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ABSTRACT

The paper presents a numerical implementation of the gravitational N-body problem with

contact interactions between non-spherically shaped bodies. The work builds up on a previous

implementation of the code and extends its capabilities. The number of bodies handled

is significantly increased through the use of a CUDA/GPU-parallel octree structure. The

implementation of the code is discussed and its performance is compared against direct N2

integration. The code features both smooth (force-based) and non-smooth (impulse-based)

methods, as well as a visco-elastic non-smooth method, to handle contact interaction between

bodies. The numerical problem of simulating ‘rubble-pile’ asteroid gravitational aggregation

processes is addressed. We discuss the features of the problem and derive criteria to set

up the numerical simulation from the dynamical constraints of the combined gravitational–

collisional problem. Examples of asteroid aggregation scenarios that could benefit from such

implementation are finally presented.

Key words: gravitation – methods: numerical – minor planets, asteroids: general – planets

and satellites: dynamical evolution and stability – planets and satellites: formation.

1 IN T RO D U C T I O N

The numerical resolution of the N-body problem is one of the most

popular problems in high-performance computing. The intrinsic

O(N2) complexity of the problem has challenged many astronomers

and computer scientists since the beginning of the computing era.

N-body algorithms have evolved side by side with the increase of

computing power and availability of new resources, such as Graphic

Processing Units (GPUs). State-of-the-art implementations include

parallel N-body tree codes (Stadel 2001; Morbidelli 2002; Richard-

son et al. 2002a), hybrid codes (Aarseth 1999, 2001; Wang et al.

2015), adaptive algorithms of optimal orders (Pruett, Rudmin &

Lacy 2003), systolic algorithms (Dorband, Hemsendorf & Merritt

2003), or more generally symplectic codes (Wisdom & Holman

1991; Duncan, Levison & Lee 1998; Chambers 1999). In order

to be able to solve granular dynamics problems, the capability of

gravitational N-body codes needs to be extended to include contact

interaction between non-point-like bodies. Two main classes of

methods are commonly used to deal with contact interactions:

hard- and soft-body methods. The first considers impulsive contacts

between non-deformable particles (Alder & Wainwright 1959;

Jean & Moreau 1987). This method is numerically very stable

and allows us to simulate effectively the dynamics of hundreds

⋆ E-mail: fabio1.ferrari@polimi.it

of thousands of bodies. In more recent years, the alternative class

of soft-body methods has been developed (Cundall & Strack 1979).

Based on a force-driven approach, soft-body methods are more

suitable than hard-body ones for the simulation of smooth dynamics.

These could be used to complement some deficiencies of hard-

body models. For example, due to the impulsive nature of contact

exchanged, hard-body methods are not adequate to reproduce

phenomena such as wave propagation in granular media (Gilardi &

Sharf 2002). However, the numerical solution of soft-body methods

is more unstable and often requires extremely small time-steps to

adequately reproduce elastic forces at contact. Both hard- and soft-

body models have their own advantages and shortcomings and their

use shall be carefully weighted upon the application scenario. As

a general rule, hard-body methods qualify to simulate non-smooth

dynamics, and vice versa: Soft-body method is suitable for smooth

problems. However, whether a problem should be classified in either

one category is a controversial field of debate: both the models rely

on sets of non-directly measurable parameters, which often offer

poor physical interpretation when compared to real-world scenarios

(Dubois, Acary & Jean 2018). To date, both hard- and soft-body

methods have been successfully used to simulate a wide variety of

planetary science scenarios: Richardson et al. (2002b) used their

hard-body model to simulate gravitational aggregation of rubble-

pile asteroids and planetary ring dynamics (Porco et al. 2008);

Wada, Senshu & Matsui (2006) used a soft-body approach to study

cratering impacts under constant gravity field, and more recently,
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soft-sphere methods with mutual gravity between bodies have

been used to simulate rubble-pile scenarios (Sánchez & Scheeres

2011; Schwartz, Richardson & Michel 2012; Tancredi et al. 2012).

Another key aspect for a realistic evaluation of contact interactions

concerns the shape of interacting bodies. All the aforementioned

codes are limited to spherically shaped bodies. The use of spherical

shapes is now considered to be a very relevant simplification for

problems where contact between bodies happens. The use of spheres

allows us to drastically reduce the computational burden, but can

heavily affect the realism of the model when solving for the contact

interaction between bodies (Michel, Benz & Richardson 2004).

As such, the determination of the final shape of the aggregates

and fragments could not be addressed (Richardson et al. 2009).

Few attempts have been made using hard-body polyhedral grains

together with video game engines to solve for contact interactions

(Movshovitz, Asphaug & Korycansky 2012). Although polyhedral

bodies provide a better modelling, compared to spheres, of some

physical phenomena (e.g. related to interlocking between bodies),

the computational accuracy provided by game engines is very

low (single precision) and not able to satisfy basic energy or

angular momentum conservation requirements. Recently, Ferrari

et al. (2017) implemented the N-body aggregation problem with

non-spherical shapes and non-smooth contacts, using the modules

of Chrono::Engine (C::E) (Tasora et al. 2016; Tasora 2019), an

open software optimized for granular and multibody engineering

problems and able to handle contacts and collisions of a large

number of complex-shaped bodies. The results obtained were

very promising and satisfactorily accurate in terms of energy and

angular momentum conservation. In their work, Ferrari et al. (2017)

made use of direct N-body simulations to solve for gravitational

dynamics, and only few thousands of bodies could be handled by the

simulator.

The work presented here builds upon the work by Ferrari et al.

(2017) and discusses the implementation of a parallel CUDA-GPU

octree structure to extend the capabilities of the code to a higher

number of complex-shaped bodies. As its parent code, the imple-

mentation is based on a rework of the C::E multiphysics simulation

engine to simulate collisions between non-spherical bodies and

integrate the dynamics of the problem. The code features both

non-smooth (impulse-based) and smooth (force-based) methods to

handle contact interactions. Also, a compliant non-smooth method

is featured and proposed for the first time for planetary science

application, in the attempt to joint the advantages of numerical

stability provided by its impulse-based formulation, together with its

ability of simulating compliance at contact level. Section 2 discusses

the general architecture of the code and presents methods available

to solve gravitational and collisional dynamics. The performance of

the code is discussed in Section 3, where the results of validation/test

problems are reported. The applicability to asteroid aggregation

problems is eventually discussed through simulation examples. We

address the problem of rubble-pile asteroid aggregation processes

in Section 4. The physics of gravitational and collisional processes

involved are reviewed and their numerical modelling is discussed.

We derive a set of qualitative and quantitative requirements from

dynamical and numerical constraints of the gravitational–collisional

problem.

2 NU M ERIC A L IMPLEMENTATION

The code is built using a modular approach, taking advantage of

the object-oriented C++ architecture of C::E library. Modules

represent interchangeable units of software, easily accessible by the

user. Each module contains methods and routines to execute specific

tasks. The main modules developed and/or directly retrieved by C::E

libraries are as follows:

(i) gravity

(ii) contact

(iii) rigid-body dynamics

(iv) body creation

(v) numerical solvers

(vi) data input/output

(vii) visual interface

(viii) post-processing

Modules (ii), (v), and (vii) are directly adapted from C::E

libraries, modules (iii) and (iv) are based on the C::E libraries and

further extended with additional methods and routines, and modules

(i), (vi), and (viii) are fully developed by the authors. Modules (vi)

and (vii) provide routines that allow the user to interface with the

code at a higher level than software implementation level. The

visual interface is based on Irrlicht library (Gebhardt 2016) and

can be set to highlight desired geometrical or simulation features

(forces, contacts), as well as to display real-time simulation outputs.

The data input/output interface is straightforward: Every user-

tunable parameter of the model can be assigned via an input text

file that is parsed and acquired by the code, while output data

are typically saved into dedicated text files. This section presents

a general overview of the numerical methods available in each

module, focusing on those relevant to the gravitational aggregation

problem.

2.1 Gravitational dynamics

Module (i) encloses methods and routines used to compute the

gravity forces acting on each body. These are based on the evaluation

of gravity field produced by point-mass or shape-based (e.g.

polyhedron and ellipsoid) gravity sources. To simulate the problem

of gravitational aggregation, the classical N-body problem with

point-mass sources is considered. This is a common and reasonable

assumption: For a high number of commensurate interacting bodies,

the use of shape-based mutual gravity would impact dramatically

on the computational effort and would not provide relevant benefits

to the accuracy of results, as discussed in Section 4.1. As detailed

below, module (i) includes both direct N2 integration and a parallel-

GPU octree method.

2.1.1 The N-body problem

The equations of motion of the N-body problem are typically written

by using Newton’s law to compute the gravitational interactions

between N masses:

mi R̈i = G

N
∑

j=1,j �=i

mimj

||Rij ||3
Rij ∀i = 1 : N, (1)

where Ri represents the position vector of the i-th body in an inertial

frame, mi its mass, G the universal gravitational constant, and

Rij = Rj − Ri . A method implementing all N-to-N interactions

is commonly referred as direct N2 or particle–particle method

(Hockney & Eastwood 1988; Hut & Makino 2010). Such a method

is very simple to implement and provides exact computation of

the motion of the N-bodies without any physical approximation.

The accuracy of the result depends solely on the numerical errors

of the solver. The simple dynamics of direct N2 method make

MNRAS 492, 749–761 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
2
/1

/7
4
9
/5

6
7
2
6
4
3
 b

y
 g

u
e
s
t o

n
 0

4
 F

e
b
ru

a
ry

 2
0
2
0



A parallel-GPU code for asteroid aggregation 751

Figure 1. Schematics of BH clustering criteria.

it very easy to implement and parallelize. However, they are

extremely inefficient from a computational point of view: N(N −
1) interactions must be computed for each body involved in the

simulation and this leads to a time complexity of O(N2). A direct

consequence is that such codes are limited in terms of the maximum

number of bodies to be handled. The bottlenecks are simulation

time that becomes prohibitively long, and hardware capabilities

with computer running out of memory, both effects occurring very

rapidly as N increases. The direct N2 method, even with advanced

parallelism on processing units, is not suitable for efficient asteroid

aggregation simulations that can involve more than few thousands

of bodies.

2.1.2 Hierarchical treecode algorithm

Algorithms based on tree data structures rely on more dynamic

and adaptive computations that allow for a significant reduction

of time complexity up to O(N log (N)). The Barnes–Hut (also

referenced as BH in the following) algorithm (Barnes & Hut 1986)

groups particles using a hierarchy of cube structures. A node in

the algorithm corresponds to a cube in physical space. Because of

the use of octrees, each node has eight child nodes obtained by a

simple homogeneous spatial subdivision performed along the three

principal axes of the system. The tree is therefore built by recursive

subdivision until each node of the tree contains zero or one particle.

The structure is adaptive, implying that the size of the tree is not

fixed but comes as a result of the repartition of the particles in the

3D space. The data structure can grow naturally to more levels in

regions where the particle density is high. The octree is rebuilt at

each time-step1 of the dynamic simulation and consists of bodies

stored at terminal nodes, called leaf nodes, and intermediary internal

nodes that behave as clusters of particles. The algorithm uses the

newly obtained adaptive octree data structure to compute the centre

of mass of the cubes involved in the simulation and the forces

applied to each body: body-to-body and body-to-node interactions

are considered.

2.1.3 Clustering

The algorithm relies on the idea that the force generated by a cluster

of bodies can be approximated by treating the cluster as a single

body. The accuracy of the approximations depends on the distance

D of the cluster from the body and the radius r of the cluster of

particles, as shown in Fig. 1. We can therefore define the accuracy

through θ = r/D, a user-tunable parameter used to set the error of

the method. The position of centre of mass and total mass of the

node is computed for each leaf and internal node of the BH tree.

1See Section 4.1 for more details on the choice of simulation time-step(s).

For a given internal node Nint:
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⎪
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⎪
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⎩

XNint
= 1

mNint

8
∑

i=1

Xchild[i]mchild[i]

YNint
= 1

mNint

8
∑

i=1

Ychild[i]mchild[i]

ZNint
= 1

mNint

8
∑

i=1

Zchild[i]mchild[i]

mNint
=

8
∑

i=1

mchild[i]

(2)

where (XNint
, YNint

, ZNint
) are the coordinates of the position vector

RNint
along the three principal axes of the system, while mchild[i]

and (Xchild[i], Ychild[i], Zchild[i]) are, respectively, the mass and the

coordinates of the position vector along the principal axes of the

i-th child node of Nint.

2.1.4 Force computation

After the octree is built and all nodes contain the required informa-

tion, parameter θ is computed for each body-node pair. (B, N ):

θB,N =
Radius of N

RN − RB

. (3)

This is compared with the value θ chosen by the user to set the

accuracy and performance of the force estimation algorithm. A

more detailed discussion on the effects of the user-tunable parameter

θ on both computational time and accuracy of the algorithm is

provided in Section 4.1. For each body B, the tree is traversed

from its root downwards along multiple branches and checks are

performed at each encounter with a node N , in order to compute

force contributions:

(i) If N is a leaf node, the force contribution is evaluated as a

classical body-to-body interaction:

FN→B = GmBmN

(

XN − XB

r3
N−B

,
YN − YB

r3
N−B

,
ZN − ZB

r3
N−B

)

.

(4)

(ii) If N is an internal node and θB,N < θ , the traversal is

interrupted at this node and the force contribution is evaluated:

FN→B = GmBmN

(

XN − XB

r3
,
YN − YB

r3
,
ZN − ZB

r3

)

,

(5)

where r is the distance from the particle to the centre of mass of the

cube softened according to a parameter ǫ:

r =
√

(XN − XB)2 + (YN − YB)2 + (ZN − ZB)2 + ǫ2. (6)

ǫ is called softening length and, as its name suggests, ensures the

‘softening’ of gravitational forces when RB ≈ RN , to avoid very

high values of speed and acceleration that the integrator could not

handle. Studies show that, without opting for a time-dependent

adaptive softening parameter, ǫ must be a factor of at least twice

the minimum distance between a body and the attractive cluster

involved (Rodionov & Sotnikova 2005). In the case of finite-

size body interaction, with contact and collisions, the softening

parameter is not needed, since no overlap between the centre of

mass of a body and a node could occur.

(iii) If N is an internal node and θB,N > θ , the traversal contin-

ues along all eight child nodes of N .
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2.1.5 CUDA implementation of GPU-parallel BH

The implementation of the BH algorithm on a GPU using

CUDA language is inspired by the work of Burtscher and Pin-

gali (Burtscher & Pingali 2011). The physical domain is divided

into subdomains and the bodies are grouped following an octree

structure. Similar to what was done by Burtscher & Pingali

(2011), the numerical tasks to follow the BH algorithm have been

divided among five kernels, which are written to minimize memory

accesses. The tasks are executed sequentially on the GPU as follows:

(i) compute bounding box around all bodies (root of the octree);

(ii) build the octree;

(iii) compute mass properties of each node;

(iv) sort bodies by distance (to speed up force evaluation);

(v) compute forces.

Each body is assigned to a thread of the GPU, which traverses

the octree to compute all force contributions acting on the body.

Thanks to sorting, neighbour bodies require the traversal of a similar

subpart of the octree, whereas distant bodies may require completely

different traversals.

2.2 Rigid-body dynamics and contact interactions

Modules (iii) and (iv) deal with the creation of bodies and the

definition of their inertial and surface properties. The latter depend

on the contact method the user choose to use, among those available

in (ii). The following paragraphs recall briefly the main features

of the code concerning body handling and contact interactions,

focusing on the parameters relevant to each method. References are

provided for a more complete discussion of each method.

2.2.1 Creation of bodies and their properties

The shape of each body can be selected by the user among common

geometries (sphere, box, cone, ...) or directly input by the user as a

triangulated mesh. The shape can also be generated as the convex

envelope of a randomly created cloud of points. When dealing

with a large number of bodies, methods exist to select their spatial

distribution or pattern (regular grid, randomly uniform, Poisson-disc

sampling, ...) and bounding domain (common geometry or fitted in

a triangulated mesh). Each body possesses 6 degrees of freedom,

including both translational and rotational 3D motion. Random

distribution routines can be used to set physical properties (size,

density, ...) and dynamical state (position, velocity, angular position,

angular velocity) of bodies as well. Finally, the surface properties

of each body can be defined. These are directly correlated to the

contact method in use. Surface/contact parameters are discussed

below both for smooth and for non-smooth methods. More details

can be found in the documentation of Tasora (2019).

2.2.2 Collision detection

Collision detection is performed into two steps: a broad phase

and a narrow phase. During the broad phase, pairs of bodies

whose geometrical boundaries are close enough are identified. The

bounding volume of a body is estimated based on its velocity

and integration time-step. If the bounding volume of two bodies

overlaps, the narrow phase is performed and contact points are

precisely found using a GJK algorithm (Tasora & Anitescu 2010;

Ferrari et al. 2017).

2.2.3 Contact method: smooth contacts

The Smooth Contact Method (SMC) implemented in C::E (Fleis-

chmann et al. 2015) is a force-based soft-body DEM method. The

equations of motion are formulated as a system of Differential

Algebraic Equations (DAEs), namely a system of Ordinary Differ-

ential Equations (ODEs) to reproduce the dynamics and Algebraic

Equations (AEs) for the kinematic constraints. Forces are exchanged

between bodies at contact using a two-way normal-tangent spring-

dashpot system. The constitutive model of the spring-dashpot

system can be selected between the simple Hooke and the more

realistic Hertzian model. Relevant parameters of the SMC are

coefficients of friction (static, dynamic, spinning), cohesion (as

an attractive force at contact points), stiffness, and damping. As

any soft-body DEM, it is suitable for smooth problems with no

discontinuities but requires very small time-steps for cases with

high stiffness to avoid numerical instability.

2.2.4 Contact method: non-smooth contacts

The Non-Smooth Contact (NSC) method implemented in C::E

(Anitescu & Tasora 2010; Tasora & Anitescu 2010; Tasora &

Anitescu 2011) is an impulse-based hard-body method. Unlike

the SMC, the equations of motion are formulated as Differential

Variational Inequalities (DVIs) and require the solution of a Cone

Complementarity Problem (CCP) at each time-step. The NSC

shares with the SMC parameters defining friction (static, dynamic,

and spinning) and adhesion. The handling of contact interaction

is, however, much simpler and solely relies on the restitution

coefficient, defined as the ratio between velocity after and before

the collision. Due to its impulse-momentum formulation, the NSC

is best suited for problems with discontinuities or with nearly rigid

contacts (high stiffness).

2.2.5 Contact method: non-smooth contacts with compliance

In the context of non-smooth dynamics, a method is available to

simulate contacts with compliance and damping (Tasora et al. 2013).

As for the NSC method, the equations of motion are formulated as

DVI and are based on an impulse-momentum formulation. However,

compliance and damping are enforced at the constraint level and

the method is suitable not only for non-smooth problems but also to

simulate the elastic and smooth behaviour typical of soft-body DEM

models. Also, since it does not rely on the solution of a DAE, but its

solution is found after solving a CCP-based DVI, this method does

not require the very small time-step required by soft-body DEM. Its

parameters are analogous to that of SMC: friction (static, dynamic,

and spinning), cohesion, stiffness, and damping.

2.3 Numerical solvers

As discussed in the previous section, when using the SMC approach

the dynamics are written as a system of DAE, and when using the

NSC approach the dynamics are written as a DVI problem. From

the numerical point of view, DAEs require to numerically integrate

ODEs, while DVIs require the solution of an optimization problem

at each time-step. Despite the radical difference in approaching the

solution, both approaches require a time stepper and a non-linear

solver. A large variety of time steppers and solvers is available in

C::E (Tasora 2017): the most interesting for gravitational–granular

dynamics applications include symplectic methods (semi-implicit

Euler, leapfrog) and Runge–Kutta methods (RK45, explicit Euler,

MNRAS 492, 749–761 (2020)
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Figure 2. Example of global contact graph construction.

implicit Euler, trapezoidal, Heun), to be complemented with either

iterative or direct solvers. In particular, symplectic methods are

very suitable for gravitational dynamics problem, and semi-implicit

Euler method provides the best performance among them, when

paired with an iterative solver (Anitescu & Tasora 2010; Mangoni,

Tasora & Garziera 2018). This is suitable and effective to solve both

DAE and DVI problems.

2.4 Post-processing: aggregate identification

Module (viii) contains routines for the post-simulation analysis

of results. We provide here one example that applies to the case

of rubble-pile aggregation simulations. One of the tasks to be

performed after such simulations is to identify the aggregate(s) of

bodies and determine their properties such as shape, mass, inertia,

and void fraction (porosity).

2.4.1 Aggregate identification

The single or multiple aggregates obtained are identified through a

method based on graph theory (Wilson 1996). First, the graph G is

initialized to represent the whole system. Bodies are vertices of G

and the size of the vertex set E(G) is N (number of bodies). Edges

of G represents physical contacts between objects: Two bodies Mi

and Mj, represented by vertices Pi and Pj of G, respectively, are in

contact if and only if there is an edge {Pi, Pj} linking Pi to Pj. At

the end of the simulation, a contact container is filled with pairs IDi,

IDj corresponding to pairs of bodies in contact with each other. The

graph G is filled with all existing contacts, drawn as edges in the

graph. A schematic example is shown in Fig. 2.

Aggregates obtained correspond to the connected subgraphs of G.

Single bodies that do not belong to any aggregate (e.g. because they

have escaped from the re-aggregation processes) are represented by

isolated vertices. The number of aggregates is defined as the number

of connected components of G with a size greater than one, that is

the number of the subset made of the connected subgraphs of G with

more than one vertex. A Depth First Search algorithm (Wilson 1996)

is used to provide an effective way of traversing simple graphs. The

output is a classification of the edges and a spanning tree that can

be used for finding the connected components of a graph. Using

such an algorithm results in a complexity of O(N + E) (where N

and E are, respectively, the number of vertices and edges of G) for

the differentiation process.

2.4.2 Shape of the aggregate

The problem of defining the shape of a body made up of several

discrete elements is not trivial and has a non-unique solution: Infinite

surfaces exist to envelope a given set of points. After identifying the

aggregate and its children bodies, we address the problem of defin-

ing its overall shape by means of an alpha-shape algorithm (Edels-

brunner & Mücke 1994). This computes the surface by enveloping

a given set of points: in our case, all vertices of children bodies.

Unlike the simpler convex hull envelope, the alpha-shape surface

is, in general, non-convex. The working principle of the alpha-shape

algorithm can be visually represented as follows. We start from a

cloud of points (vertices of children bodies). Let us imagine to

roll a sphere of radius Rα over the cloud of points. The alpha-shape

envelope is the surface created by the sphere as it rolls over the cloud

of points. In the limiting case where Rα = ∞, the surface enveloping

the cloud would be a convex hull. For a finite value of Rα , non-

convex envelopes can be obtained. Typically, Rα should be of the

same order of magnitude of the mean distance between vertices. As

mentioned, the problem has a non-unique solution and the choice

of Rα makes the process arbitrary. This is affecting in a relevant

manner the computation of global properties of the aggregate such

as volume, void fraction (porosity), and shape-related quantities

(elongation, axial ratios, ...). To solve for this arbitrariness, we

define an admissible range of enveloping surfaces, within a range

of limiting cases. In general, two limiting surfaces can be defined:

(i) the minimum volume surface, which is found using the minimum

value of Rα such to have no surfaces delimiting cavities inside the

aggregate, and (ii) the maximum volume surface, which is the con-

vex hull of the aggregate, obtained with Rα = ∞. Global properties

are then computed considering the uncertainty on their values due

to the arbitrary definition of the surface, and range between values

computed using minimum and maximum volume surfaces.

3 VA L I DAT I O N SC E NA R I O S

Original modules of C::E dealing with the modelling of granular

dynamics have been widely tested and validated against benchmark

and experimental tests [see the ‘Validation Studies’ section in

Tasora (2019), Heyn (2013), and others]. The results of further

test simulations are shown here to validate the gravity modules

and their integration into the overall implementation. In particular,

the accuracy of direct N2 and octree gravity models is assessed

and their performance is compared in terms of computational

time. Conservation of energy, and linear and angular momentum,

is checked for the purely gravitational case and for the coupled

gravity–collision problem.

3.1 Direct N-body integration

The first set of tests concerns the accuracy of force computation for

the direct N2 method. Unlike the octree method, direct integration

considers all gravitational interactions with no physical approxima-

tion. We performed several simulations of direct integration between

mutually interacting bodies and in particular:

(i) conic solutions of the two-body problem are reproduced as a

function of orbital energy;

(ii) orbits of planets in the Solar system are propagated for

2000 yr;

(iii) Halo and Lyapunov orbits around collinear libration points

of the Sun–Earth and Earth–Moon circular restricted three-body

problems (CR3BP) are reproduced.

When compared to the expected analytical (two-body problem) or

numerical solution (N-body problem and CR3BP), the code is able

to reproduce exactly the result, where the term exactly (here and
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Figure 3. Validation scenario: in-plane (x and y components in the ecliptic

J2000 plane) wobbling of the Sun around the barycentre of the Solar

system during a 100-yr time span. A comparison between JPL’s Horizons

ephemerides2 (solid line) and numerical integration (cross markers) is

shown.

from now on) implies to within round-off accuracy or numerical

integration truncation errors. As mentioned in Section 2.3, the

semi-implicit Euler method is a very effective choice to solve grav-

itational dynamics, thanks to its symplectic nature that guarantees

conservation of energy within the system. Energy and linear and

angular momentum are conserved exactly for all cases, consistently

with the nature of the direct N2 formulation that introduces no

approximation errors in the model. The successful outcome of

the above tests guarantees that gravitational forces are computed

correctly for each body. Fig. 3 shows an example related to one of

the aforementioned scenarios. The expected in-plane wobbling of

the Sun around the barycentre of the Solar system (data from JPL’s

Horizons ephemerides, solid line) is compared, and it matches well

with the outcome of a direct N2 integration of the motion of the Sun

and planets during a 100-yr time span (cross markers).

3.2 GPU-parallel octree

We evaluate here the performance of the GPU-parallel imple-

mentation and compare it to direct N2 integration in terms of

computational time and accuracy. Results presented here were

obtained using a medium-range laptop with

(i) Intel(R) Core(TM) i7-6500U CPU @3.1Ghz;

(ii) Nvidia Geforce 940M (384 CUDA cores).

Although certainly dependent on hardware architecture, the results

shown here identify trends and behaviours that are not dependent

on hardware, but only on the algorithms used. To assess the

performance of algorithms, two different sets of simulations are

performed. For each simulation, bodies are created at time zero in

random positions within a cubic domain and with a uniform distri-

bution. Collision detection and interaction are disabled during the

entire duration of the simulation, such that bodies only experience

mutual gravity. The results of validation scenarios are in agreement

with previous assessments concerning tree codes (Barnes & Hut

1986; Hernquist 1987).

3.2.1 Computational time

A first set of simulations is arranged to compare the computational

time required by each algorithm. Simulations are performed for

2https://ssd.jpl.nasa.gov/
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Figure 4. Time to compute one integration time-step as a function of

the number of bodies in the simulation. Results are shown for direct N2

integration versus BH-GPU-parallel algorithm (θ = 0.1, 0.25, 0.5, and 0.75).

several scenarios, including N ranging from 10 up to 104, and using

both direct N2 integration and BH-GPU algorithm with different

levels of accuracy (θ = 0.1, 0.25, 0.5, and 0.75). We compare the

time required by the code to compute one integration time-step.

In principle, results can be compared after computing only one

time-step. However, to avoid any bias and for the sake of a more

accurate profiling, we integrate the dynamics forward for several

time-steps and take the average time required to compute one of

them. Also, we want the dynamics to be steady such to not interfere

with the evaluation of performance. To this goal, we use a very

short time-step (10 s) and a total duration of the simulation of 104 s.

Results are shown in Fig. 4 using a logarithmic scale. As expected,

the cost of direct integration increases with N2. As discussed in

Section 2.1, the BH-GPU algorithm executes a sequence of kernels

and the largest amount of computational time is shared between

the creation of the octree and the evaluation of the gravitational

body–body or body–cluster interactions. Both octree and gravity

evaluation depend on the number of bodies in the system, but to

very different extents. Fig. 4 shows clearly that for a low number

of bodies, the computational time required is dominated by the

octree creation phase, which is independent from the choice of the

accuracy parameter θ and increases very slowly with N. Conversely,

for a high number of bodies, the time expense is dominated by the

evaluation of the gravitational interactions, which instead depends

on θ . When comparing direct N2 with BH-GPU, it clearly appears

that for a low number of bodies (approximately N<700, the same

for which θ is not affecting the time expense of BH-GPU), the

process of building the octree makes the BH-GPU algorithm much

more expensive than direct N2 integration. Conversely, for a high

number of bodies, the BH-GPU is much faster than direct N2. For

N = 1000, the BH-GPU turns to be nearly two times faster, and

for N = 104, it is more than one order of magnitude faster. For a

further increased number of bodies, direct N2 simulations become

practically unfeasible and BH-GPU becomes the only feasible

option. As discussed, BH-GPU algorithm can be tuned in accuracy:

This affects the computational time as shown for different θ values

used in Fig. 4. In this high-N regime, the computational time of

BH-GPU ranges from O(N2) (with θ = 0, i.e. no clustering of

bodies, equivalent to direct integration) up to O(N log (N)) as θ

increases.

MNRAS 492, 749–761 (2020)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

9
2
/1

/7
4
9
/5

6
7
2
6
4
3
 b

y
 g

u
e
s
t o

n
 0

4
 F

e
b
ru

a
ry

 2
0
2
0

https://ssd.jpl.nasa.gov/


A parallel-GPU code for asteroid aggregation 755

0 2 4 6 8 10

time [s] 106

10-6

10-4

10-2

100

m
a

x
im

u
m

 p
o

s
it
io

n
 e

rr
o

r 
[%

]

=0.1

=0.25

=0.5

=0.75

Figure 5. Maximum relative position error in time. The error is computed

for simulations of 1000 bodies with BH-GPU-parallel algorithm (θ =
0.1, 0.25, 0.5, and 0.75), and it is relative to a simulation with direct N2

integration.

3.2.2 Accuracy

A second set of simulations is used to assess the accuracy of the

BH-GPU algorithm. In this case, we wait for the bodies to complete

a full orbit around the barycentre of the system and come back to

their initial state at rest. Since collisions are disabled, all bodies

are undisturbed in their gravity-driven path and the system exhibits

a nearly perfect energy-conserved pulsating contracting–dilating

behaviour. This simulation time frame gives us a commensurate

estimate of typical time duration of aggregation phenomena and

provides us with every possible gravity-related condition, i.e. both,

when bodies are far away and when they are close to each other.

Compared to the first set of simulations, we use a larger time-step

and we integrate forward the dynamics for a much longer time.

Results are shown here for the case of N = 1000 and for θ = 0.1,

0.25, 0.5, and 0.75. A simulation using direct N2 integration is also

performed and used as a real-world result to assess the accuracy

of the BH-GPU algorithm. At each time-step, the position of each

body in the system is compared to its corresponding real-world one

and the relative error is evaluated as percentage of the latter

ei(t) =
‖r iBH

(t) − r i
N2

(t)‖
‖r i

N2
(t)‖

100, (7)

where r iBH
(t) and r i

N2
(t) are the positions of body i at time

t when using, respectively, BH-GPU and N2 algorithms. Fig. 5

shows the maximum position error among bodies in the system at

each time-step of the simulation. As expected, the error increases

monotonically with θ , which is a direct mean and user-tunable

parameter to select the desired level of accuracy. Few more features

are worthy for a discussion. The error is shown to be time dependent

and exhibits a peak at half-simulation time, i.e. at the end of

contraction phase. This is expected, as the relative position error

depends on the magnitude of accelerations acting on the bodies. The

higher the acceleration, the higher the relative error when evaluating

body–body versus body–cluster interactions. Accordingly, the error

is shown to be higher in the middle part of the simulation, where

bodies are closer to each other, and it increases during contraction

and decreases as they get further to each other. It is interesting to look

at the worst case depicted in Fig. 5. At the end of contraction phase,

10-3 10-2 10-1

t [s]

10-6

10-4

10-2

100

H
e

rr
 [
%

]

simulation data

f(x)=x

Figure 6. Error on total angular momentum of the system after one

simulation time-step, with both gravity and contact interactions. Error is

shown in percentage, normalized to the initial value of angular momentum.

The linear trend of the error as a function of time-step duration is highlighted.

the error between the two extremes θ = 0.1 and 0.75 is of about two

orders of magnitude. However, the maximum relative error obtained

using θ = 0.75 is still quite small, of the order of 0.3 per cent. Also,

it is worth noting that this simulation provides us with an extremely

conservative estimate of the accuracy. This is because real-world

scenarios include the dissipative effects introduced by collisions

and often entail only a part of the contraction phase simulated here.

For example, if collisions were enabled in the scenario considered

here, they would become very relevant starting at approximately

2.5 · 106 s (transient phase) and the bodies would never get as close

to each other as they are in the [3.5, 6.5] · 106 s range due to their

physical extent (aggregate phase). They will therefore experience

lower gravitational acceleration actions and position errors due to

BH-GPU clustering: surely lower than the worst-case 0.3 per cent

value found here.

3.3 Collisions

A set of simulations is performed to test conservation laws during

collisions and contact interactions between bodies. In this case,

we simulated the settling dynamics of an already formed self-

gravitating aggregate with ∼1000 convex-hull bodies. The dynam-

ics are propagated forward for one time-step and contacts are solved

using both smooth and non-smooth methods. The difference of

physical and dynamical quantities is monitored. Several simulations

are performed using the SMC method and different time-steps,

ranging between 10−3 and 10−1 s. The same is done using the NSC

method that is able to handle higher time-steps, between 10−1 to

10 s. A more detailed discussion on time-step selection criteria is

reported in Section 4.1. Unlike the purely gravitational case, energy

and angular and linear momentum are not conserved exactly and

collisions introduce approximation errors in the models. Since the

semi-implicit Euler method is a first-order integrator, the error is

expected to depend linearly on the time-step. This is confirmed by

our simulations, as shown in Fig. 6, which refer to the SMC case.

It shows the angular momentum error in percentage, normalized to

its initial value, for different time-steps. As expected, a clear linear

trend is identified for the error, as it scales with the time-step.

4 TH E A S T E RO I D AG G R E G AT I O N PRO B L E M

This section discusses how rubble-pile scenarios are simulated using

the code described above (Section 2). We discuss the appropriate
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choice of methods to use, how to tune their parameters, and how to

set up the numerical simulation.

4.1 Addressing the problem

To properly address the problem of simulating rubble-pile dy-

namics, we study the fundamental interactions that occur between

bodies during gravitational aggregation phenomena. These can be

associated with phases of the gravitational aggregation process:

(i) Gravitational phase: The dynamics of the bodies is only

driven by mutual gravity and they do not experience contact

interactions.

(ii) Transient phase: This phase begins as bodies start to collide

with each other and form small aggregates of few bodies each.

This phase is characterized by an extremely chaotic motion of the

bodies that are simultaneously subjected to both gravity and random

collisions. From a macroscopic point of view, the overall dynamics

of the system is dominated by mutual gravity between bodies and

newly forming aggregates. However, at particle level, the dynamics

is dominated by collisions, which creates impulsive (non-smooth

contact) or quasi-impulsive (smooth) forces on a much faster scale

than gravitational one. The combined effects at system and body

level, and the dissipative nature of collisions, lead eventually the

system to a steady-state condition.

(iii) Aggregate phase: After transient phase, the system reaches

a steady-state equilibrium where bodies are either clustered in one

or more aggregates, or dispersed.

The most challenging phase to be simulated is certainly the transient

phase, where both gravitational and collision dynamics play a major

role. Since gravity and collisions act at different scales, we explore

the capability and suitability of the code by studying such dynamics

separately. This leads to meaningful and general conclusions on

how to numerically simulate such interactions, also applicable to

the fully coupled problem.

4.1.1 Gravitational dynamics

In this early stage of the aggregation process, bodies are not

in contact with each other and only interact gravitationally. As

discussed in Section 3, the choice of the most suitable method

depends on the number of bodies involved: direct N-body for few

bodies, and octree for a large number of bodies with a hardware-

dependent threshold typically between 1000 and 10 000 bodies. In

order to correctly simulate the N-body dynamics, the integration

time-step �tg must be consistent to the characteristic time Tg of the

problem and must sample the dynamics at least twice per Tg. In

particular, the following must be satisfied (Ferrari et al. 2017):

�tg <
Tg

2
=

1

2
√

Gρ
, (8)

where G is the universal gravitational constant and ρ is the material

density of the bodies. For typical values of asteroid material

density ranging between 1 and 4 g cm−3 (Richardson et al. 2002b),

maximum time-steps are of the order of thousands of seconds.

4.1.2 Collisional dynamics

As done for gravitational dynamics, we study here the fundamental

features related to collisional interactions between bodies. We

analyse the different phases and numerical tasks involved when

solving for collisions and derive numerical constraints. From the

numerical and algorithmic point of view, collisional dynamics

requires the solution of two different problems: collision detection

and collision output determination.

The collision detection algorithm operates at each time-step to

identify contacts between body pairs. To ensure proper collision

detection, the time-step must be adequate: If the time-step is

too high, a collision could be missed. To quantify the dynamical

constraint on the time-step, we consider here the case of a collision

between two spheres of radius R. In particular, we consider the

limiting case when a collision is not detected. It is easy to assess that,

for the case of a direct collision occurring along the line connecting

the centres of the spheres, the distance travelled during the time-step

�td must be lower than 4R, and then

�td <
4R

v
, (9)

where v is the relative velocity between bodies. Equation (9) can be

generalized for the case of grazing collisions (Sánchez & Scheeres

2011):

�td <
2
√

4Rδ − δ2

v
, (10)

where δ is the maximum overlap allowed between bodies: the

smaller the overlap allowed, the smaller the time-step required

and the more precise the detection algorithm. Note that the case

of direct collision in (9) can be retrieved from (10) when δ = 2R

(complete overlapping). When considering a system of N-bodies,

v is the maximum relative velocity in the system and 2R is the

sum of the radii of the two smallest particles. Also, although (10)

refers to a simplified case with spheres, the same relation can

be conservatively used with convex hulls of any shape, where R

represents their minimum characteristic size.

The second task is to solve for the actual collisional dynamics

when bodies are in contact, in order to compute the collision

output. This task is performed by the contact method selected,

as discussed in Section 2.2. Hard- and soft-body methods deal

with a very different modelling of the physics at contact. Hard-

body methods model instantaneous collisions and deal with non-

smooth dynamics based on impulse-momentum formulation. Since

the collision is instantaneous, it does not make sense to speak of

characteristic time involved in the dynamical process and then to

derive a requirement on the time-step from that. However, the time-

step still plays a major role and has to be selected properly to

ensure the stability of the numerical solver. Hence, unlike gravity,

collision detection, and, as discussed below, soft-body methods,

the choice of the time-steps for hard-body methods is not driven

by dynamical constraints, but by the properties of the numerical

solver. We consider here the case of the semi-implicit Euler method.

Looking at its stability region (Niiranen 1999), we can derive a

constraint on the time-step to be used, as a function of the roots of

the characteristic equation. However, our problem involves many

bodies and requires the solution of a CCP at each time-step: The

roots of the characteristic equation of such a problem cannot be

easily determined. Alternatively, an empirical but very effective

method is to determine a proper time-step by comparison against

known benchmark problems or known behaviour of the system.

For example, when benchmark problems are not available, a very

convenient way is to tune the time-step according to a desired level

of accuracy in terms of the conservation of total angular momentum

of the system Htot. As discussed in Section 3, the error depends

linearly on the time-step. This linear dependence provides us with a
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A parallel-GPU code for asteroid aggregation 757

very effective means to estimate and select properly the time-step.

Further examples on how the time-step can be set are provided in

C::E technical documentation and validation studies (Tasora 2019),

with reference to non-smooth (NSC) and non-smooth visco-elastic

methods.

On the other hand, unlike hard-body ones, soft-body methods

directly rely on the physical modelling of collisional dynamics.

The collision occurs in a finite time and foresees the visco-elastic

behaviour of the bodies at contact. Collisions are modelled by means

of a spring-dashpot system at the contact point. We can therefore

identify a characteristic time related to the fundamental frequency of

the spring-dashpot system ωk (Tsuji, Kawaguchi & Tanaka 1993):

Tk =
2π

ωk

= 2π

√

mr

k
. (11)

When considering a system of N-bodies, ωk is the highest frequency

in the system, i.e. made of the combination of highest stiffness k

and lowest reduced mass mr.
3 Accordingly, the time-step must be

at least two times smaller than the characteristic time

�tk <
Tk

2
=

π

ωk

. (12)

Practical applications typically make use of smaller time-steps,

ranging from 0.1Tk to Tk/π (Sánchez & Scheeres 2011), or even

smaller than 0.01Tk (Herrmann & Luding 1998).

To summarize, two different constraints on the simulation time-

step can be derived after the analysis of the collisional process. The

first one is expressed by equation (10). It concerns the capability

of the code to properly detect collisions and does not depend

on the contact method in use. The second one depends on the

contact method in use. In case of impulsive contacts, it depends

on the stability of the numerical solver and can be determined

empirically. In case of smooth dynamics, it depends on the dynamics

of contact as expressed in equation (12). Both requirements shall be

satisfied to properly simulate collisional processes. This duality is

easily resolved by enforcing the most stringent requirement, i.e. by

choosing the lowest time-step required. As a general rule, collision

detection will be the bottleneck for high-velocity impacts and vice

versa, and an accurate collision output will be the driving criteria in

case of low-velocity collisions. In the attempt to quantify in a more

rigorous way this general criterion, we investigate possible links

between equations (10) and (12). Indeed, while the two effects

appear not to be directly coupled for hard-body methods, some

considerations can be made for the case of soft-body methods, where

both (10) and (12) are built upon the dynamics of the problem. In

particular, it is reasonable to assume that the maximum overlap

allowed during collision detection δ must be consistently smaller

than the maximum �x contraction of the spring-dashpot system.

If this is not satisfied, the visco-elastic behaviour at contact will

not be accurately resolved. The maximum contraction �x of a

spring-mass system can be computed based on energy conservation

consideration, by equating the total energy right before contraction

(only kinetic energy, no contraction) to the total energy at maximum

contraction (only potential energy, zero velocity):

1

2
mrv

2 =
1

2
k�x2

s (13)

from which is easy to find that

�xs =
v

ωk

. (14)

3mr is the reduced mass of the two least massive bodies in the system.

In the case of a spring-dashpot system, the total energy is no longer

conserved and a fraction of the initial kinetic energy is dissipated.

The maximum contraction will be lower in this case, reduced by a

factor of ξ < 1

�xsd = ξ
v

ωk

. (15)

Now we define the maximum overlap allowed during collision

detection δ as a small fraction of �xsd:

δ = ηξ
v

ωk

(16)

with η < <1, or equivalently

δ = ε
v

ωk

(17)

with ε = ηξ < <1. We can now substitute (17) into (10) and get

�td <
2
√

4Rε v
ωk

− ε2 v2

ω2
k

v
. (18)

This relation correlates the two time-steps involved in the numerical

simulation of collision processes. In particular, we compare (18)

with (12). The collision detection time-step �td and the stiffness

time-step �tk are equal if

2
√

4Rε v
ωk

− ε2 v2

ω2
k

v
=

π

ωk

, (19)

which can be rewritten as

4Rε
v

ωk

− ε2 v2

ω2
k

=
π2

4

v2

ω2
k

(20)

and finally, after trivial algebraic manipulation, as

v =
4Rε

π2

4
+ ε2

ωk. (21)

This provides us with the quantification of the general criterion

stated above. In particular, when selecting the time-step, collision

detection will be the driving criterion when �td < �tk, i.e. when

v >
4Rε

π2

4
+ ε2

ωk (22)

and vice versa. Equation (22) gives us a useful condition to eval-

uate the tightest constraint through a simple comparison between

maximum velocity and highest frequency in the system. Also, it

correlates them with the accuracy of collision detection through ε.

As expected, the problem of missing grazing collisions is an issue

for high velocities and vice versa. More in detail, the break even

point of the criterion is driven by the behaviour v ∼ εωk, where ε is

very small and ωk is typically very high. Note that the dependence

on R shown in (22) might be misleading, since R appears at the

denominator of ωk as well. In particular, the mass is proportional to

R3 and then the right-hand side of equation (22) is proportional to

∼1/
√

R.

The last point to discuss is about the choice of the contact method

(SMC versus NSC versus NSC with compliance) to be used. As

mentioned in Section 2.2, SMCs are naturally suited for smooth

problems (low-velocity contacts), NSC for non-smooth problems

(high-velocity impacts) while in principle, the NSC method with

compliance can be used for both. A more detailed comparison

between the aforementioned methods, including simulation of

different scenarios, evaluation of performance, and criteria for

selection of parameters, is reported in C::E technical documentation

MNRAS 492, 749–761 (2020)
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(Tasora 2019). Studies to assess the accuracy of such methods

are also reported. Unlike gravity, where the exact dynamics of

the system are known and can be computed, contact methods do

not model in a comprehensive fashion the physics involved in

collisional processes. While the results of gravity algorithms can

be validated using an analytical exact formulation, the only way to

assess the accuracy of contact methods is through experimental test.

As mentioned in Section 3, the documentation of C::E (Tasora 2019)

reports the results of several benchmark scenarios, including cone

penetration test, standard triaxial test, and direct shear test. Further

analytical and experimental validation scenarios are reported in

Heyn (2013).

4.1.3 The gravity–collision problem

The full gravitational aggregation problem features both gravita-

tional and collisional dynamics and, in principle, both of them

constrain the choice of the simulation time-step. However, gravity

and collisions act on very different time-scales and the characteristic

time of gravity is typically several orders of magnitude higher than

that of collisions. Also, their dynamics are not coupled. For these

reasons, it is not required to perform the simulation using only one

time-step [which would be the smallest one, i.e. the one related to

collisions �tc = min (�tk, �td)]. Instead, as done in Sánchez &

Scheeres (2012), the aggregation scenario can be simulated using

two time-steps: the gravity time-step �tg, determined using (8),

and the collision time-step �tc, determined using either (10) or

(12). In particular, we advance the simulation of �tc to properly

solve collisional dynamics, but we evaluate gravity (through N2

interactions or by building the octree) every �tg. This allows

for consistent savings in terms of computational time, without

jeopardizing the accuracy of results.

In this context, a more accurate modelling of the local gravity

interactions between fragments would not be beneficial towards

a more realistic representation of the granular N-body problem.

Past astrodynamics studies have clearly shown that the mutual

gravitational dynamics between objects of irregular shape, rep-

resented using shape-based (e.g. polyhedron) models, are very

different from the case of point-mass source interaction (e.g.

Fahnestock & Scheeres 2006; Ferrari & Lavagna 2018). How-

ever, the granular N-body problem is very different from that of

astrodynamics applications, which consider purely gravitational

motion with no contact and collision interactions. In our case,

due to the presence of both gravity and contact interactions, acting

at different time-scales, a noticeable effect of deviations due to

enhanced gravity modelling would appear after a time when many

contact/collision interactions have already occurred. In this case,

the chaotic nature of the contact/collision interactions represents

a much higher source of uncertainty compared to the accuracy of

local gravity models. Because of this, all authors identify the better

modelling of contact/collision interactions as the way to enhance

the realism of simulations (e.g. Michel et al. 2004; Richardson

et al. 2009; Movshovitz et al. 2012, and others) and agree to

using octrees, at the cost of a lower accuracy of local gravity

computations. Unlike astrodynamics applications, the goal here

is not to accurately reproduce the coupled and orbital-attitude

dynamics of each fragments, but rather to reproduce the global

behaviour of the system. Relevant parameters concerning gravity

are indeed global ones, such as bulk density and total mass of the

system, and lower fidelity local models of gravity (as in octrees) are

widely used.

4.2 Features of the problem

As discussed, the study of the dynamics of self-gravitating ag-

gregates is a very complex problem and deals with challenges

arising from the coupled and chaotic interactions occurring within

the granular media. The study of asteroid shapes and rubble-pile

dynamics has its fundamentals in the continuum theory, extended

by Holsapple (2001, 2004, 2007, 2010) to the study of rubble-

pile objects. However, self-gravitating granular systems are not

strengthless fluid bodies and, for example, can spin faster than a

perfect fluid before shedding mass (Richardson, Elankumaran &

Sanderson 2005). Even for cohesionless aggregates, many effects

can contribute to providing strength to the aggregate. These include

surface interaction phenomena, such as friction, and other effects

related to the geometry of contact interactions between particles

such as interlocking (Sánchez & Scheeres 2012). To summarize all

these effects, the strength of a rubble pile can be quantified based

on its effective angle of friction, which results from particle shapes,

size distributions, packing, and surface friction (Sánchez & Scheeres

2012). Holsapple (2010) showed that the angle of friction is very

important to establish the domain of admissible equilibrium shapes,

and that spins at limiting conditions become larger for a higher angle

of friction, implying a larger strength of the aggregate. Accordingly,

Sńchez & Scheeres (2016) observe that the angle of friction inhibits

deformation. In Zhang et al. (2017), geometric interlocking is the

main source of shear strength for crystal structures, and higher

values can be achieved for random packing and increased size

heterogeneity of fragments. Among geometrical effects, extreme

relevance is given by the angularity of non-spherical particles. As

mentioned, spheres behave very differently from angular particles,

for which the contact dynamic problem is very different. Due to

their non-smooth shape, angular particles can foster interlocking

and between particles. In particular, spheres have only one contact

point per pair, while non-spherical objects can have several. This

has a great impact on all aspects related to contact dynamics

and to the exchange of interactions/forces at contact points. For

example, this affects how the values of parameters such as surface

friction and restitution coefficients act on a global scale, since

they both act at contact points. This means that their effect can

be greatly amplified depending on relative geometry. In practice,

friction and restitution act on a larger scale and contact interactions

result more dissipative with respect to the case of spheres. This is

confirmed by experiments showing that restitution appears to be

much lower for irregular objects (Hartmann 1978) due to the loss

of centre-of-mass kinetic energy to rotational energy post-collision

(Korycansky & Asphaug 2006). In practice, angular shapes can

increase the strength (Richardson, Elankumaran & Sanderson 2005;

Jiang, Shen & Wang 2015; Zhang et al. 2018) of the aggregate

and, through a lower restitution coefficient, increase the likelihood

of the formation of a stable aggregate during a gravitational re-

accumulation process (Walsh, Richardson & Michel 2008). The

resolution of the model, in terms of the number of bodies in the

rubble-pile aggregate, is also very relevant. Richardson et al. (2005)

show that coarse configurations consisting of a small number of

larger particles are more resistant to tidal disruption or reshaping

than fine configurations with many smaller particles, observing that

the strength of the aggregate depends on the number of particles as

well. A major role in the granular dynamics processes is played by

friction. Sánchez & Scheeres (2012) found that friction increases

substantially the limiting spin rate. For the case of angular bodies,

where the overall effect of friction is higher (many contact points),

the expected limiting spin rate would be even higher. Sánchez &
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Scheeres (2012) also observe that the addition of surface friction

makes the aggregate more stable. They conclude that friction might

modify the square root dependence between critical spin of a

granular aggregate and bulk density. The same is found by Zhang

et al. (2017), who conclude that higher interparticle friction can keep

a spinning rubble pile stable at a higher spin rate. Furthermore,

Pravec & Harris (2007) show how maximum spin rate increases

(substantially) with friction. To summarize, the chaotic dependence

between the dynamical history, initial shape/configuration of the

particles, contact/surface parameters, and properties of the final

aggregate (Zhang et al. 2017) gives a clear picture of the complexity

of the problem and the unpredictability of its dynamics.

4.3 Simulation examples

A set of simulations is performed here to extend results presented

by Ferrari et al. (2017) to an increased number of bodies and to

verify the correlations between parameters of the simulation, initial

conditions of the N-bodies, and aggregation outcome. To simulate

realistic aggregation scenarios, it is important to carefully select the

physical properties of the N-bodies and their initial dynamics. Initial

conditions play a crucial role in the formation of the aggregates and

their properties. The initial dynamical state includes the position and

velocity v0 of the centre of mass of each body, as well as the angular

position and spin rate ω0 of each body. Typical asteroid aggregation

scenarios consider these bodies as fragments created from a parent

larger body after, for example, a collision event (Michel et al. 2001;

Campo Bagatin et al. 2018). In such a case, the fragments could

share a common residual angular momentum due to spinning motion

of the parent body. Parameter � is introduced to simulate such

effect, and it is defined as the initial residual angular velocity of

the system of particles: When � �= 0, the fragments have a non-

zero orbital velocity around the centre of mass of the system. In

order to compare and extend the results in Ferrari et al. (2017),

similar scenarios are set up, using non-smooth dynamics and a

time-step of 10 s. In our simulations, bodies are convex hulls whose

shape is created as the geometrical envelope of randomly generated

points. In particular, we use 16 points, and corresponding convex

hulls have, on average, 10 vertices. Surface friction is based on

a simple Coulomb model with a coefficient of 0.6. To foster the

formation of aggregates, restitution is set to zero (perfectly inelastic

collisions). Results presented here refer to simulations with 104

bodies, with an average characteristic size of each fragment of

3 km and maximum initial distance between bodies of the order of

100 km. The physical properties of fragments are chosen among

typical values of objects belonging to the main asteroid belt or near-

Earth asteroids population. The material density is set to 3 g cm−3,

a common choice for asteroid aggregation simulations (Sánchez &

Scheeres 2011), suitable to produce values of bulk density between

1.2 and 2.5 g cm−3, typical of the asteroid population (Richardson

et al. 2002b). At initial time, the angular and centre of mass position

of bodies are randomly generated with a uniform spatial distribution,

as well as the directions of their linear and angular velocity vectors.

An example of aggregation sequence is shown in Fig. 7, for a

simplified case with 103 bodies (to facilitate the visualization of

images). While not in contact, the motion of the N-bodies is driven

solely by their mutual attraction. When fragments start to interact

at closer range, few small bodies are scattered away due to collision

mechanisms. Depending on initial conditions, one, multiple, or

no stable aggregates are eventually formed. Aggregation is not

observed when relative velocities between bodies are too high and in

particular when parameters v0, ω0, and � are above certain threshold

Figure 7. Aggregation sequence example with 1000 bodies.
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Figure 8. Properties of the final aggregate as functions of normalized initial

conditions: (a) inertial elongation, (b) the number of fragments in the main

aggregate, and (c) rotation period of the main aggregate. Uncertainties due

to the definition of the final aggregate’s surface are highlighted.

values, above which no aggregation is possible. As for the case under

study, these values are identified approximately with v0 = 95 m s−1,

ω0 = 10−1 rad s−1, and � = 5 · 10−4 rad s−1. After reaching a steady

state, aggregates are considered as single asteroids. Different kinds

of aggregates have resulted from the simulation performed.

Fig. 8 shows the properties of the largest aggregate formed after

the numerical simulation, as a function of the initial dynamics of the

system. In particular, it shows (a) the inertial elongation λ, defined

as the ratio between maximum and minimum moment of inertia of

the aggregate (Ferrari et al. 2017), (b) the number of fragments in

the aggregate Nagg, and (c) its rotation period Tagg, as a function

of initial conditions � (red diamonds), v0 (blue asterisks), and ω0

(green stars). The values of �, v0, and ω0 are shown on the abscissa

normalized to their maximum values, so that each parameter ranges

from 0 to 1. Polynomial (for λ and Nagg) and exponential (for Tagg)

fitting functions are used to highlight the trend of data distribution.

The measure of the global properties and geometry of the final

aggregate is affected by the uncertainty on the computation of

its enveloping surface. As discussed in Section 2.4, quantities

such as volume, porosity, bulk density, and size of the aggregate

are better defined within a range of values computed between a

minimum volume surface and a maximum volume surface. As a
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Figure 9. Rotation period of the final aggregate as functions of (a) inertial

elongation and (b) mass of the aggregate. Uncertainties due to the definition

of the final aggregate’s surface are highlighted.

consequence, the inertial elongation λ and the angular velocity (or

equivalently the rotation period Tagg) of the aggregate are affected

by the uncertainties of this measurement and should also be defined

within a range of values. In particular, the angular velocity of

the aggregate ωagg is measured after computing its total angular

momentum Hagg and inertia matrix I agg, as ωagg = I
−1
agg Hagg, as in

Richardson et al. (2005). The computation of the inertia tensor of

the aggregate (and its principal inertia axes) relies on the definition

of the enveloping surface. The uncertainty of this measurement

depends on the size of the single particle with respect to the total

aggregate. Hence, the accuracy depends on the number of particles

in the aggregate and it is higher for smaller aggregates (those that

spin faster in our simulations). Richardson et al. (2005) estimate

that the error in axis measurement could be as large as on particle

radius along each axis, with errors of about 10 per cent for the case

of 1000 bodies. When propagated to the computation of angular

velocity, they estimate errors larger than 20 per cent. Similarly, we

estimated the error in the computed values of λ and Tagg, based

on the number of bodies in the final aggregate, and show their

uncertainties around the computed mean value in Figs 8 and 9. In

our case, the smaller aggregates are the fastest spinning ones: They

are made of tens or few hundreds of bodies, meaning potentially

very large measurement errors. In other words, the resolution of our

smaller aggregates is too coarse and does not allow us to estimate

accurately their spin rate, elongation, porosity, and bulk density.

Also, due to their low number of bodies, it is rather inaccurate to

use the term rubble pile when referring to such small aggregates. To

a closer inspection, the structure of these aggregates is closer to a

monolith rather than a rubble pile: They are made of one or few big

boulders and tens of smaller particles resting on their surface. This

structure is by no means a typical self-gravitating aggregate and it

is rather closer to the ‘test particle on a rigid sphere’ case reported

in Weidenschilling (1981) and Richardson et al. (2000), where

critical spin may be estimated using the simple balance between

gravitational and centrifugal forces (Hestroffer et al. 2019). This is

indeed the result we find for them. The spin rate for aggregates with

many more particles is comparable to what has been found by other

authors within the error prescribed by the uncertainties mentioned

above. Among these, our fastest spinning aggregates have spin rates

of the order of 4.2 ± 0.9 h.

General trends of Figs 8 and 9 agree with expected behaviour and

are coherent with what is discussed in Section 4.2. As expected,

higher elongations are obtained for higher values of v0, ω0, and

�. Maximum elongation is reached for values between 75 and

85 per cent of their limiting value. For higher values of initial con-

ditions (>75–85 per cent), the simulations result in the formation

of multiple aggregates of smaller size, which are more typically

regularly shaped than larger ones. It is indeed observed that the

maxima in Fig. 8(a) represent thresholds after which the formation

of more than one significant aggregate occurs. As confirmed in

Fig. 8(b), the higher the velocities, the lower the number of bodies

found in the main aggregate, which is smaller for higher values of

v0, ω0, and �. Fig. 8(c) confirms a well-known result, with larger

aggregates having a higher rotation period (lower spin rate) with

respect to smaller ones. Fig. 9 shows the rotation period of the final

aggregate as a function of (a) inertial elongation and (b) mass of the

aggregate. As expected, fast rotators are more elongated and less

massive, while slow rotators have a more regular rounded shape and

are more massive.

5 C O N C L U S I O N

The paper presents the numerical implementation of a code for cou-

pled gravity–granular dynamics problems, and reports numerical

methods available to solve gravitational and collisional dynamics.

We build upon the work by Ferrari et al. (2017) and extend the

capabilities of the code by introducing a parallel CUDA-GPU octree

structure, to be able to evaluate mutual gravity for a higher number of

bodies. Unlike existing N-body codes, the implementation presented

here has the capability to handle non-spherically shaped bodies to

a full double precision accuracy. Compared to classical sphere-

based codes, this allows for a more realistic simulation of contacts

between bodies and opens new opportunities and scenarios to

be simulated. After presenting the results of test scenarios to

validate newly implemented modules, we discuss the features and

performance of numerical methods and derive requirements arising

from the dynamics of asteroid aggregation scenarios. The problem

of numerical simulation of gravitational aggregation is addressed:

We provide guidelines and quantify criteria to properly set up such

numerical simulations. We show examples of possible applications

by performing numerical simulations of gravitational aggregation.

The parameter space explored includes initial conditions of bodies

in terms of relative velocity between them, spinning rate, and

residual angular velocity of the system. The outcome of the analysis

is discussed, showing the properties of the final self-gravitating

aggregate after its stable formation in terms of inertial elongation,

period of rotation, and the number of bodies in the aggregate.
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