
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

A Parallel Logic Language for Transaction Specification in A Parallel Logic Language for Transaction Specification in

Multidatabase Systems Multidatabase Systems

Eva Kuhn

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Yungho Leu

Nourreddine Boudriga

Report Number:
90-1031

Kuhn, Eva; Elmagarmid, Ahmed K.; Leu, Yungho; and Boudriga, Nourreddine, "A Parallel Logic Language for
Transaction Specification in Multidatabase Systems" (1990). Department of Computer Science Technical
Reports. Paper 33.
https://docs.lib.purdue.edu/cstech/33

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PARALLEL LOGIC LANGUAGE FOR TRANSACTION
SPECIFICATION IN MULTIDATABASE SYSTEMS

Eva Kuhn
Ahmed K. Elmagannid

Yungho Leu
Noureddine Boudriga

CSD-lR-1031
October 1990

A Parallel Logic Language for Transaction Specification in

Multidatabase Systems

Eva. Kuhn
Institute of Practical Informatics
Technical University of Vienna

Ahmed. K. Ehnagarmid and Yungho Leu
Department of Computer Science

Purdue University

Noureddine Boudriga
Faculty of Science of Tunis

University of Tunis II

Abstract

The realization of truely heterogeneous database systems is hampered among others by
two obstacles. One is the unsuitability of traditional transaction models, this has lead to the
proposal of a new more flexible transaction model. Th.e second is the fact that none of the
existing language and system support such a flexible model. This paper addresses these two
issues by proposing a logic approach to the integration of database systems.

1 Introduction

One of the consequences of the information explosion taking place in society is the emerging need
to access heterogeneous and isolated data repositories. Because of this isolation, it becomes more
difficult for programmers to write global applications which make fujI use of the data and resources
at their disposal because the systems that they need to use are not integrated.

Flex transactions provide for additional capabilities originally not foreseen in traditional transac
tions. These new capabilities are required in order to describe applications in a multidatabase
environment [ELLR90] [LEB90J. Flex transactions provide the following features:

Alternative: Alternatjve ways by which a specific task can be performed can be conveniently
stated in the Flex model. Traditionally, all tasks stated as a part of a transaction must be
performed. Using alternatives more than one equivalent task are stated and it is left to the
application designer to finally choose which one to finally commit.

Control isolation: Transactions are traditionally non-compensatable and once they are commit·

ted, their effects are preserved by the system. Flex transaction model allows transactions
to include some subtransactions that are compensatable and others which are not. This
results in what we call mixed transactions. By properly mixing both compensatable and
non-compensatable subtransactions, we can control the isolation of the global transaction to

1

any desired granularHy. Those sub transactions which are non-compensatable must run in
isolation of the rest of the system, while the compensatable subtransactions can reveal their
results before their parent global transaction commits.

Dependency: The model allows for specifying functions that can be used to influence the execu
tion of the transaction. These functions consider external parameters to the transaction or
subtransactions. The model also allows for specifying dependency among subtransactions.

In order for this new transaction model to be implementable in a muItidatabase system, a language
that can be used for describing it must be introduced. It must be expressive and includes constructs
to allow the specification of predicates.

Several languages for describing multidatabase activities exist in the literature. A Distributed
Operational Language (DOL) was introduced in [ROEL90j. It serves as a task specification and
execution language for multidatabase activities. DOL is intended as a low level language. DOL
along with the execution environment built for it [ER90j constitutes a low level machine that
can be used to perform tasks distributed over disparate and autonomous sites. In [LAN+S7], a
multidatabase language is described. MSQL is an extension of SQL which allows a user to specify
queries on multiple autonomous databases. Though no full implementation of MSQL exists, it
constitute the first high level language that supports fully autonomous databases without requiring
global schema to be constructed. MSQL like SQL does not provide for the expression of complex
transactions like those envisioned by Flex. In [KL88j, a system based on logic programming was
described. VIP-MDBS (Vienna Integrated Prolog Multidatabase) extends Prolog by using semantic
relations. It provides all features available in MSQL in addition to recursive data representation
and transitive closure. VIP-MDBS is used to describe activities over autonomous databases.

These multidatabase languages do not support transaction specification and do not provide
parallel constructs. The objective of t1tis paper is to define a language for the specification of
Flex transactions. The language can be considered as an extension to the ones described above
and is directly executable. This paper goes beyond the introduction of the parallel language. It
describes a multidatabase arcltitecture and the execution environment built for this language. This
implementation is currently underway.

This paper is organized as follows. Section 2 presents background material for Flex transactions
and logic. In section 3, a parallel logic language for specification of Flex transactions is defined.
Section 4 constructs a syntactic mapping for the design of parallel logic transaction programs. The
implementation of Parallel Logic Transaction Language (PLTL) and execution of a Parallel Logic
Transaction Program are summarized in section 5. Section 6 concludes this paper.

2

2 Background

2.1 Flex transaction issues

As it is defined in [LEB90], a. Flex transaction FT is a set of 5ubtransactions, say

FT= {tl,t2,"',t n }

accompanied with the following predicates and functions:

1. A (partial) ordering relation on FT, called success order and denoted by -<so is defined by:

'r/ i, j: t; -<5 tj iff the execution of tj depends on the success of t;.

2. A (partial) ordering relation on FT, called failure ordering and denoted by -<P, is defined by:

V i, j: tj -<F tj iff the execution of tj depends on the failure of tj.

3. External predicates such as time or cost. These predicates defme the execution dependency
of sub transactions on external parameters.

4. An acceptability function which is an n..ary predicate on IT. This function allows the user
to specify what sub transactIons he accepts for commitment.

To illustrate the notion of Flex transaction, we use the following travel agent example.

Example 2.1 When scheduling a travel package for a user, the travel agent has to performs three
tasks:

1. T A negotiates with airlines for flight tickets.

2. T A negotiates with car rental companies for car reservations.

3. T A negotiates with hotels to reserve rooms.

These three tasks can be decomposed respectively as the three sel.<; of subtransactions {tlh},
{t3} and {t4J ts}, where

tl Order a ticket at Northwest Airlines;
t2 Order a ticket at United Airlines,

t3 Rent a car at Hertz;
t4 Reserve a room at Hilton,
ts Reserve a room at Sheraton.

3

The cOMtraints that we assume in executing the subtransadioM are (1) tl depends on the failure
of t2 i (2) ta depends on the success of both tl and tz and (3) t l and tz must be executed between 8
AM and 5PM, We assume that customers accept a travel package if he/she can get a ticket, a car
reseroation and a hotel reservation,

This transaction can be specified in the Flex transaction model as follows.

FT = {tl,tz," ',ts},

Internal dependency {-<so -<F}, External dependency {p},
Where

-<5: t l -<s ta, tz -<s tal
-<p: tl -<F tz,
p: p(ti) is true if i = 1 or 2 and 8: 00 < actualtime(ti) < 17: 00

/(t"t,,··· ,ts) ~ ((tl ~ S) V (t, ~ S)) A (t3 ~ S) A «(t4 ~ S) V (ts ~ S))
The expression (ti = S) stands for {~i is successfully executed",

In the definition of a Flex transaction, the notion of execution state appears important for
capturing the notion of dependency, We define the execution state Xi for subtransaction t; as

Xi =

N if subtransaction tj has not been
submitted for execution;

E if t; is currently being executed;
S if t; has successfully completed;
F if t; has failed or completed without

acheiveing its objective;

An execution state of a Flex transaction FT is an n·tuple (Xl,'" ,xn) representing the execution
state of FT, An execution of FT is a sequence of execution states beginning with the state
(N,'·· ,N) leading to an acceptable state x (with f(x) = 1), where n is assumed to be the number
of subtransactions in FT.

2.2 Logic Language Issues

Logic offers a framework for concise description of database transactions, provides tools for rea
soning on them and supports dependency among these transactions. The logic description of
subtransactions is easy because they consist of sequences of reading and writing actions.

Simply, a logic program consists of a set of logic axioms of the form

Such an axiom can be read in two manners. First, declaratively, saying that A is true if BI,
Bz, "., Bn are true. Second, procedurally, saying that to prove A one can prove Bll Bz•

4

Bn • An execution is a proof of existentially qllantified goal statement using these axioms. If all
solutions which satisfy the goal are required, it is necessary to leave open deterministic choices
when examining one possible solution.

Sequential Prolog uses the order of goals in a clause and the order of clauses in the program

to control the search for a proof. In sequential Prolog, the leftmost goal is always chosen, and the
non-deterministic choice of clauses is done by sequentially searching and backtracking through the
execution of the program. This description suggests the following form of parallel execution:

AND parallelism: the reduction of several atoms can be done in parallel.

OR parallelism: the search of clause can be done in parallel.

Two approaches can be used to exploit the parallelism of a logic program. The first approach
consists of parallelizing the interpreter. In the second approach, the programmer uses explicit
language constructs to express concurrency and synchronization. The semantics of such languages
differs from the semantics of sequential Prolog.

In general, a parallel Prolog program is a finite set of guarded clauses [Ehu87]. A guarded clause
is a universally quantified axiom of the form:

An execution of a parallel program on a goal G proceeds by reducing subgoals of G by searching
concurrently the clauses of the program that match with a clause subgoal. At each choice point, it
is possible to decide among alternatives: however, having made a choice (or commitment), no other
alternative can be used. In conclusion, no backtracking operator is used. For this reason, we call
the Ioperator the don't care committment operator. The parallel Prolog language described above
has a lot of advanced features, but also deficiencies. In particular, the semantics of the don't care
commitment operator may cause problems--especially in the databillie context. When retrieving
tuples of a relation, in most cases, it is not sufficient to just produce one solutionj backtracking
over all solutions is usually required. In particular, to capture the concept of alternatives in Flex
transactions, it is necessary to try several clauses that are able to perform the same task. A solution
to reduce this deficiency is to include a commitment operator that allows backtracking by not killing
all other candidates running using the OR-parallel construct. In [Sar88] such a non-deterministic
don't know commitment operator has been investigated and its semantics have been described.

Another disadvantage of the don't care commitment operator is that the semantics of "the first
clause that reaches its commit point is taken" is sometimes hard to understand, especially in case of
non-disjoint guards. Nevertheless, the don't care commitment operator has its own merits. First,

it may be considered as a symmetric cut operator to control the procedural semantics. Second, it is
cheaper to implement than the don't know commitment operator. Finally, it avoids backtracking
which is a non-logical feature.

Our approach in this paper is to define an extension of Prolog with sufficiently powerful con

structs. We adopt the don't know operator and use a feedback construct that allow the user to

5

decide a solution found to be acceptable.

3 Parallel Logic Transaction Language

3.1 Basic Concepts and Syntax

In order to have a language that is powerful enough to express any kind of control flow, e.g. Flex
transaction model as defined by [LEB90], the language must provide means to represent sequential
as well as parallel execution of processes. The Parallel Logic Transaction Language that we present
below extends sequential Prolog and allows the user to compose MDBS queries. The syntax of the
PLTL is a superset of the syntax of Prolog. It includes the following well known constructs:

'&&' parallel AND operator in the guard or body of a clause

'ii' parallel OR operator in the guard or body of a clause
'II' non-deterministic don't know commitment operator
'?' read-only annotation for a variable

'!' write-only annotation for a variable (optional)

In addition to the predicates supported by Prolog, the following predicate symbols are proposed:

'Remote....call' ... communication primitive,
'Feedback' ... primitive to allow user to select alternatives.

As it is explained in the following subsections, remote....call serves to access local sites and feed
back serves to stop the search for solutions whenever an acceptable solution is reached.
A clause in the proposed PLTL is a universally quantified formula of the form:

A : - G1 ,G2 ,···,Gm II B t ,B2 ,"',Bn

Where A and BiS are atoms.

In order to explain the meaning of PLTL syntax, we consider the following example where each
local database provides some predicates.

Example 3.1 The parollellogic transaction language that we present in this example describe a
travel agent transaction. It is constituted by five local systems and allows customers to book flight,
rent cars and reserve hotel room.
Predicate Symbols

DBI /* United Airlines database */
jlighf.s(From, To, FlightNr, Price).
seats(FlightNr,SeatNr, ClientName, Date).

6

DB2 1* North West Airlines database *1
ftab(From, To, FlightNR).
prices(FlightNr, Price).
seats(SeatNr, FlightNr, ClientName, Date).
foreign.,flights(Airline, Flno, From, To).

DB3 1* Hertz car rental company database *1
cars(CarType, CarNr, Price).
book_car(CarNr, ClientName, Date).

DB4 1* Hilton hotel database *1
rooms(Roomld, Price).
reserve(RoomId, Date, ClientName).

DB5 1* Ramada hotel database *1
rooms(Roomld, Price).
reserve(Roomld, Date, ClientName).

This example presents predicates used by a multidatabase system (with jive databases). These
predicates access (reading or updating) the databases. Reading predicates, such as flights(From,
To, FlightNr, Price) in DBI, have only reading variables. While updating predicates, such as
seats(FlightNr,SeatNr, ClientName, Date) can update a database via a writing variable (e.g. seats
predicate inserts a tuple in the table (FlightNr,SeatNr,ClientName, Date) of DBI).

3.2 Operational Semantic

A PLT program is a set of guard clauses of the form

The execution of a PLT program on goal G proceeds as follows

a subgoal of G is chosen,

parallel search for matching clauses with the subgoal is done,

all matching clauses with trLle guards are considered,

one clause is chosen to reduce the subgoal, and the other queued.

When the reduction is done, the new goal is stored instead of G. The process is then repeated.

Whenever a solution is found or the set of matching clause is empty a backtracking is used to search
other solutions.
We explain, now, the meaning of constructs that extend Prolog into PLTL. Especially, we describe
the remote_call and feedback predicate.

7

The primitive remote_call serves to send a subtransaction to a local site for execution. It is a
three argument predicate of the form

remok.cal/(DB Name, 3tdin([t]), stdout(t)).

The first argument of this predicate designates the database system where a subtransaction is ex
ecuted. The second argument, is a list where the sub transaction is written in Prolog atoms or
SQL primitives. The last argument, stdout(t) is a list with head equal to s if the execution of
the subtransaction is successful and f otherwise; the rest of the list contains the reply or an error
messages. An example of the use of remote..caJl predicate is given by

remole...call(DB2, stdin([Jtab(chicago, indianapolis, N),price(N, P), P S 100J), Y)

is true if Y is a list of the form {s, (chicago, indianapoli.!l, n, m)]. Where n is the :flight number of
a specific flight from Chicago to Indianapolis with cost m S $100, or Y :: [fl.

The feedback predicate is a two argument predicate of the form

f eedback(One....solution, Commit).

It allows the user to decide, whenever a solution is found, to accept the solution and to stop
searching for another solution. The argument Commit is a boolean variable handled by the user.
The following example shows the use of a feedback predicate.

Example 3.2 The Prolog clause

feedback(X, C) : -reX), write(X), user ..decision(C)

can be read as follows: X is an acceptable solution if X is a solution of predicate r and the user
decision is equal to 1 and write is a predefined predicate allowing the display of X.

4 Parallel Logic Transaction Programming

4.1 Logic model for Flex transactions

As it is assumed in the preceding section, write and read action are performed by the use of
local predicates belonging to the local site. Because of the definition of subtransactiolls, we can
assume, without loss of generality, that a subtransaetion is a conjunction of atoms. For example,
the conjunction

curs(Jord,CarNr,Price) 1\ book...cur(CurNr,abc,Date) 1\ (price < 100)

means "rent a Ford car for customer abc with price less than $100.

Let (FT, -<'5, -<'F,P,JU) be a Flex transaction where FT is a set of subtransactions, say FT

8

{t},t2,'" ,tn}, -<s is the success ordering on FT, -<F is failure ordering on FT, p is the set of
external predicates on FT and Ju is the acceptability function. The definition of a parallel logic

transaction program for a Flex transactjon can be constructed by the following four steps:

1. represent a subtransaction in PLTL.
A subtransaction ti is represented by

remote-call(D B N r, stdin([tiJ), stdout(ti))

where DBNr is a local system in which ti has to be executed, stdin([ti]) is a list where
the atoms of ti occur, and stdout(td is a list of arguments. The first argument reveals the
execution state of ti, the remailljng arguments contain an output as the reply to the request
of,tdin([tiJ).

2. represent external dependency.
Let p be an external predicate on a Flex transaction. For simplicity, the evaluation of p on

a subtransaction ti is denoted by p(td. We represent a subtransaction ti with an external
predicate p by:

remote-call(DnN r, stdin([ti, p(ti)]), 'tdout(ti)).

where list [t;, p(ti)) is the concatenation of atoms of ti followed by atom p(ti).

Example 4.1 The expression

remote.£all(D B2, stdin[ftab(From, To, FlightNr, Price), (price < $100]), stdout(ti))

indicates a price ceilling of $100 for the flight.

Because p(td appears in the stdin argllmentlist, the above expression means that the local
system where subtransaction ti is executed has to enforce the predicate pet;). Whereas in the
following expression

p(ti) II remote-call(D B N r, stdin([tiJ), stdout(ti)).

indicates that P(ti) is enforced by the interoperability component.

3. represent success and failure dependencies.

Consider the success order. Suppose that ti is success dependent on subtransaction tj and
failure dependent on sub transaction tk. We construct the following expression.

(,tdout(t;) = ,), (,tdout(t,) = f) II remote-call(DBNr, ,tdin[t;], ,tdout(ti)),
where stdOllt[tj) = 8 is true if the head of [tj] is 8.

4. represent the acceptability function.

We suppose that fu is written in its normal conjunctive form (we did not consider the disjunc

tive form because of its similarity). Let 81 ,82 ,"', 8/.: be the disjunctive components of Ju, i.e.

9

Where

S; = (8tdout(t;,) = 8) V··· V (8tdout(t;.) = 8).

We then associate with fu the following universally quantified predicate:

ta$transaction() ; -ta$task-Sl , ta$task..s2 ,· •• I ta$task..sk()

Witb each Sil we associate the following clauses:

ta$ta8k.3; , - G, II Temote-<all(DBN;1,8tdin([t;,]),8tdout(t;,)).

where til, "', till are the predicateoccuring in Sj and DBNij is the name of the local site where
tii is executed. Gk is the conjunctions of atoms containing the internal dependency on which
ti depends (and possibly external predicates that have to be checked by the interoperability
component).

4.2 Example

In this subsection we reconsider the travel agent transaction presented in example 2.1. First,
a partial solution is given where all dependencies are omitted. Second, a complete solution is
presented.

Example 4.2 Solution without dependencies:

ta$reservation(Clientname,Date, From, TO,Fprice, Cprice, Hprice, Car) :
ta$book-flight(ClientNm, Date, From, To, Fp rice),

ta$renLcar(ClientNm,Date,From, To, Car, Cprice),

ta$reseT11ate.hotel(ClientNm, Date, From, To, Hprice),

taSbook_fiight(Nm,D,F, T,P) :- true II
cemote_call(DBl, 8tdin([fiights(F, T,Fno,P),seats(Fno, Nm,D)j),stdout(t,)).

taSbook_fiight(Nm,D,F, T,P) :- true II
remote-call(DB2, stdin([ftab(F, T,Fno), prices(Fno,P), seats(F,Nm,D)], stdout(t,)).

ta$renLcar(Nm,D,From, To, Ctyp, Price) :- troe II
remote-call(DB3, stdin([cars(Ctyp, Cnr,Price), booLcar(Cnr, Nm,D)}, stdout(ta)).

ta$reseruate.hotel(Nm,Date,From, To) :. true II
remote_call(DB4, stdin({rooms (Rid, Price), reserue(Rid, Date, N m)}), stdout(t4))

ta$reseruate.hotel(Nm,Date,Fl'Om, To) :- true II
remote_call(DB 5, stdin([rooms (Rnr, Price), book_room(R nr, Date, N m)}), stdout(ts)) .

10

Example 4.3 Solution with internal dependencies:

We assume that internal dependencies in the Flex transaction are those considered in 2.1 the PLTP
associated to this Flex transaction is

ta$reservation(Clientname,Date,From, To,Fprice, Cprice,Hprice, Car) :
ta$book.,/light(ClientNm,Date,From, To,Fprice),
ta$renLcar(ClientNm,Date,From, To, Car, Cprice),
ta$reservate.hotel(ClientNm, Date, From, To, Hprice) .

ta$book-flight(Nm,D,F, T,P} :. actuall;me(T}, 85, T, T5, 1711

remotc-call(DB1,stdin(f!!;gh" (F, T, Fno, P), sea"(Fno, N m, D}}),stdout(t,)}

ta$book.flight(Nm,D,F,T,P}:- actualtime(T}, 85,T, T5, 17, (stdout(t,) = f) II
remote_call(DB2, stdin([ftab(F, T,Fno), prices(Fno,P), seats(F,Nm,D)}, stdout(t2)).

ta$rent..car(Nm,D,From, To, Ctyp,Price) :- (stdout(tt) = s)11
remote_call(DB3, stdin([cars(Ctyp, Cnr, Price), book_car(Cnr, Nm,DH, stdout(ts)).

ta$renLcar(Nm,D,From, To, Ctyp,Price) :- (stdout(t2) = s)11
remote-call(DB3,stdin([cars(Ctyp, Cnr,Price), book_carrCnr, Nm, D)}, stdout(ts}).

with the ta$reseMJate-hotel clau.se of the above example kept unchanged.

Reading procedurally the first clause of this program gives: a reservation can be made if a flight is

booked, a car is rent and a hotel is reserved. Reading the third clau.se gives: flight is booked from
United airline if a subtransaetion is executed between BAm and SPM, and a seat is allocated in
some flight.

4.3 Extensions

In thls subsection, we show how the notion of commitment and compensatability can be captured
in our logic framework. These predicates are of some importance. For this purpose, we use tf to

denote a compensatable subtransaction, and ·ti to denote the compensating transaction oftj when
ti is compensatable.
We define:

1. A predicate commit by

commit(t) : - remote.call(db(t),stdin[t], stdout(t)), (stdout(s) = s),compensatable(t)

commit(Flex.iransaction) : - feedback(X,C),C = 1

commit(t) : - commit(flexJ,ransaction), ...,compensatable(t)

and saying first that a compensatable subtransaction has to commit when it is successfully
executed; second that the Flex transaction commits if an acceptable solution is found; and

11

User

J
I PLTL I

1
Interoperability-Component

I Integration-Directory I
J ~

I Physical I I Logical I
I

1
I MDI ,I ... IMDI.I

! !
System ... System1 n

Figure 1: An architecture for multidatabase systems

last, a non-compensatable subtransaaction is committed if the Flex transaction is committed.

2. A predicate campen-sate saying that a compensatable subtransaction has to be compensated
when a solution is found for the Flex transaction and the user rejects it.

5 PLTP-based system description

5.1 An Architecture for MDBS

A multidatabase system interconnects multiple pre-existing database systems in order to support
global applications. This section presents the arch.itecture used in the propsed system. Tills archi
tecture is based on that originally used in the existing InterBase prototype {ERgO].

As can been seen in the figure, the system is composed primarily of an interoperability com
ponent and an integration directory. On top of the existing systems to be integrated, the system
incorporates an interface called the multidatabase interface (MOl). The PLT language is used as a
high level user interface. Th.e system componenets are briefly described in the following:

12

1. Parallel Logic Transaction Language: the syntax and operational semantics of PLTL
have been explained in the previous sections. Multidatabase transactions are specified by the

user in PLTP and then submitted to the interoperability component for execution.

2. The interoperability component (Ie) is responsible for query processing and transaction
management for global applications. PLTL is the implementation language of the interoper
ability component; this means that queries written in PLTL can be directly processed by the
interoperability component and executed by local systems.

3. The integration directory (ID) contains static information that is used by the interoper
ability component for the integration of heterogeneous systems. It is subdivided into two
subdirectories. The physical integration subdirectory contains information dealing with the
physical heterogeneity of systems (e.g, login to a local system, networks/protocols, etc.). The
logical integration subdirectory contains information about the semantic heterogeneity of sys
tems (e.g: name mapping, multidatabase views, description of MDI features, compensation

of actions, etc.).

4. A Multidatabase Interface (MDIj) is a server process that accepts queries from the interop
erabi1ity component, translates these queries into the local query language, submits them to
local system;; and returns the results, of the query to the interoperability component.

5. A component system is a local system available for integration. Component systems can be
databases, Unix tools, expert databases or any other software systems.

5.2 Communication Primitives

Transactions specified in PLTP interact with the component systems through distinct primitives
supported by the system. One such primitive is called remote..call. As it has been previously
introduced, remore..call has three possible arguments. An input argument called stdin(In-List),
and one of two output arguments stdout(OuCList) and stderr(Err-List). The query represented by

In..List is passed to the MDI which forwards it to its local system. The local system returns either
a OutJist or Err..List to the interoperability component containing the results of the execution

[ROEL90J.

Example 5.1 remote calls to local systems

remote_ca/I(DB2, stdin(['/usr/spool/uucp/myjile J), sldout(File_Contents))
remote-ca/l(DB1, stdin({'SELECT * FROM fiighUable',

'WHERE from=vie AND to=jfk7),stdout(TupleL;'t))

As shown in the above subsection, an MDI forms the interface between the interoperability

component and a local system. In order to be able to communicate with a local system, the inter

operability component has to establish an MDI server process for this system at the corresponding

13

site. This is achieved by the primitive

mdi....staTt(Local...system, ATgumentli3t).

We assume that the local system either commits after this command and that results are immedi
ately visible, or it aborts the subtransaction. We distinguish two cases:

1. Commands may directly be written in the language of the local system. In this case the MDI
only passes the commands to the local system without processing them.

2. Commands may be written in Prolog, in this case: (1) If the local system is able to process
Prolog queries (this means that it is a coupled or an integrated Prolog database system), then
the MDI may also pass the query as it is (as in the above example). (2) If the local system
does not understand Prolog, then the MDI's will translate the Prolog query into the language
of the local system.

Depending on the expressiveness and the degree of autonomy of the underlying local system,
an MDI may also provide the primitive

mdi_undo(Local ..system, Argumentli3t)

in order to undo the effects of the subtyransaction on the local system.

6 Conclusion

Flex transactions extend traditional transactions to allow for :flexible transaction execution in
MDBSs. The semantically-rich transaction model calls for a powerful transaction specification
language. In this paper, we have shown that parallel logic programming (PLP), with extended
semantics, could be used as a specification language for Flex transactions. In fact, most of the
features of Flex transactions can be naturally represented in this language.

Traditionally, the query processing and the transaction management are studied independently
in MDBSs. It is our believe that they interact in subtle ways. With proper extensions, the semantic
relations of PLP, initially designed for expressing queries can be used for specifying transactions.
With the semantic relations, we are able to study query processing and transaction management
in the same framework. An initial implementation of the PLP language has been done in the
InterBase project. Currently, we are studying a logic framework which can be used to describe and
to analyze different transaction models.

References

[Ehu87] Shapiro Ehud. Concurrent Prolog. The MIT Press, 1987. Collected Papers, Vol. 1 & 2.

14

[ELLR90] A. Elmagarmid, Y. Leu, W. Litwin, and M. E. Rusinkiewicz. A multidatabase transac
tion model for interbase. In Proceedings of 16th VLDB conference, August 1990.

[ER90] A. K. Elmagarmid and M. Rusinkiewicz. Critical issues in multidatabase systems. In
formation Science, 1990.

[KL88] E. Kuhn and T. Ludwig. VIP-MDBS: A logic multidatabase system. In International
Symposium on Database and Distributed Systems, 1988.

[LAN+S7] W. Litwin, A. Abdellatif, B. Nicolas, Ph. Vigier, and A. Zerounal. MSQL: A multi
database manipulation language. Information Science, June 1987. Special Issues on
DBS.

[LEB90j Y. Leu, A. Elmagarmid, and N. Boudriga. Specification and execution of transactions
for advanced database applications. Technical Report eSD-TR-1030, Purdue University,
October 1990.

[ROEL90] M. Rusinkiewicz, S. Ostermann, A. Elmagarmid, and K. Loa. The distributed op
erational language for specifying multi-system applications. In Proceedings of the 1st
International Conference on Systems Integration, 1990.

[SarBB] V. J. Saraswat. A somewhat logical formulation of eLP synchronization primitives. In
Proceedings of the 5th International conference and sym110sium of logic progrnmming.
The MIT Press, 1988.

15

	A Parallel Logic Language for Transaction Specification in Multidatabase Systems
	Report Number:
	

	tmp.1307986960.pdf.cEv82

