1-layer ghost collection is M2
4 (Algorithm 4 Step 1.3).

3. As M2
2 shares a common bridge entity M0

2 with M2
4 , the ghostParts[M2

2] will

be added to ghostParts[M2
4].

4. As M2
3 and M2

8 also share a common bridge entity M0
6 and M0

2 with M2
4 ,

the ghostParts[M2
3] and ghostParts[M2

8] shall be added to ghostParts[M2
4]

(Algorithm 4 Step 1.4). As M2
8 ,M

2
3 and M2

2 have the same ghostParts, the

ghostParts[M2
4] will become {0, 2}

5. Set visited flag for M2
4 so that it is not processed again for next layer ghost

collection (Algorithm 4 Step 1.5).

6. Set visited flag for M0
2 and M0

6 so that the bridge vertices are not processed

again for entity collection in current or next layers. Placing visited tag on

52

bridge entities shrinks the search tree in n-layer ghost collection for example

M0
2 is marked visited when it is processed as a downward adjacent bridge of

M2
2 . M0

2 is also a downward adjacent bridge of M2
3 which is processed after

M2
2 , but as M0

2 is already marked visited, it’s upward adjacent entities will

not be processed.

Table 3.2: Contents of vector entitiesToGhost after Step 2

P0 P1 P2

entitiesToGhost[0] M0
1 {2},M

0
4 {1} M0

1 {2}
∗
,M0

2 {0, 2},
M0

3 {0, 2},M
0
6 {0, 2},

M0
9 {0}

M0
4 {1}

∗
,M0

7 {0, 1},
M0

8 {0, 1},M
0
9 {0}

∗

entitiesToGhost[1] M1
3 {1, 2},M

1
4 {2},

M1
8 {1}

M1
1 {0, 2},M

1
2 {0, 2},

M1
4 {2}

∗
,M1

5 {0, 2},
M1

6 {0, 2},M
1
7 {0, 2},

M1
9 {0, 2},M

1
13{0},

M1
14{0, 2}

M1
8 {1}

∗
,M1

10{0, 1},
M1

11{0, 1},M
1
12{0, 1},

M1
13{0}

∗
,M1

15{0, 1},
M1

16{0, 1}

entitiesToGhost[2] M2
1 {1, 2} M2

3 {0, 2},M
2
8 {0, 2},

M2
2 {0, 2}

M2
5 {0},M

2
6 {0, 1},

M2
7 {0, 1}

entitiesToGhost[3] M2
4 {0, 2} M2

5 {1}

Table 3.2 gives the contents of entitiesToGhost vector after processing the

second layer.

3.3.3 Step 3: Eliminate duplicate entities

After collecting the ghost entities, the next step is to eliminate any duplicate

ghost entities. A remote copy exists on multiple parts so many parts can collect it

for ghost creation for the same destination. Suppose Md
i is owned by part Pi and

has a remote copy on Pj. If M
d
i is marked for ghost creation to destination part Pk

on both Pi and Pj then Pk will receive the message of creating Md
i twice.

For this reason, Table 3.1 and Table 3.2 have duplicate entries marked by a ∗.

Algorithm 5 gives the pseudo code for eliminating duplicate ghost creation messages.

For notational simplicity, we denote a local part of an entity where an entity is

currently located Plocal. One round of communication is performed in Algorithm

53

Data: M , dim, entitiesToGhost[dim]

Result: Eliminate duplicate entities
begin

/* Step 1: For all part boundary entities in

entitiesToGhost send a message to remote parts that have

their remote copies */

foreach Md
k ∈ entitiesToGhost[dim] do

/* If Md
k is not a part boundary entity, proceed with

the next entity on entitiesToGhost[dim] */

if Md
k /∈ ∂(Plocal) then

continue;
end if
foreach destId ∈ ghostParts[Md

k] do
foreach p ∈ R[Md

k] do
send message A(address of Md

k on p, destId) to p;
end foreach

end foreach

end foreach
/* Step 2: Recieve message from other parts that are

sending copy of the same part boundary entity */

while part p receives message A from Plocal(address of M
d
k on p,

destId) do
/* Step 3: Check if the remote part is also sending Md

k

to the same destination destId. */

if destId ∈ ghostParts[Md
k] & ID(p) > ID(Plocal) then

/* Step 4: If the remote part id p is less than the

part id of Plocal then remove Md
k as p will send it

to destId */

remove Md
k from entitiesToGhost[d];

end if

end while

end

Algorithm 5: removeDuplicateEnts(M, d, entitiesToGhost)

5 to determine duplicate ghost creation messages. If multiple parts intend to send

ghost creation message for Md
i to the same destination part p, after this step only

the part having minimum part id will send the ghost creation message of Md
i to

p. For example, in Figure 3.3, both P0 and P1 collect M0
1 for sending it to P2 but

after Algorithm 5 eliminates duplicate entities, only P0 sends M0
1 to P2. Table 3.3

54

shows the contents of entitiesToGhost after eliminating duplicate entries for remote

copies.

Table 3.3: Contents of vector entitiesToGhost after Step 3

P0 P1 P2

entitiesToGhost[0] M0
1{2},M

0
4{1} M0

2{0, 2},M
0
3{0, 2},

M0
6{0, 2},M

0
9{0}

M0
7{0, 1},M

0
8{0, 1}

entitiesToGhost[1] M1
3{1, 2},M

1
4{2},

M1
8{1}

M1
1{0, 2},M

1
2{0, 2},

M1
5{0, 2},M

1
6{0, 2},

M1
7{0, 2},M

1
9{0, 2},

M1
13{0},M

1
14{0, 2}

M1
10{0, 1},M

1
11{0, 1},

M1
12{0, 1},M

1
15{0, 1},

M1
16{0, 1}

entitiesToGhost[2] M2
1{1, 2} M2

3{0, 2},M
2
8{0, 2},

M2
2{0, 2}

M2
5{0, 1},M

2
6{0, 1},

M2
7{0, 1}

entitiesToGhost[3] M2
4{0, 2} M2

5{1}

Extending the example of ghost collection on P1 from §3.3.2

1. Part boundary vertices on P1 collected for ghost creation are M0
1 and M0

9

where ghostParts[M0
1] = {2} and ghostParts[M0

9] = {0}. The remote copy

of M0
1 exists on P0 and M0

9 exists on P2.

2. Part boundary vertex collected on P0 for ghost creation is M0
1 with destination

part as P2.

3. At this point, P0 does not know that P1 is also sending M0
1 to P2 for ghost

creation. P1 also does not know that P1 is sending M0
1 to P2.

4. P0 (resp. P1) sends a message to P1 (resp. P0) with the address of M0
1 on P1

(resp. P0) and the destination part P2 of M0
1 on P1 (resp. P0) (Algorithm 5

Step 1).

5. P1 receives the message from P0 with the address of M0
1 on P1 and destination

part idP2 (Algorithm 5 Step 2).

55

6. Using the address of M0
1 on P1, P1 checks, if P2 is in the destination parts of

M0
1 (Algorithm 5 Step 3). As it is there and the part id of P0 is less than that

of P1, P1 removes M0
1 from entitiesToGhost[0] (Algorithm 5 Step 4).

7. P0 ignores the message from P1 as the part id of P0 is less than P1 (Algorithm

5 Step 4).

3.3.4 Step 4: Exchange entities and update ghost copies

Since an entity of dimension d > 0 is bounded by lower dimension entities,

mesh entities are exchanged from lower to higher dimension. Step 4 exchanges enti-

ties from dimension 0 to 3, and creates entities on the destination parts. Algorithm

6 is the pseudo-code that exchanges the entities contained in entitiesToGhost[d].

After creating ghosts on the destination parts, an owner entity and owning part id

are assigned to ghosts. The owning entities also update their ghost copies based on

the new ghosts created.

• Step 4.1 sends the message to destination parts to create new ghost entities.

For each Md
i collected for ghost creation, Plocal sends a message composed of

the address of Md
i on Plocal and the information of Md

i necessary for entity

creation, which consists of the following

– unique vertex id (if vertex)

– Owner entity information (to notify the owner about the ghost entity

created)

– Owner part information

– Geometric classification information (so that the created ghost entity also

has the same geometric classification)

– Shape information

56

Data: M , d, entitiesToGhost, g, numLayer
Result: Exchange ghost entities
begin

/* Step 4.1: Send message with ghost information */

foreach Md
i ∈ entitiesToGhost[d] do

foreach part ID p ∈ ghostParts[Md
i] do

/* For vertices, pack remote copy information */

if d == 0 then
pack R[Md

i] information;
end if
send message A(address of Md

i on Plocal, owner of M
d
i , information of

Md
i) to p;

end foreach

end foreach
/* Step 4.2: Receive message with ghost information */

while p receives message A(address of Md
i , owner of Md

i , information of
Md

i) from Plocal do
create Md

k with information of Md
i ;

Pown ← owner of Md
i ;

/* Step 4.3:Bounce vertex & ghost information to its owner */

if d == 0 then
get remote copy information from A;
foreach part id Pi ∈ R[Md

k] do
send message B(address of Md

k on p, address of Md
k on Pi) to Pi;

end foreach

end if
if d == g then

send message B(address of Md
k on p, address of Md

k on Pown) to Pown;
end if

end while
/* Step 4.4: update ghost copy information */

while Pi receives message B(address of Md
k on p, address of Md

k on Pi) from
p do

Md
k ← entity located in the address of Md

k on Pi;
if d == 0 then

/* check if Pi is a neighbor of p */

foreach M g
i where Md

k ∈ ∂(M g
i) do

if p ∈ ghostParts[M g
i] then

save the address of Md
k on Pi as for ghost copy on Pi;

end if

end foreach

end if

end while

end

Algorithm 6: exchangeGhostEnts(M, g, d, entitiesToGhost(d))

57

– Remote copy information (if vertex since vertex information is bounced

back to all its remote copies.)

– Vertices information (if non-vertex)

For the example given in §3.3.3, to create the vertex M0
1 on P2, P0 sends a

message composed of the address ofM0
1 on P0 and information ofM0

1 including

its remote copy information stored on P0 (i.e. the address of M0
1 on P1 and

P1).

For non-vertices, the message does not carry any remote copy information.

Every non-vertex entity (edge, face or region) carries along the vertex infor-

mation as it is required to create a new non-vertex entity on the destination

part. For example, when M2
2 is sent to P2, it takes along address of M2

2 on

P1 (owner entity information), P1 (owner part information), geometric classi-

fication, shape information (face), address of M0
1 , M

0
2 and M0

5 (vertices) on

the destination part P2. Sender part P1 should know the address of vertices

on the destination part P2 that is why whenever a new vertex is created, its

information is bounced back to all its remote copies.

• Step 4.2 creates a new entity Md
i on Pi for the message A received on Pi

(sent in Step 4.1). The newly created ghost entity updates information about

its owner entity and the part where owner entity exists. This information is

extracted from the message received.

For example, M2
2 is created on P2 using the shape information, vertices in-

formation and geometric classification from the message A. P2 then adds the

address of M2
2 on P0 as its owner entity and sets P0 as the owning part id of

M2
2 .

• Step 4.3 sends back the information of the newly created ghost entity to its

58

owner part. Bouncing back ghost information is only required for vertices and

ghost objects. If the new entity created is a vertex, its address should be

sent back to all its remote copies that were packed in the sender’s message

for updating the communication links as this information is required by the

sender parts to create higher order ghost entities.

For example, when M0
1 is created on P2, P2 bounces the information of M0

1

to P0 and P1. When P1 (resp. P0) send higher order ghost entities to P2 like

M2
2 (resp. M2

1), it packs the address of vertex M0
1 on P2 in the message. This

avoids mesh-level global search on the P2 whenever a non-vertex ghost entity

is created. For example, when M2
2 is created on P2, it brings along the vertex

address of M0
1 , M

0
5 and M0

2 on P2 in message A.

After creating the ghost object M g
i , its information is also sent back to its

owner so that the owner entity can update its ghost information for instance,

after M2
2 is created on P2, it bounces back the address of M2

2 on P2 to the part

having its owner entity i.e. P1.

• In step 4.4, the owner entities of ghost objects and remote copies of ghost

vertices receive back the ghost information and update their ghost copies.

For example, after 2-layer ghosting process, M2
2 on P1 will have the entries

[(address ofM2
2 on P0, P0), (address ofM

2
2 on P2, P2)] as its ghost information.

The vertex M0
1 P1 will have the ghost information of [address of M0

1 on P2,

P2]

3.3.5 Store ghost rule

Ghost information is stored in the part so that the ghosting that becomes

outdated due to mesh modification can be restored when the mesh is synchronized.

Step 5 stores the ghost rule composed of [g, b, includeCopy, numLayer] in the part.

59

Every part in the example mesh of Figure 3.4 will store the ghost information

[2, 0, 1, 2].

3.4 N-layer ghost deletion algorithm

The N-layer ghost deletion algorithm removes ghost entities from a ghosted

mesh on a part starting from the part boundary (inner-most) layer. To support a

complete N-layer ghost entity deletion algorithm, the following steps are required

• Get part boundary entities of bridge dimension. For every bridge entity M b
i ,

get its upward adjacent entity of ghost dimension M g
k and collect ghost entities

for deletion in a vector entitiesToRemove[d] where d = 0, 1, 2, 3.

• If the number of layers is more than 1, collect the next layer ghost entities for

deletion.

• If the number of layers is more than 1, mark every visited bridge entity.

• Remove the ghost entities collected in the vector entitiesToRemove.

Algorithm 7 is the pseudo code of the N-layer ghost deletion algorithm.

3.4.1 Step 1: Process first-layer ghosts

The input of the ghost deletion algorithm is the ghosted mesh. Every part

stores its ghost rules i.e. the ghost dimension, bridge dimension and the number of

layers. For the example given in Figure 3.3, P0, P1 and P2 store the ghost rule [g =

2, b = 0, numLayer = 2]. The ghost deletion algorithm uses this rule to collect ghost

entities for deletion. The ghost deletion algorithm clears all ghost information for

entities of ghost dimension g adjacent to part boundary bridge entities of dimension

b. If an entity of dimension g, M g
i is a ghost, it is collected for deletion in the

vector entitiesToRemove[g]. All the downward adjacent entities of M g
i are also

60

Data: a ghosted mesh M

Result: Delete all ghost entities in the mesh

begin
get numLayer, g, b from M;

foreach M b
i ∈ {∂(Plocal)} do

/* If the bridge is visited, proceed to the next one. */

if M b
i ← visited = true then

continue;
end if
set M b

i ← visited = true;
/* Step 1: Process entities of dimension g adjacent to part

boundary bridges. Clear ghosting information of all such

entities. If it is a ghost, collect it for deletion */

foreach M g
j ∈ {M b

i {M}g} do
clear ghost copies of M g

j ;

if M g
j ← isGhost then

entitiesToRemove[g] ← M g
j ;

collectDeleteInfo(M g
j , g, entitiesToRemove);

end if
/* Step 2: If numLayer>1, delete adjacent ghost entities

*/

for lyr ← 2 to numLayer do
foreach M b

k ∈ {M g
j {M}b} do

if M b
k ← visited = true then

continue;
end if
foreach M g

l ∈ {M b
k{M}g} do

clear ghost copies of M g
l ;

if M g
l ← isGhost then

collectDeleteInfo(M g
l , g, entitiesToRemove);

end if
/* Step 3: Mark visited bridge entities */

set M b
k ← visited = true;

end foreach

end foreach

end for

end foreach

end foreach

/* Step 4: Delete the collected ghost entities */

for d ← g + numLayer to 0 do
Remove Md

k ∈ entitiesToRemove[d];
end for

end

Algorithm 7: deleteGhostEnts(M)

61

collected for deletion. Algorithm 8 is the pseudo code for collecting downward

adjacent entities of M g
i in the vector entitiesToRemove[d]. In the example given

Data: ghost entity M g
j , entitiesToRemove

Result: Collects downward adjacent entities of M g
j for deletion

for d ← 0 to g do
foreach Md

k ∈ {M g
j {M}d} do

clear ghost copies of Md
k ;

entitiesToRemove[d] ← Md
k ;

end foreach

end for

Algorithm 8: collectDeleteInfo(M g
j , g, entitiesToRemove)

(a) (b)

(c) (d)

Figure 3.5: Ghost deletion algorithm applied on Part 0 of Figure 3.3

in Figure 3.5, the visited vertices are surrounded by triangles and visited ghost

entities are surrounded by ovals. Figure 3.5 shows ghost entity deletion algorithm

on part P0 of the ghosted mesh given in Figure 3.4(d).

62

3.4.2 Step 2: Process next layer ghost entities

Once a ghost entity, M g
i is collected for deletion, the algorithm visits entities

of dimension g in the second layer that share a bridge entity with M g
i (Step 2).

3.4.3 Step 3: Mark visited bridge entities

If numLayer > 1, we need to keep track of the visited entities to avoid pro-

cessing the same ghost entity again. For that visited tags are set for entities that

have been processed.

3.4.4 Step 4: Delete ghosts collected

Step 4 removes the ghost entities collected in Step 1 and 2. As for the opposite

direction of entity creation, entities are removed from higher to lower dimension

(Removing lower dimension entities first may create invalid adjacency information

for higher order entities).

The ghost deletion algorithm works on part P0 as follows (See Figure 3.5).

• The part boundary bridge vertices for P0 are M0
1 ,M

0
4 ,M

0
5 . The ghost entity

deletion algorithm first visits M0
5 . It then gets the upward adjacent enti-

ties of M0
5 having dimension g i.e. M2

1 ,M
2
2 ,M

2
3 ,M

2
6 ,M

2
7 and M2

8 . All these

entities except M2
1 are ghosts. The deletion algorithm clears the ghost infor-

mation of M2
1 , then it proceeds with M2

2 . As M2
2 is a ghost, it adds it in

entitiesToRemove (Algorithm 7 Step 1, Figure 3.5 (a)).

• The bridge entities of M2
2 are M0

1 ,M
0
2 ,M

0
5 . M0

5 is visited so the algorithm

proceeds with M0
2 . M

0
2 has M2

3 and M2
4 adjacent to it which are collected for

deletion (Algorithm 7 Step 2, Figure 3.5 (b)).

• The processed bridge entity M0
2 is marked visited (Algorithm 7 Step 3). The

next ghost entity adjacent to M0
5 is M2

6 which is also collected for deletion

63

(Figure 3.5 (c)). It shares common vertices M0
4 ,M

0
8 with M2

5 ,M
2
7 ,M

2
8 which

will also be collected. By now, all ghost entities are collected for deletion

(Figure 3.5 (d)).

• entitiesToRemove now has the contents given in Table 3.4.

Table 3.4: Contents of vector entitiesToRemove after Step 3

P1

entitiesToRemove[0] M0
2 ,M

0
3 ,M

0
6 ,M

0
7 ,M

0
8 ,M

0
9

entitiesToRemove[1] M1
1 ,M

1
4 ,M

1
5 ,M

1
6 ,M

1
7 ,M

1
9 ,M

1
10,M

1
11,M

1
12,M

1
13,M

1
14,

M1
15,M

1
16

entitiesToRemove[2] M2
2 ,M

2
3 ,M

2
4 ,M

2
5 ,M

2
6 ,M

2
7 ,M

2
8

3.5 Ghosting Tests

The tests for ghost creation/deletion algorithm are aimed to verify correctness

of the ghosting algorithm. A detailed mesh verification algorithm that verifies the

complete ghosted mesh and its adjacencies is presented in Appendix B. Once ghosts

are created on parts, the basic steps for verifying the correctness of ghost creation

algorithm are

1. Extract ghost dimension g, bridge dimension b and number of layers numLayer

from the part.

2. For every non-ghost entity M g
i of dimension g adjacent to a bridge entity of

dimension b, M b
k, if M

b
k has remote copy on part p but M g

i does not have a

remote copy on p, test the following

• Verify ghost information of M g
i if it has the address of ghost copy on part

p.

• Exchange a message with part p to verify if the ghost copy of M g
i actually

exists there.

64

For the example in Figure 3.4 (d), on part P1, the bridge entity M0
1 is adjacent

to M2
2 , a non-ghost entity of dimension g. M0

1 has remote copies on P0 but M2
2 has

no remote copy on P0. In this case, the test program verifies the following for M2
2

• M2
2 should have its ghost copy information in the form [address of M2

2 on P1,

P1].

• A message composed of the address of M2
2 on P1 is sent to P1. If M

2
2 exists as

a ghost copy on P1, a message with its address is sent back to P1.

3.6 Summary

The steps required for a ghost creation algorithm involves various communica-

tion rounds. Algorithm 5 requires neighborhood communication through IPComMan[38]

to eliminate duplicate entities. Step 4.1 of Algorithm 6 also employs neighborhood

communication to create ghost copies. Step 4.3 and 4.4 of Algorithm 6 employs two

rounds of communication. The first round in which the vertices are bounced back

requires IPComMan all-to-all communication. It employs communication between

neighbors of neighbors. This is because the vertex information is bounced back from

the destination ghost part to the vertex’s remote copies at the sender part (§3.3.4)

and in some cases the destination ghost part may not be neighbors to vertex’s re-

mote copy parts at the sender side. Second round where ghost objects are bounced

to their owners also requires neighborhood communication. The ghost creation al-

gorithm heavily relies on the neighborhood concept. The more the neighbors of the

bridge entities, the more ghost objects will be created. Chapter 4 discusses how the

change in number of neighbors affects the performance results of ghost creation.

The ghost deletion algorithm does not employ any form of communication in

the ghost collection process. It searches for ghost entities in a way similar to ghost

entity collection step during ghost creation (§3.3.1). A detailed discussion on the

65

performance of ghost creation and deletion algorithm is given in Chapter 4.

CHAPTER 4

Performance Results

This chapter presents performance results of the parallel N-layer ghost creation and

deletion algorithm on two massively parallel architectures. The ghost creation and

deletion algorithm is applied to two example meshes to measure its performance.

The first example consider a mesh size field that represents a planar shock on cube

geometry (CUBE). The second example consists of mesh size field that represents

the motion of air bubbles in a steady uniform flow (BUBBLE). Figure 4.1 shows the

CUBE, a uniform mesh of 17 million tetra-hedra. Figure 4.2 represents a BUBBLE

mesh, involving movement of five air bubbles by a distance of 1/5th of their radius.

Tests were executed on IBM Blue Gene/L[8] and Cray XE6 [78] systems. Table

4.1 presents a high-level comparison of the two architecture’s configurations. The

differences in processor speed, cache speed, memory access, peak performance and

network latency account for the performance speedup of Cray XE6 over BG/L in

the results of ghost creation and deletion algorithm presented in this chapter. A

detailed discussion on the Blue Gene/L and Cray XE6 architectures is given in [8, 7].

The organization of the chapter is as follows. Section 4.1 presents a strong

scaling study of 1-layer ghost creation and deletion algorithm on a 17M cube and

165M bubble mesh (1K-32K processors). Section 4.2 presents a weak scaling study of

1-layer ghost creation and deletion algorithm starting from 32 cores till 16,384 cores.

Section 4.3 gives the performance results of the N-layer ghost creation algorithm on

136M cube for a fixed processor count (1K cores).

66

67

Table 4.1: Blue Gene/L vs. Cray XE6

Blue Gene/L Cray XE6

Processor Speed 700 MHz 2.1 GHz

Core count 32,000 153,216

Core per node 2 24

Cache 3 cache levels L1 (32KB per
proc.), L2 (2KB per proc.
with prefetch buffer) and L3
(4MB embedded DRAM)

3 cache levels L1(64KB per
proc.), L2(512 KB per proc.),
L3(6MB shared between 6
cores)

Memory per node 512 or 1024 MB double data
rate (DDR) dynamic random
access memory (DRAM) per
node at 350 MHz.

32 GB DDR3 1333 MHz mem-
ory per node (for 6008 nodes),
64 GB DDR3 1333 MHz mem-
ory per node (for 384 nodes)

Peak Performance
per compute node

5.6 GFLOPS 201.6 GFLOPS

Networks 3D torus with 175 MBps
per direction, Global collec-
tive with 350 MBps, global
barrier and interrupt, JTAG
and Gigabit Ethernet

3D torus with 168 GB/sec
routing capacity and 9.8
GB/sec per custom Gem-
ini chip, scales to 100,000
network endpoints.

Network Latency 1 µs 1.5 µs (Global collective)

Figure 4.1: A cubic mesh

4.1 Strong scaling study of Ghost creation/deletion

In a strong scaling analysis, the overall problem size remains constant as the

processor configuration increases. For the ghost creation and deletion algorithm,

68

Figure 4.2: Moving air bubbles

strong scaling is influenced by the following factors

• The inter-process communication dominates computational workload per pro-

cessor.

• The total number of ghost entities increase by a factor dependent on mesh

partitioning when the processor count is doubled.

A detailed discussion on the above two factors is given here. The first fac-

tor is related to the time spent in computation and communication for ghosting.

Completion time for a parallel program has two components: computation time and

communication time. The completion time of the parallel application is the maxi-

mum of the completion times of all the tasks in the parallel application. The steps

in ghost creation algorithm presented in §3.3 fall in two basic categories

• Computation steps: Step 1 (collect ghost entities in the first layer).

• Communication steps: Step 3 (eliminate duplicate entities), Step 4 (Exchange

entities and update ghost copies).

69

Table 4.2: Computation time vs. communication time on Cray XE6 (17M
cube)

CUBE 17M

1024 2048 4096 8192 16384 32768
Comp. time(s) 0.30 0.16 0.10 0.05 0.03 0.021
% of Total time 11% 8% 10.2% 10.6% 9.6% 10.5%
Comm. time(s) 2.68 1.74 0.98 0.47 0.31 0.20
% of Total time 89% 92.0% 89.8% 89.4% 90.4% 89.5%

Table 4.2 gives the ratio of computation time (§3.3 Step 1) vs. communication

time (§3.3 Steps 3 and 4) in the ghost creation algorithm on a 17M CUBE test

case. On average, the computation time accounts for 10% of the total time in

ghost creation as a result of which the inter-process communication dominates the

computational workload per process. For the ghost creation algorithm, the load is

distributed on each processor such that it spends 10% of its time in computation

and 90% in processing ghost creation messages and creating new ghost entities.

In case of ghost creation and deletion algorithm, the computational work load per

core is insufficient as compared to communication work load as a result of which

inter-processor communication dominates which in turn affects strong scalability.

The second factor is related to graph partitioning and neighborhood. Good

partitioning schemes (such as graph-based ones) not only balance the work load

but also minimize the amount of communication required between parts (software

libraries such as ParMETIS [79] and Zoltan [34] are commonly used). With increas-

ing processor count, the total inter-part boundaries typically increase on a fixed size

mesh. This increases the number of neighbors for each bridge entity due to which

the problem size which is the total number of ghost entities (labeled as E/ghosted)

also grows. For example, a bridge entity has 2 neighbors on four processors for a

fixed size mesh. When the processor count doubles to 8 for the same fixed size mesh,

inter-part boundaries will also increase proportionately but the graph partitioning

and load balancing algorithm will try to keep adjacent entities on the same part to

70

reduce inter-part communication. In an effort to keep adjacent entities on the same

part, a good partitioning algorithm will try to minimize the increase in neighbors

for part boundary entities. The increase in neighbors will typically lie between 1.3

and 1.8 when the processor count is doubled for a fixed size mesh. Thus, when

the number of processors is doubled, the load distribution on each processor is not

divided into half. As we will see in the upcoming results, these two factors influence

strong scalability of the ghosting algorithm.

Scalability is based on the execution time on 1024 processors. For ghost cre-

ation, scalability is defined as

scalability = (nproc−base ∗ timebase)/(nproc−test ∗ timetest) (4.1)

To test the performance of ghost creation algorithm with increasing proces-

sor count, the CUBE and BUBBLE test cases were executed on 1024 to 32,768

processors on Cray XE6 and 1024 to 4096 processors on IBM Blue Gene/L. Table

4.3 demonstrates the execution time of ghost creation algorithm with 1-layer on

input parameters [g = 3, b = 0, numLayer = 1, includeCopy = 1] (ghost dimension:

region, bridge dimension: vertex).

Table 4.3: 1-layer ghost creation time(sec) on Cray XE6 and BG/L

Test case Machine N/proc 1024 2048 4096 8192 16384 32768

CUBE 17M

Cray XE6
E/ghosted 11.1M 14.6M 19.1M 18.6M 25.1M 33.9M
Time(s) 2.98 1.85 1.17 0.51 0.34 0.22
Scaling 1 0.81 0.64 0.74 0.55 0.42

BG/L
E/ghosted 11.1 M 14.6 M 19.1 M
Time(s) 29.42 17.6 12.6
Scaling 1 0.83 0.58

BUBBLE 165M

Cray XE6
E/ghosted 43.2M 77.1M 94.5M 94.89M 123.7M 160M
Time(s) 18.64 15.09 9.52 3.2 1.96 1.56
Scaling 1 0.61 0.50 0.73 0.60 0.37

BG/L
E/ghosted 43.2M 77.1M 94.5M
Time(s) 140.42 122.52 84.72
Scaling 1 0.57 0.41

71

As it can be seen from Table 4.3, the scaling factor decreases as the number of

ghost entities increase with increasing processor count. As the ghost creation and

deletion process is dependent on neighborhood communication (See §3.2), the total

number of ghost creation messages (resp. total ghost entities to delete) increase

when the processor count doubles. Figure 4.3 shows the relationship of increasing

processors number of ghost entities with scalability. As the total ghost entities

increase, scaling factor keeps on decreasing proportionately.

Figure 4.3: Relationship of ghosted entities created with scalability
(165M mesh)

For ghost entity deletion algorithm, there is no inter-part communication in-

volved in collecting the ghost entities to be deleted (See §3.4). Factor 2 has no

influence on the scalability of ghost deletion. However, the total number of ghost

entities to be deleted increase with increasing processor count so factor 1 is present.

The scalability for ghost deletion algorithm is based on the execution time on 1024

processors. It can be determined using

72

scalability = (timebase ∗ nproc−base)/(timetest ∗ nproc−test) (4.2)

Table 4.4: 1-layer ghost deletion time(sec) on Cray XE6 and BG/L

Test case Machine N/proc 1024 2048 4096 8192 16384 32768

CUBE 17M

Cray XE6
E/deleted 11.1M 14.6M 19.1M 18.6M 25.1M 33.9M
Time(s) 1.05 0.62 0.38 0.19 0.12 0.08
Scaling 1 0.85 0.69 0.69 0.55 0.41

BG/L
E/deleted 11.1 M 14.6 M 19.1 M
Time(s) 10.54 6.81 4.07
Scaling 1 0.77 0.65

BUBBLE 165M

Cray XE6
E/deleted 43.2M 77.1M 94.5M 94.89M 123.7M 160M
Time(s) 4.83 4.28 2.84 0.99 0.75 0.5
Scaling 1 0.57 0.43 0.70 0.55 0.41

BG/L
E/deleted 43.2M 77.1M 94.5M
Time(s) 48.98 43.39 21.58
Scaling 1 0.56 0.56

Figure 4.4 compares scalability with ghost entities deleted. As the number of

cores get doubled, ghost entities to be deleted also increase which brings down the

scaling factor.

Figure 4.4: Relationship of ghosted entities deleted with scalability
(165M mesh)

73

4.2 Weak scaling study of Ghost creation/deletion

In a weak scalability analysis, the problem size scales with the processor con-

figuration so that the computational load per processor stays constant. In case of

ghost creation, the communication load is on average 9 times more than the com-

putational load. Therefore, weak scalability is influenced by this factor. Table 4.5

presents the weak scaling results of the ghost creation and deletion algorithm on

input type [g = 3, b = 0, includeCopy = 0] i.e. ghost regions, bridge vertices (re-

mote copies of bridge are not included). The test series increases the number of

processors from 32 to 16K in multiples of 8 on the Cray XE6 machine. The mesh

size also varies in multiples of 8 (app.) along with processor count. SG represents

scaling based on average number of ghost entities per processor on 1024 processors.

SG = Avg. no. of ghosts on nbase/Avg. no. of ghosts on ntest (4.3)

St create and St del represent scalability of ghost creation and deletion algorithm

based on the execution time on 1024 processors. Scalability by execution time can

be calculated using Equation 4.4.

St = timebase/timetest (4.4)

Table 4.5: Weak scaling of ghost creation algorithm

N/Proc Mesh Size tcreate(s) tdel(s) Avg. ghosts/Proc SG St create St del

32 265,872 0.85 0.33 2,547 1 1 1

256 2,126,662 0.95 0.35 2,889 0.88 0.89 0.94

2048 17,010,572 1.24 0.51 3,266 0.78 0.69 0.69

16384 136,084,576 1.23 0.41 3,370 0.76 0.69 0.80

The average number of ghost entities in Table 4.5 varies as the number of ghosts

are dependent on entity neighborhood which can be different in every case. Table

4.5 shows a jump of 0.29 seconds (resp. 0.16 seconds) in tcreate (resp. tdel) between

74

256 and 2048 processors. There are two reasons for this jump. First, the time spent

in ghost creation is measured by taking the maximum time spent in ghost creation

among all processors. When a part has more ghost creation messages to process, it

will likely take more time. Secondly, the ghost creation algorithm currently assign

more messages to processor counts with lower ranks (See Algorithm 5 Step 4) as the

processor with minimum part id sends more ghost creation messages. This approach

will likely be replaced by a round-robin algorithm in the future to avoid any load

imbalance of messages.

4.3 N-layer ghost creation with fixed processor count

To test the performance of N-layer ghost creation algorithm with different

number of layers, the CUBE test case (136M mesh) was executed on 1024 processors

on Cray XE6 and IBM Blue Gene/L with number of layers from 1 to 5. Table 4.6

demonstrates the execution time of N-layer ghost creation algorithm in seconds with

input parameters [g = 3, b = 1, numLyr = 1...5, includeCopy = 1] (ghost dimension:

region, bridge: edges). Table 4.6 shows how the number of ghosted entities increase

with increasing layer count by an amount comparable to the number of entities in

the first layer. In Table 4.6, as the number of layer increases to 5, the number of

ghost entities reach close to the size of the mesh. The efficiency of N-layer ghost

creation algorithm denoted as En is based on the execution time on 1024 processors

and the increase in total number of ghost entities after adding ghost layers. It is

calculated using

En =
(timebase ∗ (1+ ↑ in E/ghosted))

(timetest)
(4.5)

Visited tag addition, removal and checking for an existing tag are O(1) opera-

tions (See §3.2). The first layer ghost creation does not require any tag adding/removal

75

Table 4.6: N-layer ghost creation execution time(s) on 1024 processors

Test case Machine n=1 n=2 n=3 n=4 n=5

CUBE 136M

Cray XE6
E/ghosted 26.5M 55.3M 77.8M 95.8M 110M
Time(s) 9.77 23.7 35.6 45.3 53.4

En 1 0.86 0.81 0.79 0.78

BG/L
E/ghosted 26.5 M 55.3 M 77.8 M 95.8 M 110 M
Time(s) 64.2 167.02 235.76 284.79 322.16

En 1 .81 0.80 0.81 0.81

overhead. That is why processing first layer ghost entities is most efficient (See Ta-

ble 4.6). As the number of layers increase, tag processing overhead increases. This

also affects the scalability of the N-layer ghost creation algorithm.

CHAPTER 5

Closing Remarks

The aim of the thesis was to develop an efficient parallel algorithm of ghost creation

and deletion for FMDB that localizes non-part boundary data from remote parts

for computation purposes and minimizes inter-part communication. Ghost is a

useful algorithm that provides a third-part application with the complete parallel

neighborhood information. The performance of the algorithms was evaluated on

massively parallel architectures (Blue Gene/L and Cray XE6) up to 32,768 cores.

Apart from increasing core count, two other factors that influenced the performance

results were inter-part communication and variation in problem size with increasing

core count.

The following are the key features of the procedures developed as part of the

thesis :

• The ghost creation algorithm was developed that creates 1D, 2D or 3D ghost

objects in a mesh using bridge entities.

• The ghost creation algorithm can create ghosts up-till N number of layers.

When the number of layers reaches the size of the mesh, the whole mesh can

be ghosted.

• The ghost deletion algorithm was developed which deletes all ghosts in a mesh.

• Mesh verification algorithm was extended so that it can verify a ghosted mesh

(Appendix B).

• Weak and strong scaling analysis of the ghost creation and deletion algorithm

was carried out.

76

77

The possible extensions that can be made to the ghost creation and deletion algo-

rithm include:

• Support for Multiple Parts per Process : FMDB currently provides the support

for single part per process. The upcoming versions shall provide the support

for multiple parts per process. The ghost creation and deletion algorithm can

be extended to support multiple parts per process.

• Applications of ghosting : Ghosting can be applied in certain applications re-

lated to mesh modification, refinement and coarsening as it is useful to know

which off-part data is neighbor to local part-boundary data. Any third-party

application can use ghosting to get neighborhood data information.

• Account for increasing core count per node: Ghosting algorithm is currently

designed for distributed memory applications using message passing. It can

be extended to exploit both shared and distributed memory architectures i.e

a hybrid approach of both distributed memory paradigms (MPI) and shared

memory paradigms including POSIX threads[4] and OpenMP [80]. In a hy-

brid approach, message passing is used for inter-node communication whereas

shared memory and multi-threading is used for intra-node communication.

This approach can be used to account for today’s fast growing computing

needs i.e. the increasing number of cores per node.

BIBLIOGRAPHY

[1] C. Johnson. Numerical solution of partial differential equations by the finite
element method, volume 32. Cambridge university press New York, 1987.

[2] M.S. Shephard. Update to: Approaches to the automatic generation and
control of finite element meshes. Applied Mechanics Reviews, 49:5–16, 1996.

[3] M. Zhou, T. Xie, S. Seol, M.S. Shephard, O. Sahni, and K.E. Jansen. Tools to
support Mesh Adaptation on Massively Parallel Computers. To appear in:
Engineering with Computers, 2011.

[4] I.T. Foster. Designing and building parallel programs: concepts and tools for
parallel software engineering. Addison-Wesley, 1995.

[5] World’s top 500 supercomputers. http://www.top500.org/, 2011. Date last
accessed: April 20, 2011.

[6] R. Espinha, W. Celes, N. Rodriguez, and G.H. Paulino. ParTopS: compact
topological framework for parallel fragmentation simulations. Engineering
with Computers, 25(4):345–365, 2009.

[7] Hopper 2, Cray XE6 at NERSC.
http://newweb.nersc.gov/users/computational-systems/hopper, 2011.
Date last accessed: April 20, 2011.

[8] IBM Guide to using Blue Gene/L.
http://www.redbooks.ibm.com/abstracts/sg246686.html, 2007. Date last
accessed: April 20, 2011.

[9] M.S. Shephard and S. Seol. Flexible distributed mesh data structure for
parallel adaptive analysis. 2007.

[10] M.W. Beall and M.S. Shephard. A geometry-based analysis framework. In
Adv. in Comp. Engg. Science, pages 557–562, Forsyth, GA, 1996. Atluri, S.N.
and Yagawa, G. eds., Tech Science Press.

[11] K.J. Weiler. The radial edge structure: A topological representation for
non-manifold geometric boundary representations. Geometric Modeling for
CAD applications, pages 3–36, 1988.

[12] iGeom Interface Documentation.
www.itaps.org/software/specifications/iGeom-v0.8.h, 2011. Date last
accessed: April 20, 2011.

78

79

[13] M.S. Shephard. The specification of physical attribute information for
engineering analysis. Engineering with Computers, 4(3):145–155, 1988.

[14] R.M. O’Bara, M.W. Beall, and M.S. Shephard. Analysis model visualization
and graphical analysis attribute specification system. Finite elements in
analysis and design, 19(4):325–348, 1995.

[15] M.S. Shephard, S. Dey, and J.E. Flaherty. A straightforward structure to
construct shape functions for variable p-order meshes. Computer Methods in
Applied Mechanics and Engineering, 147(3-4):209–233, 1997.

[16] M.W. Beall and M.S. Shephard. A general topology-based mesh data
structure. International Journal for Numerical Methods in Engineering,
40(9):1573–1596, 1997.

[17] O.C. Zienkiewicz and R.L. Taylor. The finite element method: basic
formulation and linear problems. McGraw-Hill College, 1989.

[18] M.W. Beall and M.S. Shephard. Mesh data structures for advanced finite
element applications. SCOREC Report, pages 23–1995.

[19] ITAPS: The Interoperable Technologies for Advanced Petascale Simulations
center. http://www.itaps.org, 2011. Date last accessed: April 20, 2011.

[20] iMesh Interface Documentation.
http://www.itaps.org/software/iMesh_html/index.html, 2011. Date last
accessed: April 20, 2011.

[21] C. Ollivier-Gooch, L. Diachin, M.S. Shephard, T. Tautges, J. Kraftcheck,
V. Leung, X. Luo, and M. Miller. An interoperable, data-structure-neutral
component for mesh query and manipulation. ACM Transactions on
Mathematical Software (TOMS), 37(3):1–28, 2010.

[22] K.D. Devine, L. Diachin, J. Kraftcheck, K.E. Jansen, V. Leung, X. Luo,
M. Miller, C. Ollivier-Gooch, A. Ovcharenko, O. Sahni, et al. Interoperable
mesh components for large-scale, distributed-memory simulations. In Journal
of Physics: Conference Series, volume 180, page 012011. IOP Publishing,
2009.

[23] T.J. Tautges, C. Ernst, C. Stimpson, R.J. Meyers, and K. Merkley. MOAB: a
mesh-oriented database. Technical report, Sandia National Laboratories, 2004.

[24] FMDB User’s guide. www.scorec.rpi.edu/FMDB/doc/FMDB.pdf, 2011. Date
last accessed: April 20, 2011.

[25] Symmetrix, Simulation modeling suite. http://www.simmetrix.com, 2011.
Date last accessed: April 20, 2011.

80

[26] R.V. Garimella. Mesh data structure selection for mesh generation and FEA
applications. International journal for numerical methods in engineering,
55(4):451–478, 2002.

[27] M.S. Shephard, J.E. Flaherty, C.L. Bottasso, H.L. de Cougny, C. Ozturan,
and M.L. Simone. Parallel automatic adaptive analysis. Parallel Computing,
23(9):1327–1347, 1997.

[28] J.E. Flaherty, R.M. Loy, C. Ozturan, M.S. Shephard, B.K. Szymanski, J.D.
Teresco, and L.H. Ziantz. Parallel structures and dynamic load balancing for
adaptive finite element computation. Applied Numerical Mathematics,
26(1-2):241–263, 1998.

[29] J.F. Remacle, O. Klaas, J.E. Flaherty, and M.S. Shephard. Parallel algorithm
oriented mesh database. Engineering with Computers, 18(3):274–284, 2002.

[30] F. Alauzet, X. Li, E.S. Seol, and M.S. Shephard. Parallel anisotropic 3D mesh
adaptation by mesh modification. Engineering with Computers,
21(3):247–258, 2006.

[31] L. Oliker, R. Biswas, and H.N. Gabow. Parallel tetrahedral mesh adaptation
with dynamic load balancing. Parallel Computing, 26(12):1583–1608, 2000.

[32] C. Ozturan, H.L. deCougny, M.S. Shephard, and J.E. Flaherty. Parallel
adaptive mesh refinement and redistribution on distributed memory
computers. Computer Methods in Applied Mechanics and Engineering,
119(1-2):123–137, 1994.

[33] J.D. Teresco, M.W. Beall, J.E. Flaherty, and M.S. Shephard. A hierarchical
partition model for adaptive finite element computation. Computer methods
in applied mechanics and engineering, 184(2-4):269–285, 2000.

[34] Zoltan, Parallel Partitioning, Load Balancing and Data-Management Services.
http://www.cs.sandia.gov/zoltan/, 2011. Date last accessed: April 20,
2011.

[35] iMeshP Interface Documentation.
http://www.itaps.org/software/iMeshP_html/index.html, 2011. Date
last accessed: April 20, 2011.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements
of reusable object-oriented software, volume 206. Addison-wesley Reading,
MA, 1995.

[37] Argonne National Laboratory, The Message Passing Interface (MPI) standard
library. http://www-unix.mcs.anl.gov/mpi, 2011. Date last accessed: April
20, 2011.

81

[38] A. Ovcharenko, O. Sahni, C.D. Carothers, K.E. Jansen, and M.S. Shephard.
Subdomain communication to increase scalability in large-scale scientific
applications. In Proceedings of the 23rd international conference on
Supercomputing, pages 497–498. ACM, 2009.

[39] X. Li, M.S. Shephard, and M.W. Beall. 3D anisotropic mesh adaptation by
mesh modification. Computer methods in applied mechanics and engineering,
194(48-49):4915–4950, 2005.

[40] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel
simulation of large-scale wireless networks. ACM SIGSIM Simulation Digest,
28(1):154–161, 1998.

[41] J.F. Thompson, B.K. Soni, and N.P. Weatherill. Handbook of grid generation.
CRC, 1999.

[42] S.J. Owen. A survey of unstructured mesh generation technology. In 7th
International Meshing Roundtable, volume 3, pages 239–267. Citeseer, 1998.

[43] B.G. Larwood, N.P. Weatherill, O. Hassan, and K. Morgan. Domain
decomposition approach for parallel unstructured mesh generation.
International journal for numerical methods in engineering, 58(2):177–188,
2003.

[44] GRUMMP: Generation and Refinement of Unstructured, Mixed-element
Meshes in Parallel. http://tetra.mech.ubc.ca/GRUMMP, 2011. Date last
accessed: April 20, 2011.

[45] R. Said, N.P. Weatherill, K. Morgan, and N.A. Verhoeven. Distributed
parallel Delaunay mesh generation. Computer methods in applied mechanics
and engineering, 177(1-2):109–125, 1999.

[46] B.H.V. Topping and B. Cheng. Parallel and distributed adaptive quadrilateral
mesh generation. Computers & structures, 73(1-5):519–536, 1999.

[47] J. Chen and V.E. Taylor. ParaPART: parallel mesh partitioning tool for
distributed systems. Concurrency: Practice and Experience, 12(2-3):111–123,
2000.

[48] R. Diekmann, R. Preis, F. Schlimbach, and C. Walshaw. Shape-optimized
mesh partitioning and load balancing for parallel adaptive FEM. Parallel
Computing, 26(12):1555–1581, 2000.

[49] C. Walshaw and M. Cross. Parallel optimisation algorithms for multilevel
mesh partitioning. Parallel Computing, 26(12):1635–1660, 2000.

82

[50] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and
L.A. Riesen. A repartitioning hypergraph model for dynamic load balancing.
Journal of Parallel and Distributed Computing, 69(8):711–724, 2009.

[51] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R. Heaphy, et al.
Hypergraph-based dynamic load balancing for adaptive scientific
computations. In 2007 IEEE International Parallel and Distributed
Processing Symposium, page 68. IEEE, 2007.

[52] D.S. Balsara and C.D. Norton. Highly parallel structured adaptive mesh
refinement using parallel language-based approaches. Parallel Computing,
27(1-2):37–70, 2001.

[53] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer.
PARAMESH: A parallel adaptive mesh refinement community toolkit.
Computer physics communications, 126(3):330–354, 2000.

[54] H.L. De Cougny and M.S. Shephard. Parallel refinement and coarsening of
tetrahedral meshes. Int. J. Numer. Meth. Engng, 46(7):1101–1125, 1999.

[55] libMesh: Parallel data structures for finite element computations.
http://www.cfdlab.ae.utexas.edu, 2011. Date last accessed: April 20,
2011.

[56] Y.M. Park and O.J. Kwon. A parallel unstructured dynamic mesh adaptation
algorithm for 3-D unsteady flows. International journal for numerical methods
in fluids, 48(6):671–690, 2005.

[57] L.V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented
system based on C++, volume 28. ACM, 1993.

[58] O.S. Lawlor, S. Chakravorty, T.L. Wilmarth, N. Choudhury, I. Dooley,
G. Zheng, and L.V. Kalé. Parfum: A parallel framework for unstructured
meshes for scalable dynamic physics applications. Engineering with
Computers, 22(3):215–235, 2006.

[59] L.V. Kaléa, R. Haberb, J. Bootha, S. Thitea, and J. Palaniappanb. An
efficient parallel implementation of the spacetime discontinuous galerkin
method using CHARM++.

[60] J. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. Applied Computational Geometry Towards Geometric
Engineering, pages 203–222, 1996.

[61] Triangle, A Two-Dimensional Quality Mesh Generator and Delaunay
Triangulator. http://www.cs.cmu.edu/~quake/triangle.html, 2011. Date
last accessed: April 20, 2011.

83

[62] J.R. Shewchuk. Delaunay refinement algorithms for triangular mesh
generation. Computational Geometry, 22(1-3):21–74, 2002.

[63] J.R. Stewart and H.C. Edwards. A framework approach for developing
parallel adaptive multiphysics applications. Finite elements in analysis and
design, 40(12):1599–1617, 2004.

[64] H.C. Edwards, A. Williams, G.D. Sjaardema, D.G. Baur, and W.K. Cochran.
SIERRA Toolkit computational mech conceptual model. Sandia National
Laboratories SAND Series, SAND2010-1192, 2010.

[65] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton,
and L. Wilcox. Extreme-scale AMR. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–12. IEEE Computer Society, 2010.

[66] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L.C. Wilcox. Towards
adaptive mesh PDE simulations on petascale computers. Proceedings of
Teragrid, 8, 2008.

[67] A. Vogler, S. Shelyag, M. Schussler, F. Cattaneo, T. Emonet, and T. Linde.
Simulations of magneto-convection in the solar photosphere. Astronomy and
astrophysics, 429(1):335–351, 2005.

[68] T. Gerhold. Overview of the hybrid RANS code TAU.
MEGAFLOW-Numerical Flow Simulation for Aircraft Design, pages 81–92,
2005.

[69] K.S. Kim and PG Cizmas. Three-dimensional hybrid mesh generation for
turbomachinery airfoils. Journal of propulsion and power, 18(3):536–543,
2002.

[70] J. Dreher and R. Grauer. Racoon: A parallel mesh-adaptive framework for
hyperbolic conservation laws. Parallel Computing, 31(8-9):913–932, 2005.

[71] B. Nichols, D. Buttlar, and J.P. Farrell. Pthreads programming. O’Reilly
Media, 1996.

[72] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen. An adaptive mesh
refinement benchmark for modern parallel programming languages. In
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, page 40.
ACM, 2007.

[73] MOAB. http://trac.mcs.anl.gov/projects/ITAPS/wiki/MOAB, 2011.
Date last accessed: April 20, 2011.

84

[74] P.M. Selwood and M. Berzins. Parallel unstructured tetrahedral mesh
adaptation: algorithms, implementation and scalability Concurrency: Pract.
Exper V11 (14), pages 863–884, 1999.

[75] J.F. Remacle and M.S. Shephard. An algorithm oriented mesh database.
International Journal for Numerical Methods in Engineering, 58(2):349–374,
2003.

[76] H.L. deCougny, K.D. Devine, J.E. Flaherty, R.M. Loy, C. Ozturan, and M.S.
Shephard. Load balancing for the parallel adaptive solution of partial
differential equations. Applied Numerical Mathematics, 16(1-2):157–182, 1994.

[77] B.S. Kirk, J.W. Peterson, R.H. Stogner, and G.F. Carey. : a C++ library for
parallel adaptive mesh refinement/coarsening simulations. Engineering with
Computers, 22(3):237–254, 2006.

[78] Cray XE6 system.
http://www.cray.com/Products/XE/CrayXE6System.aspx, 2011. Date last
accessed: April 20, 2011.

[79] ParMETIS - Parallel Graph Partitioning and Fill-reducing Matrix Ordering.
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview, 2011.
Date last accessed: April 20, 2011.

[80] The OpenMP API specification for Parallel Programming.
http://openmp.org/wp/, 2011. Date last accessed: April 20, 2011.

APPENDIX A

FMDB Unit Tests

Unit testing refers to tests that verify the functionality of a specific section of the

code, typically at the functional level. FMDB unit tests were carried out to test

certain functionalities for example iterators, remote copies, ghost copies and owner-

ship.

A.1 Iterator tests

Iterators are a generalization of pointers which are objects that point to other

objects. An iterator is an object that allows a programmer to traverse through

all elements of a collection, regardless of its specific implementation. If an iterator

points to one element in a range, then it is possible to increment it so that it points

to the next element. Various kinds of iterators are desirable for efficient mesh entity

traversal with various conditions like entity dimension, entity topology, geometric

classification.

Mesh databases can include entity containers and entity set containers. Both

mesh entity containers and entity set containers use STL to store mesh entities.

A Mesh entity container has an array of four STL containers of the same type for

vertices, edges, faces and regions. An entity set container includes a STL container

to store arbitrary mesh entities of any dimension. The use of model entity iterator

that iterates over the mesh entities mapped to a geometric entity is also required.

The solution was to design an iterator that is independent of the STL container

type and the underlying data. The FMDB generic iterator is able to iterate over

the mesh entities irrespective of the container type (mesh entity container, model

85

86

entity container or entity set container).

Figure A.1: Steps for testing generic iterator for mesh entities in a part

The unit tests for the generic iterator were aimed at testing it for all container

types i.e. mesh entities in a part, mesh entities in an entity set and mesh entities

mapped to geometric model entity. Figure A.1 presents a flowchart that highlights

some of the basic steps for testing the generic iterator for mesh entities in a part. All

entities in a mesh part are first stored in a STL container for verification purposes.

The generic iterator then initiates over the mesh entities in a part. Each mesh entity

returned by the generic iterator is searched in the STL container if it exists there. If

87

the mesh entity exists, its shape information is extracted to verify it is a valid mesh

entity. If the iterator does not return an entity which exists in the container, the

unit test fails. If an iterator returns an entity which does not exist in the container,

the unit test fails. Once the unit test gets all mesh entities returned by iterator, it

passes.

Figure A.2 shows the unit testing of generic iterator for mesh entities mapped

to geometric model entities (see Sec. 2.1 for details related to mesh entities and

geometric entities). The unit test iterates over all geometric model entities. For

every geometric model entity Gd
i it does the following

• It gets all mesh entities associated with the geometric model entity Gd
i .

• Generic iterator should return all mesh entities that are classified on Gd
i . For

every mesh entity Md
k that the iterator returns, the unit test performs the

reverse classification operator to get back its geometric model entity.

• If the geometric model entity returned by the reverse classification operator is

same as Gd
i , the unit test proceeds with next entity otherwise it fails.

A.2 Ownership and remote copy tests

A part-boundary mesh entity can be copied on several parts with one part

being its owner (for details, see Sec. 2.4). A remote copy is the memory location of

a mesh entity duplicated on another part. Each mesh entity maintains a reference of

all other remote copies in a remote copy container. The remote copies of an entity

are subject to change after the migration procedure. FMDB associates a remote

copy container with every entity which gets updated every time the remote copy

information is modified. In order to query and update remote copy information of a

mesh entity, FMDB provides several operations like getting all remote copies of an

88

Figure A.2: Steps for testing generic iterator for geometric model entities

entity, checking if remote copy of an entity exists on a specific part, setting remote

copy of an entity etc.

Figure A.3 shows the high-level steps for testing the remote copy information of

entities. A part-boundary entity has one or more remote copies, the test gets all part-

89

Figure A.3: Steps for testing remote copy information

boundary entities on the part as the test data. Every part boundary entity maintains

remote copy information in the form {remote part id, remote entity address}. In

order to verify that each part-boundary entity maintains the correct remote copy

information, the unit tests checks each remote copy of the part boundary entity to

90

make sure that the remote copy is valid and it exists on the remote part.

APPENDIX B

Mesh Verification Algorithm

The mesh verification algorithm aims to verify the validity of a mesh after ghosting

or mesh modification operations are performed on it. The validity of a mesh after

ghosting or migration is tested using the following :

• The remote copy information of all part boundary entities is consistent and

up-to-date.

• The ghost entities are created on the destinations and all ghost information is

up-to-date.

• The adjacencies of ghost entities, part boundary entities and non-part bound-

ary entities are correct. For notational simplicity, a non-part boundary entity

is referred as an INTERNAL entity, a part-boundary entity is referred as

BOUNDARY entity and a ghost entity is referred as a GHOST entity.

• The geometric classification of all remote and ghost copies is consistent.

Algorithm 9 gives the pseudo code for the mesh verification algorithm. Checks

1-4 verify the adjacencies of the mesh vertices, edges, faces and regions (Algorithms

12, 13, 14, 15). Check 5 verifies that a serial mesh does not hold any partition

classification information. Residence parts of an entity consists of its remote copies

and the owner. Check 6 verifies if the number of residence parts of an entity is

correct (it should be remoteCopies + 1). Check 7 and 8 verify the consistency

of remote and ghost copies and verifies that all copies of an entity have the same

geometric classification information. Note that the algorithm checks adjacencies for

a tetra-hedral mesh right now. In the future, it will be extended to support other

91

92

mesh types. Algorithm 10 verifies the consistency of remote copies of an entity.

For an entity Md
i , the part sends a message to all its remote copies comprising of the

address of Md
i on Plocal, its remote copy address Md

k and the geometric classification

information Gd
k (Algorithm 10 Step 1). When the part having the remote copy

receives this message, it verifies if Md
k exists and has the address of Md

i on Plocal

among its remote copies (Algorithm 10 Step 2). It then verifies if the geometric

classification information of both Md
i and Gd

k are the same (Algorithm 10 Step 3).

Algorithm 11 verifies the consistency of ghost copies of an entity. For an entity

Md
i , the part sends a message to all its ghost copies comprising of the owner entity

Md
i , its ghost copy address Md

k and the geometric classification information Gd
k

(Algorithm 11 Step 1). When the part having the ghost copy receives this message,

it verifies if Md
k exists and has the address of Md

i on Plocal as its owner entity

(Algorithm 11 Step 2). It then verifies if the geometric classification information of

both Md
i and Md

k are the same (Algorithm 11 Step 3). For notational simplicity,

ghost copies of an entity are represented by G [ent].

Algorithm 12 verifies the vertices in the mesh. For a 2D or 3D mesh, a vertex

must have an adjacent edge to it (Algorithm 12 Step 1). Algorithm 13 verifies the

regions in the mesh. Check 1 verifies that the mesh has no ghost region if no ghosting

exists. Check 2 verifies that regions have no part boundary information (as regions

are not part boundary entities, they should have no part boundary information).

Mesh regions should be classified on geometric model regions which is verified by

Check 3. Note that g denotes existence of ghosts in a mesh. Algorithm 14 verifies

the adjacencies of mesh edges. Check 1 verifies that no edge stores any ghosting

information if the mesh has no ghosting rule in it. Check 2 verifies that a ghost

edge can have zero adjacent faces only if ghost edges are present (Ghost edges can

be created independently See §3.3). If ghost faces are present in a mesh (with no

93

Data: Distributed mesh M, isValid
Result: Returns true if the mesh is valid and false otherwise.

/* Test validity of mesh vertices, edges and faces */

begin
isV alid ← true;
/* Check 1: Verify all vertices in the mesh */

VerifyVertices(M, isValid);
/* Check 2: Verify all edges in the mesh */

VerifyEdges(M, isValid);
/* Check 3: Verify all faces in the mesh */

VerifyFaces(M, isValid);
/* Check 4: Verify all regions in the mesh */

VerifyRegions(M, isValid);

extract ghost rule {b, g, includeCopy} from part;

for d ← 0 to partDim do
/* Check 5: A serial mesh does not have partition

classification or remote copy information. */

foreach Md
i ∈ part do

if NUMPROC = 1 & R[Md
i] > 0 then

isV alid = false;
else

/* Check 6: Residence part count is 1 more than remote

copy count. */

if P[Md
i] �= COUNT (R[Md

i]) + 1 then
isV alid = false;

end if
/* Check 7: Verify if the remote copy information is

consistent */

VerifyRemoteCopies(isValid, Md
i);

/* Check 8:Verify if the ghost copy information is

consistent */

VerifyGhostCopies(isValid, Md
i);

end if

end for

end

Algorithm 9: Mesh Verify(M)

94

Data: isValid, Md
i

Result: Verifies consistency of remote copies

/* Test if remote copies are consistent and all have the same

geometric information */

begin
/* Step 1: Send a message to every remote copy of Md

i */

foreach Md
k ∈ R(Md

i) do
send message A(adress of Md

i on Plocal,address of M
d
k on Premote,classification

information of Md
i);

while Premote receives message A(address of Md
i on Plocal,address of M

d
k on

Premote,classification information of Md
i) do

/* Step 2: Check if Md
k is a remote copy of Md

i */

if Md
i /∈ R(Md

k) then
isValid=false;

end if
/* Step 3: Check if the geometric info. of remote copies is

the same */

Gd
j ← classification information of Md

i on Plocal

if Gd
j �= Gd

k where Gd
k ❁ Md

k then
isValid=false;

end if

end while

end

Algorithm 10: VerifyRemoteCopies(isValid, Md
i)

adjacent region), then a ghost edge may only have one adjacent face. Check 3 verifies

that a ghost edge can have one adjacent face only if ghost faces are present. Check 4

verifies that every edge in a 3D mesh should have at-least one adjacent face. Check

5 verifies that in a 2D mesh, the number of adjacent faces to a part boundary edge

can be 2 if ghost faces exist on part boundary, else number of adjacent faces should

be 1.

Algorithm 15 verifies the adjacencies of mesh faces. Note that a face without

an adjacent region can only be valid if ghost faces exist in a mesh (ghost faces might

not have adjacent regions, Algorithm 15 Check 1). Checks 2-6 verify the geometric

classification information of the mesh faces.

95

Data: isValid, Md
i

Result: Verifies consistency of ghost copies.

/* Test if ghost information is up-to-date consistent and if the

original and ghost entities have the same geometric information

*/

begin
/* Send a message to every ghost copy of Md

i and verify it is

valid */

foreach Md
k ∈ G (Md

i) do
send message A(adress of Md

i on Plocal,address of M
d
k on Pghost,classification

information of Md
i);

while Pghost recieves message A(address of Md
i on Plocal,address of M

d
k on

Pghost,classification information of Md
i) do

/* The ghost should have the owner information and ghost flag

set. */

if Md
i /∈ G (Md

k) OR Md
i ← isGhost = false then

isValid=false;
end if
/* The geometric info. of ghost copies is the same */

Gd
j ← classification information of Md

i on Plocal

if Gd
j �= Gd

k where Gd
k ❁ Md

k then
isValid=false;

end if

end while

end

Algorithm 11: VerifyGhostCopies(isValid, Md
i)

Data: M, isValid
Result: Verifies the vertices in the mesh.
begin

/* Step 1: Check if each vertex has 1 or more adjacent edges */

. foreach vertex M0
i ∈ part do

/* For 2D or 3D mesh, number of edges adjacent to the vertices

should be more than zero */

if partDim ≥ 2 & COUNT (M0
i {M

1}) == 0 then
isValid=false;

end if

end

Algorithm 12: VerifyVertices(M, isValid)

96

Data: M, isValid
Result: Verifies the regions in the mesh.
/* Collect entities for ghosting */

begin
foreach regionM3

i ∈ part do /* Check 1: If the mesh is not ghosted

then M3
i should not have ghost information */

if !g & (GHOST [M3
i]) then

isV alid = false;
end if
/* Check 2: Regions are not part boundary entities so M3

i should

not be on part boundary. */

if BOUNDARY [M3
i] = true then

isValid=false;
break;

end if
/* Check 3: M3

i should be classified on a geometric region */

if !M3
i ❁ G3

k then
isValid=false;
break;

end if

end

Algorithm 13: VerifyRegions(M,isValid)

97

Data: M, isValid
Result: Verifies the edges in the mesh.
begin

foreach edge M1
i ∈ part do

/* Check 1: If the mesh is not ghosted, and M1
i should not have

ghost information */

if !g & (GHOST [M1
i]) then

isV alid = false;
end if
/* Check 2: If the ghost objects are edges, then there might not

be adjacent faces */

if COUNT (M1
i {M

2}) = 0 & g = 1 & GHOST(Md
i) then

continue;
end if
/* Check 3: If the ghost objects are faces, then there may be

only one face adjacent to M1
i */

if COUNT (M1
i {M

2}) = 1 & g = 2 & GHOST(Md
i) then

continue;
end if
if partDim = 3 then

/* Check 4: For a 3D mesh, every edge should have an adjacent

face (except for 1D ghosts) */

if COUNT (M1
i {M

2}) ≤ 1 then
isValid=false;

end if

else
if partDim = 2 then

/* Check 5: For part boundary edge, if ghost faces exist

then there can be up-to 2 adjacent faces to the edge.

If there are no ghost faces, there can be 1 adjacent

face only. For internal edge, there can be 2 adjacent

faces only. */

if M1
i ∈ BOUNDARY (M1

i) & g! = 2& COUNT (M1
i {M

2}) �= 1 then
isValid=false;

end if
if M1

i ∈ BOUNDARY (M1
i) & g == 2 &COUNT (M1

i {M
2}) �= 2

then
isValid=false;

end if
if M1

i ∈ INTERNAL(M1
i) & COUNT (M1

i {M
2}) �= 2 then

isValid=false;
end if

end if

end if

end

Algorithm 14: VerifyEdges(M,isValid)

98

Result: Verifies the faces in the mesh.
begin

foreach M2
i ∈ part do

if partDim = 3 then
/* Check1: If ghost faces exist then there might not be an

adjacent region to them */

if COUNT (M2
i {M

3}) = 0 & gDim = 2 & GHOST(Md
i) then

continue;
end if
/* Check 2:If the face is classified on a model face then

there can be 1 adjacent region */

if M2
i ❁ G2

i & COUNT (M2
i {M

3}) �= 1 then
isValid=false;

else
/* Check 3:If the mesh face is classified on a model region

and M2
i is internal entity then it should have 2 adjacent

regions */

if INTERNAL(M2
i) & COUNT (M2

i {M
3}) �= 2 then

isValid=false;
else

/* Check 4:If M2
i is a part boundary entity and there are

no ghost regions then it can have 1 adjacent regions

*/

if BOUNDARY (M2
i) & g! = 3& COUNT (M2

i {M
1}) �= 1 then

isValid=false;
end if
/* Check 5:If M2

i is a part boundary entity and there are

ghost regions then it can have 2 adjacent regions */

if BOUNDARY (M2
i) & g = 3& COUNT (M2

i {M
1}) �= 2 then

isValid=false;
end if

end if

end if

else
/* Check 6:For 2D mesh, a mesh face should be classified on

model face and there should be no adjacent regions */

if partDim = 2 & (COUNT (M2
i {M

3}) �= 0 OR !(M2
i ❁ G2

i) then
isValid=false;

end if

end if

end

Algorithm 15: VerifyFaces(M,isValid)

