
A Parallel Hybrid Genetic Algorithm for Multiple Protein Sequence Alignment

Hung Dinh NGUYEN 1, Ikuo YOSHIHARA 2, Kunihito YAMAMORI 2, Moritoshi YASUNAGA 3

1 Graduate School of Engineering, Miyazaki University,
2 Faculty of Engineering, Miyazaki University,

1,2 1-1, Gakuen-Kibanadai-Nishi, Miyazaki, 889-2192, Japan
3 Institute of Information Sciences and Electronics, University of Tsukuba,

1-1-1, Tennoudai, Tsukuba, 305-8573, Japan

Abstract - This paper presents a parallel hybrid genetic
algorithm (GA) for solving the sum-of-pairs multiple protein
sequence alignment. The method is based on a multiple
population GENITOR-type GA and involves local search
heuristics. It is then extended to parallel to exploit the benefit of
multiprocessor system. Benchmarks from the BAliBASE
library are used to validate the method.

I. INTRODUCTION

Sequence alignment plays an important role in molecular
sequence analysis. It can help to build a phylogenetic tree of
related DNA sequences or to predict the function/structure of
unknown protein sequences by aligning with other sequences
whose function/structure is already known. There are three
domains of biological sequences, namely, DNA, RNA, and
protein. Sequence alignment makes sense only if all involved
sequences are defined on the same domain. This paper
mainly deals with the alignment of protein sequences.
However, the method can easily be extended to apply to
other kinds of sequences.

Sequence alignment aims to construct an alignment of two
or more sequences so as to maximize similarities of these
sequences. When there are two sequences involved, it is
called pairwise alignment. Otherwise, it is called multiple
sequence alignment. Fig. 1 shows a fragment of a multiple
alignment of four protein sequences.

Fig. 1: A fragment of an alignment of four protein sequences.

Here, the gap characters ′−′ are inserted into sequences so
as to find similar regions of sequences (marked in boxes). In
order to solve the sequence alignment problem, we need a
definition to determine how good an alignment is. The most
commonly used definition is the sum-of-pairs multiple
sequence alignment.

It is well known that the sum-of-pairs multiple sequence
alignment can be exactly solved by dynamic programming
algorithm [1], which converts the original problem to that of
searching for the shortest path in a weighted directed acyclic
k-dimensional graph. However, due to the fact that the
converted problem is NP-complete, algorithms that guarantee
to find the true optimal solution have running times growing
exponentially with the size of problem. Therefore, most of
practical alignment algorithms are based on heuristics
producing quasi-optimal alignments.

There have been some surveys on algorithms for the
multiple sequence alignment [2]-[4]. The majority of
multiple sequence alignment heuristics is now carried out
using a progressive approach (e.g. CLUSTAL, MULTAL)

[5]-[7]. This approach has the advantages of speed and
simplicity. However, its main disadvantage is the local
minimum problem, which stems from the greedy nature of
the approach.

Another approach is to use the extension of dynamic
programming for simultaneously aligning multiple sequences,
e.g. MSA [8], OMA [9], Kobayashi and Imai’s A* algorithm
[10], and ComAlign [11] etc. In general, algorithms of this
approach often have higher quality solutions than those of
progressive approach. However, they have drawbacks of
complexity, running time and memory requirement, so they
can only be applied to problems with limited number of
sequences (about 10).

There is also iterative approach for the multiple sequence
alignment. This approach includes the iterative algorithm, the
simulated annealing, and genetic algorithm (GA). GA is
distinguished from the others because it searches for the
solution from a population of potential solutions [12],[13].
Therefore, it can evade being trapped in a local minimum.
When used alone, however, it has drawbacks of relatively
poor quality and more requirement of computing time.

There have been some attempts to solve the multiple
sequence alignment by GA, e.g. the works of Notredame and
Higgins (SAGA) [14], Hanada et al. [15], and Horng et al.
[16], with the most successful method seems to be SAGA.
The SAGA program uses a total of 22 operators, including
semi-hill climbing operators, and applies a dynamic
scheduling for selecting these operators. The quality of
solutions found by SAGA can compete with those of MSA.
However, its main disadvantage is its very slow speed.

This paper presents a new GA-based method for more
efficient multiple protein sequence alignment. First, we
propose a suitable chromosome representation and its
corresponding genetic operators. Next, we investigate local
search heuristics and incorporate them into our algorithm.
Finally, we parallelize our method to exploit the benefit of
multiprocessor system.

Section 2 gives a formal definition of the sum-of-pairs
multiple sequence alignment. Section 3 describes our parallel
hybrid GA. Experiment results and validations are presented
in section 4. Section 5 gives conclusions for the paper and a
brief description for future research.

II. THE SUM-OF-PAIRS SEQUENCE ALIGNMENT

Suppose that a family S = (s1,…,sk) of k sequences of
various length n1 to nk is given. Each sequence element
represents a character from a given alphabet A. (For protein
sequences, the alphabet A consists of 20 characters of amino
acids.) Suppose that A does not contain the gap character ′−′.
An alignment of the sequences S is a k×N matrix M = (mij),
where the following conditions are satisfied:

KDSNAPKRAMTSFMFF----SEDFRSKHS
----KPKRPRSAYNIYV---SEDFQEAKD
--ADKPKRPLSAYMLWLNSAREDIKRENP
-DPNKPKRAPSAFFVFMGEFREDFKQKNP

0-7803-7282-4/02/$10.00 ©2002 IEEE

• mij ∈ A′ = A ∪ {′−′},
• When removing all gap characters from the row mi, we

receive exactly the sequence si, and
• M has no column that contains only gap characters.

Here, N is the length of the alignment and must be greater
than or equal to the length of the longest sequence in S and
less than or equal to the sum of all sequence lengths.

Next, let assume that there is a cost matrix C between two
any letters in A′ that has the following characteristics:

• C(a, b) = C(b, a), ∀a, b ∈ A′,
• C(a, ′−′) = G, ∀a ∈ A, and
• C(′−′, ′−′) = 0.

Here, G is a constant and is called the gap cost (or gap
penalty).

The cost between two rows mi and mj of alignment M is
defined as follows:

Cost(mi, mj) = ∑1 ≤ p ≤ N C(mip, mjp). (1)

And the cost of alignment M is defined as the sum of all
pairwise costs in M:

Cost(M) = ∑1 ≤ i < j ≤ k Cost(mi, mj). (2)

Let call this value the sum-of-pairs cost. Then the
sum-of-pairs multiple sequence alignment is defined as the
problem to find the alignment that has the minimum
sum-of-pairs cost.

In addition, if the cost for each pairwise alignment is
multiplied by a weight before summing up to calculate the
cost of the alignment as follows:

Cost(M) = ∑1 ≤ i < j ≤ k Wij × Cost(mi, mj). (3)

Then the problem is called the weighted sum-of-pairs
multiple sequence alignment. The weights are introduced to
diminish bias caused by having more sequences from some
species and fewer sequences from others [17].

If we define a gap is a continuous segment of gap
characters, then a gap of length l has a cost of l×G in the
above cost model. This is called the linear gap cost. There is
another type of gap cost in which the open gap character is
charged differently with follow gap characters, i.e. a gap of
length l has a cost of the form: O + l×G. This is called the
affine gap cost and O is called the open gap cost. The affine
gap cost is more appropriate than the linear gap cost from the
biological point of view. However, Altschul pointed out that
this gap cost has very high complexity so it becomes
impractical for even a modest number of sequences [18]. He
compromised by proposing a simpler type of gap cost, called
the “quasi-natural” gap cost. Furthermore, there is another
option in which the terminal gaps are not charged.

There have been many cost matrices introduced so far for
the multiple protein sequence alignment, e.g. the PAM and
BLUSOM series of matrix [19],[20]. For different cost
model (i.e. cost matrix, weight, and type of gap cost etc.), the
optimal alignment may be different. Therefore, besides the
task of finding algorithm to search for the optimal or
quasi-optimal alignment with a given cost model, there is
also a task of finding a cost model so that the true
mathematical optimal alignment is coincided with (or closed
to) the true biological optimal alignment. In this paper, we
limit our efforts to only the former task.

III. THE PARALLEL HYBRID GA (PHGA)

A. Chromosome representation

Unlike other GA-based method proposed for the multiple
sequence alignment, our method does not solve the problem
directly, but instead solve the converted problem of finding
the shortest path in a weighted directed acyclic k-dimension
graph (where k is the number of sequences). This leads us to
a different chromosome representation.

For easy understanding, the ideas of chromosome
representation, crossover and mutation operators will be
presented in the two-dimensional case, i.e. for pairwise
alignment. However, they can be easily extended to a
multi-dimensional case.

Fig. 2: Pairwise alignment and the converted graph

Consider the example in Fig. 2. The problem of aligning
two sequences (Fig. 2(a)) can be converted to the problem of
finding the shortest path from the source S to the target T in
the directed acyclic graph in Fig. 2(b). Each alignment of the
two sequences corresponds to a path from the source S to the
target T in the graph. Each column of the alignment
corresponds to a vector in the path and the length of the
alignment equals to the number of vectors in the path.

In our chromosome representation, each locus represents a
vector in a path. Since for a problem of k sequences, there
are 2k - 1 possible vectors that come out from a point (e.g. A),
we need at least k bits to encode all the possible vectors into
values. Let assume that the values for encoding horizontal,
vertical, and diagonal vectors that come out from point A in
Fig. 2(b) are 1, 2, and 3, respectively.

Fig. 3: Chromosome representation

The alignment in Fig. 3(a) corresponds to the bold line
path in Fig. 3(b). Its chromosome representation is “3 1 3 3”
as illustrated in Fig. 3(c). Since the number of loci of a
chromosome is equal to the number of vectors in the path
(and the length of the corresponding alignment), the length
of chromosome is variable, not fixed as with conventional
representation.

Because all of the benchmarks used for validating our
method have less than 32 sequences and for the sake of
simplifying the codes, we currently use an unsigned int (uint)
variable to represent a locus. The uint type has 32 bits in
length, therefore limiting the maximal number of sequences
in one problem to 32. We will modify our codes later when
bigger problems are tested.

(b)

S

T

K P D N

K

D

M

3
1

3

3

K P D N
K - D M

(a)

3 1 3 3

(c)

(b)

S

T

K P D N

K

D

M

1

32

A
K P D N
K D M

(a)

0-7803-7282-4/02/$10.00 ©2002 IEEE

B. Crossover

Traditional crossovers such as one point crossover cannot
be applied to the chromosome representation described
above, because they often create invalid solutions. Besides,
the crossover operator should transfer genetic information
from both parents to the offspring. Therefore, we propose a
new crossover operator (Fig. 4).

Fig. 4: Crossover

First, two parents, parent-1 and parent-2 (Fig. 4(a), (b)),
are randomly selected. Their chromosomes representations
are “3 1 3 3” and “2 3 1 3 1”. Next, a random crossover point
A, which lies in the path of the parent-1, is chosen and the
segment from the source S to the crossover point A of
parent-1 is directly copied to the offspring. This segment is
“3 1”. After that, loci are copied from parent-2 backward
from the target T until a valid chromosome can be
guaranteed (Fig. 4(c)) and the template offspring is “3 1 – 3
1”. Finally, a random segment is generated to complete the
offspring as “3 1 2 3 1” (Fig. 4(d)). The vectors of the
random segment in the offspring are inherited from neither
parent. However, since the length of this segment is often
relatively short compared to the whole length of the offspring,
it does not have much effect on the quality of the offspring.

C. Mutation

Fig. 5: Mutation

The mutation operator should slightly alter the parent to
introduce new genetic information. Fig. 5 illustrates our
proposed mutation. The parent is “3 1 3 3” as shown in Fig.
5(a). First, a short segment of the alignment with random
length is selected as the mutation segment (segment “1 3”
between AB). Next a new segment (segment “3 1”) is
randomly generated that shares the same two end points A, B
with the mutation segment. Finally, connect this new
segment with two terminal segments of the parent to form
the offspring “3 3 1 3” (Fig. 5(b)).

D. System Prototype

We use a multiple population GENITOR-type GA.
GENITOR is a steady-state GA which was originally
developed by Whitley and available on the Internet [21],[22].
In our algorithm, only one offspring is created (by either
crossover or mutation) in each generation and is immediately
inserted into the population to replace the worst parent if the
offspring is fitter (GENITOR replaces the worst individual in
the population). This replacement scheme causes slower
convergence but it can maintain more diversity population.
The algorithm does not allow duplicate chromosomes in each
sub-population. The selection of the parent is based on linear
ranking selection. After a predefined number
migration_interval of generations, some of the best
individuals are exchanged between sub-populations. The
algorithm terminates either after a predefined number of
generations or after a predefined number of generations that
the best individual could not be improved. The following
pseudo-code illustrates our algorithm.

Procedure PHGA
{
For each sub-population do
Initialize sub-population;

Repeat {
For each sub-population do {
If (rand() < mutation_rate) {
Select one parent p using linear ranking;
Mutation(p, c)
Replace child c to parent p if fitter;

} Else {
Select two parents p1, p2 using linear ranking;
Recombination(p1, p2, c);
Replace child c to the worst parent if fitter;

}
}
At predefined migration_interval do
Migrate between sub-populations

}
Until converged;

}

E. Hybridization of GA and Heuristics

Since GA has global search ability and heuristics have
local search ability, we believe that their hybridization will
possibly form a more powerful search. In our hybrid GA, we
use two kinds of heuristic; one is for creating the individuals
of the first generation and the other is used as mutation for
improving individuals during the search.

1) Heuristic for creating individuals

We use the progressive heuristic to create individuals of
the first generation of GA. Conventionally, it works by
aligning the closest sequences first and gradually adding the
more distant ones. The order of adding sequences is often
based on a guide tree constructed by some methods, e.g. the
Neighbor-Joining method [23]. However, our heuristic uses a
random order instead of the order based on the guide tree. By
allowing this, a variety of individuals for the first generation
can be created.

2) Heuristic for improving individuals

The iterative alignment heuristic is used as mutation for
improving individuals. However, instead of applying this
heuristic for the whole alignment, we only apply it for a short
segment of the alignment. By doing this, the computational

(b) Parent-2(a) Parent-1

(c) Template offspring (d) Final offspring

S

T

S

T

TT

S S

A

A A

3
1

3

3

2

3

3

1

1

3
1

3
1

2

3
1

3
1

(b) Offspring(a) Parent T T

SS

A
B

A
B

3

3

3

3

3

3

1

1

3 1 3 3 3 3 1 3

0-7803-7282-4/02/$10.00 ©2002 IEEE

time spent by this heuristic is bound by a constant, not
depending on the length of sequences of the problem. Our
heuristic works as follows. First, a short segment of the
parent is chosen at random. Next, the segment is randomly
divided into 2 or 3 groups and columns with only gap
characters are removed from each group. Then the dynamic
programming algorithm is used to combine these groups into
a new segment of alignment. Finally, the new segment is
connected with two terminal segments of the parent to form
the offspring.

F. Parallelization

Since our algorithm uses a multiple population strategy,
we apply the so-called coarse-grained parallel model [24]. In
this model, each process is assigned to handle a
sub-population and some of the best individuals are
exchanged between sub-populations at a predefined interval.
The processes communicate between sub-populations via
socket channels. However, the current version can only run
on a single machine so it can exploit the benefit of
multiprocessor system. For a single processor machine this
implementation is a little slower than the serial version due
to extra time spent on communication. In general, by using
this parallel model the computing time of our algorithm is
reduced almost linearly with the increase of the number of
processors (up to the number of sub-populations).

IV. EXPERIMENTS AND VALIDATIONS

A. Experimental method

The OMA and MSA methods were chosen to compare
with our method PHGA since they follow the approach of
simultaneously aligning multiple sequences and can find
high quality solutions. They are the best appropriate methods
that are available to us.

A total of 85 problems taken from the BAliBASE library
[25] are used to validate our method. In which 82 problems
from reference1 are used to compare with OMA and MSA
methods because they are small enough for both methods to
handle and their results to these problems are already
available [26]. Three larger problems, namely 1cpt, 1ajsA,
and 1lvl from reference2 are used to test how aptly our
algorithm scales with the size of problems.

Although results of MSA method are available, these
results are not complete because MSA was limited to run
within 12 hours and 2 GB of memory. Therefore, we decided
to recompile and rerun the MSA program in our machine,
which was a Sun Ultra 80 with four 450-MHz processors, 1
GB of physical memory. The results of OMA were reported
by using other type of machine (Sun Ultra Enterprise 450
with 400 MHz processors, 2 GB of physical memory). We
estimate that this machine is a little slower than our machine.
The GNU gcc software was used to compile the MSA
program and our own program.

Since the results of OMA method were reported by using a
cost version of the PAM250 matrix with quasi-nature gap
cost, we also use it for calculating our results. Although
PHGA supports sequence weighting and an option in which
terminal gaps are not charged, these features were turned off.

For all benchmarks, the population size was set to 400,
which was equally divided into 8 sub-populations. The
selection bias was set to 1.25 and the mutation rate to 0.1.
The algorithm stops after either 30,000 generations or 3,000
generations of successive un-improvement of the best

individual. The migration interval was 500 generations and 5
best individuals of each sub-population were exchanged at
migration intervals.

B. Validations

TABLE 1 shows a part of the results. Problems that all
three methods have the same cost results are not shown. In
this table, Data is the problem name. K shows the number of
sequences and Max len shows the maximum length of
sequences. Avg id denotes average sequence identity, which
indicates how close sequences are related. OMA cost, MSA
cost, and PHGA cost are the costs of alignments found by
OMA, MSA, and PHGA, respectively. The bold numbers
indicate that they are the lowest cost among three methods.
Column (best / worst) shows the best and the worst solutions
found by PHGA within 3 runs. Note that for the column
PHGA cost, we reported the cost of the first run, not the
mean of three runs. OMA time, MSA time, and PHGA time
express the running times (clock time until completion) for
one run in seconds.

1) Quality of solutions
In a total of 82 problems, PHGA wins 29, losses 3 and

draws 50 cases compared to the OMA method. The number
of wins, losses and equals of PHGA compared to MSA are
30, 10, and 42, respectively. There are 14 cases that PHGA
wins both other methods. Notice that there are two cases that
the MSA could not find the solution (the message: “Not
found” was reported).

2) CPU times
First, let compare PHGA with OMA. PHGA is slower for

normal problems but it is significantly faster for some hard
problems. For example, the OMA method needs 10,051.20
seconds to solve the 1lvl problem, while PHGA needs only
178.06 seconds. In this problem, PHGA also finds better
solution than the OMA method (44,111 vs. 44,136).

Second, let compare PHGA with MSA. Like OMA, the
running time of MSA for normal problems is quite fast. For
hard problems, however, its running time is worse than that
of OMA. For example, the CPU time of MSA for the
problem 1pamA is 164,460.12 seconds (about 2 days). On
the contrary, PHGA needs only 324.78 seconds to solve this
problem, with a little worse result (86,004 vs. 86,144). For
the 1havA problem, PHGA is much faster than MSA (119.75
vs. 125,656.20 seconds) and its result is also slightly better
than that of MSA (31,705 vs. 31,709).

3) Scalability
The results of three problems from reference2 are shown

in the lower part of TABLE 1. The 1cpt problem has 15
sequences with a maximum length of 434. The 1asjA
problem has 20 sequences with a maximum length of 389.
The last problem has 24 sequences with a maximum length
of 473. The CPU times for solving them were 1,399.85,
2,781.07, and 6,100.92 seconds, respectively. We conclude
that our method can scale quite well with problem size.

4) Others
Memory required for PHGA is very small compared to

both the OMA and MSA methods. The PHGA method never
needed more than 100 MB of memory for solving all tested
problems. On the contrary, MSA on some hard cases used
nearly all of the physical memory (1 GB) of our machine.
The OMA method needed about 1.5 GB of memory to solve
the 1lvl problem.

0-7803-7282-4/02/$10.00 ©2002 IEEE

TABLE 1
COMPARATIVE RESULTS OF OMA, MSA, AND PHGA METHODS

Data K Max len Avg id OMA cost OMA time MSA cost MSA time PHGA cost (best / worst) PHGA time

1aboA 5 80 15 10,674 973.64 10,721 11.04 10,674 (10,674 / 10,674) 47.59

1ac5 4 483 29 43,341 34.51 43,325 258.87 43,325 (43,325 / 43,325) 104.14

1ad2 4 213 30 19,714 14.68 19,726 0.44 19,714 (19,714 / 19,714) 63.51

1ad3 4 447 47 39,218 15.80 39,209 1.68 39,209 (39,209 / 39,209) 63.99

1aho 5 67 44 9,807 6.06 9,813 0.10 9,807 (9,807 / 9,807) 44.55

1ajsA 4 387 15 38,468 4,242.99 38,435 707.75 38,437 (38,437 / 38,437) 172.42

1ar5A 4 203 42 17,722 9.03 17,730 0.34 17,722 (17,722 / 17,722) 59.93

1bbt3 5 192 13 30,740 570.38 30,691 4,079.57 30,730 (30,709 / 30,730) 134.05

1bgl 4 993 31 90,863 43.05 90,839 280.44 90,839 (90,839 / 90,843) 162.34

1cpt 4 434 20 39,908 22.86 39,834 2.59 39,823 (39,820 / 39,823) 93.25

1csy 5 104 30 16,361 6.32 16,366 0.19 16,361 (16,361 / 16,361) 102.44

1fjlA 6 70 28 15,973 4.02 15,993 0.12 15,965 (15,965 / 15,965) 64.15

1fkj 5 110 44 15,809 4.30 15,815 0.17 15,809 (15,809 / 15,809) 50.94

1gowA 4 481 31 45,328 28.30 45,321 86.21 45,328 (45,328 / 45,328) 104.57

1gpb 5 828 47 117,934 46.29 117,959 9.81 117,933 (117,933 / 117,933) 101.89

1gtr 5 436 42 64,202 21.53 64,190 59.38 64,190 (64,190 / 64,190) 73.90

1havA 5 199 15 31,867 3,003.78 31,709 125,656.20 31,705 (31,700 / 31,718) 119.75

1hpi 4 81 33 6,870 2.86 6,879 0.13 6,870 (6,870 / 6,870) 53.71

1idy 5 58 14 9,542 3.97 9,543 2.83 9,510 (9,508 / 9,510) 61.75

1lcf 6 691 49 149,508 1,534.27 149,485 60,026.37 149,485 (149,485 / 149,490) 146.50

1lvl 4 449 19 44,136 10,051.20 44,128 34.32 44,111 (44,111 / 44,112) 178.06

1mrj 4 266 33 24,166 12.34 24,157 2.15 24,157 (24,154 / 24,157) 51.14

1pamA 5 572 18 86,357 457.83 86,004 164,460.12 86,144 (86,064 / 86,203) 324.78

1pfc 5 117 28 17,708 19.96 17,710 0.64 17,708 (17,708 / 17,708) 63.26

1pkm 4 449 34 42,100 18.36 42,081 24.18 42,081 (42,081 / 42,081) 98.27

1plc 5 99 46 14,205 4.96 14,195 0.16 14,195 (14,195 / 14,195) 67.48

1ppn 5 220 46 31,731 11.10 31,733 0.66 31,731 (31,731 / 31,731) 69.28

1r69 4 78 13 7,294 21.82 7,318 1.57 7,294 (7,294 / 7,294) 60.61

1rthA 5 541 42 80,352 36.29 80,358 4.36 80,350 (80,350 / 80,351) 115.55

1sbp 5 263 19 43,115 3,773.48 43,040 13,647.36 43,053 (43,048 / 43,054) 143.17

1taq 5 928 40 133,913 1,901.03 133,846 52,573.30 133,854 (133,854 / 133,869) 164.03

1thm 4 279 49 24,978 11.37 24,986 0.59 24,978 (24,978 / 24,978) 66.71

1ubi 4 94 18 8,631 37.85 8,639 0.36 8,626 (8,626 / 8,631) 92.03

1uky 4 220 15 21,116 422.99 Not found --- 21,089 (21,089 / 21,094) 98.91

1wit 5 106 17 16,517 120.91 16,533 1.52 16,517 (16,517 / 16,517) 62.75

1ycc 4 116 29 10,538 6.03 10,548 0.21 10,538 (10,538 / 10,538) 42.30

2ack 5 482 28 77,139 1,491.15 77,028 14,785.62 77,069 (77,030 / 77,069) 150.96

2hsdA 4 262 19 25,284 323.90 25,354 14.02 25,274 (25,274 / 25,274) 104.60

2myr 4 474 16 43,541 125.94 43,501 1,247.02 43,556 (43,514 / 43,557) 247.65

2pia 4 287 20 26,606 353.81 26,606 329.74 26,612 (26,606 / 26,612) 70.35

3grs 4 237 14 23,478 21.97 23,489 41.86 23,486 (23,483 / 23,486) 110.51

451c 5 87 27 13,364 200.28 13,380 1.57 13,364 (13,364 / 13,364) 58.03

4enl 3 421 20 18,923 31.14 18,912 1.29 18,909 (18,909 / 18,909) 47.01

5ptp 5 245 43 34,752 11.51 34,762 0.73 34,752 (34,752 / 34,752) 61.07

actin 5 395 45 56,940 20.51 56,942 2.13 56,938 (56,938 / 56,938) 72.52

gal4 5 395 14 62,901 31.43 Not found --- 62,558 (62,558 / 62,620) 354.50

glg 5 486 31 74,397 175.66 74,384 843.70 74,381 (74,381 / 74,382) 118.24

kinase 5 276 20 46,104 38.67 46,019 8,800.60 46,039 (46,019 / 46,039) 121.55

1ajsA (ref2) 20 389 35 --- --- --- --- 1,066,434 2,781.07

1cpt (ref2) 15 434 29 --- --- --- --- 645,403 1,399.85

1lvl (ref2) 24 473 30 --- --- --- --- 2,023,737 6,100.92

0-7803-7282-4/02/$10.00 ©2002 IEEE

Another advantage of the PHGA method is that it can
produce different results for different runs since it is based on
randomness. As a result, we can improve the quality of
solutions by running the method several times and take the
best of these runs. For example, the numbers of wins, losses
and equals of the best of 3 runs of PHGA over OMA are 30,
1, and 51, respectively. These numbers when comparing with
MSA method are 31, 8, and 43. However, the running time in
this case is 3 times longer than the single run case. We can
also notice that the variation between runs is quite small. The
results of three runs are the same for most of the tested
problems.

Since the quality of solutions from the biological point of
view depends not only on our algorithm but also on the cost
model, we did not perform experiments to validate our
algorithm from this point of view. It needs more time and
efforts to determine which cost model is the most suitable for
real world applications and we leave them for future
research.

V. CONCLUSIONS

This paper presents a GA-based method for solving the
sum-of-pairs multiple protein sequence alignment. First, a
new chromosome representation and its corresponding
genetic operators are proposed. Next, local search heuristics
are combined with GA to compensate for its lack of local
search ability. Two kinds of heuristics are employed; the first
one is for creating individuals in the initial generation and
the second one is used as mutation for improving individuals
during the search. Finally, the method is extended to parallel
processing.

The method has been validated with many benchmarks
taken from the BAliBASE library. Experimental results show
that the method is in general superior to the OMA and MSA
methods. It often finds better solutions and has better
scalability compared to OMA and MSA.

The proposed method is also required much less memory
than OMA and MSA. Therefore, it can handle bigger
problems. Our current implementation can be applied to
problems with up to 32 protein sequences while OMA and
MSA can only be applied to problems with about a dozen
protein sequences. If we consider that the current limit (32) is
because of the limit of data structure we use, not because of
the limit of the memory, this limit can be further expanded.
For example, if we use an array of 4 integers for each locus,
then the maximum number of sequences increases to 128.
However, this complicates the codes of our algorithm.

There are several issues for future works. First, we want to
modify the codes so that it can solve problems with more
than 32 sequences. Second, we want to extend the method to
run in parallel on a network of computers (e.g. a cluster
system) instead of a single multiprocessor system as
currently. Third, we want to validate which cost model is the
most suitable for real world applications.

Acknowledgements

This research is partly supported by Grant-in-Aid number
13208001 for scientific research, Japan Society for the
Promotion of Science.

References

[1] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins”,
Journal of Molecular Biology, 48, 1970, pp. 443-453.

[2] M. A. McClure, T. K. Vasi, and W. M. Fitch, “Comparative analysis
of multiple protein-sequence alignment methods”, Molecular Biology
and Evolution, 11(4), 1994, pp. 571-592.

[3] P. Briffeuil, G. Baudoux, C. Lambert, X. De Bolle, C. Vinals, E.
Feytmans, and E. Depiereux, “Comparative analysis of seven multiple
protein sequence alignment servers: clues to enhance reliability of
predictions”, Bioinformatics, 14, 1998, pp. 357-366.

[4] J. D. Thompson, F. Plewniak, and O. Poch, “A comprehensive
comparison of multiple sequence alignment programs”, Nucleic Acids
Research, 27, 1999, pp. 2682-2690.

[5] D. F. Feng and R. F. Doolittle, "Progressive sequence alignment as a
prerequisite to correct phylogenetic trees”, Journal of Molecular
Evolution, 25, 1987, pp. 351-360.

[6] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice”, Nucleic Acids Research, 22, 1994, pp.
4673-4680.

[7] D. G. Higgins and W. R. Taylor, “Multiple Sequence Alignment”,
Protein Structure Prediction – Methods and Protocols, D. M. Webster,
ed., Humana Press, 2000, pp. 1-18.

[8] S. K. Gupta, J. D. Kececioglu, and A. A. Schaffer, “Improving the
practical space and time efficiency of the shortest-paths approach to
sum-of-pairs multiple sequence alignment”, Journal of Computational
Biology, 2(3), 1995, pp. 459-472.

[9] K. Reinert, J. Stoye, and T. Will, “An iterative method for faster
sum-of-pairs multiple sequence alignment”, Bioinformatics, 16, 2000,
pp. 808-814.

[10] H. Kobayashi and H. Imai, “Improvement of the A* algorithm for
multiple sequence alignment”, in Proceedings of Genome Informatics
Workshop, 1999, pp. 120-130.

[11] K. B. Lassen, O. Caprani, and J. Hein, “Combining many multiple
alignments in one improved alignment”, Bioinformatics, 15, 1999, pp.
122-130.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, 1975.

[13] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, 1989.

[14] C. Notredame and D. G. Higgins, “SAGA: sequence alignment by
genetic algorithm”, Nucleic Acids Research, 24, 1996, pp. 1515-1524.

[15] Y. Harada, T. Yokoyama, and T. Shimizu, “Multiple sequence
alignment by genetic algorithm”, Genome Informatics, 11, 2000, pp.
317-318.

[16] J. T. Horng, C. M. Lin, B. J. Liu, and C. Y. Kao, “Using genetic
algorithm to solve multiple sequence alignments”, in Proceedings of
Genetic and Evolutionary Computation Conference (GECCO-2000),
2000, pp. 883-890.

[17] S. F. Altschul, “Gap costs for multiple sequence alignment”, Journal
of Theoretical Biology, 138, 1989, pp. 297-309.

[18] S. F. Altschul, R. J. Carroll, and D. J. Lipman, “Weights for data
related by a tree”, Journal of Molecular Biology, 207, 1989, pp.
647-653.

[19] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, “A model of
evolutionary change in proteins”, in Atlas of Protein Sequence and
Structure, vol. 5, suppl. 3, National Biomedical Research Foundation,
Washinton DC, USA, 1978, pp. 345-352.

[20] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices
from protein blocks”, in Proceedings of the National Academy of
Sciences USA, 89, 1992, pp. 10915-10919.

[21] D. Whitley, “The GENITOR algorithm and selective pressure: why
rank-based allocation of reproductive trials is best”, in Proceedings of
the 3rd International Conference on Genetic Algorithms, J. D.
Schaeffer, ed., Morgan Kaufmann, 1989.

[22] GENITOR group homepage, http://www.cs.colostate.edu/~genitor/
[23] N. Saitou and M. Nei, “The neighbor-joining method: a new method

for reconstructing phylogenetic trees”, Molecular Biology and
Evolution, 4, 1987, pp. 406-425

[24] E. Cantu-Paz, “Implementing fast and flexible parallel genetic
algorithms”, Practical Handbook of Genetic Algorithms – Volume III,
1999, pp. 65-84.

[25] J. D. Thompson, F. Plewniak, and O. Poch, “BAliBASE: a benchmark
alignment database for the evaluation of multiple alignment
programs”, Bioinformatics, 15, 1999, pp. 87-88.

[26] OMA homepage, http://bibiserv.techfak.uni-bielefeld.de/oma/

0-7803-7282-4/02/$10.00 ©2002 IEEE

