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a b  s  t  r a  c t

This work  presents  a  novel  parallel micro  evolutionary  algorithm  for scheduling  tasks in distributed  het-

erogeneous  computing  and  grid  environments.  The scheduling problem  in  heterogeneous environments

is  NP-hard,  so a significant effort  has  been  made in  order  to develop  an efficient  method to  provide

good  schedules in reduced  execution times.  The parallel  micro  evolutionary  algorithm  is implemented

using  MALLBA, a general-purpose  library  for  combinatorial  optimization.  Efficient  numerical  results

are  reported in  the  experimental analysis  performed on  both  well-known  problem instances  and  large

instances  that  model medium-sized  grid  environments.  The comparative  study  of  traditional  methods

and  evolutionary  algorithms shows  that  the  parallel  micro  evolutionary  algorithm  achieves  a high prob-

lem solving  efficacy,  outperforming  previous  results already  reported in the  related  literature, and also

showing  a  good  scalability  behavior  when  facing  high  dimension  problem  instances.

©  2011 Elsevier  B.V.  All  rights  reserved.

1. Introduction

In the last 10 years, the fast increase of the processing power

of low-cost computers and the rapid development of high-speed

networking technologies have boosted the use of distributed com-

puting environments to  solve complex problems. Nowadays, a

common platform for distributed computing usually comprises an

heterogeneous collection of computers. The expression grid com-

puting denotes the set of distributed computing techniques that

work over a large loosely coupled virtual supercomputer, formed

by combining together many heterogeneous platforms of different

characteristics. This infrastructure has made it feasible to pro-

vide pervasive and cost-effective access to  distributed computing

resources for solving hard problems [16].

A key problem when using distributed heterogeneous comput-

ing (HC) environments consists in  finding a scheduling strategy

for a set of tasks to be  executed. The goal is  to assign the com-

puting resources by  satisfying some efficiency criteria, usually

related to the total execution time or resource utilization. Schedul-

ing problems on homogeneous multiprocessor systems have been

widely studied in operational research [13,28]. However, the het-

erogeneous computing scheduling problem (HCSP) became specially

important due to the popularization of distributed computing and

the growing use of heterogeneous clusters since the 1990’s [14,17].
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Traditional scheduling problems are NP-hard [18], thus classic

exact methods are only useful for solving problem instances of

reduced size. Heuristics and metaheuristics are promising meth-

ods to solve the HCSP, since they are able to get efficient schedules

in reasonable times, even for large problem instances. Evolutionary

algorithms (EAs) have emerged as flexible and robust metaheuristic

methods for solving the HCSP, achieving the high level of problem

solving efficacy also shown in many other application areas [6].

EAs usually require larger execution times (in the order of  a minute)

than ad hoc scheduling heuristics, but they can find improved solu-

tions. So, EAs are competitive schedulers for distributed HC and grid

systems where large tasks (with execution times in  the order of

minutes, hours, and even days) are submitted for execution. In

order to  further improve the efficiency of EAs, parallel imple-

mentations have been employed to significantly enhance and

speed up  the search, allowing to  reach high quality results in

reasonable execution times even for hard-to-solve optimization

problems [1].

EAs  and other metaheuristics have been applied to the HCSP in

the last 10 years. The proposals included genetic algorithms (GA)

[9,36,41,45], memetic algorithms (MA) [39],  cellular MA (cMA) [40],

and hybrid approaches combining GA with other methods, such

as neural networks [33],  variable neighborhood search [37],  and

list scheduling techniques [11].  Two relevant works have obtained

the best-known results when facing low-sized HCSP instances: an

hybrid combining ant colony optimization (ACO) and Tabu search

(TS) [32] that took over 3.5  h to perform the scheduling, and a  hier-

archic TS [42] that  used a time limit of 100 s. Other HCSP variants
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have been faced using EAs, mostly remarkable the precedence-

constrained task scheduling problem in multiprocessors [8,38],

real-time grid scheduling [24], economy-based scheduling [44],

and a complex HCSP version regarding many task attributes [10].

Despite the numerous proposals on applying EAs and other

metaheuristics to the HCSP, few works have tackled realistic

instances in grid environments, mainly due to the inher-

ent complexity of dealing with the underlying high-dimension

optimization problem. In  addition, few works studied parallel algo-

rithms in order to determine their ability to  use the computing

power of large clusters to improve the search. Thus, there is  still

room to contribute in these lines of research by studying highly

efficient parallel EA  implementations, able to deal with large-size

HCSP instances by using the computational power of parallel and

distributed environments.

In our previous work [31],  a parallel implementation of CHC

(Cross generational elitist selection, Heterogeneous recombina-

tion, and Cataclysmic mutation) [15] was identified as a  promising

method for solving the HCSP. The parallel CHC achieved good

solutions for a large set of HCSP scenarios, but it had two  main

drawbacks: the limited search pattern for structured scenarios and

the loss of diversity that  restrained it to work with no more than

eight subpopulations.

In this line of work, the main contribution of this article is

introducing parallel micro-CHC (p�-CHC), a  novel EA to solve

the HCSP that combines a parallel subpopulations model with

a focused evolutionary search using a  micro population and a

specific randomized local search (LS) method. Efficient numeri-

cal results are reported in the experimental analysis performed on

both well-known problem instances and large HCSP instances. The

comparative study of traditional methods and EAs shows that  p�-

CHC is able to achieve high problem solving efficacy, outperforming

previous results reported in the related literature, and also exhibit-

ing good scalability when solving unseen high dimension problem

instances.

The manuscript is structured as follows. The next section

presents the problem formulation. Section 3 introduces EAs

and describes the newly proposed p�-CHC algorithm. Section 4

describes the implementation details of p�-CHC applied to the

HSCP. The discussion of the experimental analysis and results are

presented in Section 5, while the conclusions and possible lines for

future work are formulated in  Section 6.

2. HCSP formulation

An HC system is composed of many computers, also called pro-

cessors or machines, and a  set of tasks with variable computing

demands to be executed on the system. A task is  the atomic unit

of workload, so it cannot be divided into smaller chunks, nor inter-

rupted after it is  assigned to  a  machine (the scheduling problem

follows a non-preemptive model). The execution times of any indi-

vidual task vary from one machine to another, so there will be

competition among tasks for using those machines able to execute

them in the shortest time.

Scheduling problems mainly concern about time, trying to  min-

imize the time spent to execute all tasks. In this model, the most

usual metric to minimize is  the makespan, defined as the time

spent from the moment when the first task begins execution to

the moment when the last task is completed [28].  The following

formulation presents the mathematical model for the HCSP aimed

at minimizing the makespan:

• given an HC system composed of a  set of machines P =  {m1, m2,

. . ., mM} (dimension M),  and a  collection of tasks T  =  {t1, t2, . . .,

tN} (dimension N) to  be executed on the system,

• let there be an execution time function ET :  T × P → R+,  where ET(ti,

mj) is the time required to execute the task ti in the machine mj,
• the goal of the HCSP is  to find an assignment of tasks to machines

(a function f  : TN → PM) which minimizes the makespan,  defined

in Eq.  (1).

max
mj∈P

∑

ti∈T:f  (ti)=mj

ET(ti, mj) (1)

In the presented HCSP formulation all tasks can be indepen-

dently executed, disregarding the execution order. This kind of

applications frequently appears in many lines of scientific research,

and they are relevant in  Single-Program Multiple-Data applica-

tions used for multimedia processing, data mining, parallel domain

decomposition of numerical models for physical phenomena, etc.

The independent tasks model also arises when different users

submit their (obviously independent) tasks to execute in a com-

puting service, specially in  grid computing and volunteer-based

computing infrastructures – such as TeraGrid, WLCG, Berkeley’s

BOINC, and Xgrid [7] – where non-dependent applications using

domain decomposition are very often submitted for execution.

Thus, the relevance of the HCSP version faced in this work is jus-

tified due to  its significance in realistic distributed HC and grid

environments.

The previous formulation defines the static HCSP. A  static sched-

uler gathers all the available information about tasks and resources

before the execution, and the task-to-resource assignment is  not

allowed to  change during the execution. An accurate estimation

of the execution time for each task on each machine is required

by the scheduler, which is usually achieved by performing task

profiling and statistical analysis of both submitted workloads and

resource utilization. Static scheduling has it own areas of  specific

application, such as planning in  distributed HC systems, and also

analyzing the resource utilization for a  given hardware infrastruc-

ture. Static scheduling also provides a first step for solving more

complex scheduling problems arising in dynamic environments:

an efficient static planner can be the building block to develop a

powerful dynamic scheduler, able to deal with the increasing com-

plexity of nowadays grid infrastructures.

Several deterministic heuristics have been proposed for HC

scheduling [27].  Three of them have been used in  this work to pro-

vide a  baseline for comparing the results achieved with the new

p�-CHC algorithm:

Minimum completion time (MCT) considers the set of tasks sorted

in an arbitrary order. Then, it assigns each task to the machine with

the minimum execution time for that task.

Sufferage identifies the task that if is  not assigned to  a  certain

host, it will suffer the most. The sufferage value is  computed as the

difference between the best MCT  of the task and its second-best

MCT, and this method gives precedence to those tasks with high

sufferage value.

Min-Min greedily picks the task that can be completed the soon-

est. The method starts with a  set U of all unmapped tasks, calculates

the MCT  for each task in U  for each machine, and assigns the task

with the minimum overall MCT  to the machine that executes it

faster. The mapped task is  removed from U, and the process is

repeated until all tasks are mapped. Min-Min improves upon the

MCT heuristic, since it considers all the unmapped tasks sorted by

MCT, and the availability status of the machines is updated by  the

least possible amount of time for every assignment. This proce-

dure leads to more balanced schedules and it generally also allows

finding smaller makespan values than other heuristics, since more

tasks are expected to be  assigned to  the machines that can complete

them the earliest.
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3. Evolutionary algorithms

EAs are non-deterministic methods that emulate the evolution-

ary process of species in nature, in  order to solve optimization,

search, and learning problems [6,19]. In the last 25 years, EAs have

been successfully applied for solving optimization problems under-

lying many real applications of high complexity. The proposed

p�-CHC method is a  specialization of the CHC evolutionary algo-

rithm originally proposed by Eshelman [15]. This section reviews

the traditional CHC algorithm, presents concepts about parallelism

and EAs, and introduces the novel p�-CHC algorithm.

3.1. The CHC algorithm

CHC uses a conservative rank-based selection strategy that

tends to perpetuate the best individuals in the population, and a

special mating that only allows those individuals which differ from

each other by some number of bits to reproduce. The initial thresh-

old for allowing mating is  often set to 1/4 of the chromosome length,

and it is reduced by 1 each time that no offspring is  inserted into the

new population during the mating procedure. The recombination

operator in CHC is  Half Uniform Crossover (HUX), which randomly

swaps exactly half of the bits that differ between the two parent

encodings. A fitness-based replacement criterion is used: the new

offspring must compete with their parents for survival. CHC does

not  apply mutation; diversity is  provided by  applying a  reinitializa-

tion procedure, using the best individual found so far  as a  template

for creating a new population after convergence is detected.

Algorithm 1  presents the pseudo-code for the CHC algorithm,

showing those features that make it different from traditional EAs:

the highly elitist replacement strategy, the use of HUX and reinitial-

ization operators, and the mating restriction policy that does not

allow to recombine a pair of “too similar” individuals.

Algorithm 1. Schema of the CHC algorithm.

1: initialize (P(0))

2: generation ← 0

3:  distance ← 1/4 * chromosomeLength

4: while not stopcriteria do

5: parents ← selection(P(generation))

6: if distance(parents) ≥ distance then

7: offspring ← HUX(parents)

8: evaluate(offspring)

9: newpop ← replacement(offspring, P(generation))

10: end if

11:  if newpop == P(generation) then

12:  distance – –

13: end if

14:  generation ++

15: P(generation) ← newpop

16: if distance ==  0  then

17:  reinitialization(P(generation))

18: distance ← 1/4 * chromosomeLength

19: end if

20:  end while

21:  return best solution ever found

3.2. Parallel evolutionary algorithms

Using multiple populations to improve the efficiency and the

efficacy of EAs was proposed in  the pioneering works by Müh-

lenbein [30] and Schlierkamp-Voosen and Mühlenbein [34]. By

splitting the population into several computing elements, parallel

evolutionary algorithms (PEAs) allow reaching high quality results

in a reasonable execution time even for hard-to-solve optimiza-

tion problems [1].  The p�-CHC algorithm proposed in this work

is categorized within the distributed subpopulations model [4]: the

population is split in  several subpopulations (demes). Each deme

runs a serial EA, and the individuals are able to interact only with

other individuals in the deme. An additional migration operator

is defined: occasionally some individuals are exchanged among

demes, introducing a  new source of diversity in the EA.

Fig.  2 shows the generic schema for the migration procedure

used in  a  distributed subpopulations PEA. Two  conditions con-

trol the migration procedure: sendmigrants determines when the

exchange of individuals takes place, and recvmigrants establishes

whether a foreign set of individuals has to be  received or not.

Migrants denotes the set of individuals to exchange with some

other deme, selected according to a  given policy. The schema

uses a  selection for migration explicitly different to  the selection

for reproduction; they both return a  selected group of individuals

to perform the needed operation, but following potentially differ-

ent policies. The sendmigration and recvmigration operators carry

out the exchange of individuals among demes according to a con-

nectivity graph defined over them, most usually a unidirectional

ring.

Algorithm 2. Schema for migration in  PEAs.

1: if sendmigrants then

2: migrants ← selection for migration(P(generation))

3: sendmigration(migrants)

4: end if

5: if recvmigrants then

6: immigrants ← recvmigration()

7: P(generation)  ← insert(immigrants, P(generation))

8: end if

3.3. Parallel micro-CHC algorithm

By splitting the global population, PEAs allow achieving high

computational efficiency due to the limited interaction and the

reduced population size  within each deme. However, EAs quickly

lose diversity in the solutions when using small populations, and

the search suffers a premature convergence effect, leading to a

stagnation situation. The mating restriction technique and the

reinitialization operator used in  CHC are  usually not powerful

enough to provide the required diversity to avoid premature con-

vergence in the parallel model when using very small populations

(i.e. less than 10 individuals per deme). Many alternatives have

been proposed in  the related literature to overcome the loss of

diversity on EAs. In the quest for designing a fast and accurate ver-

sion of the CHC algorithm for solving the HCSP, able to  achieve

high quality results in  a reduced execution time, concepts from the

micro-genetic algorithm (�-GA) by Coello and Pulido [12] were

incorporated in this work in  order to design a  parallel micro-CHC

algorithm.

Back in  2001, �-GA [12] was a novel proposal of EA in the con-

text of multiobjective optimization that followed previous works

by Goldberg [20], Krishnakumar [26] and Knowles and Corne [25]

to speed up the resolution of real-world problems. In 1989, theoret-

ical studies by Goldberg hinted that an elitist GA is able to converge

when using a  population size of only three individuals [20].  Gold-

berg suggested a GA that uses a  small population, which evolves

until reaching nominal convergence (i.e. when all individuals in

the population are similar to each other), and then, a  reinitialization

operator is applied to generate a  new population, while keeping the

best individuals from the previous cycle. The �-GA uses two  pop-

ulations to  store memory along the search: the main population

used in  any EA, and a  secondary elite population to store the best

solutions found in the search. The elite population allows keeping

diversity at a low computational cost, by using the best individ-

uals found so  far to perform the population reinitialization after

a certain (low) number of generations (two to  five). The EA sug-

gested by Goldberg and implemented in �-GA has many concepts in
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Fig. 1. Schema of the p�-CHC algorithm.

common with the CHC method later proposed by Eshelman, thus

those ideas can be directly applied to devise a  micro-CHC algorithm.

The p�-CHC algorithm introduced in  this work combines a

distributed subpopulation parallel model of the original CHC by

Eshelman (using HUX and mating restriction) with two key con-

cepts from �-GA: an external population of elite solutions stored

during the search, and an accelerated reinitialization using a  ran-

domized version of a  well-known LS method to  provide diversity

within each subpopulation. A micro-population of eight individuals

is used in each subpopulation of p�-CHC. The size of the external

population is three individuals, and a simple remove-of-the-worst

strategy is used each time a  new individual is inserted in  the elite

set. Fig. 1 shows a graphic schema of the distributed subpopula-

tions model used in p�-CHC. Additional features were included in

order to design an efficient and fully scalable implementation for

solving the HCSP (see Section 4 for the implementation details of

p�-CHC for the HCSP).

4. A parallel micro-CHC for the HCSP

This section presents the implementation details of the p�-CHC

algorithm, specifically developed in this work to  solve the HCSP.

The new algorithm was  designed trying to achieve accurate solu-

tions in a reduced time and to provide a good exploration pattern

that allows scaling for solving large-size HCSP instances. To achieve

these goals, several specific techniques have been applied in order

to reduce the execution time and improve the evolutionary search.

Fig. 2. Machine-oriented encoding.

4.1. The MALLBA library

MALLBA [2] is a library of optimization algorithms that can deal

with parallelism in a  user-friendly and, at the same time, efficient

manner. The library implements several EAs as generic templates

in  software skeletons that will be instantiated with the problem

features by the user. These templates incorporate the knowledge

related to  the resolution method, the interaction with the problem,

and the parallelism. Skeletons are implemented by a  set of required

and provided C++classes that represent an abstraction of the entities

participating in the resolution method:

• The provided classes implement internal aspects of  the skeleton

in a  problem-independent way. The most important provided

classes are  Solver (the algorithm) and SetUpParams (for setting

the algorithms’ parameters).
• The required classes specify information related to the prob-

lem. Each skeleton includes the Problem and Solution required

classes, that encapsulate the problem-dependent entities needed

by the resolution method. Depending on the skeleton, other

classes may  be required.

The MALLBA library is publicly available to download at the Univer-

sity of Málaga website http://neo.lcc.uma.es/mallba/easy-mallba.

The implementation of p�-CHC is based on  the CHC skeleton

provided by MALLBA. Additional code was incorporated into the

skeleton to define and manage the external population, to imple-

ment the specialized reinitialization and local search operators

used in  p�-CHC, and to  include other features related to  the HCSP

resolution. The details about the problem encoding, the implemen-

tation of the evolutionary operators, and other specific features are

provided in  the next sections.

4.2. Problem encoding

p�-CHC uses the machine-oriented encoding to  represent HCSP

solutions. The machine-oriented encoding uses a 2D structure in

order to represent the group of tasks scheduled to execute on each

machine mj.  Fig. 2 presents an example of the machine oriented

encoding, showing for each machine mj the list of tasks tk assigned

to it. The machine oriented encoding provides an easy and effi-

cient way  for performing exploration operators based on moving

and swapping tasks, since it is  able to store specific values of  effi-

ciency metrics for each machine (such as the local makespan). Thus,

the makespan variation when performing changes on task assign-

ments can be efficiently calculated considering only the tasks and

machines involved in the move or swap performed, without requir-

ing to reevaluate the efficiency metric for the whole schedule.

4.3. Initialization

Numerous methods have been proposed to initialize the popu-

lation when applying EAs to the HCSP [9,40,43]. Usually, ad hoc

scheduling heuristics have been used to start the evolutionary

search from a  set of useful suboptimal schedules, increasing the EA

effectiveness to minimize the makespan. In  p�-CHC, the population

is initialized using a  randomized scheduling heuristic.

When dealing with low-dimension HCSP instances, determin-

istic heuristics provide easy-to-compute solutions to seed the

population. Min-Min has been identified as an efficient sched-

uler for small HCSP instances [9], and also when the ET values

has reasonable variations on heterogeneity [29],  while Sufferage

often achieves good schedules for non-structured scenarios. How-

ever, when the problem dimension grows, the time required to

compute the solution using Min-Min and Sufferage increases, thus

reducing the EA efficiency. To avoid the performance degradation,

http://neo.lcc.uma.es/mallba/easy-mallba


630 S. Nesmachnow et al. /  Applied Soft Computing 12 (2012) 626–639

the p�-CHC population is  initialized using probabilistic versions

of Min-Min and Sufferage: they follow the general procedure of

the deterministic heuristic, but only for assigning a random num-

ber of tasks, and the remaining tasks are  assigned using a  MCT

strategy.

4.4. Variation operators

Exploitation: recombination. p�-CHC uses HUX to  recombine

characteristics of two solutions. The list of tasks assigned to each

machine in the offspring is  chosen with uniform probability (0.5)

between the ones in the parents. When a task is assigned to differ-

ent machines in the parents, the machine to  place that task in each

offspring is also chosen with uniform probability.

Exploration: reinitialization. The reinitialization operator per-

forms small perturbations in a  given schedule, aimed at providing

diversity to the population in  order to  avoid the search from get-

ting stuck in local optima. It applies simple moves and swaps of

tasks between two machines, selecting with high probability the

machines with highest and lowest local makespan (heavy and

light,  respectively). The reinitialization is applied using the best

individual found so far as a template for creating a new population

after a stagnation situation is detected.

The reinitialization operator cyclically performs a maximum

number of MAXIT REINIT move-and-swap task operators, includ-

ing: (1) move a randomly selected task (selecting the longest task

with a probability of 0.5, and the rest with uniform probability)

from heavy to light;  (2) move the longest task from heavy to the

suitable machine (the machine which executes that task in  mini-

mum  time); (3) move into light the best task (the task with the

lowest execution time for that machine); and (4) select a  task from

heavy (selecting the longest task with a  probability of 0.5), then

search the best machine to move it to.

Each time that a task is moved from a source machine to

a destination machine, a  swap between destination and source

is randomly applied with a  probability of 0.5. Unlike previous

exploration operators for the HCSP [40,42], none of the forego-

ing operators imply exploring the O(n2) possible swaps, not even

exploring the O(n) possible task movements. The four exploration

operators used in p�-CHC are performed in sub-linear complexity

order with respect to both the number of tasks and the number

of machines in each HCSP instance. This feature allows p�-CHC

to show a good scalability behavior when solving large HCSP

instances.

4.5. Local search: randomized PALS

Many strategies have been proposed in the related literature

for providing diversity and improving the efficacy of the search

when applying EAs to the HCSP. Most of the previous works con-

cluded that LS methods are needed within any EA to  find accurate

schedules in short times. The works of Xhafa et al. [40–42] explored

several LS operators for solving low-dimension HCSP instances,

but many of the proposals become ineffective when the problem

instances grow.

In our previous parallel CHC implementation [31],  the reinitial-

ization operator did not provide enough diversity when working

with small subpopulations, thus limiting the parallel CHC (pCHC)

to work using eight demes with 15 individuals each. In order to

improve the population diversity, p�-CHC incorporates a  random-

ized version of Problem Aware Local Search (PALS), a  novel heuristic

algorithm originally proposed for the DNA fragment assembly

problem [3].

PALS works on a  single solution, which is  iteratively modified

by applying movements aimed to  locally improve their function

value. The key step is the calculation of the objective function

variation when applying a certain movement. When it can be

performed without significantly increasing the computational

requirements, PALS provides an efficient search pattern for com-

binatorial optimization problems.

A specific variant of PALS was designed for the HCSP, aimed

at exploring possible task swaps between machines in a  given

schedule, trying to improve the makespan metric. Due to the huge

dimension of the search space, specially when solving large HCSP

instances, the deterministic paradigm in  PALS was  replaced by a

randomized one (i.e. the local search uses random criteria to  define

the set of adjacent swaps explored) in order to  achieve accurate

results in short execution times. The randomized version also incor-

porates two  other differences with the generic PALS algorithm: (i)

the main cycle ends when finding a  solution that improves the

schedule makespan, and (ii) when no improved solution is  found,

it performs MAXIT PALS attempts applying the swap that  produces

the lowest makespan degradation, trying to  introduce diversity in

the population.

Algorithm 3 presents the randomized PALS for the HCSP. Work-

ing on a  given schedule s, the method selects a  machine m to

perform the search. With high probability the machine with the

largest local makespan is  selected, focusing on improving the

assignment for the machine which defines the makespan of  the

whole schedule, but also introducing a chance of improving the

local makespan for other machines. The outer cycle iterates on

TOP M tasks assigned to machine m (randomly starting in  task

start m), while the inner cycle iterates on TOP T tasks assigned to

other machines (randomly starting in  task start t). For each pair

(tM, tT), the double cycle calculates the makespan variation when

swapping tasks tM and tT.  The method stores the best improve-

ment on the makespan value for the whole schedule found in the

TOP M × TOP T swaps evaluated. After the double cycle ends, the

best move found is  applied, disregarding whether it produces an

effective makespan reduction or not. The process is applied until

finding a  schedule which improves the original makespan or after

performing MAXIT PALS attempts.

Algorithm 3. Randomized PALS for the HSCP.

1: Select machine m (heavy with probability HEAVY MACH)

2: trials ← 0; end search ← FALSE

3: orig makespan ← Makespan(s)

4: repeat

5: �BEST ←  ∞

6: for tM = start m  to TOP M do

7: {Iterate on tasks of machine m}

8: for tT = start t  to TOP T do

9: {Iterate on tasks of other machines}

10:  �M ← calculateDeltaMakespan(s, tM, tT )

11: if �M < �BEST then

12: best move ← 〈tM,  tT , �M 〉 Store best move found so far

13:  �BEST ← �M

14:  end if

15: end for

16: end for

17: trials ← trials +1

18:  applyMovement(Best move) {Modify the  solution}

19:  if Makespan(s)  < orig makespan then

20: {Makespan improvement: end the cycle}

21: end search ← TRUE

22: end if

23: until ((trials == MAXIT PALS) OR (end search))

The randomized version of PALS was designed to  provide an

efficient and powerful search pattern for the HCSP. It  allows mov-

ing towards local optima in  the space of HCSP solutions each time

that an improved solution is found, and it also provides diversity

to solutions -allowing p�-CHC to escape from strong local optima-

after applying MAXIT PALS changes when no improved solution is

found. The calculation of the makespan variation when swapping

two tasks (calculateDeltaMakespan(s, tM,  tT))  is  performed without
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requiring high computational requirements, since the machine-

oriented problem encoding stores the local makespan of each

machine, thus PALS provides a very efficient search pattern for the

HCSP. In p�-CHC, the PALS operator was conceived to  be applied to

randomly selected individuals from the main and elite populations

within a certain frequency.

4.6. Speeding up the p�-CHC evolution

EAs quiclky lost diversity in the population when using low

population sizes. In order to  speed up the evolution of the p�-

CHC algorithm, the PALS operator is applied after a certain (low)

number of generations pass without inserting any offspring into

the new population during the mating procedure, following the

idea of the traditional reinitialization operator in  CHC. In prelimi-

nary experiments, this accelerated cataclysmic model was  able to

provide enough diversity to avoid p�-CHC getting stuck in  local

optima. In this way, p�-CHC combines the evolutionary search with

PALS in order to achieve high accurate results in  short execution

times. In addition, a  one-step memory is  included: a task move is

rejected when it will move the task back to the machine to  which it

was assigned one step in  the past. The task memory is refreshed

each time that a valid move is  performed. This mechanism is a

basic version of the memory already employed in  TS algorithms

to  avoid loops, which has shown its usefulness for improving the

HCSP results [42].

Summarizing, the distinctive characteristics of p�-CHC

includes:

• Using a distributed subpopulation parallel model, with small pop-

ulations within each deme (population size: eight individuals per

deme).
• Storing a small elite population with the best three individuals

found so far in the evolutionary search.
• Including a local search based on a  randomized PALS method.
• Following an accelerated evolution model: the randomized PALS

is applied after a  certain (low) number of generations when a

nominal convergence is detected.
• Using a one-step task memory to prevent loops in the task-to-

machine assignments.

4.7. Parallel model

A two-level parallel model was used in  the implementation of

p�-CHC applied to  the HCSP: the distributed memory message-

passing paradigm was employed for communicating demes that

execute in different hosts in  a distributed cluster, while the shared-

memory paradigm was  applied in  order to  improve the efficiency

of the communications between demes executing in the same

host. This hybrid parallel implementation of p�-CHC allows tak-

ing advantage of two types of parallel infrastructures: traditional

clusters of computers, and also modern multicore CPU architec-

tures, where several processing cores share a global memory that

can be used to  speed up the communications in cooperative-based

distributed search methods. Both communication paradigms were

implemented using the Message Passing Interface (MPI) [22], which

is the most popular library used for developing parallel and dis-

tributed programs. By using the two-level parallel implementation,

p�-CHC diminishes the impact of the time spent in communication

during the migration and synchronization procedures.

5. Experimental evaluation

This section introduces the set of HCSP instances used to

evaluate the efficacy of the proposed EA. It also describes

additional tools used to develop p�-CHC, and the computational

platform where the experimental evaluation was performed. After

that, the experiments devoted to  study the parameter settings

of p�-CHC are presented. The last section describes and ana-

lyzes the experimental results when solving both low-dimension

and large-sized HCSP instances. It presents numerical results, a

comparison with other techniques and lower bounds, and a sta-

tistical analysis on the improvements over the previous pCHC

method. In addition, this section also includes a  study of the

makespan evolution and a  scalability and parallel performance

analysis when solving the large-dimension HCSP instances with

p�-CHC.

5.1. HCSP instances

Although the research community has faced the HCSP in  the

past, there do  not exist standardized problem benchmarks or test

suites for the problem [35].  When facing the HCSP, researchers have

often used twelve instances proposed by Braun et al. [9],  following

the expected time to  compute (ETC) performance estimation model

by Ali et al. [5].

ETC takes into account three key properties: machine hetero-

geneity, task heterogeneity, and consistency. Machine heterogeneity

evaluates the variation of execution times for a  given task across

the HC resources, while task heterogeneity represents the variation

of the tasks execution times for a  given machine. Regarding the

consistency property, in a consistent scenario, whenever a given

machine mj executes any task ti faster than other machine mk, then

machine mj executes all tasks faster than machine mk. In  an incon-

sistent scenario a given machine mj may  be faster than machine mk

when executing some tasks and slower for others. Finally, a  semi-

consistent scenario models those inconsistent systems that include

a  consistent subsystem.

All  the HCSP instances from Braun et al. have 512 tasks and

16 machines, and they combine the three ETC properties in order

to  model several problem scenarios. The name of the instances

has the pattern d c MHTH.0, where d stands for the distribution

function used to generate the ETC values ( u,  for the uniform dis-

tribution), and c indicates the consistency type ( c for consistent,

i for inconsistent, and s for semiconsistent). MH and TH indicate

the heterogeneity level for machines and tasks respectively (  lo for

low heterogeneity, and hi for high heterogeneity). Several HCSP

suites were generated, but only the class 0 (the number after the

dot) gained popularity.

For the purpose of studying the scalability of p�-CHC as the

problem instances grow, our experimental analysis will also con-

sider a test suite of large-dimension HCSP instances, randomly

generated to test the scalability and true limits of  the proposed

algorithm. This test suite of HCSP instances was  designed following

the methodology proposed by Ali et al. [5],  in order to model large

HC clusters and medium-sized grid infrastructures. It comprises

HCSP instances with dimension (tasks × machines) 1024 ×  32,

2048 × 64, 4096 × 128, and 8192 ×  256. These dimensions are much

larger than those of the popular benchmark by Braun et al. [9] and

they better model present distributed HC and grid systems. For each

dimension, twenty-four HCSP instances were generated regard-

ing all the heterogeneity and consistency combinations, twelve of

them considering the parametrization values from Ali et al. [5],  and

twelve using the values from Braun et al. [9]. The instances are

named following the previously presented convention: the names

have the pattern M.d c MHTH, where the first letter ( M) describes the

heterogeneity model ( A for Ali, and B for Braun). The number 0 in

the last position of the name was removed. The problem instances

and the generator program are publicly available to download at

http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP
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Table 1

Makespan results of p�-CHC for 512 ×  16  HCSP  instances from Braun et al. [9].

Instance pCHC [31] p�-CHC Imp. (avg) Imp. (best)

Best Avg. � Best Avg. � Imp. p-Value Imp. p-Value

u c hihi.0 7461819.1 7481194.5 0.26% 7381570.0 7394702.7 0.09% 1.16% <10−3 1.08% <10−3

u c hilo.0 153791.9 153924 0.06% 153105.4 153193.7 0.04% 0.47% <10−3 0.45% 0.009

u  c lohi.0 241524.0 243446.3 0.29% 239260.0 239706.2 0.08% 1.54% <10−3 0.93% <10−3

u c lolo.0 5177.5 5181.6 0.07% 5147.9 5152.3 0.04% 0.57% <10−3 0.57% <10−3

u i hihi.0 2952493.2 2956905.7 0.21% 2938380.8 2947896.4 0.14% 0.30% 0.005 0.48%  0.003

u i hilo.0 73639.8 73847.1 0.13% 73387.0 73531.4 0.10% 0.43% <10−3 0.34% 0.009

u  i lohi.0 102136.1 102677.3 0.30% 102050.6 102402.8 0.17% 0.27% 0.005 0.07% 0.01

u  i lolo.0 2549.8 2557.2 0.11% 2541.4 2547.1 0.09% 0.39% <10−3 0.29% <10−3

u s hihi.0 4198779.5 4239146.3 0.36% 4103500.3 4123537.3 0.27% 2.73% <10−3 2.27% <10−3

u s hilo.0 96623.3 96750.3 0.13% 95787.4 96020.5 0.10% 0.75% <10−3 0.87% <10−3

u s lohi.0 123251.5 123989.4 0.24% 122083.3 122744.4 0.23% 1.00% <10−3 0.94% <10−3

u s lolo.0 3450.1 3472.2 0.13% 3433.5 3438.3 0.07% 0.98% <10−3 0.48% <10−3

5.2. Development and execution platform

p�-CHC was implemented in C++, using the MALLBA library. The

parallel implementation uses MPICH version 1.2.7p1, a well-known

implementation of MPI  [21],  to perform the interprocess commu-

nications. Both the distributed memory (  ch p4)  and the shared

memory ( ch shmem)  MPICH devices were employed to implement

the two-level parallel model of p�-CHC.

The experimental analysis was performed using a  cluster

with four Dell PowerEdge servers (QuadCore Xeon E5430 pro-

cessors at 2.66 GHz, 8 GB RAM), using the CentOS Linux 5.2

operating system and Gigabit Ethernet LAN (cluster website:

http://www.fing.edu.uy/cluster).

5.3. Parameter settings

The main objective of the research is to  study the ability of the

proposed p�-CHC to efficiently solve  the HCSP. Thus, a bounded

effort stopping criterion fixed at 90 s of execution time is  used, fol-

lowing the works by  Xhafa et al. [40–42] and our previous pCHC

implementation [31]. This time limit can be considered too long

for scheduling short tasks in small multiprocessors, but it is actu-

ally an efficient time for scheduling in  realistic distributed HC and

grid infrastructures such as volunteer-computing platforms, dis-

tributed databases, etc., where large tasks – with execution times

in the order of minutes, hours and even days – are submitted to

execution. In addition, when facing large HCSP instances, ad hoc

deterministic heuristics that usually require O(n3)  operations also

require execution times in the order of minutes (e.g. Min-Min needs

more than a minute for computing schedules for HCSP instances

with dimension 8192 × 256). The 90 s stopping criterion used in

p�-CHC is useful for efficiently solving static HCSP instances, and is

also useful for solving dynamic scenarios following the reschedul-

ing strategy, by replanning incoming and unexecuted tasks after

certain intervals of time.

Regarding the crossover probability (pC), the reinitialization

probability (pR),  and the global population size (#pop), p�-CHC

used the best parameter values found in the previous work

that evaluated a  parallel CHC for the problem (pC = 0.7, pR = 0.8,

#pop = 120) [31]. This decision allows performing a fair comparison

between the two CHC proposals.

The parameter setting experiments studied the p�-CHC sub-

population size, and parameters of the parallel model, using a

subset of six problems from Braun et al., chosen to represent diverse

HC scenarios. The migration operator in p�-CHC considers the

subpopulation connected in  a unidirectional ring topology. The

best results were achieved when using a  micro population with

eight individuals -thus, considering 16 demes-, and a  selection for

migration that exchanges the best two individuals between demes

(the received individuals substitutes the worst ones in  the des-

tination deme). The best value for the migration frequency was

500 generations, providing a  good balance between introducing

diversity and reducing the time spent in  communications.

The best results were obtained when applying the randomized

PALS after five generations pass without inserting any offspring

during the mating procedure. The value of H M  (probability of select-

ing the heavy machine) was  fixed at 0.7. The value of TOP M (number

of tasks of the heavy machine to process) was fixed at N/M =  32,

while the value of TOP T (number of tasks examined to swap) was

fixed at N/20. The number of iterations (MAXIT PALS)  was set to 7.

Summarizing, the parameter configuration that allowed achiev-

ing the best results in the configuration experiments was:

• general parameters: population size: 8 individuals, 16  demes, pC

= 0.7, pR = 0.8.
• migration:  selection: elitist, replacement: replace-worst, fre-

quency: 500 generations.
• randomized PALS: application frequency: five generations without

inserting any offspring, MAXIT PALS = 7,  H M=0.7, TOP M = N/M,

TOP T = N/20.

5.4. Results and discussion

This section discusses the experimental results of applying p�-

CHC to solve the HCSP.

5.4.1. Results for  instances from Braun et al.

The results for the set of instances from Braun et al. are  pre-

sented separately, since there are previous works that solved the

benchmark using metaheuristic methods. Table 1 reports the best,

average, and standard deviation on the makespan results obtained

in 50 independent executions of p�-CHC and the results obtained

with our previous pCHC method [31]. The (percentaged) improve-

ment factors on the makespan values achieved when using p�-CHC

over the previous pCHC are also reported. The (non-parametric)

Kruskal–Wallis test was  performed to analyze the results distri-

butions, and the correspondent p-values are presented for  each

problem instance.

Table 1 shows that the new algorithmic proposal in p�-CHC

improves over the traditional parallel CHC method. By using a  micro

population, the accelerated evolution model, and the randomized

PALS to improve the population diversity, p�-CHC is  able to find

high-quality HCSP solutions with lower makespan values than the

previously obtained with pCHC. Since the computed p-values are

very small, the makespan improvements can be considered as sta-

tistically significant. The algorithmic robustness of p�-CHC also

http://www.fing.edu.uy/cluster
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Table  2

Comparative makespan results: metaheuristics for 512 ×  16 HCSP instances from Braun et  al. [9].

Instance GA [9] MA+TS [39] cMA  [40] ACO + TS [32] TS  [42] pCHC [31] p�-CHC tB (s)

u c hihi.0 8050844.5 7530020.2 7700929.8 7497200.9 7448640.5 7461819.1 7381570.0 15

u c hilo.0 156249.2 153917.2 155334.8 154234.6 153263.3 153791.9 153105.4 62

u c lohi.0 258756.8 245288.9 251360.2 244097.3 241672.7 241524.0 239260.0 23

u  c lolo.0 5272.3 5173.7 5218.2 5178.4 5155.0 5177.5 5147.9 50

u i hihi.0 3104762.5 3058474.9 3186664.7 2947754.1 2957854.1 2952493.2 2938380.8 44

u  i hilo.0 75816.1 75108.5 75856.6 73776.2 73692.9 73639.8 73387.0 51

u  i lohi.0 107500.7 105808.6 110620.8 102445.8 103865.7 102136.1 102050.6 77

u  i lolo.0 2614.4 2596.6 2624.2 2553.5 2552.1 2549.8 2541.4 49

u s hihi.0 4566206 4321015.4 4424540.9 4162547.9 4168795.9 4198779.5 4103500.3 18

u  s hilo.0 98519.4 97177.3 98283.7 96762 96180.9 96623.3 95787.4 46

u s lohi.0 130616.5 127633 130014.5 123922 123407.4 123251.5 122083.3 24

u  s lolo.0 3583.4 3484.1 3522.1 3455.2 3450.5 3450.1 3433.5 30

improved with respect to  pCHC, achieving very small values for the

standard deviation on the makespan values. Therefore, it can be

expected that p�-CHC will find high-quality schedules in  any sin-

gle execution for small-sized HCSP scenarios that follow the ETC

model by Ali et al. [5].

Table 2 presents the comparison of the p�-CHC best makespan

values against the best results previously found with diverse meta-

heuristic techniques. It also presents the time required by p�-CHC

to reach the (previous) best-known makespan value (tB, in seconds).

The analysis of Table 2 shows that p�-CHC was able to compute bet-

ter makespan values than the previous best-known solutions for

all problem instances, outperforming the ACO+TS by Ritchie and

Levine [32],  the TS by  Xhafa [42], and pCHC [31], the three previ-

ous best methods for solving the HCSP instances by  Braun et al. In

addition, short execution times were required to outperform the

previous best-known results in  all cases. The makespan values for

the best solutions obtained are marked in  bold. The best solutions

(schedules) obtained for each problem instance are  reported in  the

HCSP website http://www.fing.edu.uy/inco/cecal/hpc/HCSP.

After the previously presented results, we can claim that p�-

CHC is the new state-of-the-art algorithm for the small-sized HCSP

instances by Braun et al. The next section characterizes its perfor-

mance for solving unseen larger problems.

5.4.2. Results for new problem instances

This section presents the results for the new large HSCP

instances designed to study the scalability of p�-CHC when solv-

ing realistic distributed HC and grid scenarios. Tables 3–6 present

the results for the large-sized HCSP instances. The tables report

the best, average, and standard deviation on the makespan results

achieved in 50 independent executions of p�-CHC, and the results

obtained with the Min-Min and Sufferage deterministic heuristics

used as a  reference baseline. The best results obtained with the pre-

vious pCHC method [31] is  also presented in order to analyze the

contribution of the new evolutionary model in p�-CHC (using the

micro-population, the external population, and the PALS operator

to  introduce diversity).

Tables 3–6 show that p�-CHC computed significantly bet-

ter results than Min-Min and Sufferage for all instances. p�-CHC

steadily improved over pCHC, while maintaining low values of stan-

dard deviation in the makespan, suggesting a  robust behavior for

large HCSP instances.

Table 7 summarizes the p�-CHC improvement factors over the

other studied scheduling methods. The makespan improvement

factors were around 15% with respect to  Min-Min, and around 20%

(more than 25% for the largest instances) with respect to Suffer-

age. Lower improvement factors were obtained with respect to  the

Table 3

Makespan results for HCSP instances of dimension 1024 × 32.

Instance Min-Min Sufferage pCHC [31] p�-CHC

Best Avg. �

A.u c hihi 22508064.0 26063096.0 20327924.0 19676858.3 19717711.4 0.11%

A.u  c hilo 2255966.3 2694595.0 2048582.7 1969980.0 1975398.9 0.11%

A.u  c lohi 2155.0 2537.5 1956.7 1887.3 1892.6 0.14%

A.u  c lolo 225.9 261.0 207.5 201.2 201.5 0.08%

A.u  i hihi 6367767.5 5601367.0 5169960.5 5126273.0 5147216.4 0.07%

A.u  i hilo 641438.4 533545.2 490280.3 485189.8 487879.4 0.19%

A.u  i lohi 664.7 551.7 518.2 513.8 516.8 0.24%

A.u i lolo 63.7 55.4 50.6 50.2 50.4 0.20%

A.u  s hihi 14125880.0 14481880.0 12243560.0 11837170.0 11870719.2 0.15%

A.u  s hilo 1319050.5 1379341.3 1187506.4 1148940.6 1155387.1 0.25%

A.u  s lohi 1380.5 1417.8 1186.8 1152.5 1155.3 0.20%

A.u  s lolo 138.7 141.0 122.4 118.9 119.4 0.18%

B.u c hihi 6708228.0 7874972.0 6169823.0 6049220.5 6052322.9 0.05%

B.u  c hilo 66684.5 77250.5 61114.7 59679.5 59730.6 0.06%

B.u  c lohi 232011.8 272422.6 215149.2 210005.1 210370.4 0.10%

B.u  c lolo 2386.3 2826.9 2164.3 2100.0 2103.3 0.10%

B.u  i hihi 2164576.5 1847652.5 1630288.6 1616697.4 1621628.0 0.11%

B.u  i hilo 17083.1 16366.2 15121.5 14993.2 15047.8 0.26%

B.u  i lohi 56601.2 55083.2 49569.9 49060.5 49351.9 0.31%

B.u  i lolo 585.0 537.1 496.1 487.5 491.8 0.38%

B.u  s hihi 3967265.5 3969449.5 3393010.2 3255266.8 3272088.3 0.22%

B.u s hilo 40691.6 41551.2 35988.4 34675.2 34747.2 0.19%

B.u  s lohi 135624.6 132510.3 115179.2 110749.7 111068.5 0.20%

B.u s lolo 1333.2 1403.3 1191.7 1153.1 1158.0 0.24%

http://www.fing.edu.uy/inco/cecal/hpc/HCSP
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Table 4

Makespan results for HCSP instances of dimension 2048 × 64.

Instance Min-Min Sufferage pCHC [31] p�-CHC

Best Avg. �

A.u c hihi 19552222.0 25579850 18110479.1 17474552.0 17495744.9 0.11%

A.u c hilo 1873134.3 2478699.3 1748509.2 1692750.0 1699639.9 0.11%

A.u c lohi 1924.7 2539.2 1798.4 1731.9 1734.0 0.08%

A.u c lolo 191.7 249.8 177.6 171.7 171.8 0.05%

A.u i hihi 3248935.5 3218272.5 2506258.5 2477753.9 2492860.9 0.14%

A.u i hilo 365828.6 315267.5 272741.3 272181.1 272529.4 0.17%

A.u i lohi 320.9 312.5 266.3 265.6 266.2 0.20%

A.u i lolo 32.3 29.5 26.4 26.3 26.4 0.19%

A.u s hihi 11245679.0 13890956 9756499.7 9359727.3 9379560.0 0.13%

A.u s hilo 1042948.5 1307394.3 924094.9 878838.4 880125.4 0.13%

A.u s lohi 1056.0 1354.1 947.1 911.8 913.7 0.12%

A.u s lolo 114.6 142.3 99.6 95.0 95.1 0.09%

B.u c hihi 5564664.0 7560320.5 5290128.2 5085005.2 5092126.1 0.05%

B.u c hilo 59352.8 79079.2 55316.2 53236.9 53306.3 0.06%

B.u c lohi 190842.4 253468.1 177063.4 170659.4 170940.3 0.10%

B.u c lolo 1927.7 2613.8 1814.7 1749.4 1754.7 0.10%

B.u i hihi 929295.8 879421.3 770110.6 763701.5 766428.7 0.15%

B.u i hilo 10318.4 9047.6 7906.5 7859.0 7913.4 0.17%

B.u i lohi 34071.0 32073.6 26941.2 26769.6 26973.5 0.27%

B.u i lolo 355.7 299.4 262.4 261.8 263.2 0.26%

B.u s hihi 3293157.0 4121618.8 2910507.6 2789531.9 2796655.7 0.18%

B.u s hilo 33445.4 41777.5 29442.2 28170.9 28209.7 0.11%

B.u s lohi 111237.4 142534.7 98607.0 93798.0 93997.5 0.17%

B.u s lolo 1163.8 1474 1014.3 969.7 972.9 0.17%

previous pCHC method, but the differences increase as the problem

instances grow, achieving a 3.11% of overall improvement factor for

problem instances with dimension 8192 × 256. The figure in  Table 7

presents a graphical summary of the improvements achieved by

p�-CHC with respect to the other scheduling methods.

Regarding the consistency classification, p�-CHC obtained

slight improvements over pCHC for inconsistent instances (around

1%), but the improvements were more significant in  consistent

(over 3%) and semi-consistent (over 4%) scenarios. These results

show that p�-CHC overcomes the problem of efficiently dealing

with large structured scenarios detected for pCHC [31].

Table 8 and Fig. 3 summarize the averaged p�-CHC improve-

ments over the best makespan computed by Min-Min and Sufferage

for each dimension and heterogeneity model. The makespan

improvements over the best deterministic heuristic were always

above 12% for semiconsistent instances, and above 7% for consis-

tent instances. Lower improvement factors were obtained for small

inconsistent instances, where Min-Min and Sufferage provide accu-

rate solutions, but  the improvements significantly increased up to

more than 14% for large inconsistent instances.

5.4.3. Makespan evolution and execution time

This section analyzes the variation of the best makespan

results computed by p�-CHC with respect to the wall-clock

time. Fig. 4 presents the evolution of the ratio between the best

makespan values obtained with p�-CHC and the best deterministic

Table 5

Makespan results for HCSP instances of dimension 4096 × 128.

Instance Min-Min Sufferage pCHC [31] p�-CHC

Best Avg. �

A.u c hihi 16711134.0 23173816.0 15722681.0 15260752.4 15277595.2 0.05%

A.u c hilo 1649763.5 2240514.0 1562810.9 1520225.1 1521480.9 0.04%

A.u c lohi 1635.3 2248.6 1540.9 1493.8 1495.0 0.05%

A.u c lolo 166.9 223.9 155.7 151.1 151.2 0.05%

A.u i hihi 1666126.5 1575787.6 1309493.5 1295054.0 1312530.8 0.38%

A.u i hilo 177692.2 154506.9 137158.4 135985.3 137480.8 0.14%

A.u i lohi 188.0 165.6 136.1 135.3 136.6 0.19%

A.u i lolo 19.4 15.2 13.7 13.6 13.8 0.28%

A.u s hihi 8949853.0 11756833.0 8089853.5 7831962.8 7848970.9 0.13%

A.u s hilo 930564.0 1215532.5 828912.4 799499.4 801468.6 0.12%

A.u s lohi 927.9 1181.7 807.6 778.3 778.8 0.05%

A.u s lolo 94.7 122.3 84.2 81.6 81.7 0.13%

B.u c hihi 5059571.5 6912596.5 4767774.5 4649566.5 4651738.2 0.04%

B.u c hilo 49301.2 66003.5 46350.1 45142.7 45190.5 0.06%

B.u c lohi 169495.3 230424.2 158780.8 154504.7 154627.4 0.04%

B.u c lolo 1662.3 2263.6 1556.8 1516.2 1517.4 0.05%

B.u i hihi 524174.1 472071.9 402182.1 398655.1 403433.1 0.21%

B.u i hilo 5381.1 4964.7 4224.8 4174.5 4238.4 0.24%

B.u i lohi 18772.1 15873.5 13847.8 13614.6 13876.5 0.13%

B.u i lolo 183.9 152.4 137.4 136.3 137.9 0.31%

B.u s hihi 2843118.3 3551046.8 2508467.3 2437604.5 2440304.5 0.05%

B.u s hilo 27793.4 36605.5 25244.1 24353.7 24397.9 0.10%

B.u s lohi 91523.0 116056.8 81118.5 78296.8 78455.5 0.10%

B.u s lolo 921.8 1183.5 825.7 800.7 801.2 0.06%
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Table  6

Makespan results for HCSP instances of dimension 8192 × 256.

Instance Min-Min Sufferage pCHC [31] p�-CHC

Best Avg. �

A.u c hihi 14798376.0 20198762.0 14070023.0 13708686.6 13712470.2 0.02%

A.u  c hilo 1500181.5 2055377.3 1426068.0 1388689.3 1390076.8 0.04%

A.u c lohi 1456.5 2032.7 1384.8 1344.2 1344.8 0.03%

A.u c lolo 148.9 207.3 140.9 136.6 136.7 0.03%

A.u i hihi 878829.5 788940.8 702540.6 690223.8 693548.6 0.18%

A.u  i hilo 85076.7 77317.0 70199.3 68428.1 70310.8 0.14%

A.u  i lohi 96.1 82.6 71.0 68.9 71.4 0.76%

A.u  i lolo 8.8 8.0 7.1 6.9 7.1 0.22%

A.u s hihi 8151522.0 10828664 7428847.5 7112313.0 7119414.4 0.06%

A.u s hilo 787507.6 1047018.1 711087.9 685350.9 686178.8 0.08%

A.u s lohi 796.9 1066.1 722.2 691.5 692.1 0.05%

A.u  s lolo 81.2 107.9 73.8 70.9 71.0 0.05%

B.u  c hihi 4460896.5 6251939.0 4254320.5 4136265.2 4137730.4 0.02%

B.u  c hilo 43670.3 60967.2 41535.6 40410.0 40425.6 0.03%

B.u  c lohi 148102.7 203203.7 140752.1 136499.6 136582.1 0.04%

B.u  c lolo 1468.6 2000.6 1393.4 1357.0 1357.4 0.02%

B.u  i hihi 286800.2 248651.3 211439.3 205347.6 212492.0 0.29%

B.u i hilo 2960.2 2496.7 2099.7 2043.0 2108.9 0.34%

B.u i lohi 9496.4 7887.3 7017.2 6812.3 7058.0 0.31%

B.u i lolo 90.0 78.8 71.0 69.2 71.5 0.31%

B.u  s hihi 2411292.0 3137134.0 2155649.3 2087688.3 2088934.2 0.04%

B.u  s hilo 23979.2 31826.8 21799.3 21004.6 21045.2 0.08%

B.u  s lohi 79291.5 106247.6 72303.5 69347.8 69454.9 0.07%

B.u  s lolo 807.2 1063.7 726.2 696.3 697.2 0.07%

Fig. 3. p�-CHC improvements over the best deterministic heuristic results, regarding the consistency classification.

heuristic, averaged for each problem dimension. The graphic shows

that p�-CHC was able to  achieve high-quality results in low exe-

cution times for all HCSP instances. Less than 15 s are needed

to  achieve significant improvements with respect to the best

Fig. 4. Evolution of the makespan improvement ratio for p�-CHC.

deterministic heuristic in low-dimension problem instances

(512 × 16 and 1024 × 32). The makespan reduction follows a more

lethargic behavior for the largest problem instances (around a

minute is  needed to achieve 10% of makespan reduction).

From a execution time-oriented point of view, Fig.  5 shows

the time required to achieve a given improvement threshold in

the makespan value with respect to  the best deterministic heuris-

tic result. p�-CHC needs from 8 s (for dimension 512 × 16) to

45 s (for dimension 8192 × 256) to  improve over the 5% threshold

value, while 15 s (for dimension 512 × 16) to 80 s (for dimension

8192 × 256) of execution time are required to achieve an improve-

ment of 10%  over the best deterministic heuristic results.

The previously presented results demonstrate the capacity of

p�-CHC to act as an efficient and accurate scheduler for heteroge-

neous computing and grid environments.

5.4.4. Comparison with lower bounds

Due to its high computational complexity, the non-preemptive

HSCP cannot be solved in  reasonable execution times using exact

methods. However, a  lower bound for the makespan value can be
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Table 7

Overall average improvements when using p�-CHC.

Model Dimension Improvement over

Min-Min Sufferage pCHC

Ali 512 × 16 15.32% 23.05% 2.48%

1024  ×  32 16.35% 16.92% 2.46%

2048  ×  64 15.76% 26.69% 2.75%

4096  ×  128 16.23% 27.16% 2.37%

8192  × 256 14.46% 27.14% 3.11%

Braun 512  × 16 11.47% 13.55% 0.73%

1024 ×  32 14.57% 17.03% 2.41%

2048  ×  64 15.96% 26.66% 2.91%

4096  ×  128 15.68% 26.36% 2.31%

8192  × 256 16.09% 27.56% 3.10%

Overall 512 × 16 14.10% 17.47% 1.61%

1024  ×  32 15.42% 16.98% 2.43%

2048  × 64 15.86% 26.67% 2.83%

4096  ×  128 15.95% 26.76% 2.34%

8192  × 256 15.27% 27.35% 3.11%

Fig. 5. Execution times required to achieve a  given improvement threshold.

Table 9

Comparison with the lower bounds for the  preemptive case.

Instance LB p�-CHC (best) GAP(LB) Avg. GAP(LB)

u c hihi.0 7346524.2 7381570.0 0.48% 0.38%

u c hilo.0 152700.4 153105.4 0.27%

u c lohi.0 238138.1 239260.0 0.47%

u c lolo.0 5132.8 5147.9 0.29%

u i hihi.0 2909326.6 2938380.8 1.00% 0.73%

u  i hilo.0 73057.9 73387.0 0.45%

u i lohi.0 101063.4 102050.6 0.98%

u i lolo.0 2529.0 2541.4 0.49%

u s hihi.0 4063563.7 4103500.3 0.98% 0.82%

u s hilo.0 95419.0 95787.4 0.39%

u s lohi.0 120452.3 122083.3 1.35%

u s lolo.0 3414.8 3433.5 0.55%

Dimension GAP(LB) Imp. % Ideal imp.

Avg. Best

512 ×  16 1.05% 0.75% 14.10% 94.93%

1024 × 32 2.32% 1.96% 15.42% 88.70%

2048 × 64  3.44% 3.15% 15.86% 82.18%

4096 × 128 4.70% 4.15% 15.95% 77.23%

8192 ×  256 6.18% 5.07% 15.27% 71.18%

computed by solving the linear relaxation for the preemptive case

of the problem. Under the preemption hypothesis the scheduler

can temporarily interrupt a  task and continue its execution on a

different machine at a  later time, without additional costs. In this

(unrealistic) situation, an optimal solution has all machines with

the same value of local makespan, which corresponds to the opti-

mal  makespan of the schedule.

The linear programming model relaxes the requirement that

each task has to  be assigned to one and only one machine, so the

relaxed problem is  to find a  (normalized) vector of real numbers

that represent the fraction of the task which is  allocated to  each

machine. The linear programming problem is  presented in  Eq. (2).

min max
j=1...M

i=N∑

i=1

xij · ET(ti, mj)

subject to

j=M∑

j=1

xij = 1; 0 ≤ xij ≤ 1

The HCSP linear relaxation was solved with CPLEX [23],  a  software

that uses the revised simplex method and the primal-dual interior

point method to solve non-integer optimization problems such as

the preemptive version of the HCSP. The lower bounds computed

for the preemptive version are useful to determine the accuracy

of the results achieved using the p�-CHC method proposed in this

work for solving the (non-preemptive) HCSP instances.

Table 9 summarizes the comparison between the p�-CHC

results and the lower bounds (LB) computed for the preemp-

tive case, for each problem dimension. The results for the HCSP

Table 8

Improvements of p�-CHC over the best deterministic heuristic.

Model Type Dimension

512 × 16 1024 × 32  2048 ×  64  4096  ×  128 8192 × 256

Ali Consistent 13.34% 12.15% 10.18% 8.66% 7.68%

Inconsistent 10.97% 8.44% 15.63% 14.64% 13.70%

Semiconsistent 16.62% 14.97% 15.81% 14.14% 12.92%

Braun Consistent 9.19% 10.45% 9.69% 8.54% 7.54%

Inconsistent 7.77% 10.27% 13.85% 14.06% 15.35%

Semiconsistent 12.28% 16.15% 15.86% 13.56% 13.03%
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instances by Braun et al. are presented separately, since these sce-

narios are actively used by the research community. The lower

bounds for the new instances are reported in the HCSP website.

Table 9 reports the relative gap value of the best and average

results achieved for each problem dimension with respect to  the

correspondent lower bound (defined by  Equation 2). The table also

reports the improvements over the best deterministic heuristic,

and the percentage of the ideal improvement achieved by p�-CHC,

considering the computed lower bounds.

GAP(LB)  =
result − LB

LB
(2)

The values reported in  Table 9 show that p�-CHC is able to

compute accurate results when compared with the (in the general

case, unattainable) lower bounds for the preemptive case. For the

512 × 16 HCSP instances the gaps were below 1.5% (and below 1%

for 10 out 12 instances). The gaps increase as the problem dimen-

sion grows, but even for the largest problem dimension tackled in

this work the gap values are below 6.20% (average) and 5.07% (best).

The previous results suggest that there is a  small difference

between the obtained results and the optimal makespan value

for each problem instance (since the optimal makespan value lays

between the computed LB  and the p�-CHC result). Fig. 6 presents

a graphical summary of the improvements obtained by p�-CHC

over the best deterministic heuristic result and the comparison

with the ideal improvement (given by the relative gap value with

respect to the computed lower bounds), averaged for each problem

dimension.

5.4.5. Scalability analysis and parallel performance

The parameter setting experiments showed that p�-CHC

obtained the best makespan results for low-dimension HCSP

instances when using the largest number of subpopulations con-

sidered (16). Additional experiments were performed evaluating

the results of p�-CHC when using different number of subpopu-

lations to solve large-dimension problem instances. The p�-CHC

algorithm was executed using 2–16 subpopulations until reaching

the time stopping criterion of 90 s,  and the normalized makespan

Fig. 6. p�-CHC improvements with respect to the best deterministic heuristic

results  and gaps with the computed lower bounds.

improvements (i.e. the ratio between the makespan achieved using

n subpopulations and the makespan obtained with a  single popu-

lation) were evaluated.

Mean values of the average normalized makespan improve-

ments achieved in 25 independent executions of p�-CHC are

reported in  Fig. 7 for consistent, inconsistent and semiconsis-

tent instances for each problem dimension studied. The graphic

shows that the normalized makespan values diminish when solv-

ing large-dimension problem instances. These results demonstrate

the ability of p�-CHC of taking advantage of both the multiple

evolutionary search and the randomized PALS operator in an effi-

cient manner when using additional computational resources A

sample cut  of the 3D graphics for instances with a  representative

dimension (2048 × 64) and problem type (semiconsistent), is  pre-

sented in Fig. 7, showing the reduction of the normalized makespan

values (including error marks) when using additional subpopu-

lations, in  contrast with the behavior previously detected for the

pCHC method, that suffered a  degradation of the makespan results

when more than eight demes were used [31].  Similar results were

Fig. 7. Scalability and parallel performance analysis for p�-CHC.
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achieved when solving other HSCP instances. The new p�-CHC is

then a fully scalable scheduler, able to improve over its own  results

when using additional available computational resources.

6. Conclusions

This work presented a  parallel micro-CHC applied to  the HCSP, a

crucial problem when executing tasks in HC systems. p�-CHC was

designed to efficiently solve large HCSP instances, using a  bounded

time stopping criterion that  allows a  quick planning. The new algo-

rithm is inspired by multiobjective EAs, aimed at exploiting both

the intrinsic parallel nature of EAs and the resource availability in

grid environments. The p�-CHC method uses a  micro-population

and follows an accelerated evolution model using a powerful ran-

domized local search. It  was implemented in MALLBA, using a

two-level shared memory and message passing parallel model.

The experimental analysis solved benchmark HCSP instances

and new high-dimension instances specially designed to analyze

the scalability of the proposed method. The results demonstrate

that p�-CHC is an efficient scheduler for HC and grid environments,

able to obtain good schedules in reduced execution times. p�-

CHC is the new state-of-the-art algorithm for the benchmark set

of HCSP instances by Braun et al. [9],  since it was able to improve

over the previously best-known solutions computed with diverse

metaheuristic techniques.

When solving high dimension HCSP instances up to 8192 tasks

and 256 machines, p�-CHC was also able to compute accurate

results with respect to those obtained using traditional determin-

istic heuristics and a  previous standard parallel implementation of

CHC [31]. The makespan improvement factors obtained by p�-CHC

were 15% over the Min-Min heuristic, 20–25% over the Sufferage

heuristic, and 3.5% with respect to  the previous pCHC method.

The scalability and parallel performance analysis showed that

p�-CHC is able to improve the makespan results when using more

computing resources, and it also overcomes the problem of pCHC

to  deal with structured scenarios.

From the previous results, we can claim that p�-CHC is a  power-

ful  tool for scheduling in  HC and grid environments, when dealing

with tasks having long execution times. In these scenarios, it is

worth investing the time required for computing the schedule in

order to achieve significant reductions (over 15%)  in the makespan

values over deterministic heuristics.

The main lines for future work include to explore the role of each

interacting element in  p�-CHC, and also to  improve the algorithmic

proposal in order to face still larger scenarios and the dynamic ver-

sions of the HCSP. Regarding the first issue, it would be interesting

to evaluate the specific contribution of the p�-CHC components,

specially the local search operators, in  order to  get useful informa-

tion about the fitness landscape to improve the results. On the other

hand, new compact problem encodings and operators that perform

larger modifications need to be devised to overcome the slow evo-

lution pattern when solving large scenarios. Using different local

search heuristics in  each subpopulation is  also an interesting exten-

sion of the proposed p�-CHC algorithm. Future work could also

focus on studying the applicability of p�-CHC and other parallel

EAs for solving dynamic versions of HCSP by using a rescheduling

strategy. p�-CHC is  a powerful tool for quickly scheduling multiple

tasks, therefore an iterated version of the algorithm could be used

to perform rescheduling on dynamic scenarios. These lines of work

are currently been investigated.
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