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ABSTRACT 

Particle-tracking simulation is one of the scientific applications that is well suited to 

parallel computations. At the Superconducting SuperCollider, it has been theoretically 

and empirically demonstrated that particle tracking on a designed lattice can achieve 

very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success 

is the realization that the particles can be tracked independently without considering 

their interaction. The perfectly parallel nature of particle tracking is broken if the inter­

action effects between particles are included. The space charge introduces an electro­

magnetic force that will affect the motion of tracked particles in three-dimensional (3-D) 

space. For accurate modeling of the beam dynamics with space charge effects, one 

needs to solve 3-D Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. 

This will require each particle to communicate with its neighbor grids to compute the 

momentum changes at each time step. It is expected that the 3-D PIC method will 

degrade parallel efficiency of particle-tracking implementation on any parallel com­

puter. In this paper, we describe an efficient scheme for implementing particle tracking 

with space charge effects on an INTEL iPSC/860 machine. Experimental results show 

that a parallel efficiency of 75% can be obtained. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

The superconducting super collider (SSC) under 

design and construction near \Vaxahachie. Texas, 

will be the largest and most powerful scientific in-
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strument ever built and will be used to investigate 

the fundamental origins of matter. The SSC com­

plex consists of the linear accelerator (LINAC), 

low-energy booster (LEB), medium-energy 

booster (~fEB), high-energy booster (HEB), and 

two collider rings, which will have a circumference 

of 54 miles (87 km) (Fig. 1 ). Each accelerator con­

sists of an array of elements, mostly magnetic. 

Particles are first injected from the LINAC, then 

travel circularly in the LEB, the MEB, and the 

HEB, and finally in the collider for many turns 

while being accelerated. At the final stage, two 

bunches of particles at 20 TeV, traveling in the 

87-km collider rings in opposite directions, are 

brought into head-on collision. 

Because the construction cost of the SSC is ex-

37 
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sse 
(54 Miles) 

FIGURE 1 Schematic layout of the SSe complex. The 

54-mile sse will be the largest and most powerful par­

ticle accelerator ever built. 

pensive (expected to exceed 58 billion), there is a 

demand to reduce the construction cost by design 

refinement. To reach such a goal, computer simu­

lation of particle motion in each accelerator is es­

sential. For a simulation to be useful, many parti­

cles must be tracked in a design lattice* for 

hundreds of thousands of turns [ 1]. If hundreds of 

thousands of particles are tracked in an sse lat­

tice with 14,000 magnet elements for 105 turns in 

a computer, then more than a thousand Tflops 

(10 12 floating-point operations) will be performed. 

This requirement makes computer simulation dif­

ficult without the use of high-performance, scal­

able, parallel computers. Parallel programming 

for a large scientific application requires one to 

understand the characteristics of the problem and 

to redesign the program to take advantage of 

hardware features. At the SSC, thin-element ac­

celerator program for optics and tracking (TEA­

POT) [2] particle-tracking code has been imple­

mented in a 64-node iPSC/860 machine. In the 

absence of space charge, it achieves about 98.3% 

parallel efficiency, because each node can track 

different groups of particles independently and 

* A lattice is a detailed description of how an array of ele­

ments such as dipole (bending), quadrupole (focus/defocus), 

sextupole, and rf cavities are arranged to form an accelerator 

ring at sse. 

only very little communication is required between 

nodes [3]. 

The perfectly parallel nature of particle track­

ing is due to the fact that the interaction effects 

between particles can be ignored when the beam 

energy is high. ln practice, when the beam energy 

is low, the space charge effects dominate the dy­

namics as in the LEB and the MEB (at transition) 

at the SSC. Readers who are interested in the 

space charge effects are referred to :Yiachida et al. 

[4'. From the computational point of view. the 

computational model and characteristics of space 

charge should be of interest to computational sci­

entists. To model the beam dvnamics at low en­

ergy correctly, the momentum changes of each 

particle caused by the space charge force must be 

calculated. This requires one to solve three-di­

mensional (3-D) :Yiaxwell field equations by a par­

ticle-in-cell (PIC)* fashion, an approach widely 

used in the simulation of plasma physics. A char­

acteristic of the PIC method is that each particle 

needs to allocate charge to its nearest neighboring 

3-D grids and to retrieve field information from its 

nearest grids by an interpolating method at each 

time step. Because particles will change their rela­

tive spatial position during tracking, communica­

tion between particles and their surrounding grids 

will be costly for parallel implementation. An effi­

cient and reliable scheme is needed to reduce the 

communication cost of the space charge calcula­

tion and to keep the load balance of particle track­

ing and space charge computations among nodes 

as even as possible. 

In this paper, we will show a reliable and effi­

cient scheme to implement parallel particle track­

ing under the influence of space charge on an IN­

TEL iPSC/860 MI~D computer. 

The rest of the paper is organized as follows: 

Section 2 describes the computational model and 

algorithm of particle tracking under the influence 

of space charge. Section 3 addresses our parallel 

implementation techniques. Section 4 presents 

empirical results on the iPSC/860 and CRAY. 

Section 5 concludes the paper and provides future 

research direction. 

2 SIMULATION MODEL 

Particle simulation based on a single-particle 

model is perfectly matched for scalable parallel 

* The computation of the electromagnetic field is depen­

dent on the charge density to which all particles must contrib­

ute in a nonlocal manner. 
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FIGURE 2 Computational model. 

architectures. An example is the ZTRACK code 

by Y an [ 1]. However, it cannot simulate the oper­

ation of the LEB and the :\1EB because their dy­

namics are dominated by space charge. To inte­

grate space charge into an existing tracking code 

such as TEAPOT, it is necessary to calculate 

charge densities and fields consistent with numer­

ical stability requirements. 

For computer simulation, we will use an ex­

plicit, fixed-time advance. The motion of particles 

is tracked for k(t) magnetic elements followed by a 

kick (space charge force), where k (t) is the number 

of elements tracked by a particle within the time t 

and t + At, and may be a fraction less than 1. At 

each element, the motion of particles is calculated 

in 6-D phase space. At each kick, we compute a 

3-D space charge force on each particle and up­

date its position and momentum. The choice of ll.t 

is determined by numerical stability and strongly 

affects the speed of the calculation. Figure 2 

shows the computational flow of the fixed-time­

step sampling method. 

In the following, we briefly discuss the models 

of space charge calculation. Our intention is to 

provide the minimum accelerator background 

needed for understanding the parallelization 

methods used for particle tracking with a space 

charge code. The tracking algorithm used is based 

on a 4-D symplectic procedure [21 and later ex­

tended to 6-D bv .\Iachida et al. [5]. 

2.1 3-D PIC Formulas for Space Charge 

To calculate a 3-D space charge field. we employ 

the PIC method. At each time step, a 3-D cylindri­

cal grid is first constructed, then the electromag­

netic field for particles is computed using the dis­

cretized version of 3-D .\Iaxwell equations. 

We assume that the 3-D cylindrical grid has 

coordinates (r, e. z), and the beam pipe has a 

circular cross section with radius b, the perfect 

conductivity a- = CIO,~and the scalar potential cf>""' 0 

at r = b. Let n and J be the cha}ge density and the 

current, respectively. and let A be the vector po­

tential. 

Cnder the Lorentz gauge acp/ at + cV' · A = 0, 

the Maxwell equations can be rewritten as 

(
1 a ( a) 1 a2) 
-; Dr r ar + r2 ae2 cf> = -47T n (r, 8, z. t), (1) 

(
1 a ( a) 1 a2

) ~ 47T ~ 
-; ar r ar + r2 ae2 A = ------;: J(r. 8, z, t), (2) 

where we invoked the ordering 

(3) 

This can be justified by the typical dimension of 

the beam, whose transverse size is the order of 

1 mm, whereas the longitudinal size is the order of 

1 m. 

We further simplify the current density, 

(4) 

where Vz is the average velocity of the beam. This 

is commonly referred to as the ultrarelativistic ap­

proximation, and it means that particles translate 

I!S a rigid body. Frpm the Lorentz force equation 

F = q(E + vic X B), the electromagnetic force is 

F = -q/y 2 Vcf>, and we need only solve the scalar 

potential Eq. ( 1). The charge density and scalar 

potential are Fourier transformed in 8: 
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n(r, 0, z, t) = 2: nm(r, z, t) exp(im6), (5) 
m 

with the inverse transforms 

1 (2" 
nm(r, z, t) = 

2
7T Jo n(r, 0, z, t) exp(-imO)dO, 

(6) 

and the same for cp. 
For each m (referred to as mode number), Eq. 

( 1) assumes the form 

(7) 

The general solution for the equation for m 2:: 0 is 

where Wm(r) is 

Wm=o(r) = -47T (r n0(r, z, t)r' ln!., dr', 
Jo r 

(9) 

27Trm 1' ( ) 1 11 ) d 1 - -- n r z t r ' ~m r m 0 m ., ., 

27Tr~m f' ,r , I - --- nm(r, z, t)r ,l+m) dr. 
m o 

(10) 

2.2 Algorithm 

The space charge algorithm proceeds as follows: 

1. Construct the bounding cylinder of parti­

cles. The cylinder is then decomposed into 

3-D grids [see Fig. 3(a)]. Each grid has in­

dex (r, (), z), which corresponds to cylindri­

cal coordinates (rdr, ()d(), zdz). 

2. For each particle, we allocate charge to each 

grid nearest the particle by the trilinear in­

terpolation method based on the relevant 

volume ratio [see Fig. 3(b)j. For example, 

the grid point at index h, 01, z 1) has volume 

ratio hdr - r)(02dO - O)(z2 dz - z)l 

(drdOdz), where (r, (), z) are the cylindrical 

coordinates of the particle and (r2 , ()2 , z 2 ) is 

the index of the opposite grid point of (r1 , ()1 , 

z1). 

3. Compute the Fourier decomposition of 

charge density in() using Eq. (6). 
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FIGURE 3 3-D grid decomposition. (a) 3-D grids of 

bounding cylinder of particles; (b) communication be­

tween a particle and its neighbor grids; (c) grid decom­

position in longitudinal direction. 

4. Compute the electrical field (£" £ 8 , Ez) for 

each grid. This can be done by computing cp 
using Eqs. (7-10). 

5. Compute the momentum changes for each 

particle from its surrounding fields and up­

date its coordinates and other attributes. 

3 PARALLEL IMPLEMENTATION 

The key to a parallel implementation of a compu­

tational model into a ~IMD hypercube parallel 

computer is to distribute the computation and 

data into the separate nodes such that each node 

has an equal share of computations, while com­

munication between nodes is minimized. Al­

though the principle is simple, the practice is more 

complicated, and a given implementation must 

take advantage of the available hardware features 

and take care of subtle issues with each parallel 

scheme-I/O and memory problems, numerical 

stability, and hardware failures-to achieve high 

performance for a large scientific application. 
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To take advantage of scalable parallel com-

puters, it is necessary to understand the charac-

teristics of the problem so that the program can be 

implemented correctly and efficiently (with perfor-

mance scalable to the number of computing nodes 

available). The characteristics of particle tracking 

with space charge effects are summarized below. 

3.1 Characteristics 

• Particles are tracked in 6-D phase space, and 

they can be tracked independently in 

BASE3D( ). 

• Particles are lost when they collide with the 

wall of the machine. 

• The 3-D PIC method requires a large number 

of field quantities defined on a 3-D mesh. 

The memory requirements of a complete 

problem exceed the limit of 8 Mbytes of 

memory of a single node, so domain decom­

position is required. 

• Communication between a particle and its 

eight nearest grid points is required to allo­

cate charge and to interpolate the fields. 

• A large data set must be produced for the 

visualization of tracking results and for re­

start capability (primarily to permit recovery 

from hardware failure). 

3.2 Implementation Schemes and 
Techniques 

For reasons that will be explained in the next sec­

tion, the main task of parallel implementation is to 

ensure that each computing node has the same 

number of particles in order to achieve load bal­

ancing. This is very important, because tracking 

the noninteracting particles in the magnetic lattice 

occupies most of the computational time. The 

second primary task is to decompose the 3-D grids 

in KICK3D( ). The constraints are (1) the space 

charge code should fit into an 8-.VIbyte node: (2) 

each node should have the same amount of work­

load in computing the loops over particles (for al­

locating charge to grids and retrieving field infor­

mation from grids) as well as the loops over 3-D 

grids (for computing electromagnetic force): and 

(3) communication among nodes should be mini­

mized. 

Below we consider partition schemes for parti­

cles in the tracking phase and 3-D grids in space 

charge. 
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FIGURE 4 Possible spatial position of particles and 

subcylinder with equal-grid and equal-particle ap­

proach. Each rectangle is the side view of the cylinder. 

(a) equal size subcylinder, uniform particle distribu­

tion; (b) equal size subcylinder, uniform particle distri­

bution, cyclic particle mapping: (c) equal size subcylin­

der, nonuniform particle distribution; (d) nonequal size 

subcylinder, nonuniform particle distribution. 

3.2. J Partition Scheme for Particle 
Tracking 

So that each computing node has the same work­

load, particles are assigned equally into comput­

ing nodes by the block or cyclic method.* Because 

particles are frequently lost during tracking when 

they run into a wall, a load imbalance situation 

will develop. That is, some nodes might have 

many more particles to track than the others. The 

cyclic method is usually a better approach to deal 

with a load-imbalance situation. However, such 

an approach is not adequate when space charge is 

introduced. Figure 4(b) demonstrates a case using 

a cyclic approach, which will produce busy com­

munications among all nodes because it violates 

the data locality principle. In practice, we found 

that a block decomposition is a proper way to deal 

* Assume that the index set of all particles is [0. L . 

15] and the index set of all nodes is [0, L 2, 3:. In the block 

method. the particle index set [ "1, 5. 6, :: is assigned to node 1. 

whereas in the cyclic method, the particle index set [L 5, 9, 

13 j is assigned to node L 
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with our problem as long as particles are not lost 

dramatically. 

3.2.2 3-D Grid Decomposition Schemes 
lor Space Charge 

There are several ways to map the 3-D grids into 

computing nodes. It depends on how the hyper­

cube is connected as a ring, a 2-D mesh, or a 3-D 

hypercube. For programming simplicity. we will 

use block mapping from 3-D grids into a 1-D ar­

ray of computing nodes. The cylinder is parti­

tioned in the longitudinal direction [see Fig. 3 (c)]. 

The partition method can be based on the equal 

number of grids (equal-grid) strategy or equal 

number of particles (equal-particle) in a subcylin­

der strategy. 

In the equal-grid approach, each node gets a 

nearly equal size of subcylinder (or the same num­

ber of mesh points). If particle distribution is uni­

form in the longitudinal direction, then each sub­

cylinder will contain the same amount of particles. 

Therefore, there is little or no communication be­

tween nodes. Figure 4(a) shows the best-case situ­

ation, in which all the particles and their grid 

neighbors belong to the same node; therefore, 

little or no communication is needed. In practice, 

the distribution of particles tends to be nonuni­

form during simulation. Figure 4(c) shows a non­

uniform particle distribution case in which not 

only is communication necessary, but some nodes 

have to update grid information for the other 

nodes as well. As a result, load balancing among 

nodes is uneven. 

In the equal-particle approach, the cylinder is 

partitioned into subcylinders, each of which con­

tains a nearly equal number of particles. When 

the particle distribution is nonuniform, each node 

will have an unequal subcylinder [see Fig. 4(d)]. 

This strategy gains a performance advantage by 

keeping communication minimal at the expense of 

uneven grids in each node's domain. To achieve 

high parallel efficiency, an effective mechanism is 

necessary to maintain the "equal-particle" struc-

tures and to minimize the load-imbalance effect of 

uneven grids. 

Both approaches have their advantages and 

drawbacks (see Table 1 for a comparison). In gen­

eral, there is a trade-off between speed and mem­

ory. Because a memory upgrade for iPSC/860 is 

relatively expensive, it would be very desirable to 

combine both approaches to compromise parallel 

efficiency and memory to achieve high parallel effi­

ciencv within the limit of node memorv. . . 

3.2.3 First Try 

Because we want to keep the code size as small as 

possible to fit into 8 .\1bytes of available memory, 

we have chosen the simplest strategy to implement 

particle tracking with space charge code. That is, 

particles are partitioned using the block method, 

and 3-D grids are decomposed using block map­

ping with the equal-grid approach in the z direc­

tion. This approach can be implemented more 

quickly than alternative methods. \Ve made no as­

sumption about spatial relationships between 

particles and their surrounding grids. Particles 

can move anywhere (e.g., across several donwins 

[ subgrids]) between calculations. This approach 

is very general and could be implemented with 

moderate effort should a parallel compiler, which 

can effectively solve irregular communication 

within a parallel loop, become available in the fu­

ture. 

3.2.4 Communication Patterns and 
Programming Techniques 

In the following, we discuss briefly the techniques 

used to solve irregular communications in space 

charge. We consider the case where a particle 

needs to allocate charge to its eight nearest neigh­

bor grid points (referred to as allocating process). 

The inverse process of interpolating field inform a­

tion to the particle location (referred to as interpo­

lating process) can be treated similarly. For clar­

ity, only one grid point with index (0, 0, 0) is 

shown in the following sequential code. Note that 

Table 1. Comparison of Equal-Grid and Equal-Particle Partition 

Load balance (loops over particles) 

Load balance (Loops over Grids) 

Communication overhead 

Memory (grid) size scalability 

Programming effort 

Equal-Grid 

No (nonuniform) 

Yes 

Large (nonuniform) 

Yes 

Easy 

Note: Nonuniform refers to the distribution of particles. 

Equal-Particle 

Yes 

No (nonuniform) 

Small 

No (nonuniform) 

Difficult 
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vol = dr*dz*dth 

do ipart=mpar, npar 

irO = ri(ipart)/dr 

itho = thi(ipart)/dth 

izO = zi(ipart)/dz 

ratio(ipart,O,O,O)=(((irO+l)*dr-ri(ipart)) 

:((i~hO+~)*dth-thi(ipart))+((izO+l)*dz-zi(ipart)))/vol 

denslty(lrO,lthO,izO) = density(irO,ithO,izO)+ratio(ipart o o 0) 
enddo ' ' ' 

particles and :3-D grids are partitioned based on 

the strategies described above. A particle and its 

nearest neighbors might not belong to the same 

node. That is, zi (ipart) and densi­

ty ( i part, * , *) do not necessarily belona to the 
same node. · e " 

The current parallel programming tool avail­

abl.e to us is the Mimdizer (Pacific Sierra, Inc.), 

whiCh has an automatic decomposition tool at the 

loop level. However, the performance we obtained 

with this tool has not been acceptable. Another 

tool reported by Hiranandani et al. [ 6] as being 

able to transform this kind of code into explicit 

message-passing routines without much program­

ming effort is Fortran D by Rice University. How­

ever, Fortran Dis still under development and was 

not available to us when we developed the code. 

The communication strategy, therefore, had to be 

developed by hand. 

The strat~gy that we use is similar to the ap­

proach proposed by Saltz et al. [7]. The idea is 

based on block l/0 transfer to minimize the com­

munication between nodes. That is. all informa­

tion that a node needs to communicate with other 

nodes is accumulated into a buffer. A global com­

munication table that describes how a pair of 

nodes should communicate with one another is 

computed first. Each node then sends out self­

descriptive information to the other nodes. The 

information received by a node includes the posi­

tion and fractional density for each grid that 

should be updated by this node. An advantage of 

this approach is that the global communication 

table needs to be computed only once in 

KICK3D( ) at each time step. Therefore, it results 

in a reduction of communication time that would 

be very difficult to achieve even using future auto­

matic parallel compilers, because such an auto­

matic parallelizer will not be able to plan ahead 

and collect operations as a human programmer 

can. This strategy provides a reliable and effective 

communication mechanism for Fortran imple­

mentation. 

3.2.5 Performance Tune-Up 

A particle can move from one grid to another grid 

between space charge calculations and is in fact 

unlikely to keep the perfect spatial position seen in 

Figure 4(a) and (d) all the.time. It is probable that 

a situation like that in Figure 4(c) will happen dur­

ing a long nm. One way to keep the particles and 

their associated grid points in the same memory is 

to sort the particles in the z direction and to re~ap 
into computing nodes. The best sorting algorithm 

requires order of (n log n)lp operations [O(n)/p if 

bucket sort is used:, where p is the number of 

nodes. ·when n is large, the overhead will be ex­

ceptionally high. Because particles change their 

relative position and surrounding grids in the lon­

gitudinal direction gradually, it is necessary to sort 

these particles only occasionally (about e~erv 50 
turns). · 

Another approach is to have subcylinder 

guards for each node. Here, sorting is red~ced to 

subcylinder guard communication between two 

neighbor nodes. This approach usually assumes 

that particles can move only from a sub~vlinder to 

the next neighbor subcyiinder betwe~n space 

charge calculations. Such a constraint is imposed 

by numerical stability considerations for anv ex­

plicit time advance algorithm. Therefore, ~om­
munication is performed only between neighbor­

ing nodes. A combination of the above tune-up 

strategies with our current scheme makes it possi­

ble to provide better performance than either of 

the above approaches with only a little extra mem­

ory expense. 

3.3 Code Development 

The particle tracking with space charge code was 

first written for the CRA Y-YMP by Machida et al. 

[5]. The CRAY code that can handle 10,000 par­

ticles in an LEB lattice utilized about 19 Mbvtes of 

memory, which includes 11 Mbytes space ~barge 
(KICK3D) code. This code was analyzed with 
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FORGE (Pacific Sierra, Inc. [8]) to identify the 

most computationally intensive portion. The most 

time-consuming routine is the particle-tracking 

code (BASE3D) subroutine. The code is very com­

plex and not well suited for pipelining. It uses 

about 61% total time when the time step llt = 10 

ns. The next most time-consuming routine is the 

KICK3D code, which takes about 25%. The code 

is tuned using the optimization option of Fortran 

compiler only, because the code is very complex 

and not well suited to pipelining. Parallel imple­

mentation was based on the strategies addressed 

in Section 3.2.3. 

3.4 Hardware Platform 

The SSC iPSC/860 has 64 computing nodes, 62 

of which have 8 Mbytes of memory and 2 of which 

have 32 Mbytes. The MIMD architecture allows 

one to run different programs on different nodes 

simultaneously, although the programming para­

digm at this machine tends to favor the single pro­

gram multiple data (SPMD) style. For particle 

tracking with space charge we combine both para­

digms, wherein the master node (node 0) runs a 

different program from the other nodes (workers). 

Because the worker nodes are utilized for tracking 

and kicking, they can execute in 8-Mbyte memory 

nodes. The master node, which has 32 Mbytes, is 

also utilized to deal with 1/0 and to input data. 

4 EMPIRICAL RESULTS AND 
DISCUSSION 

We have tested the program on our iPSC/860 ma­

chine, running 10,000 particles for 500 turns in 

an LEB lattice that contains 693 elements. For 

our applications, a cylindrical grid size of 40 X 20 

X 32 is appropriate. This suggests the maximum 

number of nodes used in this study is 32. Addi­

tional nodes will provide redundant computation 

using our domain decomposition strategy. As 

mentioned previously, the fields are Fourier de­

composed in the azimuthal direction, with a maxi­

mum mode number of 2 utilized in this case. Us­

ing 32 nodes, the simulation took about 26.3 

hours to finish. The results of the parallel imple­

mentation were checked against the CRA Y version 

by starting a run on the CRA Y and tracking it for 

six turns. The two codes were exercised in tandem 

from this point and tracked for 500 turns. Differ­

ences in the random number generator required 

this type of start-up procedure. Figure 5(a)-(c) 
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FIGURE 5 Emittance growth (a) in the S direction: (b) 

in the X direction: (c) in theY direction. 

shows the emittance growth in the longitudinal S, 

X, andY directions, respectively. Readers can see 

that the emittance evolution in the S direction is 

identical, but it differs slightly in both the X and Y 

direction after about 0.2 msec (100 turns). How­

ever, they almost converge at 1. 2 msec (500 turns) 

in both the X and Y direction. The differences in 

numerical results between the two supercompu­

ters are small and are probably due to differences 

in word length. 

Although our goal in using parallel computers is 

to reduce the computation time in tracking study, 

readers are often interested in the scalabilitY is­

sues such as whether the performance of i~ple­
mentation is scalable to the number of processors. 

From what we learned in using massively parallel 

computers, such issues can be observed in the fol­

lowing ways. First. in the absence of space charge 

force, our problems have a natural granularity 
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FIGURE 6 (a) Speed-up performance and (b) parallel 

efficiency. 

that makes it "embarrassingly parallel," one sim­

ply distributes the particles over available nodes 

and track. The number of nodes should not ex­

ceed the number of particles tracked and the over­

all performance of the calculation is dominated by 

single node performance. In this context, obvi­

ously, the scalability is limited by the number of 

particles studied. Second, in the space charge 

case, there is also a natural granularity of the grid 

size (32 in our test case) that limits its scalability to 

the number of processors as explained previously. 

It is also obvious that the space charge is com­

munication code intensive, which will be the bot­

tleneck eventually as the number of processors in­

creases. To show the performance of our parallel 

implementation, a speed-up performance graph 

and a parallel efficiency figure are shown in Figure 

6a and 6b, respectively. The speed-up compari­

son is based on the performance of the original 

code (nonparallelized version) running on a big 

(32 Mbytes) node versus 8-node, 16-node, and 

32-node parallel version. Both figures represent 

the performance of the overall loop, the perfor­

mance of the BASE3D routine for particle track-

ing, and the performance of the KICK3D routine 

for space charge at a time step (Fig. 2). The paral­

lel efficiency of the tracking code is 80-92%, 

whereas the parallel efficiency of the space charge 

code is about 75-88%. The overall loop perfor­

mance is slightly lower than the performance of 

tracking and of space charge code because we 

need to check the particle loss situation and col­

lect emittance information at each time step. The 

above facts indicate that our parallel algorithm 

does not provide the optimal solution, but it does 

a fairly reasonable job. Using 32 nodes, we are 

able to obtain a speed-up in overall performance 

by a factor of 22. A more significant fact is that the 

32-node performance makes space charge simu­

lation feasible, which otherwise would be impos­

sible using SUN-SPARC II, and eliminates a 

month of computations. 

The use of advanced visualization techniques 

as an aid to understanding coherent wave motions 

in plasma simulation is well accepted. Part of the 

parallel space charge simulation effort is to de­

velop high bandwidth visualization techniques ca­

pable of displaying simulation results from the hy­

percube. To this end, we have integrated a Silicon 

Graphics Crimson/VGX to the hypercube and 

have begun the software development task. 

Figure 7 shows the motion of 6000 particles in 

the first six consecutive time steps. The transverse 

dimension is scaled by a factor of 1 00 relative to 

the longitudinal direction. Eight different particles 

are shown in the figure; particles with the same 

number are assigned into the same nodes. An op­

timal algorithm must maintain the same identifi­

cation number of particles in the same contiguous 

slices of cylinders to minimize communication 

among nodes and to maintain workload balance. 

5 CONCLUSION AND FUTURE 
RESEARCH DIRECTION 

We have successfully implemented particle track­

ing with space charge effects using the 3-D PIC 

method with an explicit time advance on our 

iPSC/860 parallel computer. The numerical 

results are compared with CRA Y. We show that 

the new version of iPSC/860 code does the right 

physics and is very effective and scalable for our 

applications. The current implementation is very 

effective and can be implemented quickly to suit 

our operational needs. 

For future research directions, we are investi­

gating the use of 3-D visualization techniques in 
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FIGURE 7 The motion of 6000 particles at the first six time frames. 

order to visualize collective phenomena. This re­

quires normalization of the motion with respect to 

the local {3 function ratio. 
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