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1 Summary

There are many proposed vision based methods to perform obstacle detection and avoid-

ance for autonomous or semi-autonomous vehicles. All methods, however, will require very

high processing rates to achieve real time performance. A system capable of supporting

autonomous helicopter navigation will need to extract obstacle information from imagery

at rates wrying from ten frames per second to thirty or more frames per second depending

on the vehicle speed. Such a system will need to sustain billions of operations per second.

To reach such high processing rates using current technology, a parallel implementation of

the obstacle detection/ranging method is required. This paper describes an efficient and

flexible parallel implementation of a multisensor feature-based range-estimation algorithm,

targeted for helicopter flight, realized on both a distributed-memory and shared-memory

parallel computer.

2 Introduction

The design of intelligent low-altitude guidance systems for helicopters requires information

about objects in the vicinity of the flightpath of the vehicle. The sensor system on the

helicopter must be able to detect objects such as buildings, trees, poles and wires during

flight. A complete obstacle-detection system may consist of an active ranging sensor and

passive ranging using electro-optical sensors. A comprehensive overview of this problem can

be found in references [1, 2, 3].

Several techniques have been proposed for range determination using electro-optical

sensors [4, 5, 6]. These techniques use optical flow resulting from the relative motion between

the sensor and objects on the ground together with the helicopter state from an inertial

navigation system to compute range to various objects in a scene. One algorithm of interest

can detect, track, and estimate range to image features (i.e., patches of an image with

common statistics or spatial structure) over time from a multisensor system mounted on a

vehicle moving with arbitrary six degrees of freedom [7].

The estimation of range using electro-optical sensors involves large volumes of data, for

example, 15 MB/sec for 8-bit grey scale stereo images at 30 frames per second, and requires

processing power in the range of a few billion operations per second. Today, there is no

single off-the-shelf microprocessor or digital signal processor which can meet this demand.

The large amount of computation required to solve problems in computer vision is well-

recognized, and parallel processing presents an approach to achieve the speed necessary for

real-time implementation [8]. However, parallel processing does not provide a linear increase

in speed and the actual increase depends on the computer architecture and the application

[9]. The selection of a parallel processing architecture for the range-estimation problem has

to examine the trade-offs between several architectures in terms of their effect on overall

speed increase, processor utilization, programmability, and physical constraints. A promis-

ing system must be adaptable to changes in the vision algorithm, exhibit good scalability,

and must be installable, at some point, on board a helicopter. The constraints of high speed,

algorithm flexibility, and system scalability favor a general-purpose parallel RISC-based sys-
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Figure 1: Obstacle geometry.

tern over traditional pipelined image processors. This does not prevent a viable system from

using a traditional image processor as a "front end" to the parallel computer. Simply due

to the algorithm's complexity, a traditional "image processing" approach will be lacking in

flexibility [10].

This paper presents a multiple-sensor range-estimation algorithm along with a discussion

of an efficient and flexible method of parallelization which is necessary to realize real-time

operation on a distributed-memory or shared-memory parallel computer. The paper is orga-

nized as follows: Section 2 gives a quick overview of the mathematical background of optical

flow. Section 3 describes the extended-Kalman-filter-based range-estimation algorithm, ex-

tension of the procedure to multiple sensors, initialization procedure and an introduction

to the multirate Kalman filter [11]. Section 4 discusses the feature tracking algorithm and

section 5 describes virtual processing regions, a software abstraction used for parallelization.

Section 6 describes three load balancing schemes based on virtual processing regions. Section

7 presents some initial results using a distributed-memory parallel computer composed of a

network of workstations and a modern shared-memory multiprocessor. Section 8 completes

the paper with some concluding remarks and a discussion of future work.

The authors would like to thank Silicon Graphics Inc. for access to a IRIS 4D/480 for

timing measurements.

3 Optical Flow

Consider a rotorcraft-mounted sensor rotated with respect to the body axis by the orthonor-

mal rotation matrix Tb., and offset from the vehicle's body axis by Is. The sensor, in motion

with respect to an inertial Earth-fixed world axis system, observes an obstacle O whose

location is fixed in the Earth frame as shown in Fig. 1. We wish to determine the relative
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position of the obstacle O with respect to the sensor

p=ro-r. (1)

The imaging sensor maps the world object O whose location in sensor axes is po = [po_, p°_, p°=]T

onto the image plane at Q by perspective projection according to the equation

[:] rf,,,/,-1= tfp.,/p.= J (2)

where f is the focal length of the sensor. As the sensor moves, p, changes and so the image

location corresponding to 0 changes as follows:

: ± (,>
p.= Lf,_,= vp°= j

The sensor frame is moving so the derivative of p° is determined using the Coriolis equation

(4)

where _ is the derivative of p in world axes and is equal to the negative of the sensor velocity

in world axes, _o is the derivative of p in sensor axes, and w is the rotation of the sensor axes

relative to the world axes. Let V_ = [V,_, V, v, V,_] T and w° = [,,,_,_ov,-,o_] r be the linear

and angular velocity of the sensor with respect to the world frame and resolved in the sensor

axes. Then noting that O is fixed in world axes and using equations (1) and (4), we obtain

the relation

x p. (5)

The motion of the image point corresponding to O can now be written in terms of the sensor

motion using equations (3) and (5), giving the result

it = iZT + i_n

6 -- 6T+6R

fir = (-fV_v + uV_=) Ip._

= uvOj

(6)

The motion of the image point corresponding to O due to sensor motion is known as optical

flow. Here the optical flow has been decomposed into components due to translational and

rotational motion of the sensor, denoted by the subscripts T and R, respectively. V, and

wo can be derived from the rotorcraft's inertial navigation system. With knowledge of the

sensor motion, the focal length, and the optical flow [fi, 6] obtained from a feature tracking

algorithm, the range, p,_, of an object O at the image location [u, v] can be determined from

the optical flow equations (6). The full vector p° can then be recovered with the perspective

projection equation (2). Knowledge of the dynamics of a sensor in an Earth-fixed inertial

frame is an essential element in this range-estimation algorithm.
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4 Kalman Filter

There have been many published methods of extracting range from motion imagery [12,

13, 14, 15, 16]. A simple method would be to measure the optical flow between every

consecutive frame, and using equations (2) and (6), as described earlier, extract the object

location p,. The trouble with such a method is the unreliability and low signal-to-noise

ratio of a single measurement of [fi, 6], due mainly to pixel quantization and inaccuracies

of subpixel localization. To greatly improve the range estimate of an object, an extended

Kalman filter (EKF) is used to recursively estimate p, given multiple measurements of [fi, 6].

Several Kalman filter implementations were studied by Sridhar and Phatak [4], who

obtained the best results by selecting the state vector X = p, and the measurement vector

Z = [u, v]. With these definitions, equation (5) becomes the state equation and the perspec-

tive projection equation (2) become the measurement equation. The state and measurement

equations can be written as follows

= -[,,,,IX- v,

Z = h(X) = [fp._/p.,_,fp._/p..]T (7)

where

0 --_sz _sy ]

[_s] = _,z 0 --U;sx

--tMsy _sx 0

(8)

The state equation is a time varying linear system that depends on the camera's translational

and rotational velocities. The measurement equation is a nonlinear function of the state.

The continuous time state and measurement equations can be converted to their discrete

time equivalents assuming that V_ and w, are constant during the sampling interval AT. The

discrete time system equations are

x(k + 1) = ¢(k)X(k) + r(k)U(k) + r_(k)¢x(k) (9)

Z(k) = h[X(k)] + (z(k) (10)

where q_(k) is the state transition matrix, F(k) is the input distribution matrix, U(k) =

-V,(k) is the control vector, Fd(k) is the disturbance distribution matrix, and _x(k) and

_z(k) model the process noise and measurement noise, respectively. Zero mean gaussian

white noise is assumed such that R(k) = coV(_z(k)) and Q(k) = cov(¢x(k)). The state

transition matrix and the control distribution matrices derived by Sridhar and Phatak can

be found in [4]. The measurement equation is linearized about the current estimate of X

giving

Z(k) = H(k)X(k) (11)

[_p.,/,2 lira: 0 ]X,k) (12)H(k) = Oh(X)/OX = f _p,z/p2 x 0 i/p,:
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Figure 2: Two-sensor initialization.

The discrete time state equation (9) and the linearized measurement equation (11) can be

used in a standard Kalman filter to recursively estimate the state vector X and the state

covariance matrix P.

The Kalman filter consists of two parts: the measurement update which improves the

state estimate given a new measurement, and the time update which propagates the state

forward in time according the system dynamics. Before each iteration of the Kalman filter, we

have estimates of X (k), P(k), Q(k), and R(k). The measurement update is then performed

according to the following equations:

)((k) = X(k) + g(k)[Z(k) - h(X(k))]

P(k) = [I- K(k)H(k)lP(k) (13)

where H(k) is computed from X(k) as described above and the Kalman filter gain K(k) is

computed using the equation

K(k) = P(k)H(k)T[H(k)P(k)H(k) T + R(k)] -x (14)

The time update equations are

)_(k + 1) = ¢(k)_(k) + r(k)U(k)
P(k + 1) = ¢(k)P(k)¢(k) r + rd(k)Q(k)rd(k)r (15)

4.1 Initialization

As noted above, the Kalman filter requires initial estimates for X and P. The initial estimate

for X can be derived either of two ways. The first method is based on measurements of a
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feature's location within two imagesAT seconds apart from a single moving camera. The

second method, applicable in multisensor configurations, uses measurements from two sensors

displaced in space only. The initial estimate of the state covariance matrix P is chosen a

priori.

The single sensor initialization method uses the optic flow equations, the perspective

projection equations, and the camera's translational and rotational velocities which are as-

sumed constant during the interval AT between images. First, the optic flow equations (6)

are solved for xo, where [u, v] is the feature location in the sensor image plane. The optic

flow equations actually comprise an overdetermined system of two equations in the one un-

known xo, so a single quadratic equation in x, is formed by summing the squares of the two

optic flow equations. Once xs is found, ys and za can be determined from the perspective

projection equations (2).

A two-sensor stereo analysis is used to generate the initial estimate for a multisensor

image sequence. In Fig. 2 two sensors are shown from an n-sensor configuration. One of

the n sensors is designated as the master sensor and any of the others may be chosen as the

slave sensor. An object O in the field of view (FOV) of the master and slave sensors will

be imaged by both sensors. If occlusion effects are ignored then the image plane locations

of O in the master and slave sensors are [UM, VM] and [us, vs] defined by the perspective

projection equation (2) and vectors PM and Ps, respectively. The slave sensor is located at a

position d with respect to the master sensor, and the transformation from the master sensor

to the slave sensor is given by an orthonormal rotation matrix TM,S. The master and slave

sensors and the object O are related by the following equation:

PS ---- TM,S(pM -- dM )

Equation (16) can be expressed term by term

RS_ ---- t21 t22 t23 PM_ dMu

PSz t31 t32 t33 PMz dMz

(16)

(17)

If we assume PMz "_ P8x -- Px, (i.e., O is approximately the same distance from the center

of each sensor's axis system) then equation (17) gives rise to two equations which may be

solved for p_. Equation (17) suggests that the master and slave sensors may be arbitrarily

placed. It is numerically desirable though to place the master and slave sensors such that

the roll and pitch between the sensors are minimized and dM has a major component along

either YM or ZM. This is usually the case in standard two-sensor stereo setups. Equation

(17) simply gives the full relations when two sensors do not have their scanlines registered.

In our setup (as in most setups), the displacement dM between the master and slave sensors

will be dominated by the dMu component; therefore, we have chosen to solve equation (17)

for p_ using the equation for ps_

fM(t21dMx -1- t22dMy + tz3dMz)

P= = t_,yM + t22UM + t23VM -- 11-_sus (18)

Equations (18) and (2) can then be solved for PM. This will be used as the initial state for

the EKF in the master sensor's axis system.



4.2. Multirate EKF

An image feature belonging to a far-away object or a feature near the FOE may have an

interimage motion smaller than can be resolved by the measurement process [7, 17]. The

effective signal-to-noise ratio of shift measurements can be increased by lengthening the time

interval between images. The increased time interval can be affected by pausing one or more

frames before a new measurement is made. This method essentially increases the motion

baseline for the optical flow measurements. Each feature will have an optimal measurement

delay rn such that its measured shift between frame k - rn and frame k is greater than some

constant value

dr < _/(u(k)- u(k- rn)) 2 + (v(k)-v(k- m)) 2 (19)

where [u(k),v(k)] is the measurement at time k. The choice of dr is based on the a priori

estimate of the measurement noise ffz. The measurement noise is affected by the pixel

quantization noise and the accuracy of the subpixel interpolation scheme used in subpixel

correlation measurements, which is discussed in a following section. It should be noted that

equation (19) is meaningful only if the sensor locations from which the two measurements

have come have not rotated with respect to each other for at least mAT seconds. The reason

for this, based on the optical flow equations (6), is that the rotational components of the

flow [/_n, vn] do not contain any information of an object's range. It would be unwise to use

this method, based on equation (19), to increase the signal-to-noise ratio of distant features

without first removing the feature's rotational component from the shift measurement. Since

the helicopter will always be rotating somewhat over time, one of the candidate measurements

needs to be rotated into the sensor frame of the other measurement before comparing them

using equation (19). To up-rotate a measurement from the coordinate system at time k - m

to the one at time k, the two equations for [tin, +n] from (6) are used in their discrete form.

These two equations can be written as a nonlinear vector function 9(') of the angular rates

and image location [u, v] of the feature at time i

 n(i)

Equation (20) is used to calculate the image velocity induced by rotation of the sensor axis.

In order to up-rotate a feature location [u(i - 1), v(i - 1)] to time i, the rotational velocity

9(i - 1) is multiplied by the sampling time AT and is added to the image plane location of

the feature at time i - 1. This will give the up-rotated image plane location at time i. This

process is performed rn times to find the location of [u(k - rn),v(k- rn)] at time k. The

following is the iterative equation to up-rotate features

v(i)--t,,(i 1) +g(i-1)zxr, i=k-m+l,...,k-1 (21)

The Kalman filter time updating is still performed at a constant rate which is equal to or

faster than the smallest measurement delay possible. If a feature has an optimal measure-

ment delay rn, then every ruth image a new measurement update is performed according to

equations (13) and (14); otherwise, a trivial measurement update is performed according to
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the following equations:

=
P(k) = P(k)

It should be noted that as a distant object approaches the sensor array its interimage shift

will increase. Therefore, the measurement delay m for a feature will decrease over time until

m = 1, indicating that a measurement is made during each frame.

5 Feature Tracking Algorithm

The most difficult aspect of feature-based passive range estimation is the accurate mea-

surement of the optical flow (interimage shift) for each feature. Results of earlier research

indicate that at least two passive sensors should be used for range estimation to eliminate

problems associated with subpixel motion near the FOE [18]. The combination of stereo

and motion processing has been found to produce a more robust range map than motion

or stereo alone. The geometry for multisensor feature tracking is illustrated in Fig. 3. In

the figure an object O is imaged by n sensors ($1,...,S,). If a feature belonging to O is

visually consistent among the sensors, then a measurement may be made of the feature's

location in each sensor's image plane. Each measurement can be treated as an independent

measurement of a feature's optic flow as seen by different sensors.
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Figure 4: Multisensor feature tracking.

An extended Kalman filter is used to estimate the range for a feature as well as to

fuse measurements from several sensors. Measurement fusion is effected by linearizing the

measurement update equation of the filter for the appropriate sensor. 1 The Kalman filter

time update is used to generate a prediction of a feature's location in one of the sensor axes

at the next image sampling time. Time update, coupled with perspective projection, gives a

prediction of a feature's location in each sensor's image plane at the next sampling time [7].

The feature tracking algorithm is currently limited to tracking features in imagery where

the sensor geometry has been fixed. This limitation is only a practical matter, not a theo-

retical restriction. A fixed sensor geometry means that during the tracking of features the

relation (position and orientation) of each sensor to all the other sensors and the vehicle is

fixed, thus disallowing pan/tilt sensor mounts.

5.1 Autonomous Tracking Units

Low-level feature tracking is parallel in nature. Each feature, once it is detected, is assigned

an autonomous tracking unit (ATU). The ATU can be implemented in software as a separate

process or thread. The tracking unit can track a feature in a single sensor over time. The

tracking unit can also obtain multiple measurements by using more sensors. Fig. 4 depicts

the strategy used to track a single feature in a two-sensor stereo image sequence. A feature

is initially detected at image location [u11, v11] in the master sensor. The ATU tracks the

feature over time within the master sensor, while a match to a slave sensor is used to add

1Since each sensor will have different dynamics due to helicopter motion, the Kalman filter will need to

be linearized for each sensor during measurement update.



stereoscopic information to the range estimation process. The range is initialized using a

pure stereo measurement. The tracking strategy of Fig. 4 can accommodate any number of

like sensors.

5.1.1 Feature detection

The feature tracking mechanism begins with the process of feature selection by partitioning

the master image using a cell grid. Each cell is a square pixel area with an odd number

of pixels, 2n + 1, to a side. Each grid cell is scanned to see if an image feature is present.

Features can therefore be detected only with the spatial accuracy (within the image plane)

of the grid resolution. Given an N x N image the grid would have N/(2n + 1) × N/(2n + 1)

cells. The cell grid greatly speeds up feature extraction because only N2/(4n 2 + 4n + 1)

locations need to be searched instead of N 2 locations which many traditional token-based

matching schemes require [19]. A cell size of 11 × 11 pixels gives good overall performance,

balancing matching accuracy (discussed later) versus spatial resolution. A 512 × 512 pixel

image would therefore be divided into 46 × 46 cells with fi pixels remaining along two of the

edges.

For this implementation, feature selection is based on intensity variance within a grid

cell. The following equation shows the intensity variance calculation at a grid cell centered

at [u,v] of size (2n + 1) × (2n + 1) pixels (n = 5 for a 11 × 11 cell size, and let N=(2n+l)):

ttt(u,v) - N2 _ I(u + i, v + j) (22)
i=-n j=-n

1 n n

o'_(u,v) - N2-1._ y_ (I(u+i,v+j)-pl(U,V)) 2 (23)

If _r_ is greater than a constant threshold value _r_, then the image location [u, v] is said to

be a feature.

5.1.2 Search window

Once a feature has been detected in a grid cell, a correspondence is generated between it and

an identically sized pixel area in another image. This provides measurement of the feature's

optical flow. The target image may be taken from another sensor at the same time (stereo) or

from the same sensor at a different time (motion) or a combination of both (motion/stereo).

Search windows are generated by projecting the estimated three-dimensional feature location

onto the target sensor image plane.

If a feature is new (i.e., has no range estimate) then a worst case guess is made based

on a priori near and far clipping planes of a range volume in front of the helicopter. Fig.

5 illustrates the search window generation procedure for a newly detected feature in the

motion/stereo approach. An object O gives rise to a feature in sensor $1 (the master sensor)

where p,l intersects the image plane. Only the feature's basis vector %01 is known, since only

a single sensor can be used to detect new features. The minimum, nominal, and maximum

lengths for p,a can be computed using ep,1 and the near and far clipping planes, P_i_ and
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R_._. The nominal value of p,l is calculated using R, om = (P_a_ + R_i,,)/2. The three

vectors P,lm,., P,I._, and p,l..o, are generated using the following equation with R equal to

appropriate clipping value:

Pslls =-

Pslz R

(24)

The three vectors p,l._,., Pol_ and Pol,.o_ can then be transformed from the master sensor

axis at time (k - 1) to the appropriate target sensor at time (k) (,.q, in Fig. 5). The

three vectors, now resolved into the S, sensor axis at time (k), can be projected onto the

appropriate target image plane using perspective projection. The result of projecting these

three vectors is an image plane boundary where the feature should lie if the object O was

within the minimum and maximum range clipping planes along the vector ep. 1. Fig. 5 also

shows the search window generated by the image plane boundary. The location [u,,,_,, v,_in]

corresponds to the projected vector p,,_,_; likewise for [uno,,,, V,,o,_] and [u,,,_, vm_]. The

search window is a diamond shape with the width of the diamond equal to twice the distance

from [U,_om, V,,om] to [u,,,a_, vm_]. This shape approximates a three-dimensional error ellipsoid

projected onto the image plane.

Once a feature has an initial range estimate, the near and far clipping planes are derived

from the state covariance matrix generated by the Kalman filter. Therefore, as the Kalman

filter for a particular feature converges, the clipping planes used for search window generation

collapse around the correct range, decreasing the size of the search window and reducing

computation. A minimum search window size is enforced to prevent the search window from

shrinking too much during convergence.

5.1.3 Correlation

The tracking unit uses the search window computed from a feature's range estimate to find

all the pixels in the target sensor image where the feature may be located. A correlation

calculation is then made between the cell in the master sensor which bounds the feature and

cell sized regions in the target image centered at each pixel within the search window.

The correlation operates on the original pixel intensities rather than image-derived mea-

surements to use as much of the actual image information as possible. The result of the

correlation is a value in the interval [0, 1], where 1 indicates a perfect correlation and 0

an uncorrelated match. The algorithm can use any normalized two-dimensional correlation

method. We have achieved good performance using normalized correlation which is presented

below: _

(2n + I)2]./AB -- _.IAIIB

r/c = _/(2n + 1)2hA -/_/(2n + 1)2aB -/_

(25)

2It should be noted that standard normalized correlation produces a correlation value on the interval

[-1, 1]. Our implementation maps all negative correlations onto zero.
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where

n n

n

E

n n

aB = [ __, _ I_(p- i,q- j)]

(26)

(27)

The feature is detected at [u, v] in image A and is correlated with image B at location

[p, q] as given by the search window. The result of all the correlations is a correlation surface

the size of the search window. The image plane location of the peak value of the surface is

the "best match" between the cell in the master image and search area in the target image.

Quadratic interpolation of the correlation function separately along u and v is used to refine

the estimate of the peak to subpixel accuracy. When the next frame is acquired the nearest

pixel to the subpixel location is chosen as the location of the feature. The error between

the subpixel feature location and the closest integer pixel is then added into the subpixel

interpolation for the next frame. Thus features are correlated on integer pixel boundaries

but tracking is maintained at subpixel accuracy over multiple frames.

6 Virtual Processing Regions

The autonomous tracking units described in the previous section are task-parallel in nature.

Once a feature is detected within the cell grid, an ATU is spawned to track the feature. If

a feature leaves the image plane or otherwise becomes untrackable then the ATU dies. As

motion imagery evolves, ATUs will track the optical flow within the image. Thus an ATU

will generally flow from the center of the image toward an edge (assuming forward motion).

If each ATU spawned by a particular grid cell is assigned to a processor then the data

requirements (image data) for that processor must be the union of the data requirements

of each ATU spawned by that cell. This is not a problem when the features are young and

close to the originating grid cell. Over time, though, the ATUs will spread out from the

originating cell and could potentially cover much of the image. Therefore, the autonomous

nature of ATUs will lead to data reT_irements which will evolve to be nonlocal within the

image space.

Nonlocal data requirements for each task can lead to poor performance in a multipro-

cessor system. This is due mainly to the communication overhead of either sending large

portions of the data space to each processor in a distributed-memory system, or memory

13



!!!!!
: : : : :

: : : : :

iiiii

:::::

:::::

:::::

:::::

:::::

:::::

Ill
/11 1 I'l-
Till
II J,,,J I

Illmt

III
IIIIP

!!!!m

ira!!_

ii=i.

:::::

!!ii
::::

::::

!!!!

::::

iiii

I;'--I
!!!!"

::::-

iiii

,i_i
Wlll

i i_i

JJii

::ll

!!!!
:ll

:::

:::

iii

ii
m!_l
It I I

-II/I

i 'r'll

iim I
!!_m
: : :

: : II

imi

: : _=

Figure 6: Image plane partitioning.

network contention in a shared-memory system [20]. The implication of this is that task par-

allelism alone is not sufficient to efficiently map the algorithm onto simple parallel hardware.

To overcome the data locality requirements, a higher level abstraction is introduced above

the level of the ATU. This abstraction, the virtual processor region (VPR), adds spatial

locality restrictions to each ATU within the image space.

Fig. 6 illustrates the idea behind virtual processor regions. The textured squares rep-

resent the location of ATUs within a master sensor image plane. The ATUs are arranged to

simulate the tracking of two trees and several ground features. The image is divided into 8 × 8

VPRs (heavy lines). Each VPR is responsible for maintaining a rectangular arrangement of

grid cells. In this example each VPR is allocated 5 × 5 grid cells (thin lines). The boundaries

for the VPRs are the same as for the underlying cell grid. The maximum number of VPRs

is equal to the number of grid cells?

The VPRs represent separate regions within the image plane that can be allocated to a

processing element (PE). In the example of Fig. 6 there are 64 VPRs which can be distributed

among up to 64 processing elements in a task/data parallel fashion. Each PE processes

the ATUs (textured squares) and performs feature detection in untracked grid cells (white

squares) which are contained within its assigned VPR. Since the VPRs are spatially allocated

their image data requirements are fixed. Therefore, as an ATU tracks a feature across a VPR

boundary, the VPR passes the ATU to the appropriate neighboring VPR before the next

image set is acquired. Currently each VPR is given enough image pixels 4 surrounding the

Sin the case of 512 x 512 pixel images with 11 x 11 pixel cells there can be as few as one VPR or as many

as 2116 VPRs.

4Each VPR, is currently given a ten pixel wide image strip from each of its neighbors. The size of this
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Figure 7: Feature tracking algorithm flowchart.

VPR proper such that ATUs can be tracked into a neighboring VPR's image space without

the need for interprocessor communication. This is an interim solution allowing for more

flexibility in the algorithm such that a wider range of architectures may be considered. If an

architecture has very cheap nearest-neighbor communication then ATUs would be designed

to be transferred between VPRs during the tracking phase of the algorithm. If the tracked

features have inter-image shifts greater than can be handled by the extra pixels sent along

with a VPR, then interprocessor communication during the tracking phase will be necessary.

Fig. 7 depicts the feature tracking method as a flow chart using the definitions of au-

tonomous tracking units and virtual processing regions. The feature tracking algorithm

based on virtual processing regions exhibits Single Program Multiple Data (SPMD) paral-

lelism. Each VPR can be processed in parallel as soon as its input data have been supplied.

The VPR however can exploit further parallelism at the ATU level if it contains more than

one grid cell. Each ATU/grid cell can be processed in parallel. The data requirements for

each ATU are implicitly supplied by the parent VPR. The ATU in turn is composed of a

series of serial matrix-like operations which exhibit vector-like parallelism. The number next

to each ellipsoid indicates the aggregate percentage of total computation needed by each

function.

The motivation behind the ATU/VPR construct is flexibility. The feature tracker can

be configured to use as few as one or as many as a couple thousand VPRs. Changing the

number of VPRs obviously affects the ATU per VPR ratio. On a highly parallel machine

(with several thousand processors) each processor would be assigned either an empty grid

strip is based on the highest inter-image shift expected during tracking.
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cell or an active ATU; there would be no need for VPRs. Since the algorithm has been

designed to be ported to different architectures, the VPR construct is necessary to reduce

the number of task/data parallel units to the optimal number for a given architecture and

load balancing scheme.

The ellipsoid labeled Reassignment in Fig. 7 indicates the section of the code which

detects when an ATU crosses a VPR boundary. As stated previously, since this section

could use interprocessor communication it is left as a serial section until an architecture port

is made. Since reassignment is relatively cheap on a uniprocessor computer, its parallelization

has not been considered in this paper.

7' Load Balancing

Each virtual processing region is task and data independent. The computational load rep-

resented by each VPR is proportional to the number of ATUs being managed by that VPR.

If the feature distribution in a scene is nonuniform then the number of ATUs per VPR may

vary greatly over the set of VPRs. If this occurs then a load balancing technique would

be needed to most effectively utilize every PE in a parallel system. Three load balancing

techniques have been explored: uniform partitioning and static and dynamic scheduling [10]:

7.1 Uniform partitioning

If scene content is such that features are uniformly distributed over the image plane, then

an allocation scheme which creates equal sized partitions would be optimal. Given an N

processor machine the image plane would be divided into N equal sized VPRs; one VPR

per PE. No explicit load balancing would be necessary to equally utilize each PE due to the

uniform distribution of features in the image plane.

7.2 Static scheduling

If scene content is such that features are not distributed uniformly (which is most often the

case), then a load balancing technique will be needed to make efficient use of every PE in a

system. The major computational load of each VPR is performing the correlations necessary

for feature tracking. If the time to scan a cell for a new feature is td, the time to generate a

correlation surface is tc and the time to perform measurement and time update is t]; then if

the ith VPR has A_ untracked cells and Bi ATUs (tracked features), the computation time

for the ith VPR, ri, can be approximated by

ri _ Aitd + Bi(tc + t! + td) (28)

If the number of features per VPR does not change too rapidly during steady-state feature

tracking, then it would be possible to perform static scheduling for the current frame time

based on each VPR's estimated computation time r_ from the previous frame.

Given that the master image is divided into M VPRs, static scheduling attempts to

distribute all M VPRs from the current frame onto a set of N processors so as to minimize
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completion time. It is required that M > N so that the scheduler has the resolution to

properly distribute the load. More precisely: Given N processors, a deadline D and an M

element set, X, of VPRs each with estimated computation time ri, select a disjoint partition

of X = X 1 U X 2 U... U X N such that

max{_-_ri:l_<j<N}_x, <_D (29)

The estimated time necessary to process allVPRs with a uniprocessor is

M

T = _ r_ (30)
i----1

Thus the best case deadline D possible, given N processors, is T/N. This is known as

the Multiprocessor Scheduling Problem and has been shown to be NP-complete [21]. The

challenge of static scheduling is to choose the partitions Xj in a computationally efficient

manner such that the maximum PE computation time approaches T/N.

7.3 Dynamic scheduling

If scene content changes rapidly such that the number of tracked features per VPR fluctuates

from one frame to the next or the number of correlations necessary to generate a correlation

surface fluctuates from one feature to the next, then equation (28) will not be an accurate

representation of the computation time required by a VPR. To correct for such occurrences

a higher order model of the computation time may be formulated by taking the influencing

dynamic factors into account. This approach, though, may lead to an overly complicated

computational model or a model which has dominant factors which cannot be predicted

efficiently. In such cases a dynamic approach may be used [10]. A simple method is to

have a controlling processor distribute VPRs to slave processors from a task queue of VPRs.

Processing dements are assigned new VPRs as they finish processing their current VPR.

This method of dynamic VPR allocation is practical only if the communication network

between the controlling task scheduler and the PEs does not saturate with the necessary

communication overhead.

None of the scheduling schemes presented above explicitlytakes into account the com-

munication time necessary to download data to each PE. Uniform partitioningwillbe ad-

verselyaffectedifcommunication time becomes comparable to computation time. For static

scheduling the communication time can be factored into the scheduler,ifthe delays are de-

terministic,by introducing itas another element in the cost function. Dynamic scheduling

has the benefit of inherently adapting to nondeterministic communication delays and time

varying unbalanced architectures [10].
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Figure 8: Imagewith correspondingintensity codedrangemap.

8 Implementation Results

The parallel constructs and load balancing methods described earlier allow implementation

of the feature tracking algorithm on distributed-memory computers or multithreaded shared-

memory computers or a combination of both. An ideal evaluation consists of comparing each

architecture/load balancing combination and choosing the scheme which performs best. Due

to limitations in available hardware and software, only a subset of the schemes has currently

been implemented and compared. We present several schemes which represent trends in

current parallel computer systems design which have a strong effect on the performance of

the algorithm. The execution time and speedup results of the various implementations will

suggest further architectures and software design issues for investigation.

The following subsections describe a distributed-memory machine based on a network

of workstation-class computers and a modern shared-memory multiprocessor. The feature

tracking algorithm was ported to each architecture and, if the operating system software

allowed, each load balancing scheme was examined.

Fig. 8 shows the 20th master sensor image along with its corresponding range map. The

image is from a sequence of 240 stereo image pairs generated using a computer controlled

motion table and scaled helicopter dynamics recorded from flight [22, 23]. The range map,

composed of 1450 tracked features, has been projected onto the master image plane with the

range coded by intensity. The cumulative execution time to process the first 20 image pairs

of the sequence was used as the basis of comparison for each of the computer/load balancing

schemes tested.
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Figure 9: Effect of VPR partitioning scheme and number of PEs on cumulative execution

time and speedup for distributed-memory.

8.1 Loosely coupled distributed-memory machine

A loosely coupled distributed-memory machine may easily be constructed with an Ethernet

network of UNIX 5 workstations using the Berkeley sockets library. The benefits of such

an implementation are low cost and ease of configurability. The disadvantage is that the

resulting multicomputer is very limited by the bandwidth and latency of the local area

network.

The feature tracking algorithm was structured so that a single PE (control node) would

run code that would schedule and distribute VPRs to slave PEs (compute nodes). The

slave PEs would contain the bulk of the feature tracking code and could each process a set

of VPRs. Load balancing is directly controlled by the control node; therefore, each load

balancing scheme discussed may be tested.

The distributed machine uses a network of nine Sun workstations. Each compute node

is a SparcStation2 and the control node is a SparcServer 630MP. During the timing test, only

the feature tracking software and routine low-overhead operating system support software

were executing on each node.

Fig. 9(a) and (b) and ll(a) and (b) show graphs of the cumulative execution time and

the speedup for the distributed-memory machine as the number compute nodes is increased.

Fig. 9(b) shows the effect that feature distribution has on speedup using a simple uniform

scheduler. For this figure the master image was divided into eight equal-area vertical VPRs

and compared with eight equal-area horizontal VPRs. By comparing the speedup graph in

5UNIX is a registered trademark of AT&T.

19



i

i! Vertical Partitioning

(a)

I

|

Horizontal Partitioning

0 l ll $ 4 i •

ProcessorNumber

(b)

Figure 10: Feature distribution for eight vertical VPRs and eight horizontal VPRs.

/
_, 720.0!- ...... Uniform 7.2 ...... Uniform

_1 t" _._. - - - static

s:o,o -- Dynamic s.3 -- Dynamic

'"

_ ,,..o _': _ 4.,

$t_.0 3.e ._" .,-

% °. .,. ,,,:...'" P'

__ " _"""

_ 270.0 !- "_"'. 2.7- ....

g / +""

_ llm.O i- 1.8 -
90.0 0.11 - X+_

I-
o.o | I I I I I I I I o.o I I I I I I I I

0 1 2 3 4 6 8 7 8 0 1 2 $ 4 6 6 7 8

Numberof Proceasorm Numberof Procueoro

(a) (b)

Figure 11: Effect of load balancing schemes and number of PEs on cumulative execution

time and speedup for distributed-memory.
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Dynamic Partitioning

Figure 12: Feature distribution for static allocation compared with dynamic allocation using

eight PEs.

Static Partitioning

Figure 13: Computational distribution for static allocation.
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Fig. 9 with the feature distribution in Fig. 8, one can seethat a vertical partitioning will
moreevenly allocate the ATUs amongthe processorsthan a horizontal partitioning for this

particular imagesequence.Fig. 10(a) and (b) showsthesefeature distributions graphically
for eight compute nodesduring the last frame.

Fig. ll(a) and (b) comparethe uniform, static, and dynamic load balancing schemes
using M = 64 VPRs (much like Fig. 6). We found that choosing M = N 2 when N is small

(i.e., N < 8), will give fine enough resolution for the static or dynamic scheduler to perform

an efficient schedule for the tested feature distributions.

The VPRs of the uniform method are distributed by vertical columns plus fractions of

a column when necessary. This method schedules 64/N VPRs to each compute node, where

N is the number of nodes. When N = 8 the feature distribution for 64 VPRs is identical to

the vertical VPRs of Fig. 10(a).

We solved the static scheduling problem stated earlier (i.e., computation of the partitions

Xj) with a computationaUy efficient bin packing s heuristic, "First Fit Decreasing" (FFD).

The FFD algorithm operates as follows: VPRs are taken in order of nonincreasing ri and

assigned to the first PE which has enough computational capacity to accommodate it. The

major computational burden of this method is the initial O(Mlog 2 M) sort of estimated

compute times. The benefits of this algorithm are twofold: first, it is easy to implement

and modify and, second, it has been shown to have several strong properties of asymptotic

optimality [24].

One slight modification to the theoretical static scheduler was made prior to imple-

mentation. The estimated compute time r_ in equation (28) is heavily dependent on the

correlation surface time to. A computer trace (SparcStation2) of the feature tracker gives

the following results: tc = 20.25 ms, td = 1.08 ms, and t! = 0.68 ms. In light of these

numbers the static scheduler was implemented such that Bi from equation (28) was the es-

timate of the computational load of each VPR (i.e., letting td = 0 and t/= 0, ignoring any

reference to true time). VPRs with no actively tracked features are evenly divided among

all the processors. Fig. 12(a) shows the feature distribution of the static scheduler during

the 20th frame, while Fig. 13 shows the compute time distribution during the same frame.

Comparisons of these graphs lead us to believe that load balancing using only the number

of active features per VPR may be accurate enough to perform the processor allocation.

The benefit of this modification is also twofold: first, accurate estimates of tc, td and tf are

not necessary as long as t_ >> (td + t/) and, second, the static scheduler uses only integer

mathematics which speeds computation.

The feature distribution for the dynamic scheduler is shown in Fig. 12(b). We can see

that only the first six nodes are highly utilized. This is because of the low speed of the

node interconnect (Ethernet). From the cumulative time graphs it is clear that the dynamic

scheduler outperforms uniform partitioning for more than two nodes. It also outperforms

the static scheduler for more than three nodes. Fig. 12(a) would seem to indicate that the

static scheduler should outperform the dynamic scheduler because it does a better job of

distributing the load. This is not the case, because, as the number of nodes increases, the

communication time begins to dominate the total processing time. With the nondynamic

6Bin Packing is closely related to the Multiprocessor Scheduling Problem [21].
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Figure 14: Cumulative execution time and speedup for shared-memory.

schedulers there will be wasted time after a node finishes processing its VPRs until the

distribution node retrieves the results. From these graphs it is clear that the Ethernet

saturates at six nodes for this application regardless of the scheduler.

The caveat for the dynamic scheduling is the poor scalability of the communication

overhead needed to support nonblocking I/O between the distribution node and the compute

nodes. Since the static scheduler performs nearly as well as the dynamic scheduler, we predict

that the static method will win out as the number of nodes increases.

8.2 Shared-memory machine

A Silicon Graphics IRIS 4D/480 was used to implement a multithreaded shared-memory

version of the feature tracker. The 4D/480 has eight RISC processors in a shared-memory

configuration. It is typical of modern shared-memory multicomputers in that the processing

elements are unbalanced with respect to the shared-memory interconnect [25]. This results

from the fact that memory interconnect speeds have not kept pace with the increased speed

of modern RISC CPUs. The 4D/480 also comes with a limited multithread support library

based on the Sequent Computer Systems parallel programming primitives.

Ideally for dynamic scheduling, each VPR would be assigned a thread, where the number

of threads is greater than the number of processors. The operating system would then

perform dynamic thread management. Such a method would be comparable to the dynamic

scheduler for the distributed-memory machine. The Sequent/SGI primitives allow for thread

process management of a limited number of threads (default maximum of eight). With so

few threads available, any load balancing scheme based on a large number of threads is
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unworkable. Therefore the only scheduling schemes which could easily be implemented were

those based upon a limited number of threads: uniform and static scheduling.

The uniform partitioning method was the easiest to implement. The master image was

partitioned into vertical VPRs, starting with a single VPR and working up to eight VPRs. A

thread was assigned to each VPR. Since the number of threads was always less than or equal

to the number of processors, the thread count was equal to the utilized processor count. Fig.

14 shows graphs for the cumulative execution time and the speedup for uniform partitioning.

Also in Fig. 14 are results from an implementation of static scheduling on the 4D/480.

Instead of assigning one VPR to each thread the load balancer generates an index map

whereby each thread can address the appropriate set of VPRs from shared-memory. The

overhead of the static scheduler is outweighed by the increased efficiency as can be seen in

the graphs.

9 Conclusions

The parallelization of the multisensor feature-based range-estimation software has proven

quite successful. The method has shown good speedup with up to eight processors. We

have shown that the algorithm, even though it is complex and data-driven, can be efficiently

parallelized into many independent task/data units which may be processed by a distributed-

memory or a shared-memory parallel computer. The Silicon Graphics 4D/480, using all eight

processors and the static scheduler, was able to process the 1450 features of the 20th frame

in 2.59 seconds. Thus to reach ten frames a second with a maximum of 1500 features we

will need to speed the processing up 26 times. This is a realistic goal which can be achieved

in the near future by increasing the number of processing elements, their performance, and

interconnect speeds.

The most detrimental aspect of our distributed-memory computer was the low band-

width of the node interconnect. To combat this problem we will consider new systems with

much faster node interconnect speeds. We are planning to port the algorithm to an Intel

iWarp _ systolic mesh computer [26] and possibly the next generation of Silicon Graphics

Multiprocessors.

In this paper we have not focused on parallel feature reassignment or image data acqui-

sition and distribution. These are important issues in a real-time system and will be topics

in the next phase of our research.
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