A Parallel Graph Partitioning Algorithm
for a Message-Passing Multiprocessor*

John R. Gilbert
Earl Zmijewski'

TR 87-803
January 1987

Department of Computer Science

Cornell University
Ithaca, NY 14853

*Publication of this report was partially supported by the National Science Foundation under

grant DCR-8451385.
tAT&T Bell Laboratories Scholar.

A Parallel Graph Partitioning Algorithm for a
Message-Passing Multiprocessor*

John R. Gilbert
Earl Zmijewski'

Computer Science Department
Cornell University
Ithaca, New York 14853

9 January 1987

Abstract

We develop a parallel algorithm for partitioning the vertices of a graph
into p > 2 sets in such a way that few edges connect vertices in different
sets. The algorithm is intended for a message-passing multiprocessor system,
such as the hypercube, and is based on the Kernighan-Lin algorithm for
finding small edge separators on a single processor [14]. We use this parallel
partitioning algorithm to find orderings for factoring large sparse symmetric
positive definite matrices. These orderings not only reduce fill, but also
result in good processor utilization and low communication overhead during
the factorization. We provide a complexity analysis of the algorithm, as
well as some numerical results from an Intel hypercube and a hypercube
simulator.

*Publication of this report was partially supported by the National Science Foundation under

grant DCR-8451385.
tAT&T Bell Laboratories Scholar.

1 Introduction

Many graph algorithms are based on finding a small set of vertices or edges
whose removal divides the graph into two or more nearly equal parts. Exam-
ples include layout of circuits in a model of VLSI [15], efficient sparse Gaussian
elimination [13,16], and solving various graph problems [17].

With the commercial availability of parallel machines, we are faced with the
problem of developing efficient parallel algorithms for finding small separators of
graphs. In this paper, we develop an algorithm for this problem that is based
on a simple modification of the Kernighan-Lin algorithm [14] for finding edge
separators on a single processor. We have designed our algorithm for a message-
passing multiprocessor. One of the main advantages of our algorithm is that it
can find separators of graphs that are too large to reside in the memory available
to any single processor.

Our algorithm is designed for a class of message-passing multiprocessors typi-
fied by the currently available hypercube machines of Ametek, Intel, and NCUBE.
These machines consist of several identical processors, each containing some local
memory. They coordinate their activities by passing messages along a network of
communication links. On these machines, the number of processors is typically
quite a bit smaller than the size of the problem we want to solve, and communica-
tion is considerably slower than computation. Therefore we seek algorithms that
do as much computation as possible locally, and use the least possible amount
of communication. Our only assumption about the topology of the communica-
tion network is that any processor can communicate efficiently with any other
processor. See Feng [6] for a survey of network topologies.

We have used our parallel separator algorithm in solving systems of linear
equations of the form

Az = b,

where A is a large sparse symmetric positive definite matrix. We can solve for
z by computing the Cholesky factor L of A (i.e., the lower triangular matrix L
such that A = LLT) and then solving the systems Ly = b and LTz = y. The set
of positions that are nonzero in L and zero in A is known as fill. To reduce the
amount of fill, one generally solves the equivalent reordered system

(PAPT)(Pz) = Pb

for some permutation matrix P. Since A4 is positive definite, no pivoting is
required to maintain numerical stability, and hence, we are free to choose P to
make the factorization more efficient. We have developed a parallel ordering
algorithm that uses our parallel separator algorithm. The algorithm attempts
to find orderings that not only reduce fill, but also decrease the total volume
of message passing and result in good processor utilization during the numeric
factorization. We will consider only the ordering phase of sparse parallel Cholesky
factorization. George, Gilbert, Heath, Liu, Ng, and Zmijewski [8,22,23] have
examined the symbolic and numeric factorization phases of this computation.
George, Liu, and Ng [9], in work done independently of ours, have used the
elimination tree of a matrix to assign its columns to processors in a way that
both reduces the communication and results in good processor utilization during
the factorization.

Our paper is organized as follows. Section 2 reviews the Kernighan-Lin algo-
rithm [14] for finding small edge separators of graphs. Section 3 contains a parallel
version of this algorithm that is appropriate for message-passing multiprocessors.
Section 4 provides some implementation details of the algorithm along with a
discussion of its computational and communication complexity. Section 5 shows
how the algorithm can be used to reorder the nonzeros of a sparse matrix in
a way that reduces fill and communication during the factorization. Here, we
assume the reader is familiar with the graph theoretic model of Cholesky factor-
ization [11]. Section 6 contains some numerical results using both a hypercube
simulator written by T. H. Dunigan of the Oak Ridge National Laboratory [4]
and an Intel hypercube. Section 7 shows that the Kernighan-Lin algorithm will
not necessarily find minimum edge separators for grid graphs. Section 8 contains
remarks and conclusions.

2 The Kernighan-Lin Algorithm

In this section, we briefly review the Kernighan-Lin algorithm '14] for finding
small edge separators on a single processor. We assume G = (V, F)is an arbitrary
graph with 2n vertices numbered from 1 to 2n. Each edge (¢,7) has a cost ;.
Let C' = (ci;) be the cost matrix of G, where ¢;; is the cost of (,7) if it exists,
and is 0 otherwise. We want to partition the vertices of G into two sets A and
B of equal size, such that the total cost of all edges connecting vertices of 4 and
B is minimized. In other words, we want to find a minimum cost edge separator

2

that divides the vertices of G into two equal-sized sets. Note that if the costs are
all one then a solution to this problem is an edge separator with the minimum
number of edges. Although this problem is NP-complete, Kernighan and Lin
have devised an iterative algorithm that works well in practice. In the remainder
of this section, we will describe the central idea behind their algorithm.

Suppose the vertices of G are initially partitioned into two equal-sized sets,
A and B, in some manner. Call an edge connecting a vertex of A to one of B
an erternal edge. All other edges are internal edges. Let T be the total cost of
all the external edges. Kernighan and Lin’s algorithm reduces T by repeatedly
swapping equal-sized subsets of 4 and B. It selects the subsets to guarantee
that T decreases at each iteration of the algorithm. Hopefully, the algorithm will
quickly converge to a solution near the optimum.

Before explaining how the subsets to be swapped are chosen, we will need
some notation. Define the ezternal cost E, of a vertex a € A to be the total cost
of its incident external edges,

E, = Z Caz-

z€EB

Similarly, define the internal cost
I, = Z Cac-
T€A

Let D, = F, — I,. Following Kernighan and Lin, we will refer to D, as “the D
value of vertex a.” Define the corresponding quantities for the vertices of B.
If we swap a € 4 and b € B then we can update T by subtracting

g =D, + Dy — 2cy (1)

where g is called the gain in swapping a and b. Swapping a and b may alter the D
values of other vertices incident on a and 6. These D values can be recalculated
as follows.
D, =D, + 24 —2cs, zCEA-— {a} (2)
D, =Dy+2cp—2cy, yeB-—{b). (3)

Using these definitions, we can state the Kernighan-Lin algorithm as follows.
First, unmark all the vertices of G and compute their initial D values with respect

3

to the current partition, A and B. Then locate two unmarked vertices, a € 4
and b € B, that would produce the largest gain if swapped. Do not swap these
vertices, but simply mark them and update the D values of the unmarked vertices
using Equations 2 and 3. Repeat this process of marking vertices and updating
D values until no unmarked vertices remain. The result is a sequence of pairs
(ai, b)) € A x B of vertices and their associated gains g;, for 2 = 1,...,n. Note
that the gains g; can be positive or negative and that Yi—19i = 0. Finally,
determine which vertices of A and B to swap by finding the smallest k& that
maximizes G = Y%, ¢;. If G > 0, swap vertices ay,...,a; of A with by,...,b,
of B and repeat this entire process. Otherwise, stop. Since G = 0, no further
improvements are possible using this approach.

One important feature of this algorithm is that it does not terminate upon
encountering a negative gain. Hence, during a single iteration, it may consider
the effect of swapping a pair of vertices that would increase T. The algorithm
will only swap these two vertices if it can locate other pairs of vertices that can be
swapped to produce an overall decrease in 7. Thus, negative gains are tolerated
provided they ultimately result in a better edge separator.

In a straightforward implementation, one iteration of this algorithm requires
O(n®) time on a single processor. If C is stored as a dense matrix, the time to
compute the initial D values is O(n?). Since there are O(n?) possible pairs of
vertices, locating the pair with the maximum gain takes O(n?) time. Updating
the remaining D values also takes at most O(n) time. Since the process of locating
pairs of vertices of maximum gain and updating D values is repeated n times,
one iteration of the entire algorithm requires at most O(n®) time.

Kernighan and Lin implemented two faster methods for selecting pairs of
vertices with large gains. In the first, not all vertices are considered, but rather
some small number of the vertices with the largest D values. Using this idea,
one iteration of the algorithm requires O(n?) time, but will not always select the
pair of vertices with the largest possible gain at each step. Another approach
sorts the D values of all the vertices before looking for the best pair. Employing
this method, one iteration still requires O(n?®) time in the worst case; however,
for nonnegative edge costs, the actual running time will hopefully be O(n? logn),
the time required for n sorts.

Both methods perform well in practice. Kernighan and Lin tested a variety of
graphs with up to 360 vertices and various edge densities. In both implementa-
tions, they found that the algorithm almost always converges in 2 to 4 iterations

4

and that the probability of a single iteration finding an optimal solution is ap-
proximately 27"/3% where n is the number of vertices in the graph.

We conclude this section by noting that Kernighan and Lin proposed variants
of their basic algorithm that can be used to partition the vertices of a graph into
sets of different sizes or into more than two sets. In fact, the parallel algorithm in
the next section is just a parallel version of one of their algorithms for partitioning
the vertices of a graph into p sets, where p is a power of 2.

3 A Parallel Kernighan-Lin Algorithm

In this section, we assume that G = (V,E) is an arbitrary graph whose
vertices have been partitioned among p > 2 processors of a message-passing
multiprocessor in some roughly even manner. We present a simple parallel version
of the Kernighan-Lin algorithm for partitioning the vertices of G into p roughly
equal-sized sets, each set residing on its own processor. Our goal is to produce
a partition with few edges connecting vertices in different sets. Since we are
primarily interested in large sparse graphs, we assume that G is stored as a
collection of adjacency lists. A processor is assigned variable v € V if it has
the list of vertices adjacent to v stored in its local memory. Finally, since we
are interested in finding edge separators with the minimum number of edges, we
assume that the edges all have cost one.

Our algorithm begins by dividing the p processors into two sets P, and P, with
sizes different by at most one. Sets P; and P, induce a roughly even division of
the vertices. Our initial goal is to reduce the number of edges connecting vertices
in Py to thosein P,. If P, = 0 or P, = 0 then there is nothing to do, so we stop.
Otherwise, we perform the following procedure. First, we select one processor in
each part, say [, € P, and [, € P,, to be the leader of that part. If s € P, then
we will say that the leader of s is /;. The leaders execute the simplified version
of the Kernighan-Lin algorithm described below.

Each processor in P, U P, computes the D values of all its vertices, and
reports these values to its leader. Each leader unmarks all of the vertices in
its half of the partition. Next, each leader selects the unmarked vertex with
the largest D value. The leaders mark these two vertices and save them on a
list along with their gain. The leaders update the D values of the unmarked
vertices using Equations 2 and 3. From these equations, we see that they need
the adjacency lists of both selected vertices. The leaders request this information

5

~I

10.

. The processors divide themselves into two groups P; and P, with sizes
different by at most one. If either group is empty, they stop. Otherwise,
they select one processor in each group, say [; € P; and l; € P,, as the
leader of that group.

. Each processor in P; U Py computes the D values of its vertices.

Each processor reports its D values to its leader. Each leader unmarks all
of the vertices in its half of the partition.

. Each leader [; selects the vertex v; with the largest D value.

The leaders request the adjacency lists of v, and v, from their assigned
processors and update the D values of the unmarked vertices.

If at least one vertex in each half of the partition is unmarked, the processors
repeat from step 4.

Using the list of vertex pairs and gains, the leaders decide which vertices
to swap, and tell the other processors in their groups.

The processors carry out the swapping of vertices.

- Beginning at step 2, the processors repeat until no further improvement is

possible.

In parallel, P; and P; each apply the algorithm recursively, from step 1.

Algorithm 1: A parallel Kernighan-Lin algorithm.

from the processors assigned the selected vertices and, upon receiving it, update
the relevant D values. The leaders repeat this process of marking vertices and
updating D values until all the vertices assigned to the processors in P, or P,
have been marked.

The leaders now decide what vertices to swap using the same procedure as
the Kernighan-Lin algorithm. They inform the processors of their decision, and
the processors swap the selected adjacency lists. After swapping vertices, each
processor still has the same number of vertices it had originally. The processors
repeat this entire algorithm until the number of external edges between P; and
P, cannot be decreased. Then, in parallel, P, and P, each apply this algorithm
recursively. The entire procedure is outlined in Algorithm 1.

To reduce the number of messages passed between P; and P,, we select ver-
tices a and b to swap that maximize D, + Dy; that is, we ignore a possible edge
between a and b. Thus we may choose vertices whose actual gain is less than
maximum by at most 2.

As it stands, the algorithm requires a lot of message passing; each processor
repeatedly sends all of its adjacency lists to the current leader. Since we want
to solve problems too large for a single processor, some of this message passing
is unavoidable. However, we can reduce it by allowing a pair of leaders to stop
marking vertices when further improvement seem unlikely. In our implementa-
tion, leaders stop marking vertices when the sum of all the gains computed so
far becomes too negative or when they have encountered too many consecutive
nonpositive gains. Since we are primarily interested in sparse graphs, once the
sum of all the currently computed gains becomes very negative, it will likely
remain negative. In addition, given a good initial assignment of vertices to pro-
cessors, once a pair of leaders have seen several consecutive nonpositive gains,
it is likely that no further improvement is possible using this approach. These
modifications should improve the algorithm’s running time without significantly
affecting the sizes of the resulting edge separators. We will say more about the
initial assignment of vertices to processors in Sections 7 and 8.

As the leaders execute the algorithm, the other processors are mostly idle.
Although there is little parallelism at the beginning of this algorithm, more pro-
cessors become engaged in active work as the algorithm proceeds, i.e., more
processors become leaders.

4 An Implementation and Complexity Analysis

To analyze the computational and communication complexity of the parallel
Kernighan and Lin algorithm, we will need some additional notation. Suppose
G has n vertices, numbered from 1 to n, and m edges. Let p be the total number
of available processors. To simplify the analysis, we assume that p is a power of
two, n is a multiple of p, and p < n < m. We also assume that each processor
initially has n/p vertices and knows the initial location of every vertex. Then
each processor will have exactly n/p vertices throughout the computation. Let g
be the maximum storage required by any processor for its vertices at any point
during the computation. We call the execution of line 1 of Algorithm 1 a level-k
cut, where k is the depth of the recursion. The first execution of line 1 is a level-0
cut. If k < log p, there are 2* level-k cuts, all of which can take place in parallel.
After making a cut, the relevant processors try to generate a small separator by
repeatedly executing lines 2-8 of Algorithm 1. We refer to a single execution as a
level-k iteration, where k is the level of the cut. We will assume that the number
of level-k iterations after any cut is bounded by some constant. Kernighan and
Lin’s experiments [14] support this assumption. 7

We begin by describing an implementation of the algorithm along with an
analysis of its computational complexity. For now, we will ignore the message
passing. Performing the initial level-0 cut takes O(p) time. Then, in parallel, each
processor in each half of the partition computes the D values of all of its assigned
vertices in O(q) time and reports them to its leader. Each leader constructs a
heap out of the D values it receives. The heap is a balanced binary tree with
the maximum D value stored at the root; see Aho, Hopcroft, and Ullman 1]
for details of algorithms to construct and maintain a heap. A leader stores its
heap as two n-vectors, one containing the D values and the other containing the
vertices corresponding to these values. Each leader also maintains an n-vector of
pointers from vertices of G to their D values in the heap. The leaders need these
pointers to update D values efficiently as vertices are marked. Constructing the
heap and the pointers into it takes O(n) time.

A leader removes the vertex with largest D value from the heap (which cor-
responds to marking it) and remakes the heap, in O(logn) time. After receiving
the adjacency lists of the current pair of marked vertices, a leader modifies the D
values of their neighbors and adjusts the heap accordingly, using O(log n) time
per modification. Since there are m edges in G, constructing the complete list

8

of vertex pairs and gains for a level-0 iteration takes O(mlogn) time. Determin-
ing the vertices to swap requires O(n) time and (again ignoring message passing
time) these vertices can be swapped in O(m) time. Hence, the time for a single
level-0 iteration is O(mlogn), since g <m and p < n. Since we have assumed
that the number of iterations after any particular cut is bounded by some con-
stant, the time required to find the level-0 edge separator is also O(mlogn). At
level k > 0, we find the 2* edge separators in parallel. Thus, the entire algorithm
takes
O(mlog nlog p)

time, ignoring the time for message passing.

To measure the communication complexity, we will count both the total num-
ber of messages and the total volume of message traffic, that is, the total number
of integers passed in messages. We assume that each processor has an integer
label which is known to every other processor. The processors use this labelling
to partition processors and select leaders and, hence, require no message passing
to perform a cut.

Now consider a single level-k iteration Let P’ be the set of processors in
one half of the current partition. In line 3 of Algorithm 1, each processor in
P’ reports its D values (and corresponding vertex labels) to the leader of P’ in
a fan-in fashion. The set P’ contains p/2%t1 processors, so this step requires
p/2¥*1 — 1 messages. The total number of integers passed is

logp' n n
i . P
i:zl 21'(2 l—’) = 2kt1 log okt 17

|3

where p’ = p/2k+1,

Each cut produces two leaders, both requiring a fan-in report of D values.
For 0 < k < logp, there are 2* level-k cuts, each requiring at most some constant
number of iterations. Thus, execution of the entire algorithm produces

logp

> 0(2“1(%% —1)) = O(plog p)

k=1
D value messages containing a total of
logp

n P
kZ:l O(2k+1(2kﬁlog i1)) = O(nlog? p)

integers.

We could have implemented the reporting of D values by simply having each
processor send a message containing its D values directly to its leader. In this
approach, there would still be O(plog p) messages, but they would only contain a
total of O(nlog p) integers. We use the fan-in method because, on a hypercube,
it can be implemented so that only adjacent processors need to communicate.
The total number of integers sent over single links is the same —O(n log? p)—in
the fan-in and direct-to-leader methods; the total number of messages sent over
single links is O(plog p) for fan-in and O(plog? p) for direct-to-leader. Since the
machines we are interested in have a significant minimum cost per message, fan-
in is more efficient. (Chamberlain and Powell [2,3] examine the fan-in approach
to communication in the context of LU and QR factorization.)

To calculate the message traffic required for the remainder of the algorithm,
first consider a single level-0 iteration. After constructing heaps of D values, the
two leaders request adjacency lists from other processors, communicate vertices
of maximum D value to each another, and tell processors what vertices to swap.
The other processors send adjacency lists to leaders, and all of the processors
carry out the swapping of vertices. All of this communication requires O(n)
messages containing a total of O(m) integers. Hence, the entire algorithm requires
O(nlog p) messages containing a total of O(mlogp) integers to carry out the
communication not involving D values.

There is one subtle point concerning the swapping of vertices. At the start
of the algorithm, each processor knows the location of each vertex. Thus, after
the initial level-0 cut, the two leaders know what vertices are assigned to each
processor. To tell each processor which of its vertices it must send to some
other processor, the leaders send a total of O(n) < O(m) integers in O(p) <
O(n) messages. After the swap, the leaders at the next level iteration will not
necessarily know the location of each vertex. We can remedy this during the
fan-in of D values by including the processor of origin with every D value. This
will not change the complexity of fan-in. Therefore the entire parallel separator
algorithm requires

O(nlog p)
messages containing a total of

O(max(nlog? p,mlog p))

integers.

10

5 A Parallel Ordering Algorithm

As noted in Section 1, the first step in computing the Cholesky factorization
of an n X n symmetric positive definite matrix 4 = (aij) is to find a permutation
matrix P to reorder A. On single processor systems, one typically selects P
solely to reduce fill. This is a good strategy since reducing fill, besides reducing
the needed storage, also reduces the factorization time. On message-passing
multiprocessors, defining a good ordering is more complicated. We want all of the
processors to be busy throughout the factorization; that is, we want an ordering
that allows for parallelism. Also, all hypercubes currently on the market require
significantly more time to communicate a byte of data than to perform a floating
point operation on that byte. Therefore, we also want to reduce the amount of
communication needed during the factorization, perhaps even at the expense of
more fill. Both the parallelism and communication in the computation depend
not only on P but also on the placement of A on the processors. As we shall see
below, it is possible to find a reordering of A and an assignment of its nonzeros
to processors that results in good processor utilization during the factorization,
while reducing both the fill and the communication. '

George, Liu, and Ng [9] independently made similar observations and imple-
mented an algorithm that sequentially orders the columns of a matrix on the host
of a hypercube and then uses the elimination tree to assign the columns to proces-
sors. In what follows, we will use both narrow and wide vertex separators to order
the columns of A. In a different setting, Liu [19] suggested both of these order-
ings and analyzed the parallelism that results during the outer product Cholesky
factorization of grid graphs. We will discuss Cholesky factorization in terms of
graphs [21] and will compute factorizations by columns. For a review of parallel
sparse Cholesky factorization by columns see Gilbert and Zmijewski [22,23] and
George, Heath, Liu, and Ng [8].

We can represent the structure of 4 by a graph G = (V,E), where V =
{v1,...,v,} and (v;,v;) € E if and only if a;; # 0. An elimination order of G
is an ordering of the vertices of G which we will write as a one-to-one function
a:V — 1,...,n. Finding an elimination order on G corresponds to finding a
permutation matrix P for A. That is, column (row) i of 4 is column (row) a(z)
of PAPT. The filled graph G, of G with respect to a is the graph with the same
vertices as (7, whose edges are all those edges (u,w) such that there is a path
U = V1,02,--.,% = win G with a(v;) < min(a(u),a(w)) for 1 <: < k. If Lis

11

the Cholesky factor of PAPT then L + LT is the adjacency matrix of G%. Thus,
finding P to reduce the amount of fill in L corresponds to finding an « to reduce
the number of edges in G=.

Nested dissection is an ordering heuristic that both reduces fill [11] and allows
for parallelism [18,20]. Nested dissection begins by finding a set of vertices S
contained in G whose removal would disconnect G into at least two components
C1,...,Ck. The set S is a vertez separator of G. It orders the vertices of S after
those in Cy,...,Ck. Then no edge in G can connect two vertices in different
C;, since any path in G between two such vertices must go through S. Besides
reducing fill, this property also allows us to eliminate vertices in different C;
in parallel [20]. To order the remaining vertices in V, we apply this procedure
recursively to the subgraphs C1, ..., Cs. Nested dissection orderings produce low
fill if each separator is small and the components it divides its subgraph into
are all roughly the same size. For example, planar graphs, two-dimensional finite
element graphs, and graphs of bounded genus all have nested dissection orderings
that produce at most O(nlogn) fill [12,16].

We use our parallel edge separator algorithm to find nested dissection order-.
ings. We assume the columns of A (i.e., the adjacency lists of G) have been
distributed among the p processors of a message-passing multiprocessor in some
roughly even manner and that the processors are numbered from 0 to p — 1.
We further assume that the processor assigned column 7 of A is responsible for
computing column a(z) of L, the Cholesky factor of PAPT.

First, the processors run the parallel edge separator algorithm on G. We then
use each edge separator to define a vertex separator as follows. Suppose some
edge separator divides a subset of the processors into two groups, say P; and P;.
We can partition the vertices incident on the edge separator into two groups V;
and V3, depending on whether they reside in P; or P,. Both V;j and V, are vertex
separators for a subgraph of G. We can select the smaller of the two sets, say V;,
as the vertex separator defined by this edge separator. We will call V; a narrow
separator. Let V be the set of all vertices assigned to P, and P,. If the vertices in
V1 are ordered after the vertices in V' — V;, no communication across the cut, i.e.,
between processors in P; and those in Py, is required to eliminate the vertices
in V — V1. However, as the vertices in V — V; are eliminated, the corresponding
columns of L will be sent to processors assigned vertices of V;. Thus, no matter
where the vertices of the narrow separator reside, communication across the cut
will take place as the vertices that are not in the separator are eliminated.

12

Another possibility is to take all of V; U V; as the separator of the subgraph,
since this guarantees that processors in P; and P, will not need to communicate
until they begin eliminating vertices in V; U V. This is because no fill can occur
between a vertex assigned to a processor P; and one assigned to a processor in
P, until the first vertex in V; U V3 is eliminated. We will refer to such vertex
separators as wide separators. Since these separators are larger than narrow
separators, they will give more fill. However, the number of columns of L that
must be communicated across the cut is bounded by |V; U V3], the size of the
wide separator. For narrow separators, the number of columns crossing the cut
is bounded only by |V|, the number of columns assigned to processors in P; and
P,. Thus, for wide separators, one may hope that the increase in computation
time will be more than offset by the decrease in communication time. Section 6
contains numerical factorization times using both narrow and wide separators to
find orderings.

After defining vertex separators, each processor orders all of its vertices, be-
ginning with those not contained in any separator. In our implementation, the
processors use Sparspak’s nested dissection routine [11] to order these vertices.
Finally, the processors order the vertices contained in the vertex separators after
all the other vertices, in such a way that vertices in level-k edge separators come
after those in level-(k+1) separators. The result is a nested dissection ordering
whose first [log p| levels of vertex separators are based on the edge separators
from the parallel Kernighan-Lin algorithm.

After all the vertices are numbered, those contained in the vertex separators
are redistributed among the processors to balance the computational load during
the factorization. In the case of a wide separator, the vertices in V; are wrapped
onto the processors in P;. That is, if V; = {v;,...,v:} and P, = {po,---ypi-1},
then vertex v; is reassigned to processor (i — 1) mod [. This does not change the
edge separator between Py and P;. The vertices in V; are wrapped similarly onto
the processors in P,. In the case of a narrow separator, V; is wrapped onto all the
processors in P and P,. Since vertex separators correspond to dense submatrices
of L, and hence are more time consuming to eliminate, redistributing them evenly
among all the processors should give better processor utilization. If we succeed
in finding small separators, each processor will end up with roughly the same
number of vertices. Since the separator vertices are wrapped, the load will be
fairly well balanced.

Note that using either narrow or wide separators, at most p/2* processors need

13

Problem | Equations | Nonzeros | Density (%)
1 265 1753 2.50
2 406 2716 1.65
3 377 3889 1.17
4 778 5272 0.87
5 1009 6865 0.67
6 869 7285 0.96
7 918 7384 0.88
8 1005 8621 0.85
9 1007 8575 0.88
10 1242 10426 0.68

Table 1: Test problems.

to communicate in order to eliminate the vertices in a level-k vertex separator.
On a hypercube, this implies that the columns of L corresponding to level-k
vertex separators can be computed in a dimension-k subcube. Not until the very
end of the computation, when the columns of L associated with the level-0 vertex
separator are being computed, do all the processors need to communicate.

6 Numerical Results

We have implemented the wide and narrow ordering algorithms of Section 5
that use the parallel Kernighan-Lin algorithm. We have added this code to
Gilbert and Zmijewski’s parallel symbolic factorization code [22], and George,
Heath, Liu, and Ng’s parallel numeric factorization and parallel triangular system
solver codes [8,9]. The resulting collection of routines performs all phases of
sparse Cholesky factorization in parallel. The code is written in Fortran and
runs on both the Cornell Theory Center’s Intel hypercube under Xenix with
the beta version 3.0 of the node operating system and, using the Oak Ridge
National Laboratories’ hypercube simulator [4], on a Vax 780 under Berkeley
Unix. We have used the simulator to generate communication statistics and the
Intel hypercube to measure running times.

We have compared three algorithms for ordering the columns of a matrix

14

Problem | Seq-wrap { Narrow | Wide
1 1.18 4.49 4.30
2 1.98 5.23 5.13
3 2.94 7.26 7.21
4 4.18 7.01 6.93
5 5.72 7.61 7.50
6 5.06 9.19 9.35
7 5.80 17.04 | 14.96
8 7.44 22.58 | 22.23
9 5.88 9.44 9.33
10 8.02 15.30 | 15.29

Table 2: Ordering time (seconds).

and assigning them to processors: the narrow and wide algorithms of Section 3,
and a simple sequential strategy we will call seq-wrap. The seq-wrap method
orders the matrix sequentially on the host using Sparspak’s nested dissection
routine and then distributes the columns to all the processors of the hypercube
in a wrap fashion. Thus, this method orders the columns to reduce fill and
distributes them in a way that should result in good processor utilization, but
it ignores the issue of communication. We ran these three algorithms on the 10
finite element problems listed in Table 1. The first five problems are derived from
L-shaped triangular meshes and are described by George and Liu [10]; the second
five represent various physical structures and are described by Everstine [5]. In
running our experiments, we used all 16 processors of the Cornell Theory Center’s
Intel hypercube.

Table 2 lists the time required to perform the orderings. Under seq-wrap,
we list the time the host uses to order the matrix, ignoring the time required to
send the columns to the nodes of the hypercube. Under narrow and wide, we
list the times for the parallel Kernighan-Lin algorithm. These include the time
to swap columns amoung processors during the algorithm and the time needed
to wrap the columns of the resulting separators. As with seq-wrap, we do not
include the time to initially send the columns to the nodes. The initial orderings

15

Problem Seq-wrap Narrow Wide
1 2447 (2.14) | 1739 (2.00) | 1424 (1.81)
2 3745 (2.13) | 2452 (1.96) | 2101 (1.79)
3 5574 (2.11) | 3259 (1.86) | 2553 (1.71)
4 7706 (2.12) | 4510 (1.95) | 3606 (1.77)
5 10031 (2.12) | 5568 (1.95) | 4423 (1.76)
6 8161 (2.12) | 3860 (1.91) | 3267 (1.75)
7 8849 (2.13) | 4992 (1.96) | 4205 (1.83)
8 10123 (2.13) | 5714 (1.98) | 4980 (1.82)
9 10438 (2.13) | 4843 (1.83) | 3318 (1.60)
10 12897 (2.13) | 7540 (2.00) | 6312 (1.82)

Table 3: Message traffic during numeric factorization.

of problems 7, 8, and 10 were very poor. Due to message-passing delays, narrow
and wide both require more time then seq-wrap in all cases. However, as we shall
see below, narrow and wide orderings usually succeed in reducing the numeric
factorization time. On single-processor machines, numeric factorization is the
most time consuming step in solving sparse linear systems. The parallel ordering
algorithms also allow us to solve problems that are too large to reside in the
memory of any one processor.

After ordering a matrix with one of the algorithms above and symbolically
factoring it, we used George, Heath, Liu, and Ng’s parallel numeric factoriza-
tion code [8,9] (in an experimental version from summer 1986) to compute the
Cholesky factor. For each problem, Table 3 lists the total number of messages the
processors pass during numeric factorizaton. Each message contains the nonzero
values of a single column of the Cholesky factor, along with the positions of its
nonzeros. Table 3 also lists, in parentheses after each total, the average distance
travelled by the messages. Since we used a 4-dimensional cube, a message makes
at most 4 hops. On the Intel hypercube, messages are broken up into packets
of 1024 bytes, and the smallest message is 1024 bytes. Since all of the messages
passed were smaller than 1024 bytes, we have listed only the total number of mes-
sages. As expected, the wide approach results in both the lowest total message

16

Problem | Seq-wrap | Narrow Wide
1 32610 34548 60062
2 69466 71048 114658
3 125986 129580 221506
4 201594 228852 373867
5 312595 336249 579599
6 158444 160609 270999
7 239274 283613 651428
8 458580 501475 992610
9 258793 315552 608565
10 558595 781317 | 1437048

Table 4: Flops during numeric factorization.

Problem | Seq-wrap | Narrow | Wide
1 2.81 2.56 2.51
2 5.82 4.04 4.06
3 6.92 5.31 6.09
4 9.89 7.50 8.48
5 14.08 11.20 | 13.14
6 9.39 6.63 7.47
7 11.30 9.44 | 14.60
8 15.59 19.39 | 28.61
9 12.41 8.92 | 13.71
10 20.17 20.88 | 28.10

Table 5: Numeric factorization time (seconds).

17

Figure 1: A partitioning of a 12 x 12 grid graph.

traffic and lowest average distance travelled per message.

Table 4 lists the total number of flops the processors perform during the nu-
meric factorization. For many of the problems, the narrow method performs
almost as well as Sparspak’s nested dissection routine. Due to the large separa-
tors, the wide method requires about twice as many flops as the narrow method.
For a fixed number of processors, the relative difference between the narrow and
wide flop requirements will decrease as the sizes of the problems increase, since
the percentage of the columns belonging to wide separators will decrease. Our
test problems are all relatively small, and the percentage of columns belonging
to wide separators range from 42% to 72%.

Table 5 lists the factorization times for the three methods. Even though the
narrow approach requires somewhat more flops and the wide approach consider-
ably more flops than seq-wrap, both methods frequently require less time. Thus,
for some of these problems, the decrease in communication more than compen-
sates for the increase in fill. We plan on conducting further tests with larger
matrices.

7 Remarks on the Kernighan-Lin Algorithm

We have seen that using either narrow or wide vertex separators to reorder
large sparse symmetric positive definite matrices can decrease the factorization

18

time by lowering the total volume of message traffic. Since both the amount of
fill and message traffic depend on the size of these separators, our hope is that
we can find small ones for certain types of graphs. In particular, we would like
to know if the sequential version of the Kernighan and Lin algorithm presented
in Section 2 will always find minimum edge separators for a particular class of
graphs, regardless of the initial partition.

Let G be an n x n grid graph where n is even. Suppose it is initially par-
titioned as in Figure 1. The total number of external edges in G is 2n, twice
the minimum. (One minimum edge separator divides the first n/2 rows from
the others.) The Kernighan-Lin algorithm will not necessarily find a partitioning
with the minimum number of external edges. At each step of the algorithm,
it must mark a pair of vertices that produces the maximum gain, and, due to
the regularity of the graph, it usually has more than one choice. By carefully
selecting the vertices to be marked at each step, we can force the algorithm to
stop after one iteration without swapping a single pair of vertices.

To see this, think of actually swapping the vertex pairs as they are marked.
In Figure 1, we can choose the sequence of pairs so that the black vertices in the
upper left move to the right, trading places with the white vertices in the upper
right. The black vertices in the lower right move to the left, trading places with
the white vertices in the lower left. Figure 2 shows the partition after swapping
the first 30 pairs of vertices. The black vertices in the lower half of Figure 2
resemble the letter L. As the swapping progresses from here, the vertical part of
this L grows wider, while the horizontal part grows thinner. The upper black
vertices behave similarly. The total number of external edges is never less than
2n. Therefore the sum of gains is never positive, so the algorithm will not actually
swap any vertices. Thus, the Kernighan-Lin algorithm does not necessarily find
minimum edge separators even for grid graphs. It is important to note, however,
that the algorithm can find a minimum edge separator for a grid graph partitioned
as in Figure 1, if it chooses to mark the vertices in the proper order. We do not
know if such an order exists for every initial partition of the graph.

8 Conclusion

Lipton, Rose, and Tarjan {16] have shown that random graphs do not contain
good separators. However, many graphs one encounters in practice do have good
separators, since most real-world problems have considerable structure. There-

19

Figure 2: The partitioning after swapping the first 30 pairs of vertices.

fore, finding good separators of graphs is important. Qur experience with the
Kernighan-Lin algorithm is that it always converges quickly, regardless of the ini-
tial partition, but that the quality of this partition affects the size of the resulting
edge separator. We are currently examining ways to improve the Kernighan-Lin
algorithm. One possiblity is to develop a parallel heuristic for finding good initial
partitions, such as a technique for finding highly connected subgraphs of a graph.
We could then use this partitioning as input to the algorithm. Another approach
is to modify the Kernighan-Lin algorithm so that it uses global knowledge about
the graph in breaking ties between the vertices of maximum gain. This could
eliminate the problem with the grid graph in Section 7.

At the top level of the parallel Kernighan-Lin algorithm, the two leaders
perform the entire computation, once the initial D values have been computed.
Here, the only advantage of using more than two processors is that more memory
is available for storing the graph, so bigger problems can be solved. Of course,
as more processors become leaders, more processors become actively involved in
the computation. Designing a more parallel algorithm for finding separators is
an interesting problem.

In general, a parallel algorithm will perform better if it first decomposes the
problem it is solving into parts that have high locality and require low communi-
cation overhead. Thus, finding good graph partitionings should be a useful first
step for a wide variety of parallel problems. For example, in LU factorization

20

with partial pivoting, if we use wide separators to partition the columns of the
matrix, then our pivot searches will be confined to single groups of processors. We
can also use wide separators in iterative methods, e.g., Jacobi and Gauss-Seidel
splitting methods, to reduce the amount of communication. Fox and Otto [7] de-
scribe a different approach to automatic partitioning and use it to solve various
numerical problems on the Caltech hypercube.

Acknowledgements

We thank Laurie Hulbert for reading earlier drafts of this paper and for mak-
ing suggestions that made it more readable. We also thank Alan George, Mike
Heath, Joseph Liu, and Esmond Ng for allowing us to use their sparse parallel
Cholesky factorization codes, and Mike Heath and Esmond Ng for providing us
with the Oak Ridge National Laboratory hypercube simulator. Finally, we ex-
press our appreciation to Cornell University’s Theory Center for the use of their
Intel iPSC hypercube computer.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley Publishing Company,
1974.

2] R. M. Chamberlain. An algorithm for LU factorization with partial pivoting
on the hypercube. Technical Report CCS 86/11, Chr. Michelsen Institute,
1986.

[3] R. M. Chamberlain and M. J. D. Powell. QR factorization for linear least
squares problems on the hypercube. Technical Report CCS 86/10, Chr.
Michelsen Institute, 1986.

[4] T. H. Dunigan. A message-passing multiprocessor simulator. Technical Re-

port ORNL/TM-9966, Oak Ridge National Laboratory, 1986.

[5] G. C. Everstine. A comparison of three resequencing algortihms for the
reduction of matrix profile and wave front. International Journal for Nu-

merical Methods in Engineering, 14:837-853, 1979.

21

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Tse-yun Feng. A survey of interconnection networks. IEEE Computer,
12:12-27, 1981.

Geoffrey C. Fox and Steve W. Otto. Concurrent computation and the theory
of complez systems. Technical Report CALT-68-1343, California Institute
of Technology, 1986.

Alan George, Michael T. Heath, Joseph Liu, and Esmond Ng. Sparse
Cholesky factorization on a local-memory multiprocessor. Technical Re-

port ORNL/TM-9962, Oak Ridge National Laboratory, 1986.

Alan George, Joseph Liu, and Esmond Ng. Communication reduction in
parallel sparse Cholesky factorization on a hypercube. In Proceedings of the
Second Conference on Hypercube Multiprocessors, SIAM Press, 1987. (to

appear).

Alan George and Joseph W. H. Liu. An automatic nested dissection algo-
rithms for irregular finite element problems. SIAM Journal on Numerical
Analysis, 15:1053-1069, 1978.

Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse
Positive Definite Systems. Prentice-Hall, 1981.

John R. Gilbert and Robert Endre Tarjan. The analysis of a nested dissec-
tion algorithm. To appear in Numerische Mathematik.

John Russell Gilbert. Graph Separator Theorems and Sparse Gaussian Elim-
ination. Ph.D. thesis, Stanford University, 1980.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning
graphs. The Bell System Technical Journal, 49:291-307, 1970.

Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In Proceed-
ings of the 21st Annual Symposium on Foundations of Computer Science,
pages 270-281, 1980.

Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized
nested dissection. SIAM Journal on Numerical Analysis, 16:346-358, 1979.

22

[17]

[18]

[22]

[23]

Richard J. Lipton and Robert Endre Tarjan. Applications of a planar sep-
arator theorem. SIAM Journal on Computing, 9:615-627, 1980.

Joseph W. H. Liu. Computational models and task scheduling for parallel
sparse Cholesky factorization. Technical Report CS-85-01, York University,
1985. To appear in Parallel Computing.

Joseph W. H. Liu. The solution of mesh equations on a parallel computer.
Technical Report, University of Waterloo, 1974.

Frans J. Peters. Parallel pivoting algorithms for sparse symmetric matrices.
Parallel Computing, 1:99-110, 1984.

Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorith-
mic aspects of vertex elimination on graphs. SIAM Journal on Computing,

5:266-283, 1976.

Earl Zmijewski. Sparse Cholesky Factorization on a Multiprocessor. Ph.D.
thesis, Cornell University, 1987. (in preparation). :

Earl Zmijewski and John R. Gilbert. A parallel algorithm for large sparse
symbolic and numeric Cholesky factorization on a multiprocessor. Technical
Report 86-733, Cornell University, 1986.

23

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif

