
A Parallel GNFS Algorithm with the
Biorthogonal Block Lanczos Method for Integer

Factorization

Laurence T. Yang1,2, Li Xu, Man Lin, and John Quinn

1 Department of Computer Science and Engineering
Jiangsu Polytechnic University

Changzhou, Jiangsu Province, 213164, P.R. China
2 Department of Computer Science

St. Francis Xavier University
Antigonish, Nova Scotia, B2G 2W5, Canada
{lyang, x2002uwf, mlin, jquinn}@stfx.ca

Abstract. Currently, RSA is a very popular, widely used and secure
public key cryptosystem, but the security of the RSA cryptosystem is
based on the difficulty of factoring large integers. The General Number
Field Sieve (GNFS) algorithm is the best known method for factoring
large integers over 110 digits. Our previous work on the parallel GNFS
algorithm, which integrated the Montgomery’s block Lanczos algorithm
to solve the large and sparse linear systems over GF(2), has one major
disadvantage, namely the input has to be symmetric (we have to sym-
metrize the input for nonsymmetric case and this will shrink the rank).

In this paper, we successfully implement the parallel General Num-
ber Field Sieve (GNFS) algorithm and integrate with a new algorithm
called the biorthogonal block Lanczos algorithm for solving large and
sparse linear systems over GF(2). This new algorithm is based on the
biothorgonal technique, can find more solutions or dependencies than
Montgomery’s block Lanczos method with less iterations. The detailed
experimental results on a SUN cluster will be presented as well.

1 Introduction

Currently, Rivest-Shamir-Adleman (RSA) algorithm [16] is the most popular
algorithm in public-key cryptosystem. It also has been widely used in the real-
world applications such as: internet explorer, email systems, online banking,
critical electronic transactions and many other places. The security of this al-
gorithm mainly relies on the difficulty of factoring large integers. So far, many
integer factorization algorithms have been developed such as: Trial division [18],
Pollard’s p-1 algorithm [14], Lenstra Elliptic Curve Factorization (ECM) [9],
Quadratic Sieve (QS) [15] and General Number Field Sieve (GNFS) [1,2,3,11]
algorithm.

Although GNFS algorithm is the fastest integer factoring algorithm over 110
digits so far, it still takes a long time to factor large integers. In order to reduce
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the execution time, one natural solution is to distribute jobs to parallel comput-
ers. The GNFS algorithm contains several time consuming steps. The most time
consuming one is the sieving part which is used to generate enough relations.
This step is very suitable for parallelization because the relation generations are
independent. Another possible step is, in GNFS, the Montgomery’s block Lanc-
zos algorithm [12]. It is used to solve large and sparse linear systems over GF(2)
generated by the GNFS algorithm. This block Lanczos algorithm has two draw-
backs: 1. The input of this algorithm is restricted to a symmetric matrix. For
the nonsymmetric inputs, we have to make them symmetric first by multiplying
the coefficient matrix A with AT . However over GF(2), the rank of the product
AT A is, in general, much less than that of A. Thus, when applied to find ele-
ments of the nullspace of A, the Montgomery’s block Lanczos method may find
many spurious vectors. 2. It will break down for some case. The biorthogonal
block Lanczos [5] has overcome the first drawback and can find more solutions
or dependencies than Montgomery’s block Lanczos method with less iterations.
In this paper we have successfully implemented the biorthogonal block Lanczos
algorithm and integrated together with the GNFS algorithm.

The rest of this paper is organized as follows: First we briefly describe the
original GNFS algorithm in section 2. Then we present two block Lanczos algo-
rithms, namely the Montgomery’s block Lanczos algorithm [12] and the biorthog-
onal block Lanczos algorithm [5] in section 3 and 4 respectively. Section 5 shows
the detailed implementation and corresponding parallel performance results.

2 The GNFS Algorithm

The General Number Field Sieve (GNFS) algorithm [2,3,11] is derived from the
number fields sieve (NFS) algorithm, developed by Lenstra et al [10]. It is the
fastest known algorithm for integer factorization. The idea of GNFS is from the
congruence of squares algorithm [8].

Suppose we want to factor an integer n where n has two prime factors p and
q. Let’s assume we have two integers s and r, such that s2 and r2 are perfect
squares and satisfy the constraint s2 ≡ r2(mod n). Since n = pq, the following
conditions must hold [2]:

pq|(s2-r2) ⇒pq|(s-r)(s+r)
⇒p|(s-r)(s+r) and q|(s-r)(s+r).

We know that, if c|ab and gcd(b,c) = 1, then c|a. So p, q, r and s must satisfy
p|(s-r) or p|(s+r) and q|(s-r) or q|(s+r). Based on this, it can be proved that
we can find factors of n by computing the greatest common divisor gcd(n,(s+r))
and gcd(n,(s-r)) with the possibility of 2/3 (see [2]).

Therefore, the essence of GNFS algorithm is based on the idea of the factoring
n by computing the gcd(n, s+r) and gcd(n, s-r). There are six major steps [11]:

1. Selecting parameters: Choose an integer m∈Z and a polynomial f which
satisfy f(m) ≡ 0 (mod n).
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Table 1. The composite number n and the results after integer factorization

Name Number
tst10030 727563736353655223147641208603 =

743774339337499•978204944528897
F739 680564733841876926926749214863536422914 =

5704689200685129054721•59649589127497217
tst15045 799356282580692644127991443712991753990450969 =

32823111293257851893153•24353458617583497303673
Briggs51 556158012756522140970101270050308458769458529626977 =

1236405128000120870775846228354119184397•449818591141
tst20061 1241445153765162090376032461564730757085137334450817128010073 =

1127192007137697372923951166979•1101360855918052649813406915187
tst25076 3675041894739039405533259197211548846143110109152323761665377505538520830273 =

69119855780815625390997974542224894323•53169119831396634916152282437374262651

2. Defining three factor bases: rational factor base R, algebraic factor base A
and quadratic character base Q.

3. Sieving: Generate enough pairs (a,b) (relations) to build a linear dependence.
4. Processing relations: Filter out useful pairs (a,b) that were found from siev-

ing.
5. Building up a large and sparse linear system over GF(2) and solve it.
6. Squaring root, use the results from the previous step to generate two perfect

squares, then factor n.

3 Montgomery’s Block Lanczos Algorithm

In 1995, Montgomery proposed an algorithm for solving linear systems over
GF(2) named Montgomery’s block Lanczos algorithm [12]. This block Lanczos
algorithm is a variant of standard Lancozs method [6,7]. Both Lanczos algorithms
are used to solve linear systems. In the standard Lanczos algorithm, suppose we
have a symmetric matrix A∈R

n×n. Based on the notations used in [12], the
algorithm can be described as follows:

w0 = b,

wi = Awi−1 −
i−1∑

j=0

wT
j A2wi−1

wT
j Awj

. (1)

The iteration will stop when wi=0. {w0, w1, . . . wi−1} are basis of span{b,
Ab, A2b, . . .} with the properties:

∀0 ≤ i < m, wT
i Awi �= 0, (2)

∀0 ≤ i < j < m, wT
i Awj = wT

j Awi = 0. (3)
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The solution x can be computed as follows:

x =
m−1∑

j=0

wT
j b

wT
j Awj

wj . (4)

Furthermore the iteration of wi can be simplified as follows:

wi = Awi−1 − (Awi−1)T (Awi−1)
wT

i−1(Awi−1)
wi−1 − (Awi−2)T (Awi−1)

wT
i−2(Awi−2)

wi−2. (5)

The time complexity of the Standard Lanczos algorithm is O(dn2)+O(n2), d
is the average nonzero entries per row or column.

The Montgomery’s block Lanczos algorithm is an extension of the Standard
Lanczos algorithm by applying it over GF(2). There are some good properties on
GF(2), for example, we can apply matrix to N vectors at a time (N is the length
of computer word) and we can also apply bitwise operations. Instead of using
vectors for iteration, we using subspace instead. First we generate subspace:

Wi is A − invertible,

WT
j AWi = {0}, {i �= j}, (6)
AW ⊆ W , W = W0 + W1 + . . . + Wm−1.

Then we define x to be:

x =
m−1∑

j=0

Wj(WT
j AWj)−1WT

j b, (7)

where W is a basis of W . The iteration in the standard Lanczos algorithm
will be changed to:

Wi = ViSi,

Vi+1 = AWiS
T
i + Vi −

i∑

j=0

WjCi+1,j (i ≥ 0),

Wi = 〈Wi〉, (8)

in which
Ci+1,j = (WT

j AWj)−1WT
j A(AWiS

T
i + Vi). (9)

This iteration will stop when Vi
T AVi=0 where i = m. The iteration can also

be simplified as follows:

Vi+1 = AViSiS
T
i + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1.
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where Di+1, Ei+1, Fi+1 can be computed:

Di+1 = IN − W inv
i (V T

i A2ViSiS
T
i + V T

i AVi),
Ei+1 = −W inv

i−1V T
i AViSiS

T
i ,

Fi+1 = −W inv
i−2(IN − V T

i−1AVi−1W
inv
i−1)(V T

i−1A
2Vi−1Si−1S

T
i−1 + V T

i−1AVi−1)SiS
T
i .

Si is an N × Ni projection matrix (N is the length of computer word and
Ni < N ). We can reduce the iteration time from O(n2) to O(n2/N) (n is the
matrix’s row or column size) using the block Lanczos algorithm.

4 Biorthogonal Block Lanczos Algorithm

The Biorthogonal block Lanczos algorithm is from standard biorthogonal scalar
Lancozs algorithm. The idea of standard biorthogonal scalar Lancozs algorithm
is proposed by Lanczos [7]. Like the symmetric case we described in section 3,
first we choose two vector u0 and υ0 from K

n form two basis {u0,...um−1} and
{υ0,...υm−1}, and the following conditions must be held [5]:

∀0 ≤ i < m uT
i Aυi �= 0,

∀0 ≤ i < j < m uT
i Aυj = uT

j Aυi = 0. (10)

Then the solution will be:

x =
m−1∑

i=0

uT
i b

uT
i Aυi

υi. (11)

With the condition (10), now we are ready to give the new iterations:

ui+1 := AT ui −
i∑

k=0

(AT ui)T Aυk

uT
k Aυk

uk,

υi+1 := Aυi −
i∑

k=0

(AT uk)T Aυi

uT
k Aυk

υk. (12)

Proposition 1. If u0,....,ui and υ0,....,υi are defined in (12), then uT
i A2υk =

uT
k A2υi = 0 for all 0≤k<i-1 [5].

According to the Proposition 1, all the projections will be vanished except the
last two, the iterations are simplified to follows:

ui+1 := AT ui − (AT ui)T Aυi

uT
i Aυi

ui − (AT ui)T Aυi−1

uT
i−1Aυi−1

ui−1, (13)

υi+1 := Aυi − (AT ui)T Aυi

uT
i Aυi

υi − (AT ui−1)T Aυi

uT
i−1Aυi−1

υi−1. (14)



A Parallel GNFS Algorithm with the Biorthogonal Block Lanczos Method 433

Instead of using scalars in real fields, now we extend this standard biorthog-
onal scalar Lancozs algorithm to our problem over GF(2). The input of this
algorithm can be either symmetric or nonsymmetric. Montgomery’s block Lanc-
zos algorithm only takes a symmetric matrix as the input. For the nonsym-
metric matrix, some preconditioning must be performanced first, such as AT A.
Generally speaking, The rank of AT A is much less than the rank of A, Thus,
when applied to find elements of the nullspace of A, the Montgomery’s block
Lanczos method may find many spurious vectors, then lose some solutions
accordingly.

The procedure of biothogonal block Lanczos algorithm are: first we choose
u0, v0 ∈ K

n×N randomly and uniformly. (here u and v are block vector). Then
we compute u1, u1,...um−1 and v1, v1,...vm−1. Two matrices ξi and ωi are also
computed by the columns of ui and vi.

The following conditions must be hold through the whole algorithm:

1. K(AT , u0) =
⊕m−1

i=0 〈ξi〉.
2. K(A,v0) =

⊕m−1
i=0 〈ωi〉.

3. for all 0≤i<m, ξT
i Aωi is invertible.

4. for all 0≤i, j<m with i �= j, ξT
j Avi = uT

i Aωj=0.

Assuming all the conditions are held, we can give the biorthogonal Block Lanc-
zos iterations. Let ξi and ωi be two projection matrices and define by ξi=uisi

and ωi=viti.
The iterations for ui+1, vi+1 are:

ui+1 := AT ξis
T
i + ui −

i∑

k=0

ξk(ωT
k Aξk)−1ωT

k AT (AT ξis
T
i + ui), (15)

vi+1 := Aωit
T
i + vi −

i∑

k=0

ωk(ξT
k Aωk)−1ξT

k A(Aωit
T
i + vi). (16)

We also want to simply the iterations like what we did in standard biorthog-
onal scalar Lanczos algorithm. In every iteration, we pick out as many columns
as possible from the previous iteration results ui, vi then project them into the
Krylov basis [5].

We also have: when 0≤k<i<m,

ξT
k A2ωi = sT

k skξT
k A2ωi

= sT
k (AT ξksT

k )T Aωi

= sT
k (uk+1 − uk +

k∑

j=0

ξj(ωT
j Aξj)−1ωT

j AT (AT ξksT
k + uk))T Aωi

= sT
k uT

k+1Aωi − sT
k uT

k Aωi

= sT
k uT

k+1Aωi. (17)

So ξT
k A2ωi can be simplify to sT

k uT
k+1Aωi, and similarly, we can simplify

ωT
k (AT )2ξi to tTk vT

k+1A
T ξi. This tells us that for some j<i, if all the columns
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of uk+1 have been chosen and projected into ξk+1,...ξj , this term will be van-
ished which means uT

k+1Aωi = 0.

5 Implementation Details

As we mentioned before, the most time consuming part in GNFS is the sieving
part. This part has already been parallelized in our previous work [19,20]. An-
other part in GNFS program can be improved is to solve the large and sparse
linear systems over GF(2) by biorthogonal block Lanczos algorithm, instead of
using the Montgomery’s block Lanczos algorithm which only takes symmetric
input. With the new algorithm, we would not lose any solutions. Our parallel
code is built on the sequential source GNFS code from Monico [11].

5.1 Parallel Sieving

The sieving step in sequential GNFS is very suitable for parallel. The purpose
of sieving is to find enough (a,b) pairs. The way we do sieving is: fixing b, let a
change from -N to N (N is a integer, usually larger than 500 ), then we check
each (a,b) pair whether it smooth over factor bases. The sieving for next b can
not start until the previous sieving is finished. After we got enough relations
from the sieving step, we start building a linear system over GF(2). This linear
system’s coefficient could be either symmetric or nonsymmetric, both can be
solved by the biorthogonal block Lanczos algorithm.

In parallel, we use several processors do sieving simultaneously, each slave node
takes a small range of b, then send results back to master node. The detailed
parallel sieving implementation can be found in [19,20].

5.2 Hardware and Programming Environment

The whole implementation uses two software packages, the sequential GNFS
code from C. Monico [11] (Written in ANSI C) and sequential biorthogonal block
Lanczos code from Hovinen [5] (Written in C++). For parallel implementation,
MPICH1 (Message Passing Interface) [17] library is used. In order to do arbitrary
precision arithmetic, the GMP 4.x is also used [4]. We use GUN compiler to
compile whole program and MPICH1 [13] for our MPI library. The version of
MPICH1 is 1.2.5.2. The cluster we use is a Sun cluster from University of New
Brunswick Canada whose system configurations is:

– Model: Sun Microsystems V60.
– Architecture: x86 cluster.
– Processor count: 164.
– Master node: 3 GB registered DDR-266 ECC SDRAM.
– Slave node: 2 to 3 GB registered DDR-266 ECC SDRAM.

In the program, Each slave node only communicates with the master node. Fig.
1 shows the flow chart of our parallel program.
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Main Program

MPI_Init

Slave Slave Slave SlaveMaster

MPI_Finalize

Main Program

Fig. 1. Each processors do the sieving at the same time, and all the slave nodes send
the result back to master node

6 Performance Evaluation

We have six test cases, each test case have a different size of n, all are listed in
Table 1.

The sieving time increases when the size of n increases. Table 2 shows the
average sieving time for each n with one processor. Table 3 shows the number of
processors we use for each test case. Fig. 2 and Fig. 3 show the total execution
time for each test case in seconds.

The total sieve time for test case: tst100, F7, tst150, Briggs and tst200 are
presented in Fig. 4. Fig. 5 gives the total execution time, sieve time, speed-
up and parallel efficiency with different processor numbers for test case tst250.
Fig. 6 gives the speed-up and parallel efficiency for each test case with different
processor numbers.

Table 2. Average sieving time for each n

name number of sieve average sieve time(s)
tst10030 1 35.6

F739 1 28.8
tst15045 5 50.6
Briggs51 3 85.67
tst20061 7 560.6
tst25076 7 4757.91
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Table 3. Number of processors for each test case

name number of slave processors
tst10030 1,2,4,8,16

F739 1,2,4,8,16
tst15045 1,2,4,8,16
Briggs51 1,2,4,8,16
tst20061 1,2,4,8,16
tst25076 1,2,4,8,16
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Fig. 2. Execution time for tst100 and F7
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Fig. 3. Execution time for tst150, Briggs and tst200
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Fig. 4. Sieve time for tst100, F7, tst150, Briggs and tst200
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